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ABSTRACT

Being able to reproduce physical phenomena, ranging from light interaction to
contact mechanics, simulators are becoming increasingly useful to more and more
application domains where real-world interaction or labeled data is difficult to ob-
tain. Despite the gain in attention, it requires significant human effort to configure
simulators to accurately reproduce real-world behaviors. We introduce a pipeline
that combines inverse rendering with differentiable simulation to create digital
twins of real-world articulated mechanisms from depth or RGB videos. Our ap-
proach automatically discovers joint types and estimates their kinematic param-
eters, while the dynamic properties of the overall mechanism are tuned to attain
physically accurate simulations. On a real-world coupled pendulum system ob-
served through RGB video, we correctly determine its articulation and simulation
parameters, such that its motion can be reproduced accurately in a physics engine.
Having learned a simulator from depth video, we demonstrate on a simulated
cartpole that a model-predictive controller can leverage such dynamics model to
control nonlinear systems.
We provide further results and details on our project website at
https://eric-heiden.github.io/video2sim.

(a) Simulation derived from RGB video (b) Inferred articulation

Figure 1: Our proposed framework infers articulated rigid body dynamics simulations from video. In this
example, Rott’s pendulum is identified from real RGB camera footage of the system in motion. In (a), the
original video is compared to the simulated motion in the learned physics engine. In (b), the inferred joints
are visualized on the left, where blue cylinders correspond to the axes of the revolute joints. The estimated
kinematic tree is shown on the right.

1 INTRODUCTION

Simulators are one of the most capable world representations that can reproduce a vast range of
behaviors in great detail through a variety of dynamics models. Provided their implemented mod-
els are calibrated correctly, these tools can generalize exceptionally well compared to most purely

1

https://eric-heiden.github.io/video2sim


Published at the ICLR 2022 workshop on Objects, Structure and Causality

data-driven models. They are an indispensable tool in the design of machines where the cost of pro-
totyping hardware makes iterating in the real world prohibitively expensive. Robot control pipelines
are often trained and developed in simulation due to the orders of magnitudes of speed-ups one can
achieve by simulating a great variety of interaction scenarios in parallel faster than real time without
causing damage in the early phases of training.

Nonetheless, it remains a challenge to leverage such tools for real-world tasks. Not only is there a
sim2real gap due to the inherently incomplete model of reality these simulators implement, but it
is often difficult to find the correct simulation settings that yield the most accurate results. Despite
recent advances in bridging the sim2real gap (see Höfer et al. (2020) for an overview), deriving a
Unified Robot Description Format (URDF) file or analogous scene specifications can pose a tremen-
dous challenge when a real-world system needs to be simulated accurately.

In this work, we tackle the problem of automatically finding the correct simulation description for
real-world articulated mechanisms. Given a depth or RGB video of an articulated mechanism under-
going motion, our pipeline determines the kinematic topology of the system, i.e. the types of joints
connecting the rigid bodies and their kinematic properties, as well as the dynamical system proper-
ties that explain the observed physical behavior. Relying on camera input as observation signal to
our pipeline opens the avenue to future work integrating simulators into embodied agents that can
leverage their predictive power to reason about the physical world around them and make high-level
decisions that leverage the semantic information that the simulator encodes.

2 APPROACH

Figure 2: Pipeline of our proposed simula-
tion inference approach that derives an ar-
ticulated rigid body simulation from pixel
inputs. The shown exemplary results
generated by the phases in this diagram
stem from the cartpole inference experiment
from Sec. 3.1.

As shown in Fig. 2, our proposed pipeline consists of four
steps.

First, we find the instances of known objects in the first
frame of the input video, as well as their segmenta-
tion maps via the Detectron2 (Wu et al., 2019) model.
We train this instance segmentation network using our
own two synthetic datasets consisting of (1) depth, and
(2) RGB images of primitive shapes, such as capsules,
spheres, and boxes, in different configurations and sizes
observed from varying camera perspectives.

Next, we instantiate the 3D meshes for these shapes that
have been identified in the input image in a differentiable
rasterizer. We assume that such meshes, as well as the
pose of the camera, are available; and leave the geometric
shape and camera pose inference open for future work.
As rasterizer we use nvdiffrast (Laine et al., 2020), a fast
GPU-powered renderer that computes gradients of the 3D
geometry w.r.t. to the pixel output. It supports both depth
and RGB rendering, allowing us to infer the 3D poses of
the object meshes via gradient-based optimization. The
pose estimation is set up to minimize the L2 norm be-
tween the rendered and ground-truth image, where the
rigid poses of the meshes are optimized. To improve con-
vergence, we initialize the positions of the meshes via the
centroids of the segmentation maps, and use parallel ran-
dom restarts. We perform pose estimation for all the re-
maining frames in the input video, where the pose esti-
mation of the rigid objects is initialized from the solution
of the previous frame.

Given the pose trajectories of the rigid objects in the sys-
tem, we next determine the topology of the mechanism,
i.e. how the bodies are connected to each other by which
type of joint. We follow a RANSAC approach (Fischler
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& Bolles, 1981) that yields robust results despite noisy pose estimates. For each pair of rigid bodies,
we run the RANSAC algorithm on three different joint candidates: revolute, prismatic, and fixed
joints. Further details on this inference process are given in Appendix A. These types of joints
correspond to the most commonly encountered articulations in everyday objects. Given the joint
parameters and model error for each of the joint candidates between bodies i and j, we populate
a cost matrix C at indices i and j with the lowest cost, and memorize the corresponding joint pa-
rameters. Next, we determine the minimum spanning trees over C which correspond to the distinct
articulations in the scene. The root nodes of such articulations are processed in the final step where
we determine how they are connected to the world frame, i.e. by one of the aforementioned joint
types, or not connected at all, in which case we treat the articulation as free-floating. This process
allows us to infer multiple articulated systems in the same video. Leveraging RANSAC, the joint
inference is robust enough to tolerate imperfect pose estimates or occasional tracking outliers.

The articulation information is crucial in setting up the physics engine in the final phase of our
pipeline. It determines the joint topology of the mechanism which we can now instantiate in a dif-
ferentiable simulator, allowing us to learn the dynamical properties of the real system end-to-end
from pixel observations through the differentiable rasterizer. In essence, the articulation inference
phase allows us to find the non-differentiable structure of the mechanism, which we will now use to
optimize all continuous variables in the simulator. While this means that our pipeline will fail in the
following steps if we do not find the right kinematic structure (link connections and joint types) of
the system, we can still recover from errors when kinematic properties, such as joint axes, could not
be identified correctly. We use the Tiny Differentiable Simulator (Heiden et al., 2021b) that imple-
ments articulated rigid body dynamics and contact models, and calculates gradients for the dynamic
and kinematic parameters of the mechanism. By attaching the previously defined meshes to the
links in the mechanism, we can couple the physics engine with the differentiable rasterizer. Given
the dynamical and kinematic system parameters, the physics engine produces a trajectory of joint
positions. These generalized coordinates are translated to the 3D poses of the meshes via (differ-
entiable) forward kinematics, so that the rasterizer can produce an image sequence. This simulated
video is again compared against the real-world observations (L2 distance), allowing us to formulate
an optimization problem that we can minimize through gradient-based optimization. Furthermore,
we can leverage modern Bayesian inference algorithms, such as Stein Variational Gradient Descent
(SVGD) (Liu & Wang, 2016), and a recently introduced constrained variant (CSVGD (Heiden et al.,
2021a)) specifically tailored to trajectory-based inference problems. Those likelihood-driven meth-
ods allow us to efficiently find posterior distributions over simulation parameters to given the noisy
observations from the real world, while leveraging gradient information of the simulator. We provide
further details in Appendix B.

3 EXPERIMENTS

3.1 SIMULATED CARTPOLE

Figure 3: Parameter poste-
rior distribution of the two
link masses of the cartpole
inferred from depth video via
the multiple-shooting Bayesian
inference approach CSVGD. The
red lines and stars indicate the
ground-truth parameters.

In our first experiment we consider a simulated cartpole, a nonlin-
ear system where a rotating pole is attached to a cart that can move
sideways. Given a depth image sequence of a duration of 2 s from
simulation where the cartpole is moving passively starting with the
cart at the center and the pole at an angle of 0.1 rad from its up-
right position, we set up our pipeline to learn a simulator for this
mechanism. The results from each step of our pipeline are shown
in Fig. 2. In the final parameter estimation phase, we infer the in-
ertial properties of the rigid bodies (mass, center of mass, and the
diagonal of the 3×3 inertial matrix) via the Bayesian inference al-
gorithm CSVGD. As shown in the posterior plot for the two masses
in Fig. 3, the predicted parameter distribution closely approximates
the ground-truth parameters.

Having learned an accurate simulator, we now investigate its appli-
cation in model-based control. We leverage Model Predictive Path
Integral (MPPI) Williams et al. (2017), an information-theoretic
model predictive control (MPC) algorithm that has been shown to
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Figure 4: Comparison of trajectories between a model-predictive controller leveraging the actual physics sim-
ulator (top row), and using the learned simulator as model (bottom row) to control the original cartpole system
to swing up.

being particularly suited to control nonlinear systems. When tasked to swing up the cartpole from a
configuration where the pole is pointing downwards, we observe that MPPI with our learned simu-
lator as dynamics model achieves a performance close (within 86%) to the same controller equipped
with the actual physics simulation that the cartpole is being evaluated in (see Fig. 4). On a cart-
pole balancing task (where the pole starts from an angle of 20◦ away from its upright position), the
performance is approximately 95% of that of the reference controller.

3.2 ROTT’S CHAOTIC PENDULUM

We now aim to identify a real-world chaotic mechanism – a coupled pendulum first analyzed by
Nikolaus Rott (Rott, 1970). Rott’s mechanism consists of two pendula: one L-shaped pendulum
is attached to a fixed pivot via a revolute joint, and a single body is attached to this L-shaped pen-
dulum via another revolute joint (see Fig. 1). Given a video taken with an RGB camera of such
a mechanism, we aim to reconstruct a digital twin in simulation. Since we cannot rely on depth
information to inform the 3D poses of the rigid bodies, we assume the mechanism to be a planar
system. Therefore, the rigid body tracking system is constructed such that each body only has three
degrees of freedom (x, z position and yaw angle). Following our inference pipeline, we find the cor-
rect articulation shown in Fig. 1b, where the two revolute joints, as well as the static joint, and their
parameters have been identified. Having optimized the simulation parameters (the inertial properties
of the three links) via the Adam optimizer, we arrive at a simulation that closely reproduces the real
camera footage (comparative snapshots of a 7 s video are shown in Fig. 1a).

4 RELATED WORK

Articulation inference has been an important task in robotics, where interactive perception ap-
proaches have been proposed for a robot to determine how to interact with common household
objects (Martin Martin & Brock, 2014; Hausman et al., 2015; Eppner et al., 2018). Such inference
problem hinges on accurate pose estimates of the rigid bodies, which is why many early works relied
on fiducial markers to accurately track objects and subsequently determine the articulations (Sturm
et al., 2011; Niekum et al., 2015; Liu et al., 2019).

Learning-based approaches, such as ScrewNet (Jain et al., 2020) and DUST-net (Jain et al., 2021)
infer single articulations from depth images, whereas our approach recovers multiple articulations
between an arbitrary number of rigid objects in the scene. In Mu et al. (2021) and Noguchi et al.
(2021) signed distance fields are learned in tandem with the articulation of objects to infer kinematic
3D geometry, without considering the dynamics of the system.

Entirely data-driven physics models often leverage graph neural networks to learn dynamical con-
straints between particles or bodies ((Battaglia et al., 2016; Xu et al., 2019; He et al., 2019; Sanchez-
Gonzalez et al., 2020)).

Closer to our work is VRDP (Ding et al., 2021), a pipeline that similarly leverages differentiable
simulation to learn the parameters underlying rigid body dynamics, but does not consider articu-
lated systems. GradSim (Murthy et al., 2021) combines differentiable simulation with differentiable
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rasterization, but requires the articulation to be known. Vid2Param (Asenov et al., 2019) adapts a
variational recurrent neural network to predict physical parameters directly from videos, and has
been applied to single rigid-body dynamics problems.

5 CONCLUSION

Our proposed pipeline allows the automatic inference of articulated rigid-body simulations from
video by leveraging differentiable physics simulation and rendering. Our results on a simulated
system demonstrate that we can achieve accurate trajectory predictions that benefit model-based
control, while the learned parameters are physically meaningful. On a real-world coupled pendulum
system, our approach predicts the correct joint topology and results in a simulation that accurately
reproduces the real RGB video of the mechanism.
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A ROBUST ARTICULATION INFERENCE

Similar to Martin Martin & Brock (2014), given the sequence of world transforms T i
0 of all rigid

bodies i in the scene, we determine the relative transform T j
i [t] for each unique pair of rigid bodies i

and j at each time step t. We denote the rotation of a transform as T.r, which uses the 3D axis-angle
representation. The translation of a transform is referred to as T.p.

Revolute joint model Determine joint axis s, pivot point p and joint angle q from two consecutive
transforms at times t and t +1:

∆r = T j
i [t +1].r−T j

i [t].r

∆p = T j
i [t +1].p−T j

i [t].p

s =
∆r
‖∆r‖

p = T j
i [t].p+

∆r×∆p
‖∆r‖2

q = ‖∆r‖

Prismatic joint model Determine joint axis s and joint position q:

∆p = T j
i [t +1].p−T j

i [t].p

s =
∆p
‖∆p‖

q = s ·T j
i [t +1].p

Static joint model The static joint is parameterized by the fixed relative transform T j
i between

bodies i and j.

Algorithm 1 summarizes our inference approach to determine the articulations between rigid bodies
given their observed 3D motions. We first find the most likely joint types and corresponding joint
parameters between unique pairs of rigid bodies via RANSAC for the three different joint models
of revolute, prismatic and static joints. If no joint model could be found that matches the relative
transform sequence between two rigid bodies, they are considered to be disconnected.

Having computed the cost matrix C of the joint model errors from the previous RANSAC estimation,
we find the minimum spanning forest via Prim’s algorithm that we run on each component of the
undirected graph described by the weighted adjacency matrix C. We select the root node i from
each minimum spanning tree as the top-level body in the kinematic tree to which all the rigid bodies
within the same component are connected via the previously found joint models according to the
hierarchy of the spanning tree.

Given the root node’s time sequence of world transforms T i
0 , we determine the most likely joint

model for the base of the articulated system again via RANSAC. If such a model has been found,
the corresponding articulated mechanism is considered fixed-base and gets connected through this
joint to the world. If no such joint model could be found, the articulation is floating-base and needs
to be considered as such in the simulator (either by adding degrees of freedom corresponding to a
rigid-body motion, or via a flag that ensures the mechanism is simulated as a floating-base system).

B INFERENCE OF SIMULATION PARAMETERS

Leveraging Bayesian inference, we infer the dynamical parameters (which may include masses, link
lengths, friction coefficients, etc.) of the mechanism. We model the inference problem as a Hid-
den Markov Model (HMM) where the observation sequence X = [x1, . . . ,xT ] of T video frames is
derived from latent states st (t ∈ [1..T ]). We assume the observation model is a deterministic func-
tion which is realized by the differentiable rasterization engine that turns a system state st into an
observation image xt . The states are advanced through the dynamics model which we assume is
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Algorithm 1 Determine articulation of observed motion

Input: world transform sequence T i
0 for each rigid body i = 1..n

C = 0n×n
for body i ∈ {1..n} do

for body j ∈ {i+1..n} do
Calculate relative transform sequence T j

i
Determine joint parameters θ joint for revolute (r), prismatic (p), static (s) joint type given

T j
i via RANSAC, as well as their respective model errors cr,cp,cs

if RANSAC found at least one joint candidate then
C[i, j] =C[ j, i] = min{cr,cp,cs}
Memorize θ ∗joint of candidate with lowest cost

else
C[i, j] =C[ j, i] = ∞

end if
end for

end for
Determine minimum spanning forest on C, retrieve root bodies Iroot
for body i ∈ Iroot do

Construct kinematic tree A rooted at body i, with parent-child connections from the corre-
sponding minimum spanning tree and respective memorized joint parameters

Determine joint candidate θ joint via RANSAC given T i
0

if RANSAC found at least one joint candidate then
Attach A to world via lowest-cost joint model θ ∗joint

else . floating-base case
Attach A to world via free joint

end if
end for
return world model consisting of articulations

fully dependent on the previous state and the simulation parameter vector θ . In our model, this tran-
sition function is the differentiable simulator that implements the articulated rigid-body dynamics
equations and contact models. We use the Tiny Differentiable Simulator (Heiden et al., 2021b) that
implements end-to-end differentiable contact models and articulated rigid-body dynamics following
Featherstone’s formulation (Featherstone, 2007).

Following Bayes’ law, the posterior p(θ |X ) over simulation parameters θ ∈ RM is calculated via

p(θ |DX ) ∝ p(DX |θ)p(θ).

We leverage the recently introduced Constrained Stein Variational Gradient Descent (CSVGD)
algorithm (Heiden et al., 2021a) that introduces constraints to the gradient-based, nonparametric
Bayesian inference method SVGD (Liu & Wang, 2016). The constraint handling allows us to en-
force parameter limits and optimize simulation parameters via multiple shooting. This technique
splits up the trajectory into shooting windows for which the start states need to be learned. Defect
constraints are introduced that enforce continuity at the start and end states of adjacent shooting win-
dows. Despite requiring extra variables to be optimized, multiple shooting significantly improves the
convergence of gradient-based parameter inference approach when parameters need to be inferred
from long time horizons. Further details can be found in Heiden et al. (2021a).
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