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Reproducibility Summary1

Scope of Reproducibility2

We evaluate the reproducibility of this paper, which proposes an automatic search algorithm to find privacy preserving3

transformation policies in the setting of federated learning. To achieve this we test all the main claims made by the4

authors by rerunning the experiments and reporting the reproduced results. We further extend their work to a new5

dataset.6

Methodology7

We perform all experiments using the model architectures and hyperparameters proposed by the authors. We use8

the same datasets and extend their work to include one new dataset. A codebase was available which enables us to9

reproduce some of the results. However we deliver a contribution by fully re-implementing the codebase in PyTorch10

Lightning to ensure all components are modular, and experiments can be easily executed and extended, to the benefit of11

future research using the authors’ method. All experiments are performed on Nvidia GTX 1080 GPUs.12

Results13

Overall we find the same results as the authors: searched transformation policies can defend users in federated learning14

from reconstruction attacks. These transformations also have negligible impact on training efficiency and model15

accuracy. However we do not observe the reported correlation between the authors privacy-score and PSNR. We are16

in contact with the authors about this. Also we find that the results differ greatly from image to image, with standard17

deviations in PSNR values of over 25% the value. This means that for some specific images the method is not effective.18

What was easy19

Paper was clearly written and the general idea was easy to follow. There was a codebase available in PyTorch and part20

of the experiments were reproducible using this code.21

What was difficult22

The codebase was not clearly structured and has to be altered to produce results for most experiments reported in the23

paper. The reimplementation of the codebase was non-trivial due to otherwise undocumented details in the code having24

a large impact on outcomes.25

Communication with original authors26

The authors were contacted on multiple issues regarding implementation details and notation in the paper. Most of27

these were resolved swiftly and constructively. On two issues we remain in contact with the authors at this time.28
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1 Introduction29

Collaborative learning systems allow multiple users to jointly train a Deep Learning (DL) model. Each user has their30

own training data which is to calculate local gradients [18][7][12]. These local gradients are then shared among all31

users to update the parameters of the shared DL model, without the need of sensitive data leaving user’s device. Primary32

benefit of federated learning is its capacity to improve the generalization of the resulting model, while maintaining33

privacy over the training data of individual users. This is especially important as confidentiality quickly becomes an34

essential quality of DL models [1]. Because of that, federated learning is used in applications from mobile networks35

[10] to autonomous driving [13] and health care [2].36

However, this privacy benefit can be undone by reconstruction attacks as proposed by [6][19][20]. These attacks make it37

possible to reconstruct the original private training samples of users from the shared gradients of the federated learning38

system. This poses a considerable threat to the privacy of users of federated learning systems and the confidentiality of39

their data samples.40

The paper subject to this reproducibility study proposes a novel approach to mitigate the threat from reconstruction41

attacks by augmenting the local training data of the user, before calculating the gradients [5]. Furthermore, the authors42

develop an automatic search algorithm to find the optimal transformation policies to augment the data and propose two43

novel metrics, Spri and Sacc, to increase the efficiency of this search.44

In this reproducibility report, we evaluate the main claims made by the authors of [5] by reproducing their experiments.45

Moreover, we assess the availability of hyperparameters and other information needed for reproducibility, as well as46

discuss the usability of the provided codebase. We also extend the experimental setup towards a new dataset.47

2 Scope of reproducibility48

The main goal of the original paper is to develop an automatic search algorithm to find transformation policies that can49

defend privacy-sensitive training data against reconstruction attacks in a federated learning system. To achieve this,50

authors devise two novel metrics, described in Section 3.2. The main claims made in the paper are the following:51

• Claim 1: by augmenting training samples with carefully-selected transformation policies, reconstruction52

attacks become infeasible53

• Claim 2: the proposed search algorithm can find good and general policies, i.e. policies that are able to defeat54

multiple variants of reconstruction attacks55

• Claim 3: the found policies are highly transferable; good policies searched for one dataset are also suitable for56

another datasets57

• Claim 4: the found policies have negligible impact on the training efficiency58

• Claim 5: in general, a good policy is made up of transformations that distort the details of the training samples,59

while maintaining the semantic information60

• Claim 6: the five transformations that work best are horizontal shifting (9), brightness (9), brightness (6),61

contrast (7) and contrast (6) (number inside the brackets represents the intensity of the applied transformation)62

• Claim 7: Spri is a good measure of privacy; it is linearly correlated to Peak signal-to-noise ratio (PSNR) [9]63

with a Pearson Coefficient [15] of 0.69764

Each of these claims is supported by the results of one or more experiments in [5], represented in the tables and figures.65

In this reproducibility study, we rerun the experiments and reproduce the resulting tables and figures. In Section 5,66

we list which experiments support which claims. In Section 6, we discuss the reproducibility of each experiment and67

evaluate the validity of the claims.68

Beyond reproducing the above claims from the original paper, we propose two extensions. Both of these extensions are69

based on the transferability of the searched policies as claimed in Claim 3. We test the transferability of the policies70

against additional dataset and evaluate whether the best performing transformations are the same on this dataset.71

Extension 1: Using the policies searched on one dataset and applying them to a new dataset can make reconstruction72

attacks against this new dataset infeasible73

Extension 2: Since good policies share the same general qualities, as claimed by Claim 5, the five best transformations74

from Claim 6 are the same when using a different dataset.75
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In Section 5, we show the results for these extensions, and in Section 6, we relate them to the claims, experiments, and76

results from the original paper.77

3 Finding privacy-preserving transformation policies78

The original paper proposes an automatic search algorithm for finding privacy-preserving transformation policies. To79

better understand this main contribution, we take an in-depth look at what a transformation policy is and how good80

policies are found within a reasonable time.81

3.1 Transformation policies82

Transformations or augmentations have been widely used to improve model performance and generalizability in DL.83

In [5], transformations from AutoAugment1 [3] are repurposed to protect sensitive training data from reconstruction84

attacks. The library contains 50 different transformations, including rotation, crop, shift, inversion, brightness, and85

contrast. A transformation policy is a combination of k such transformations applied to the training samples. In [5],86

k = 3 is chosen and the policies are denoted by the indices of the transformations within the AutoAugment library.87

Consistently apply the best policy to the data would risk domain shift in the dataset. Therefore, the authors propose the88

hybrid strategy, where a policy is randomly selected from the candidate policies - this way, good privacy and accuracy89

are guaranteed [5].90

3.2 Reducing the search-space91

To find candidate policies, it is necessary to determine their effect on both privacy and accuracy. The transformations92

must be applied to training data, and a model must be trained. Because fully training a model is very expensive, the93

authors propose two metrics that serve as a proxy for the privacy preservation and accuracy of the fully trained model:94

privacy-score(Spri) and accuracy-score(Sacc). Low Spri entails the model has high privacy preservation potential,95

whereas high Sacc means the model achieves good accuracy with the applied transformation policies. These metrics96

produce results on model that are trained with only 10% of the data for only 25% training iterations, reducing the97

search-space and making the policy search feasible in a reasonable time. Further details about the definition of Spri and98

Sacc can be found in sections 4.2 and 4.3 of [5].99

4 Experimental setup and code100

To verify the claims made by the authors of [5], we reproduce their experiments. These experiments roughly fall101

into four categories: evaluating the effectiveness of the searched policies against reconstruction attacks, testing the102

transferability of the searched policies on different datasets and models, checking the impact on model efficiency,103

and studying the semantics behind the different transformations. Multiple models must be trained on augmented and104

un-augmented data for all these categories. For the attacks, the approach from [6] is applied. Section 5 provides a105

detailed description of the experiments and shows the results.106

To reproduce the experiments performed by the authors, we used their existing codebase2, which is implemented in107

PyTorch [14]. We refactored parts of this code and re-implemented the rest to our own version written in PyTorch108

Lightning3, which leverages the interface advantages of the Lightning framework to make running experiments and109

logging results more intuitive. Main benefit of doing so is that more experiments can be tested with finer clarity110

and control of the setup. Our refactoring is this study’s main contribution, and the codebase is publicly available at111

https://anonymous.4open.science/r/MLRC2021-0454.112

1https://github.com/DeepVoltaire/AutoAugment
2https://github.com/gaow0007/ATSPrivacy
3https://github.com/PyTorchLightning/pytorch-lightning
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4.1 Datasets113

The experiments in [5] are performed on two datasets, CIFAR-1004 [11], and Fashion-MNIST5 [17]. CIFAR-100114

contains 60, 000 color images of size 32× 32, from 100 classes. The test set is used as the validation set, consistent115

with the authors’ codebase. On the other hand, the Fashion-MNIST dataset contains 70, 000 grey-scale images of116

28× 28 resolution from 10 classes. Again the test set is used as a validation set. We run experiments on one additional117

dataset in our extensions - Tiny ImageNet2006 [4]. It contains 120,000, 64× 64 RGB images of 200 different classes.118

However, a tiny version of the dataset is introduced in the original paper for policy-search purposes. This dataset version119

contains 10% of the original samples, using the same distribution. It’s later used to train the models for the evaluation120

of Spri and Sacc in the search algorithm.121

4.2 Model descriptions122

We use the following models:123

• ResNet20-4, a variation of ResNet20 [8] that has four times the number of channels also used in [6]. The total124

number of parameters is 4.4M.125

• ConvNet [6] - 8-layer Convolutional Neural Network, with batch normalization and a ReLU layer after each126

convolution layer. For this model the total number of parameters is 3.7M.127

The original codebase uses the implementation of both models from the repository7 of [6]. Our models are re-128

implemented in Pytorch Lightning. Both models were compared with the models from the original codebase in terms of129

accuracy; they achieved comparable results.130

4.3 Hyperparameters131

For policy search, we used Cmax = 1500 and max policies equal to 10. The batch size was 128, and the number of132

transforms in policy was 3. For training, the batch size was also 128 and the number of epochs was 60 (see Section133

4.4). To obtain a semi-trained network, we used a subset of 10% of the training dataset. The attack is performed on134

image with index 0, and we reused the remaining setups according to the original paper e.g. "inversed" (default attack).135

Except for Figure 4, where a default config was used, with a number of maximum iterations changed to 2500. For136

further experiments, we followed the same conventions.137

4.4 Computational requirements138

We ran our experiments using Nvidia GeForce GTX 1080 GPU. The policy search took approximately 10 hours. The139

training of one model took approximately 2h 40min using the original approach. However, training for 60 epochs140

achieves the same accuracy but in 50 minutes. It is because there exist periods of plateau, while lr is not scheduled yet141

to drop. One attack with 2500 iterations took approximately 5 minutes, so measuring the correlation between Spri and142

PSNR took 8.5 hours (with policy search).143

5 Experiments and results144

5.1 Results reproducing original paper145

Experiment 1 A reconstruction attack on 100 images from the CIFAR-100 validation set is performed with and146

without a searched transformation policy applied. We document the optimization process of the attack in terms of147

GradSim. The model used is ResNet20 trained on the tiny dataset for 50 epochs. The results of this experiment are148

shown in Figure 2, which shows a very similar result to the original paper. In addition to the original figure, we show the149

standard deviation over the 100 images, since GradSim can differ significantly from image to image. When taking the150

average of multiple runs, it can be seen that the privacy-aware transform does indeed make the GradSim convergence151

more difficult.152

4https://www.cs.toronto.edu/~kriz/cifar.html
5https://github.com/zalandoresearch/fashion-mnist
6http://cs231n.stanford.edu/tiny-imagenet-200.zip
7https://github.com/JonasGeiping/invertinggradients
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(a) Reproduced result (b) Result from original paper

Figure 2: Optimization process of reconstruction attack with
and without searched policy

(a) Reproduced results (b) Original results

Figure 4: Correlation between Spri and PSNR

Experiment 2 A visual comparison between reconstructed images with and without a searched transformation policy153

applied is performed for both ResNet20 and ConvNet on images from CIFAR-100 and Fashion-MNIST. The optimizer154

used in the attack is Adam+Cosine. The images, the resulting reconstructions, and their PSNR values are shown in the155

left half of Figure 5. The results from the original paper are shown at the right side of Figure 5. As can be seen, the156

images used and PSNR values reported are different. This is due to the fact that it was too expensive to identify the157

exact same images and PSNR values differ quite severely depending on the image used. However, for all 12 images, we158

observe a less pronounced visual effect of the transformation policy as well as a smaller gap in PSNR values between159

the reconstructions with and without the policies applied. This implicates that the effect shown in the original paper is160

not as severe for all images, although the images we selected may be particularly easy to reconstruct.

(a) CIFAR-100
with ResNet20

(b) CIFAR-100
with ConvNet

(c) FMNIST
with ResNet20

(d) FMNIST
with ConvNet

(e) CIFAR-100
with ResNet20

(f) CIFAR-100
with ConvNet

(g) FMNIST
with ResNet20

(h) FMNIST
with ConvNet

Figure 5: Visualization results for reconstruction attacks on different datasets and models with associated PSNR values.
Our results above and original results below.161

Experiment 3 To gain further insight into the effectiveness of the different policies, we report the qualitative and162

quantitative results of Adam+Cosine attacks and model accuracy for the datasets and models in Figure 5. The results163

are calculated over 6 images as performing the experiment is very expensive and number wasn’t stated in the paper. The164

policies considered and the results are listed in Table 1. Table 1 shows similar patterns to the original paper, where the

Policy PSNR PSNR (std) Acc
None 12.15 2.06 78.11
Random 9.92 1.93 75.02
3-1-7 6.77 0.88 71.59
43-18-18 9.34 1.81 77.16
Hybrid 8.25 1.64 77.47

(a) CIFAR-100 + ResNet20

Policy PSNR PSNR (std) Acc
None 11.44 2.93 72.97
Random 10.29 1.02 71.93
21-13-3 8.23 2.18 63.26
7-4-15 10.31 2.14 70.77
Hybrid 9.89 1.47 68.91

(b) CIFAR-100 + ConvNet

Policy PSNR PSNR (std) Acc
None 9.81 4.41 95.19
Random 10.06 2.04 95.19
19-15-45 8.26 0.37 92.44
2-43-21 8.93 2.93 93.93
Hybrid 8.41 1.45 95.14

(c) FMINST + ResNet20

Policy PSNR PSNR (std) Acc
None 9.52 3.27 94.61
Random 9.47 2.27 94.47
42-28-42 7.59 0.89 94.62
14-48-48 8.41 2.10 94.68
Hybrid 6.80 0.98 94.59

(d) FMNIST + ConvNet

Table 1: PSNR (db) (including mean and standard deviation over 6 images) and model accuracy (%) of different
transformation configurations for each model and dataset. 19− 1− 18 is the random policy.
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searched policies have low PSNR values compared to not using transformations. We do observe that PSNR values have165

a relatively high standard deviation, and during our experiments, we found that the policies do not form a good defense166

for some images. This problem will be further discussed in Section 6.167

Experiment 4 The defensive qualities of the searched transformation policies are benchmarked against existing168

defenses from the literature [20] [16] under the Adam+Cosine attack. The results are shown in Table 6. Although the169

exact values differ slightly, the overall results are similar to the original paper, where all the existing defenses perform170

worse than the hybrid strategy.171

Experiment 5 This experiment concerns Claim 2. Because policies should be general, they are tested against various172

attack configurations. For this, we again use 6 images from the test set and perform the different attacks on the images173

without the transformation policies applied and with the hybrid strategy transformation policies applied. The results174

are shown in Table 2. As can be seen from the table, the hybrid strategy works well against all configurations of the175

reconstruction attack. This is in line with the results from the original paper.

Attack None None (std) Hybrid Hybrid (std)
LBFGS+L2 8.61 1.22 6.33 2.00
Adam+Cosine 12.15 2.06 8.25 1.64
LBFGS+Cosine 9.62 0.91 7.47 0.25
Adam+L1 9.48 0.71 6.43 0.16
Adam+L2 9.28 0.69 6.46 0.21
SGD+Cosine 12.60 2.07 8.03 1.47

Table 2: PSNR values (db) (including mean and standard deviation over
6 images) of reconstructed images with and without transformations
applied for different attack configurations

Policy PSNR PSNR std
None 15.39 2.78
3-1-7 8.47 0.85
43-18-18 10.97 1.06
Hybrid 8.95 0.90

Table 3: CIFAR100 with ResNet20

176

Experiment 6 This experiment concerns the transferability of Claim 3. To test this, the policies searched on CIFAR-177

100 are applied to Fashion-MNIST using both ResNet20 and ConvNet. Reconstruction attacks are performed with178

the Adam+Cosine attack. The resulting PSNR values and accuracies are listed in Table 4. The results differ from the179

original. It can be seen that the transformation policies are not effective here.

Policy PSNR PSNR (std) Acc
None 9.81 4.41 95.19
3-1-7 9.30 2.72 93.20
43-18-18 10.03 2.23 94.88
Hybrid 7.49 1.57 94.49

(a) FMNIST + ResNet20

Policy PSNR PSNR (std) Acc
None 9.52 3.27 94.61
21-13-3 9.99 2.12 92.38
7-4-15 9.34 1.62 94.35
Hybrid 11.50 5.80 93.77

(b) FMNIST + ConvNet

Table 4: Resulting PSNR (dB) and accuracy (%) values for applying policies searched on CIFAR-100 to Fashion-MINST180

Experiment 7 The following experiment is aimed at Claim 4. The authors state that applying the search policies has181

a negligible impact on training efficiency. We trained ResNet20 with the searched policies applied and documented the182

loss and accuracy convergence to test this. From Figure 6 it can be seen that indeed applying transformations has almost183

zero impact on the training efficiency. It is also noteworthy to observe that the training curves are almost identical184

compared with the results from the original work.

(a) Reproduced results (b) Original results

Figure 6: Convergence speed with and without transformations applied185

6



Experiment 8 Claim 5 states that good transformation policies obfuscate details in the training samples but maintain186

high-order semantic information. As such, attackers will have trouble reconstructing high frequency information. We187

test this by comparing the attacker-defender gradient similarity during an attack of models trained with the searched188

policy, a random policy, and no policy applied. From Figure 7, it can be seen that in shallow layers, the gradients differ189

significantly, whereas in deep layers, the gradients are very similar. This implies that the transformations do indeed190

have the desired effect and is in line with the results from the original paper.

(a) Shallow layers (b) Deep layers

Figure 7: Reproduced results of gradient similarity during the reconstruction optimization, for CIFAR100 with ResNet20191

Experiment 9 In Claim 6 the authors report their 5 top transformations. We test whether we can find the same ones192

by calculating the privacy score on the dataset for each individual augmentation and show the results in Figure 8a and193

8b. Out of the best 5 transformations reported in the original paper we found 4 overlapping ones.

(a) Reproduced results (b) Original results (c) Results on Tiny ImageNet

Figure 8: Privacy scores of the 50 transformation functions in the augmentation library, best transformations are red.194

Experiment 10 The final experiment reproducing the results from the original paper is aimed at Claim 7. The authors195

claim that their privacy-score Spri is linearly correlated with PSNR with a Pearson-coefficient of 0.697. We test this196

by running attacks and evaluating Spri on the model trained on tiny cifar100 for 50 epochs and found a very different197

result. As shown in Figure 4 there is hardly any correlation (Pearson-coefficient is 0.123). This might be due to the fact198

that these 100 transformation policies are selected at random out of 127.550 possible options. This is a striking result199

nonetheless, which we discuss in-depth in Section 6.200

5.2 Results beyond original paper201

Extension 1 We extend the evaluation of the transferability of the searched policies by evaluating the performance202

of the policy searched on CIFAR-100 on Rescaled ImageNet. The resulting PSNR values and accuracies are shown203

in Table 5. As can be seen from the table, the hybrid strategy produces only 1 dB improvement in PSNR value, and204

accuracy decreases by more than 4%. This weakens the claim of transferability made by the authors.205

Extension 2 We additionally extend the evaluation of the transferability of the searched policies by testing which206

transformations work best on a different dataset. Since good policies share the same general qualities, as stated in Claim207

5, the five best transformations from Claim 6 can be expected to be the same when using a different dataset. For this208

experiment, we use the Rescaled ImageNet dataset. The resulting transformations are shown in Figure 8c. Out of the 5209

best transformations on the Rescaled ImageNet 3 were also found on CIFAR-100 in both our results and the results210

from the original paper. This shows that, indeed, these transformations contain the desired qualities from Claim 6.211
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Policy PSNR PSNR (std) Acc
None 8.96 1.25 61.44
Hybrid 7.92 0.79 57.38

Table 5: PSNR values (dB) and accuracies
of policies searched on CIFAR-100 applied to
Rescaled ImageNet

Defense PSNR PSNR (std) Acc
Pruning (70%) 11.62 2.18 74.61
Pruning (95%) 10.41 1.32 67.91
Pruning (99%) 9.96 0.57 53.43
Laplacian (10−3) 10.73 1.02 71.45
Laplacian (10−2) 12.03 0.79 26.20
Gaussian (10−3) 12.11 2.98 72.89
Gaussian (10−2) 12.13 1.14 36.25

Table 6: Comparisons with existing defense methods under the
Adam+Cosine attack

6 Discussion212

Overall the results in [5] are reproducible, except Figure 4, with a large discrepancy between our result and the original213

one - we are still in contact with the authors on this issue. Nevertheless, augmentation policies tend to work as a defense214

mechanism rather well. For most images, an attacker using reconstruction attacks is unable to find privacy-sensitive215

information. However, the standard deviation of our results is more than 25% in some settings, and we consider this a216

valuable metric to contribute. Some images are vulnerable to the attack even with the proposed defense mechanism,217

and it is as of yet unclear to us which types of images are more vulnerable than others. This issue must be developed218

further in future research to make the approach widely applicable in real-world use-cases where private data is at stake.219

Additionally, we made observations in the codebase that, to the best of our knowledge, were not reported in the paper or220

any other accompanying documentation. The first was the fact that the loss of the training module was multiplied by221

a factor of 0.5. This is not a fundamental flaw during the training phase, as it simply produces smaller gradients and222

therefore leads to a reduced effective learning rate. However, during the reconstruction attacks, the loss used by the223

attacker was not multiplied by this factor. This makes the attacker in practice use a different loss function from the224

one used to generate the gradient that it is attempting to match. This may therefore make reconstruction more difficult.225

Furthermore, we found that two other undocumented augmentations were added in all experiments, namely a random226

crop and random horizontal flip. Without these, the accuracy of our models decreased by over 10%. We are in contact227

with the authors regarding these observations, they acknowledged the halved loss as a bug.228

6.1 What was easy229

The explanation of the general idea and solution of the paper was very clearly put and easy to follow. The codebase230

contained a README with instructions on how to run some of the paper’s experiments, and these instructions could be231

followed without significant problems. The code produced results as seen in the paper.232

6.2 What was difficult233

The most challenging part about reproduction was the unclear description of experiments in the paper and limited clarity234

in the codebase. Code in the repository was uncommented, used many global variables and many layers of indirection.235

Many chunks of code were not used, making it harder to follow. Some experimental settings and metrics were not236

implemented, and some experiment configurations led to fatal errors.237

It was very unclear which steps were originally followed to obtain Figure 4. Despite the authors’ helpful comment on238

which model was used, we were not able to reproduce the correlation, potentially due to randomness in a vast search239

space (127,550) and the limited sample size (100). Furthermore, the paper does not state how many images were used240

to produce the PSNR values in the tables. Finally, undocumented augmentations were added in some but not all settings,241

which was cause for some delay until this was found to be the cause for a 10% accuracy-gap with the authors’ results.242

6.3 Communication with original authors243

We contacted the authors about multiple clarifications regarding implementation details and notation in the paper. The244

authors responded promptly and answered almost all of our questions in the first round of contact. We are still in contact245

on two points. Firstly, regarding our reproduction of Figure 4. Since we got such differing results for this critical part of246

the authors’ work, we are looking to investigate this further and possibly resolve the discrepancy with them. Secondly,247

we offered our refactoring of the codebase to the authors as a contribution to their work.248
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