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ABSTRACT

Data, at any point on a manifold, can be represented on the tangent plane at that
point with respect to a basis, called a gauge. But the choice of gauge is not unique
for arbitrary manifolds. Hence, for agents traversing an environment embedded
on a manifold, the same environment may appear differently if the choice of
gauge changes or when moving to a different point that has a different gauge.
This may be deleterious to an agent’s learning, as compared to learning on, say,
a flat grid where it is easy to choose a fixed gauge for each point. To this end,
we provide a formulation of deep Q-learning that learns policies (and Q-values)
that are equivariant (invariant) to changes in choice of gauge. This leads to an
efficient learning algorithm independent of the choice of gauge. Our experimental
results demonstrate significant improvement in learning on novel environments
embedded in arbitrary manifolds such as spheres, hills, and urns, compared to naive
approaches.

1 INTRODUCTION

Consider the problem of deep Q-learning on discrete manifolds. Data can be represented on the
tangent plane of any manifold using a basis, called a gauge. But for general manifolds, the choice of
gauge is not unique. Hence, the same geometric data may appear differently based on the choice of the
gauge, as shown in Fig. 1a, where a spider (agent) crawls on the surface of a cube with each surface
having a different choice of gauge. The observations made by the spider change with the choice
of gauge. Moreover, Fig. 1b shows the challenge of parallel transporting (De Haan et al., 2020)
data along different paths between the same points, resulting in different features being transported.
Hence, an agent moving between two points along different paths on a manifold may observe the data
differently. These two challenges do not arise on flat surfaces, where gauges can be fixed easily and
moving parallelly along different paths to the same point yields the same observation. We encounter
both these challenges by first arbitrarily fixing gauges at each point and then providing an efficient
gauge equivariant framework of deep Q-learning.

(a) Choice of gauge (b) Parallel transport

Figure 1: Choice of gauge in (a) results in changed observations of the same data and (b) parallel
transporting on a manifold along different paths may result in changed observation of the same data.

∗Equal contribution

1



Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

2 PRELIMINARIES

Equivalence and equivariance: Two points x, x′ ∈ X are called f -equivalent for some function
f : X 7→ Y if f(x) = f(x′). A function f : X 7→ Y is equivariant to sets of transformations
{Lg : X 7→ X|g ∈ G} and {Kg : Y 7→ Y|g ∈ G} if Kg(f(x)) = f(Lg(x)) for all g ∈ G, for some
group G. The function f : X 7→ Y is called invariant to the set of transformations {Lg : X 7→ Y|g ∈
G} if Kg is the identity function, i.e. f(x) = f(Lg(x)) for all g ∈ G.

Gauge and gauge transformations We define a discrete mesh MD by a set of vertices in R3, with
a set of faces F of tuples of vertices describing their corners. Further, for MD to be a discrete 2D
manifold, we require each edge to be connected to two faces and the neighborhood of each vertex
to be homeomorphic to a disk. At each node v ∈ V , we define a vertex normal Nv, as the weighted
sum of the normals of the faces that include v. We define the plane perpendicular to Nv as the
tangent plane, TvMD, at v. In this discrete case, defining the gauge at any vertex v simplifies to
choosing a reference neighbor vertex, say, vq. The frames on the tangent plane becomes the line
joining v to the projection of vq on the tangent plane at v, and the line perpendicular to it. Features
at any point v on MD are represented on the tangent plane, TvMD. Gauge on MD is defined as a
position-dependent invertible linear map wv : R2 7→ TvMD. Thus, if {e1, e2} is the standard basis
of R2, then {wv(e1), wv(e2)} defines the basis of TvMD.

Gauge transformations, gv, are point-dependent transformations of gauges on the manifold, which
are described as d× d invertible matrices, GL(d,R). Depending on the transformation of matrices
we consider, we can restrict the allowed gv matrices, also called reduction of the structure group
GL(d,R). In our case, we consider orientable manifolds, for which we use gv ∈ SO(2), i.e. the set
of orthogonal matrices with positive determinant in GL(2,R).

MDP and MDP homomorphism A Markov Decision Process (MDP), M , is given by a tuple
(S,A,R, T , γ), where S is the state space, A is the action space, T gives the transition probabilities
T : S × A × S 7→ R≥0, and γ ∈ [0, 1] is the discount factor. The goal of an MDP is to find a
policy π ∈ Π, π : S × A 7→ R≥0, such that

∑
a∈A π(a|s) = 1 for all s ∈ S, which maximizes the

expected reward Rt = Eπ[
∑T

k=0 γ
krt+k+1]. Two important associated terms with a policy π are its

value function V π(s) and Qπ(s, a), where V π(s) is the expected reward at state s, and Qπ(s, a) is
the expected reward on playing a at state s under policy π. V π(s) and Qπ(s, a) are related by the
Bellman equations (Bellman, 1957) and optimal policies π∗ result in optimal V ∗(s) and Q∗(s, a).

An MDP homomorphism, h, consists of a tuple of surjective maps (σ, {αs|s ∈ S}) from the
state-action space S × A of the MDP M to the abstract state-action space S̄ × Ā of an MDP
M̄ = (S̄, Ā, R̄, T̄ , γ̄), where σ : S 7→ S̄ and αs : A 7→ Ā. Further, these maps must satisfy the
following conditions:

R̄(σ(s), αs(a)) = R(s, a) for all s ∈ S, a ∈ A (1)

T̄ (σ(s′)|σ(s), αs(a)) =
∑

s′′∈σ−1(s′)

T (s′′|s, a) for all s ∈ S, a ∈ A. (2)

3 METHOD

Our main insight is that the outcome of a policy for an MDP with state-action space defined on a
manifold should be independent of the gauge of its representation. That is, the policy is an intrinsic
property of the environment, irrespective of the choice of gauge. Consider the example in Fig. 1a,
where a spider moves on the faces of a cube. The same direction of motion with respect to the
ambient space, R3, appears differently with different choices of gauges, but, intrinsically it is the
same environment and the policy learned should not be independent of the choice of gauge. Hence,
we introduce policy networks (and Q-networks) that are equivariant (invariant) to the change of gauge
on a manifold.
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Gauge-equivariant MDP homomorphism First we look at some equivalence relations for MDP
on manifolds.

R(s, a) = R(ρg(s), ρg(a)) for all s ∈ S, a ∈ A (3)

T (s′|s, a) = T (ρg(s
′)|ρg(s), ρg(a)) for all s ∈ S, a ∈ A, (4)

where ρg ∈ GL(2,R) is a representation of g ∈ G, denoting a transformation of gauge. Note that
the equivalence relations obtained are similar to the ones obtained by van der Pol et al. (2020), but,
we do not assume any symmetry in our environment as in (van der Pol et al., 2020). Symmetries are
often hard to find in any system let alone an RL problem. Our relation comes from the insight that
change in representation of the system does not change its dynamics.

We define gauge equivariant MDPs by defining h : S ×A 7→ O(S ×A) that maps each state-action
pair to their respective orbits under a set of gauge transformations, say, G. From Ravindran & Barto
(2001), we know that h-equivalent state-action pairs share the same optimal Q and V functions.
Moreover, there exist corresponding abstract Q̄ and V̄ functions that obtain these optimal values in
the abstract MDP, M̄ , obtained from the map h. Further, policies learnt in M̄ , can be lifted to M as
shown in equation 5, which is optimal in M .

π↑(a|s) : = π̄(ā|σ(s))
|{a ∈ α−1

s (ā)}|
for any s ∈ S, a ∈ A, (5)

where ā = αs(a). Using the above definition of lifting, it is easy to see that π↑(a|s) = π↑(a′|s′),
where s′ = ρg(s), a

′ = ρs
′

g (a) for g ∈ G. Thus, similar to van der Pol et al. (2020), we have the
relation π(ρg(s)) = ρg(π(s)). But, in our framework of meshes, the action space may be irregular,
unlike in (van der Pol et al., 2020), where the problems considered mostly have fixed action space.
E.g., in a gridworld-like problem where the agent moves on a mesh to find a goal by traversing on
the mesh, at every node, the possible neighbors are different and at different angles with respect
to each other. The possible orientations of the neighbors at each node are continuous and infinite.
Hence, instead of constructing equivariant policy networks like in (van der Pol et al., 2020), we
construct gauge-invariant Q-networks that output the Q-values for any pair of state-action. For
Q-values, the equivariance relation on policy is the same as invariance relation on the Q-function, i.e.
Q(s, a) = Q(ρg(s), ρg(a)) for g ∈ G. Thus, we need Q to be invariant to possible change in gauges
on a manifold, e.g. for environments lying on the surface of a cube we would need equivariance to
90◦ rotations, whereas for general manifolds with state-actions lying on the tangent plane we would
need SO(2)-equivariance, i.e. equivariance to transformations by arbitrary 2D angles.

4 RELATED WORKS

Group equivariant networks are very well studied (Cohen & Welling, 2016; Cohen et al., 2018;
Ravanbakhsh et al., 2017). In RL, group equivariant MDP was proposed exploiting symmetries in
RL environments (van der Pol et al., 2020). But, searching for symmetries in data is a non-trivial
problem and is an active area of research (Zhou et al., 2020; Dehmamy et al., 2021; Basu et al., 2021;
Finzi et al., 2021). In contrast, we do not assume any symmetry in the environment. We focus on
learning independent of representation of the environment based on gauges by developing a gauge
equivariant deep Q-learning framework.

5 EXPERIMENTS

We first describe the environments followed by the results. Details of the equivariant network
construction method and hyperparameters used are given in Appendix A.

RL Environments on a manifold We consider the basic problem of gridworld embedded on
different manifolds like a sphere, hills, or an urn. We call this environment meshworld. Here, an agent
starting at some random point on a mesh wants to find the goal, which is another randomly picked
point on the mesh. The observation of the agent is the vector starting from its location pointing to the
goal, but projected on the tangent plane corresponding to the location of the agent. The gauge at each
location is chosen arbitrarily but fixed for training. For evaluation, similarly, we choose arbitrarily
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the gauges at each location, but they are not necessarily the same as in training. This is because
evaluation maybe performed separately from training and there is no unique choice of gauges. The
meshes chosen are shown in Fig. 2, which were all created using the PyVista software (Sullivan &
Kaszynski, 2019) ensuring that each one has 100 nodes.

The action space at any node is the set of neighbors and the reward r(s, a) for any state s and action
a is inversely proportional to the geodesic distance of the next state to the goal. For updating states,
we also need to take care of gauge change and avoid the problem of parallel transport illustrated in
Fig. 1b. Going from a state s1 at node p to a state s2 at a neighbor q, we need to ensure that we also
take care of the change in gauge from node p to q. This can either be done by projecting the state on
the new gauge after updating the 3D state vector or by changing the magnitude of the current state
vector appropriately and multiplying by a change of gauge matrix, ρ(p −→ q).

Results The results of our experiments on meshworld in Fig. 2 (d), (e), (f) show huge gains in
average time taken by the agent to reach the goal in each of the manifolds considered: sphere, hills,
and urn. The results indicate the advantage of using gauge equivariance in our deep Q-learning
formulation. All plots shown are results averaged over 10 runs with fixed seeds. Moreover, the gains
obtained from equivariance can be seen very early in the training, indicating better sample efficiency
of our method. We also conduct more experiments on meshes of different sizes showing similar gains,
as illustrated in Appendix B.

(a) Sphere meshworld (b) Hills meshworld (c) Urn meshworld

(d) Sphere results (e) Hills results (f) Urn results

Figure 2: Environments on meshes used for our experiments, each having 100 nodes are shown in (a),
(b), (c). Average steps taken in each mesh environment as a function of number of training episodes
are shown in (d), (e), (f). Each plot is averaged over 10 runs over fixed seeds.

6 CONCLUSION

We propose a natural framework of deep Q-learning on meshes by addressing the problem of choice
of gauge and parallel transport on meshes. We release a novel RL environment called meshworld,
where the environment is embedded on meshes. We show that our framework of gauge equivariant
deep Q-learning addresses the above-mentioned challenges and experimental evidence confirms huge
gains over traditional deep Q-learning frameworks.

4



Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

ACKNOWLEDGEMENT

This work was supported in part by the Department of Energy (DOE) award DE-SC0012704.

REFERENCES

Sourya Basu, Akshayaa Magesh, Harshit Yadav, and Lav R Varshney. Autoequivariant network
search via group decomposition. ArXiv:2104.04848, 2021.

Richard Bellman. Dynamic Programming. Princeton Univ. Press, Princeton, NJ, USA, 1957.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International Conference
on Machine Learning, 2016.

Taco S Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical CNNs. In International
Conference on Learning Representations, 2018.

Pim De Haan, Maurice Weiler, Taco Cohen, and Max Welling. Gauge equivariant mesh CNNs:
Anisotropic convolutions on geometric graphs. In International Conference on Learning Represen-
tations, 2020.

Nima Dehmamy, Robin Walters, Yanchen Liu, Dashun Wang, and Rose Yu. Automatic symmetry
discovery with lie algebra convolutional network. Advances in Neural Information Processing
Systems, 2021.

Marc Finzi, Max Welling, and Andrew Gordon Wilson. A practical method for constructing equivari-
ant multilayer perceptrons for arbitrary matrix groups. In International Conference on Machine
Learning, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Siamak Ravanbakhsh, Jeff Schneider, and Barnabás Póczos. Equivariance through parameter-sharing.
In International Conference on Machine Learning, 2017.

Balaraman Ravindran and Andrew G Barto. Symmetries and model minimization in Markov decision
processes, 2001.

C Sullivan and Alexander Kaszynski. PyVista: 3D plotting and mesh analysis through a streamlined
interface for the visualization toolkit (VTK). Journal of Open Source Software, 4(37):1450, 2019.

Elise van der Pol, Daniel Worrall, Herke van Hoof, Frans Oliehoek, and Max Welling. MDP
homomorphic networks: Group symmetries in reinforcement learning. Advances in Neural
Information Processing Systems, 2020.

Allan Zhou, Tom Knowles, and Chelsea Finn. Meta-learning symmetries by reparameterization. In
International Conference on Learning Representations, 2020.

A EQUIVARIANT NETWORK CONSTRUCTION DETAILS

For constructing gauge equivariant networks, we use SO(2)-equivariant kernels from (De Haan et al.,
2020). The input features to our network is of type 2×ρ1 with both state and the action represented as
ρ1 features. We use two layers of SO(2) equivariant kernels with intermediate layers with 3 channels
of representation type (ρ0 + ρ1 + ρ2). The output has 6 channels of representation type (ρ0 + ρ1).
We take outputs of the norms of each of the six channels and pass it through a fully connected layer
with a single output, hence, making the output invariant to change in gauges. For comparison with
non-equivariant models, we use fully connected networks with two layers and nearly equal number
of parameters. For all cases, we use the Adam optimizer (Kingma & Ba, 2015) with a learning rate of
1e-4 and weight decay of 1e-2. For Q-learning, we use a discount factor of 0.99 and for training we
use ϵ-greedy strategy, where epsilon is set to 1 in the beginning and is decreased exponentially to
1e-2 using an exponential decay of 1e-3.
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(a) Sphere meshworld (b) Hills meshworld (c) Urn meshworld

Figure 3: Average steps taken in each mesh environment with varying number of nodes in each mesh
shown in (a), (b), (c). Each plot is averaged over 10 runs over fixed seeds.

B EXPERIMENTS WITH VARYING SIZE OF NODES IN MESHWORLD

In this section, we generalize the experiments we conduct in Sec. 5 to varying number of nodes
showing that the gain obtained from gauge equivariance shows similar advantages across varying
sizes of meshes.
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