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ABSTRACT

The lottery ticket hypothesis conjectures the existence of sparse subnetworks of
large randomly initialized deep neural networks that can be successfully trained in
isolation. Recent work has experimentally observed that some of these tickets can
be practically reused across a variety of tasks, hinting at some form of universality.
We formalize this concept and theoretically prove that not only do such universal
tickets exist but they also do not require further training. Our proofs introduce
a couple of technical innovations related to pruning for strong lottery tickets, in-
cluding extensions of subset sum results and a strategy to leverage higher amounts
of depth. Our explicit sparse constructions of universal function families might be
of independent interest, as they highlight representational benefits induced by uni-
variate convolutional architectures.

1 INTRODUCTION

Deep learning has achieved major breakthroughs in a variety of tasks (LeCun et al., |1990; |Schmid-
huber, 2015), yet, it comes at a considerable computational cost (Sharir et al., 2020), which is
exaggerated by the recent trend towards ever wider and deeper neural network architectures. Reduc-
ing the size of the networks before training could therefore significantly broaden the applicability
of deep learning, lower its environmental impact, and increase access (Dhar}, [2020). However, such
sparse representations are often difficult to learn, as they may not enjoy the benefits associated with
over-parameterization (Belkin et al., 2019).

Frankle & Carbin| (2019) provided a proof of concept that sparse neural network architectures are
well trainable if initialized appropriately. Their lottery ticket hypothesis states that a randomly-
initialized network contains a small subnetwork that can compete with the performance of the origi-
nal network when trained in isolation. Further, Ramanujan et al.|(2020) conjectured the existence of
strong lottery tickets, which do not need any further training and achieve competitive performance
at their initial parameters. These tickets could thus be obtained by pruning a large randomly initial-
ized deep neural network. Unfortunately, existing pruning algorithms that search for (strong) lottery
tickets have high computational demands, which are often comparable to or higher than training the
original large network. However, [Morcos et al.[|(2019) posited the existence of so-called universal
lottery tickets that, once identified, can be effectively reused across a variety of settings.

Contributions.

* In this paper, we formalize the notion of universality, and prove a strong version of the
original universal lottery ticket conjecture. Namely, we show that a sufficiently over-
parameterized, randomly initialized neural network contains a subnetwork that qualifies
as a universal lottery ticket without further training of its parameters. Furthermore, it is
adapted to a new task only by a linear transformation of its output. This view can explain
some empirical observations regarding the required size of universal lottery tickets.

* Qur proof relies on the explicit construction of basis functions, for which we find sparse
neural network representations that benefit from parameter sharing, as it is realized by
convolutional neural networks. The fact that these representations are sparse and universal
is the most remarkable insight.
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* To show that they can also be obtained by pruning a larger randomly initialized neural
network, we extend existing subset sum results (Lueker, [1998) and develop a proof strat-
egy, which might be of independent interest, as it improves current bounds on pruning for
general architectures by making the bounds depth dependent. Accordingly, the width of
the large random network can scale as ng > O(n:L:/Lolog (n:Lo/(L+€))) to achieve a
maximum error €, where L; denotes the depth and n, the width of the target network, and
L the depth of the large network.

* In support of our existence proofs, we adapt standard parameter initialization techniques to
a specific non-zero bias initialization and show in experiments that pruning is feasible in
the proposed setting under realistic conditions and for different tasks.

Related work. The lottery ticket hypothesis (Frankle & Carbin, |2019) and its strong version (Ra-
manujan et al.,2020) have inspired the proposal of a number of pruning algorithms that either prune
before (Wang et al.,2020; [Lee et al.| |2019; [Tanaka et al.,[2020) or during and after training (Frankle
& Carbin, [2019; Savarese et al., 2020). Usually, they try to find lottery tickets in the weak sense,
with the exception of the edge-popup algorithm (Ramanujan et al.| 2020) that identifies strong lot-
tery tickets, albeit at less extreme sparsity. In general, network compression is a problem that has
been studied for a long time and for good reasons, see, e.g., |Lin et al.[|(2020) for a recent literature
discussion. Here we focus specifically on lottery tickets, whose existence has been proven in the
strong sense, thus, they can be derived from sufficiently large, randomly initialized deep neural net-
works by pruning alone. To obtain these results, recent work has also provided lower bounds for the
required width of the large randomly initialized neural network (Malach et al., [2020; |Pensia et al.|
2020; |Orseau et al., 2020; [Fischer & Burkholz, 2021 2022)). In addition, it was shown that multi-
ple candidate tickets exist that are also robust to parameter quantization (Diffenderfer & Kailkhura,
2021)). The significant computational cost associated with finding good lottery tickets has motivated
the quest for universal tickets that can be transferred to different tasks (Morcos et al., 2019} (Chen
et al.,[2020). We prove here their existence.

1.1 NOTATION

For any d-dimensional input = (21, ...,74)7, let f() be a fully connected deep neural network
with architecture i = [ng, n1, ..., n], i.., depth L and widths n; for layers I = 0, ..., L, with ReLU

o

activation function ¢ () := max(x,0). An input vector (%) is mapped to neurons z; "’ as:

2@ = (R0), RO = W00 10, WO eRru-m pDeRY, (1)

where hgl) is called the pre-activation of neuron ¢, WO the weight matrix, and b® the bias vector

of layer . We also write 6 for the collection of all parameters 6 := (W), b(l)))lL:1 and indicate
a dependence of f on the parameters by f(x|0).

We also use 1-dimensional convolutional layers, for which the width n; refers to the number of
channels in architecture 7. For simplicity, we only consider 1-dimensional kernels with stride 1.
Larger kernels could simply be pruned to that size and higher strides could be supported as they are
defined so that filters overlap. The purpose of such convolutional layers is to represent a univariate
function, which is applied to each input component.

Typically, we distinguish three different networks: 1) a large (usually untrained) deep neural network
fo, which we also call the mother network, 2) a smaller target network f, and 3) a close approxi-
mation, our lottery ticket (LT) f., which will correspond to a subnetwork of fj. f. is obtained by
pruning fo, as indicated by a binary mask B = (b;),c {0,1}190! that specifies for each parameter
0; = b;0; o whether it is set to zero (b; = 0) or inherits the parameter of f, by 0; = 0; o (for b; = 1).

We usually provide approximation results with respect to the 11-norm ||| := )", |«;| but they hold
for any p-norm with p > 1. C' generally stands for a universal constant that can change its value
from equation to equation. Its precise value can be determined based on the proofs. Furthermore,
we make use of the notation [n] := {0, ...,n} for n € N, and [n]* for a k-dimensional multi-index
with range in [n].
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2 UNIVERSAL LOTTERY TICKETS

Before we can prove the existence of strong universal LTs, we have to formalize our notion of what
makes a strong LT universal. First of all, a universal LT cannot exist in the same way as a strong
LT, which is hidden in a randomly initialized deep neural network and is identified by pruning, i.e.,
setting a large amount of its parameters to zero while the rest keep their initial value. For a ticket
to be universal and thus applicable to a variety of tasks, some of its parameters, if not all, need to
be trained. So which parameters should that be? In deep transfer learning, it is common practice
to only train the top layers (close to the output) of a large deep neural network. The bottom layers
(close to the input) are reused and copied from a network that has been already trained successfully
to perform a related task. This approach saves significant computational resources and often leads
to improved training results. It is therefore reasonable to transfer it to LTs (Morcos et al., 2019).

Independently from LTs, we discuss conditions when this is a promising approach, i.e., when the
bottom layers of the deep neural network represent multivariate (basis) functions, whose linear com-
bination can represent a large class of multivariate functions. The independence of the functions is
not required and could be replaced by dictionaries, but the independence aids the compression of
the bottom layers and thus our objective to find sparse LTs. This view also provides an explanation
of the empirically observed phenomenon that universal tickets achieve good performance across a
number of tasks only at moderate sparsity levels and become more universal when trained on larger
datasets (Morcos et al., 2019; |Chen et al.l [2020). Including a higher number of basis functions
naturally reduces the sparsity of a LT but also makes it adaptable to richer function families.

2.1 HOW UNIVERSAL CAN A LOTTERY TICKET BE?

A trivial universal ticket. A trivial solution of our problem would be to encode the identity function
by the first layers, which would only require 2d or d neurons per layer or even 1-2 neurons per
convolutional layer. This would be an extremely sparse ticket, yet, pointless as the ticket does not
reduce the hardness of our learning task. In contrast, it cannot leverage the full depth of the neural
network and needs to rely on shallow function representations. How could we improve the learning
task? The next idea that comes to our mind is to reduce the complexity of the function that has to
be learned by the upper layers. For instance, we could restrict it to learn univariate functions. To
explore this option, our best chance of success might be to utilize the following theorem.

The Kolmogorov-Arnold representation theorem states that every multivariate function can be
written as the composition and linear combination of univariate functions. In particular, recent
results based on Cantor sets C promise potential for efficient representations. Thm. 2 in (Schmidt-
Hieber} [2021)) shows the existence of only two univariate functions g : C — Rand ¢ : [0,1] — C
so that any continuous function f : [0,1]¢ — R can be written as f(z) = g (Z?Zl 3=t (x;) ).
Furthermore, only g depends on the function f, while ¢ is shared by all functions f and is hence
universal. Could ijl 31=%)(x;) be our universal LT? Unfortunately, it seems to be numerically
infeasible to compute for higher input dimensions d > 10. In addition, the resulting representation
of f seems to be sensitive to approximation errors. On top of this, the outer function g is relatively
rough even though it inherits some smoothness properties of the function f (cf. Schmidt-Hieber,
2021)) and is difficult to learn. Thus, even restricting ourselves to learning an univariate function g
in the last layers does not adequately simplify our learning problem. To make meaningful progress
in deriving a notion of universal LTs, we therefore need a stronger simplification.

2.2  DEFINING UNIVERSALITY

To ensure that the knowledge of a LT substantially simplifies our learning task, we only allow the
training of the last layer. A consequence of this requirement is that we have to limit the family of
functions that we are able to learn, which means we have to make some concessions with regard to
universality. We thus define a strongly universal LT always with respect to a family of functions.

We focus in the following on regression and assume that the last layer of a neural network has linear
activation functions, which reduces our learning task to linear regression after we have established
the LT. Classification problems could be treated in a similar way. Replacing the activation functions
in the last layer by softmax activation functions would lead to the standard setting. In this case, we
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would have to perform a multinomial logistic regression instead of a linear regression to train the
last layer. We omit this case here to improve the clarity of our derivations.

Definition 1 (Strong Universality). Let F be a family of functions defined on S C R with F > g :
S — R™. A function b : R — RF is called strongly universal with respect to F up to error € > 0,
if for every f € F there exists a matrix W € R"*¥ and a vector ¢ € R" so that

sup [ W) + ¢~ f(@)] < e @)

Note that we have defined the universality property for any function, including a neural network. It
also applies to general transfer learning problems, in which we train only the last layer. To qualify
as a (strong) LT, we have to obtain b by pruning a larger neural network.

Definition 2 (Lottery ticket). A neural network f : R > S — RF is called a lottery ticket (LT)

with respect to fo : R O S — RF with parameters 0, if there exists a binary mask B € {0, 1}|9°|
so that fo(x|B6o) = f(x) for all x € S. We also write f C fo.

3 EXISTENCE OF UNIVERSAL LOTTERY TICKETS

Our Def. [I]|of strong universality assumes that our target ticket b has a finite amount of % features,
which is reasonable in practice but limits the complexity of the induced function family /. However,
universal function approximation regarding general continuous functions on [0, 1]¢ can be achieved
by neural networks only if they have arbitrary width (Pinkus, |1999; Cybenko, |1989; Kurt & Hornikl,
1991)) or arbitrary depth (Telgarskyl [2016} |Yarotsky, 2017; |Schmidt-Hieber, 2020). Feed forward
networks of higher depth are usually more expressive (Yarotsky, 2018) and thus require less pa-
rameters than width constrained networks to approximate a continuous function f with modulus
of continuity wy up to maximal error €. |Yarotsky| (2018) has shown that the minimum number of
required parameters is of order O(w(O(e~%2)) but has to assume that the depth of the network
is almost linear in this number of parameters. Shallow networks in contrast need O(w;(O(e~%))
parameters. Note that the input dimension d can be quite large in machine learning applications
like image classification and the number of parameters depends on the Lipschitz constant of a func-
tion via wy, which can be huge in general. In consequence, we need to narrow our focus regarding
which function families we can hope to approximate with finite neural network architectures that
have sparse representations and limit ourselves to the explicit construction of & basis functions of a
family that has the universal function approximation property.

We follow a similar strategy as most universal approximation results by explicitly constructing poly-
nomials and Fourier basis functions. However, we propose a sparser, non-standard construction that,
in contrast to the literature on feed forward neural networks, leverages convolutional layers to share
parameters. Another advantage of our construction is that it is composed of linear multivariate and
univariate functions, for which we can improve recent results on lottery ticket pruning. The exis-
tence of such sparse representations is remarkable because, in consequence, we would expect that
most functions that occur in practice can be approximated by sparse neural network architectures
and that these architectures are often universally transferable to other tasks.

Polynomials Sufficiently smooth functions, which often occur in practice, can be well approxi-
mated by a few monomials of low degree. At least locally this is possible, for instance, by a Taylor
approximation. How can we approximate these monomials with a neural networks? In principle,
we could improve on the parameter sparse construction by |Yarotsky| (2017); |Schmidt-Hieber (2020)
based on tooth functions by using convolutional layers that approximate univariate monomials in
each component separately followed by feed forward fully-connected layers that multiply these pair-
wise. This, however, would require an unrealistically large depth L = O(log(e/k) log(d)) and also a
considerable width of at least n = O(kd) in many layers. Alternatively, we propose a constant depth
solution as visualized in Fig.[1{(a). It has an € dependent width that is maximally n = O(d+/k/€)
in just one layer and n = O(y/kd/e) in another. It leverages the following observation. A mul-

tivariate monomial b(x) = ngl 0.57 (1 + x;)", which is restricted to the domain [0,1]%, can
also be written as b(x) = exp (D, rilog(1l + x;) —log(2) >, r;). It is therefore a composition
and linear combination of univariate functions b(x) = g (3_, rih(x;)), where g(z) = exp(z) and
h(z) = log(1 + x) — log(2) as in Kolmogorov-Arnold form. Most importantly, every monomial
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Figure 1: Left: Visualization of the proposed architecture for approximating function families.
Potentially fully connected networks are colored blue, while green parts can be encoded as con-
volutional layers by applying the same function to all components. The last orange linear layer
can be trained, while all other parameters are frozen to their initialization. (a) Polynomials:
h(z) = log((1 + z)/2), g(y) = exp(y). (b) Fourier series: g(x) = sin(2mz). Right: Visual-
ization of the lottery ticket construction for multivariate linear functions. (c) Visualization of an
exemplary linear layer. (d) Approximation of the linear layer in (a) by a subset sum block. Blue
nodes with label + represent neurons in the intermediary layer that are pruned to neurons of the form
¢(wx1 /2) with w > 0, while green nodes correspond to neurons with w < 0, and orange nodes with
label b to bias neurons of the form ¢(b). (e) The subset sum block in (d) is distributed across three
layers. Two paths of bounded weight are highlighted in orange.

has the same structure. We can therefore construct a family of monomials efficiently by approxi-
mating each univariate function with a convolutional neural network and the linear combinations of
the functions as potentially fully connected layers. Fig.[] (a) visualizes the architecture and general
construction idea. It applies to any composition of functions in form of the Kolmogorov-Arnold rep-
resentation theorem, which in theory exists for every continuous multivariate function. This makes
our construction more general than it may seem at first. In practice, however, the univariate func-
tions still need to be amenable to efficient approximation by deep neural networks, which is the case
for polynomials as we show in the next sections.

Fourier series Fourier analysis and discrete time Fourier transformations seek representations
with respect to a Fourier basis f(x) = ao + }_,,c(nja On Sin(?ﬁ(2?=0 n;z; + ¢p)). Fig. [1| (b)
shows how to construct the functions sirl(QW(Zfzo n;x; + ¢,)) by (affine) linear combinations

Z?:o n;x; + ¢y, in the first layers close to the input followed by convolutional layers computing
the univariate sin, which has quite sparse representations if enough depth is available to exploit its
symmetries. Again we use a composition of linear transformations and univariate functions, which
share parameters by convolutional layers.

Even though the function families above can be represented efficiently as LTs, we should mention
that a big advantage of neural networks is that the actual function family can be learned. This could
also lead to a combination of different families, when this improves the ability of the lottery ticket
to solve specific tasks efficiently. Accordingly, adding dependent functions to the outputs might also
provide advantages. Our universal lottery ticket constructions allow for this as well. We simply
focus our discussion on families of independent functions, as they usually induce higher sparsity.

3.1 EXISTENCE OF LOTTERY TICKETS LEVERAGING DEPTH

The targets that we propose as strongly universal functions are composed of linear and univariate
neural networks. Some of our improvements with respect to the literature on LT existence leverage
this fact. While [Malach et al.|(2020); |Pensia et al.| (2020); Orseau et al.| (2020); |[Fischer & Burkholz
(2021)) provide a lower bound on the required width of the mother network f so that a subnetwork
could approximate our target neural network with depth L;, fo would need to have exactly twice the
depth Ly = 2L, which would limit our universality statement to a specific architecture. To address
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this issue, we allow for more flexible mother networks and utilize additional available depth. As
Pensia et al.|(2020), we approximate each target parameter by a subset sum block, but distribute this
block across multiple network layers. This makes the original bound ny = O(N log (N/¢)) on the
width of the mother network depth dependent.

This approach requires, among others, two additional innovations of practical consequence. The
first one is our parameter initialization proposal. Most previous work neglects the biases and as-
sumes that they are zero. Only |[Fischer & Burkholz| (2021)) can handle architectures with non-zero
biases, which we need to represent our univariate functions of interest. They propose an initializa-
tion scheme that extends standard approaches like He (He et al., 2015)) or Glorot (Glorot & Bengio,
2010) initialization to non-zero biases and supports the existence of LTs while keeping the large
mother network fj trainable. We modify it to enable our second innovation, i.e., paths through the
network that connect network subset sum blocks in different layers to the output.

Definition 3 (Parameter initialization). We assume that the parameters of a deep neural network are
independently distributed as wz(jl) ~U([—0wi,0w,]) or wl(j) ~ N (0,04,) for some o,,; > 0 and

0 ~ U(1= e /2 Thms 0w /20) 07 b ~ N (0T, Gunin /2). respectively

Also dependencies between the weights as in (Burkholz & Dubatovkal 2019; Balduzzi et al., [2017)
are supported by our proofs. The above initialization results in a rescaling of the output by A =
Hle Ow,k/2 in comparison with an initialization of the weights by w ~ U ([-2,2]) or w ~
N (0,4) and biases by b ~ U ([-1,1]) or w ~ N (0,1). As pruning deletes a high percentage of
parameters, we can expect that the output of the resulting network is also scaled roughly by this
scaling factor A (see Thm. [2). However, the last linear layer that we concatenate to f and assume
to be trained can compensate for this. This rescaling means effectively that we can prune weight
parameters from the interval [—2, 2] in contrast to [—1, 1] as in (Fischer & Burkholz, 2021; [2022).
We can therefore find weight parameters w; that are bigger or smaller than 1 with high enough
probability so that we can prune for paths of bounded weight 1 < Hle w; < C through the
network, as stated next.

Lemma 1. Define o = 3/4 and let w; ~ U[—2,2] denote k independently and identically (iid)
uniformly distributed random variables with j € [k]. Then w; is contained in an interval

w; € ll/ ([[w) 1/ <a1=1w>]

with probability at least ¢ = 1/16. If this is fulfilled for each w;, then

1< (ﬁwl> <1/a.

i=1
The same holds true if each wj ~ N (0,4) is iid normally distributed instead.

This defines the setting of our existence proofs as formalized in the next theorem.

Theorem 2 (LT existence). Assume that €,6 € (0,1), a target network f: S C RY — R™ with
depth L, and architecture ny, and a mother network fo with depth Ly > 2 and architecture nyg
are given. Let fo be initialized according to Def. Then, with probability at least 1 — 6, fy
contains a sparse approximation f. C fo so that each output component i is approximated as

maxges | fi(x) — AMei(x)| < ewith A = Hlel(Qa;ll) ifno > g(ny) foreach 1 <1< Lo — 1.
The required width g(72;) needs to be specified to obtain complete results. We start with the construc-
tion of a single layer ¢ (Wa + b), which we can also use to represent a linear layer by constructing
its positive ¢ (Wax + b) and negative part ¢ (—Wax — b) separately. Note that in our polynomial
architecture, all components of Wa + b are negative.

Theorem 3 (Multivariate LTs (single layer)). Assume the same set-up as in Thm. 2] and a target
function f(x) = ¢ (Wa + b) with M := [max; ; max(|w; ;|,|b;|)], N non-zero parameters, and
Q = (supges |||, + 1). A lottery ticket f. exists if

Md
>0
Mo =tT

log (M/min{d§/(2(m +d)(Lo— 1)+ N +1),¢/Q})
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foreach1l <1 < Lo—1whenever Ly > 2 andny,o > CMdlog ( when Ly = 2.

min{s/(N+1),¢/Q7

Proof idea. The main idea to utilize subset sum approximations for network pruning has been intro-
duced by |Pensia et al.| (2020). Each target layer ¢(h) = ¢ (Wax + b) is represented by two layers
in the pruned network f, as follows. Using the property of ReLUs that z = ¢(x) — ¢(—x), we
can write each pre-activation component as i; = 70, wi;d(x;) — wijd(—x;) + sign(b ) (|:])-

This suggests that intermediate neurons should be pruned into an univariate form gb( wy; xj) or
(b(bl(l)) if b; > 0. Each actual parameter w;; or b; is, however, approximated by solving a subset
sum approximation problem involving several intermediate neurons [ € I;; of the same type so that
iR Y e I, w1 ! wl(] ) Fig.(d) visualizes the approach. Node colors distinguish different neuron
types ¢(w l(j )xj) or a bias type (j)(bl(l)) for b; > 0 within a subset sum block.
We split such a block into similarly sized parts and assign one to each available layer in the mother
network as shown in Fig. [I|(e). The challenge in this construction is to collect the different results
that are computed at different layers and to send them through the full network along a path. The
product of weights p = Hﬁi}z wy, along this path is multiplied with the output. Since we can ensure
that this factor is bounded reasonably by Lemma|l} we can compensate for it by solving a subset

sum problem for w;;/ Héif wy, instead of w;; without increasing the associated approximation
error. Furthermore, we only need to prune C'log(1/4’) neurons in each layer to find such a path. A
rigorous proof is presented in Appendix [B.1] O

As every target neural network is composed of L; layers of this form, we have derived a bound
ng > O(ngLy/Lolog (n¢Lo/(Lie€))) that scales as 1/Lglog(Lg) and highlights the benefits of
additional depth in general LT pruning, which might be of independent interest. Yet, the depth
of the mother network needs to be considerably larger than the one of the target. For univariate
networks, we can again improve on this result in the following way. As explained in the appendix,
every univariate neural network can be written as

N-1
In(x) = Z a;p(x — 8;) + an 3)
i=0

with respect to 2NV + 1 parameters a; and s; for 0 < ¢ < N — 1, where the width N determines its
potential approximation accuracy of a continuous univariate function f and enters our bound if we
want to find a corresponding LT by pruning.

Theorem 4 (Univariate LT). Assume the same set-up as in Thm. 2] and that an univariate target
network f :' S C R — Rin form of Eq. (3)) is given. Define M := (1 + max (max; |a;|, max; |s;|))
and QQ = maxgcg || fo contains a LT f6 C folif
max{M, N} M @
o -
Lo—2  *\min{o/[Lo(N +2)— 1. ¢/2(Q+ M)}

nyo > C

for Ly > 3. We require ny o > CMTQ log (min{(s/(NHf\,{/(?(QJrM))})for Lo =2.
Next, we can utilize our improved LT pruning results to prove the existence of universal LTs.

3.2 EXISTENCE OF POLYNOMIAL LOTTERY TICKETS

In the following, we discuss the existence of polynomial LTs in more detail. Corresponding results
for Fourier basis functions are presented in the appendix. Our objective is to define a parameter

sparse approximation of k multivariate monomials b(x) = H?zl 0.57 (14 x;)" as our target neural
network (see Fig. [I] (a)) and then prove that it can be recovered by pruning a larger, but ideally
not much larger, randomly initialized mother network. Thus, in contrast to previous results on LT
existence, we have to take not only the pruning error but also the approximation error into account.

A multivariate linear function can be represented exactly by a ReLU neural network, but we have to
approximate the known functions h(z) = log((1 + z)/2) and ¢g(y) = exp(y) in a parameter sparse
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way. Thm. 2 Yarotsky| (2017) states that univariate Lipschitz continuous function can be approxi-
mated by a depth-6 feed forward neural network with no more than ¢/(elog(1/¢)) parameters. By
specializing our derivation to our known functions, in contrast, we obtain a better scaling ¢//€ with
depth L = 2, which leads to our main theorem.

Theorem 5. Let B C {Hle 05" (1 + xy)"i|r; < q,>. 1 <t z; €0, 1]} be a subset of the poly-

nomial basis functions with bounded maximal degree q of cardinality k = |B|. Let F (B) be the
Samily of bounded (affine) linear combinations of these basis functions. For €, € (0, 1), with prob-
ability 1 — § up to error €, fo contains a strongly universal lottery ticket f. C fo with respect to F
if f has Lioe > 2 convolutional layers, followed by L,y > 2 fully connected layers, and Ly, > 2
convolutional layers with channel size or width chosen as in Thms. { and [B|with the following set of
parameters.

Logarithm: 0150 =1 — (1 = 6)/3, €10 = e, Nigg = 1+ L / t’fgnw, Mg =2, Quog = 1.

Multivariate: S = 1 — (1 — 5)1/3, Emulti = %; Myt = ¢ Quuii = d.

Exponential: 8oy =1 — (1 — 6)1/3, €exp = g New =1+ "tq / ’ZS-‘, My =2, Qexp = tlog2.

As we show next in experiments, all our innovations provide us with practical insights into condi-
tions under which pruning for universal lottery tickets is feasible.

4 EXPERIMENTS

To showcase the practical relevance of our main theorems, we conduct two types of experiments
on a machine with Intel(R) Core(TM) i9-10850K CPU @ 3.60GHz processor and GPU NVIDIA
GeForce RTX 3080 Ti. First, we show that the derived bounds on the width of the mother networks
are realistic and realizable by explicitly pruning for our proposed universal lottery tickets. Second,
we prune mother network architectures from our theorems for strong winning tickets with the edge-
popup algorithm (Ramanujan et al.,[2020) to transfer our insights to a different domain.

In the first type of experiment, we explicitly construct universal lottery tickets by following the ap-
proach outlined in our proofs. The construction involves solving multiple subset sum approximation
problems, which is generally NP-hard. Instead, we obtain an good approximate solution by taking
the sum over the best 5-or-less-element subset out of a random ground set. Usually, ground sets
consisting of 20 to 30-elements are sufficient to obtain good approximation results. The mother
network has uniformly distributed parameters according to Def. [3]

Polynomial function family: We construct a polynomial function family consisting of k fea-
tures of the form (1 + z;)° for any b € [0,4] assuming d-dimensional inputs. If the mother
network has a maximum channel size of 500, we obtain a maximum approximation error of
0.001, which is negligible. Concretely, assuming convolutional (or fully connected) layers of sizes
[d, 200, 10, 200, 10, k * 30, k, 500, 40, 500, 1] (or higher) is sufficient. This further assumes that we
use Njog = 10 and Ney, = 20 intermediary neurons in the approximation of the respective univariate
functions. After pruning, 0.022 of the original parameters remain, which is sparser than the tickets
that most pruning algorithms can identify in practice. Note that we can always achieve an even
better sparsity relative to the mother network by increasing the width of the mother network.

Fourier basis: The most restrictive part is the approximation of f(x) = sin(27x) on [0, 1], which
can be easily obtained by pruning a mother network of depth 4 with architecture [1, 250, 21, 250, 1]
with N, = 21 intermediary neurons in the univariate representation. Pruning such a random net-
work achieves an approximation error of 0.01 and keeps only 0.038 of the original parameters. Note
that we can always achieve a better sparsity by increasing the width of the mother network. For
instance, pruning a network with architecture [1, 250, 250, 250, 1] would result in 0.0035.

In the second type of experiments, we train our mother networks with edge-popup (Ramanujan
et al.| [2020) on MNIST (LeCun & Cortes}, [2010) for 100 epochs based on SGD with momentum
0.9, weight decay 0.0001, batch size 128, and target sparsity 0.5. Parameters are initialized from a
normal distribution according to Def.[3] As the original algorithm is constrained to zero biases, we
had to extend it to pruning non-zero biases as well. It finds subnetworks of the randomly initialized
mother ticket architecture achieving an average accuracy with 0.95 confidence region of 92.4 4+ 0.5
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% (polynomial architecture) and 97.9 & 0.1 % (Fourier architecture) over 5 independent runs. Note
that pruning the polynomial architecture is not always successful on MNIST but such runs can be
detected early in training. This implies that our insights can transfer to a domain different from
polynomial or Fourier regression and attests the architectures some degree of universality. Note that
even though edge-popup is free to learn tickets that are different from the proposed universal function
families, the architecture is still constrained to compositions of univariate and linear multivariate
functions.

In addition, these experiments highlight that our parameter initialization (with non-zero biases) in-
duces trainable architectures, as the success of edge-popup relies on meaningful gradients.

5 DISCUSSION

We have derived a formal notion of strong universal lottery tickets with respect to a family of func-
tions, for which the knowledge of a universal lottery ticket reduces the learning task to linear re-
gression. As we have proven, these universal lottery tickets exist in a strong sense, that is, with high
probability they can be identified as subset of a large randomly initialized neural network. Thus,
once a ticket is identified, no further training is required except for the linear regression. We have
shown this with an explicit construction of deep ReLU networks that represent two major function
classes, multivariate polynomials and trigonometric functions, which have the universal approxima-
tion property.

These classes consist of basis functions which can be represented by compositions of univariate
functions and multivariate linear functions, which are amenable to sparse approximations by deep
ReLU networks. As we highlight, the use of convolutional network layers can significantly im-
prove the sparsity of these representations. Up to our knowledge, we have presented the first proof
of the existence of universal lottery tickets and of lottery tickets in general in convolutional neural
networks. Most remarkable is the fact that these common function classes with the universal ap-
proximation property have sparse neural network representations. Furthermore, they can be found
by pruning for (universal) lottery tickets. In consequence, we should expect that many tasks can be
solved with the help of sparse neural network architectures and these architectures transfer poten-
tially to different domains.

Our theoretical insights provide some practical guidance with respect to the setting in which sparse
universal tickets could be found. We have shown how parameters can be initialized effectively and
discussed what kind of architectures promote the existence of universal lottery tickets. In comparison
with the theoretical literature on strong lottery tickets, we have relaxed the requirements on the width
of the large randomly initialized mother network and made its depth variable. Some of our novel
proof ideas might therefore be of independent interest for lottery ticket pruning. Interestingly, in
contrast to the standard construction of lottery tickets, we derived a proof that does not start from
representing a function as neural network but as linear combination with respect to a basis. In future,
we might be able to use similar insights to deepen our understanding of what kind of function classes
are amenable to training by pruning in search of lottery tickets.

As a word of caution, we would like to mention that a strongly universal ticket (whose existence we
have proven) is not necessarily also a ‘weakly’ universal ticket (which is more commonly identified
in practice). The reason is that in case that we train a ticket that represents the right basis functions
together with the last layer (i.e. the linear regression weights), also the parameters of the ticket
might change and move away from the suitable values that they had initially. In several common
initialization settings, however, the parameters of the bottom layers (that correspond to the ticket)
change only slowly during training, if at all. Therefore, a strong ticket will often be also a weak
ticket from a practical point of view.

Furthermore, it is important to note that the universal lottery tickets that we have constructed here
are not necessarily the tickets that are identified by pruning neural networks in common applications
related to imaging or natural language processing. It would be interesting to see in future how much
redundancy these tickets encode and whether they could be further compressed into a basis.
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different contexts. Code for the experiments is publicly available in the Github repository Univer-
salLT, which can be accessed with the following urlhttps://github.com/RelationalML/
UniversalLT.
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A RESULTS IN SUPPORT OF EXISTENCE THEOREMS

In the following sections, we represent the proofs of our theorems and discuss different representa-
tion options of lottery tickets. In particular, we highlight the benefits of additional depth for reducing
the maximum required width of the mother network fy. We frequently utilize various forms of so-
lutions to the subset sum problem and present novel results with regard to this general problem.

A.1 INITIALIZATION

We derive our proofs by assuming that the parameters of the randomly initialized mother network
fo are distributed in the following way. In case of uniform parameter initialization, we assume that
the weights w and biases b follow the distributions w ~ U[—2, 2] and biases b ~ U[—1, 1]. In case
of normal parameter initialization, we have w ~ N(0,4) and biases b ~ N(0, 1). The following
lemma explains, why we can follow this approach when the parameters are initialized according to

Deﬁnitionand the output of a neural network is corrected by a scaling factor A = Hlel (201;711).

Lemma 6 (Output scaling). Let h (6o, o) denote a transformation of the parameters 0g of the deep
neural network fo, where each weight is multiplied by a scalar oy, i.e., hg)(wélzj) = alw((){zj,
and each bias is transformed to hl(l)(b((){)i) = Hinzl amb(()l’)i. Then, we have f (x| h(6g,0)) =

[1., 01f(z | Bo).

For completeness, we present the proof but note that it has been also derived by (Fischer & Burkholz,
2021)).

Proof. Let the activation function ¢ of a neuron either be a ReLU ¢(z) = max(z, 0) or the identity
0 0)

¢(x) = x. A neuron z; ’ in the original network becomes g (1’1 ) after parameter transformation.

We prove the statement by induction over the depth L of a deep neural network.

First, assume that L = 1 so that we have xgl) = ¢ (Z y wzg):cj + bgl)) After transformation by

J
) (1)

w;;° — o1w;;” and bgl) — o1b{", we receive g (mil)) =9 (Z] wS)alxj + albgl)) = o—le})

J 7
because of the homogeneity of ¢(-). This proves our claim for L = 1.

Next, our induction hypothesis is that g (x(.L_1)> = an_:ll crmach_l). It follows that

K2

L
g (965-”) =¢ Z ngL)oLg (J:E-Lfl)) + bEL) H Om | (def. of transformation) 5)
J

m=1

L1 L
=¢ ngjL)oL H amx;Lfl) + bEL) H Om (induction hypothesis)  (6)
j m=1

J m=1
L
= H ama:l(»L) (homogeneity of ¢), @)
m=1
which was to be shown. O
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A.2 SUBSET SUM PROBLEM

Our proofs frequently rely on solving the subset sum problem (Lueker, [1998), which was first uti-
lized in existence proofs of strong lottery tickets without biases (Pensia et al.,2020) and then trans-
ferred to proofs of strong tickets with biases (Fischer & Burkholz,[2021}2022). It applies to general
iid random variables that contain a uniform distribution, as defined next.

Definition 4. A random variable X contains a uniform distribution if there exist constants o €
(0,1], ¢, h > 0 and a random variable G so that X ~ aUlc — h,c+ h] + (1 — a)G;.

Such random variables can be used to approximate any z € [—m, m] in a bounded interval, as our
next corollary states.

Corollary 7 (Subset sum approximation ). Let X1, ..., X,, be independent bounded random vari-
ables with | Xi| < B. Assume that each Xy, ~ X contains a uniform distribution with ¢ = 0 (see
Definitiond). Let €,§ € (0,1) and m € R with m > 1 be given. Then for any z € [—m, m] there
exists a subset S C [n] so that with probability at least 1 — 6 we have |z — ), - ¢ Xi| < € if

max{l,%} B

" og
ming {ay } min (

) € )
max{1l,m/h}’ max{m,h}

Proof. For m = 1 the proof is a subset of the proof of Corollary 3.3. by [Lueker| (1998). To extend
these results to m > 1, let us fix a ¢’ and ¢’ that we will later choose depending on ¢, 4, and m. We
know that approximating any z’ € [—1, 1] is feasible with probability 1 — §’ up to error ¢’ based on
random variables X}, /h as long as we have at least

>0 og <B> . ®)
8]

min (8, €)
random variables.

Next we distinguish two different cases. 1) Let us start with A/m < 1. To approximate any
z € [—m,m], we approximate z' = zh/m by solving m’ = [m/h] > 1 separate subset sum
approximation problems. Note that the variables X} /h contain a uniform distribution U[—1, 1]
so that we can approximate z/m € [~1,1] by [z/m — >, ¢ Xi/h| < €. It follows that
|zh/m — 3 cq Xk| < €h. We use this approximation result m’ = [m/h] times. Accordingly,
we draw in total n = [m/h]n; random variables, assign each to one of m’ = [m/h] independent
batches Ax = (X(k—1)m/+41s---» Xkm), and use each batch Ay to approximate zh/m up to error

¢'h. This approximation is successful for all batches with probability (1 —§’)™ and identifies index
sets S}, so that

2= Y Xi|< i |zh/m = > Xi| <m'he.
k=1

i€Ug Sk i€ES)

Thus, if we choose ¢’ and €' so that (1 — ¢’ )7”/ > (1 —4), we obtain the desired approximation
guarantees with n = m/ny. This is fulfilled for &' = §/m’ ~ dh/m, and € = ¢/(hm') =~ ¢/m.

2) The second case assumes h/m > 1. Let us define Z := zm/h with m/h < 1, for which we have
|Z/m| < |z|/m < 1. Thus, also z/h € [—1,1], as z/h = Z/m. It follows that we can approximate
z/h with a subset S of n; random variables X}, /h so that |z/h — >, ¢ Xr/h| < €. Hence, we

have
|z — ZX;J < he'.
keS
The choice ¢ = ¢/h meets our approximation objective. [

Next, we explicitly state two special cases that we use frequently in our initialization set-up.

Lemma 8 (Approximation by products of uniform random variables). Let X, ..., X,, be iid random
variables with a distribution X1 ~ VoVi, where Vi ~ U|0,1] and Vo ~ U[—2, 2] are independently

13
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Figure 2: Each standard normal distribution Z ~ N (0, 1) contains a uniform distribution U[—h, h]
with the shown «, where o = ¢(h/o)2h/o. We use the highlighted value i = 1 in our proofs.

distributed. Let ¢,0 € (0,1) and m > 0 be given. Then for any z € [—m,m)| there exists a subset

S C [n] so that with probability at least 1 — & we have |z — ), ¢ Xi| < € if

> Cmlog ( ©)

Proof. Our main proof strategy is the application of Corollary[7] Since X is obviously bounded by
B = 2, we only have to show that X contains a uniform distribution. For V5 ~ U[—1, 1] this has
been shown already by |Pensia et al.|(2020) with Corollary 1 and o = log(2)/2, h = 1/2,and ¢ = 0.
The same arguments apply to our case with o = log(4)/4, h = 1, and ¢ = 0, which we integrate
into the generic constant C'. O

Alternatively, we might want to consider initialization schemes with normally distributed parame-
ters. The next lemma confirms that each normal distribution contains a uniform distribution.

Lemma 9. A normally distributed random variable Z ~ N (0, 0?) contains a uniform distribution
Ul—o, o] witha = 0.4.

Proof. From Definition [4]it can be showed that a random variable Z contains a uniform distribution
U[—h, h] if the probability that Z € [—h, h] is at least as big as if would flip a biased coin that turns
up heads with probability o > 0. In case of this event, we would further draw an element from
[—h, h] from a uniform distribution U[—h, h]. In other words, it suffices to show that there exists
a > 0 so that the probability density pz(x) fulfills pz(x) > a/(2h) for all x € [—h, h].

Since Z ~ N(0,0?), its density is given by ¢(x/c)/o, where ¢(x) denotes the density of the
standard normal distribution. Since ¢(x) is monotonously decreasing in = for > 0, we need to
fulfill « < ¢(h/o)2h/o. For h = o, this is fulfilled for « = 0.4 < 2 x ¢(1). Figure [2| shows
the different choices of « for varying h and ¢ = 1, which confirms that ~ = o in general leads to
relatively high values of a. O

We can use this proof to show that products of normal distributions are also suitable for approxima-
tion with the help of the subset sum problem.

14
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Lemma 10 (Approximation by products of normal random variables). Let X1, ..., X,, be iid random
variables with a distribution X1 ~ V3Vi, where Vi ~ (N | N > 0) with N ~ (N(0,0%)) and
Vo ~ N(0,4) are independently distributed with o1 = 1 or 1 = 2. Let€,6 € (0,1) and m > 0
be given. Then for any z € [—m,m)] there exists a subset S C [n] so that with probability at least
1 —0wehave |z =), ¢ Xi| <eif

n > Cmlog ( (10)

Proof. To apply Corollary[7} we have to show that the product V; V5, contains a uniform distribution.
In addition, we have to solve the technical problem that normal distributions are not bounded random
variables. However, for a given bound B, we can simply ignore all variables that exceed that bound
|X;| > B and just make sure that enough bounded variables are left with high probability so that
we can solve our approximation problem. In fact, let us only use variables with 1/2 < V; < 1
and |V3| < B and assume that we need at least n, of the variables X; that fulfill these criteria
with probability (1 — ¢/2). With the help of a union bound, we can see that we need at least
n > C(n, + log(2/6)) variables to ensure this. Note that C' depends on the bound B and decreases
for increasing B, while the width requirement in Corollary increases in B as log(B). One could
trade-off both with the right choice of B but this is not relevant conceptually in our proofs.

Given the variable V3, the random variable V5V is distributed as VoV; | Vi ~ N (O, 4\/12), which
contains U[—2V7,2V;] with & = 0.4 according to Lemma [9] Note that U[—2V4,2V}] contains
Ul-1,1] for all 1/2 < V; < 1 with « = 1/(2V7) so that VoV; | V4 contains U[—1, 1] with
a =0.4/(2V4) > 0.2 Thus, VoV also contains U[—1, 1] with o = 0.2.

Applying Corollary [7|to bound n,, thus concludes our proof. O

Next, we will prove an even stronger result on approximation by solving a subset sum problem that
allows us to mix random variables with different distributions.

Corollary 11 (Extended approximation with subset sum). Let X1, ..., X,, be independent bounded
random variables with |X;| < B. Assume that each X; ~ X contains a uniform distribution
U[—1,1] with potentially different c; > 0 (see Definition H). Let €,6 € (0,1) and m € N with
m > 1 be given. Then for any z € [—m, m)] there exists a subset S C [n] so that with probability at
least 1 — 6 we have |z — Y ;o Xi| < €if

n>cC Bm ) . (11)

hm |
~  min;{ay} ©8 min (4, €)

Proof. Following the same arguments as Lueker| (1998)) in his proof of Corollary 3.3, we only need
to ensure that we can obtain k& > C'log(1/¢) samples that are drawn from a uniform distribution
U[—-1,1] to approximate a z € [—1, 1] up to precision ¢ with high probability. The probability
that an individual sample X falls into this category is «; and is at least &’ = min;{a;} for every
sample. With this o/, we can follow exactly the same steps as|Lueker|(1998) and arrive at the stated
result. O

The following lemma is also stated in the main manuscript as Lemmal|I]

Lemma 12. Define oo = 3/4 and let w; ~ U[—2,2] denote k iid uniformly distributed random
variables with j € [k|. Then w; is contained in an interval

w; € ll/ (ﬁ};) a (J_]:[iw)]

with probability at least ¢ = 1/16. If this is fulfilled for each w;, then

1< (ﬁwl) <1/a.

i=1

The same holds true if each w; ~ N (0,4) is iid normally distributed instead.
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Proof. We prove the statement by induction. First, let & = 1 and note that 1 < w; < 1/« with
probability (4/3 — 1)/4 = 1/12 > 1/16 for uniformly distributed w; . For normally distributed wy,
1 < wy <1/« is fulfilled with probability ®(1/(2«))) — ®(1/2) > (1/a—1)/4 =1/12 > 1/16.

In the induction step from & to k£ + 1, we assume that

w; € ll/ (ﬁW> 1/ (O‘ﬁwﬂ

with probability ¢ for all j < k, which implies that

1< (ﬁwz> <1/a.

We have to show that also 1 < w11 (Hle wi) < 1/« and thus

oo

For uniformly distributed w1, this is fulfilled with probability (1/a—1)/ (4 Hle wl> >(1/a—

1)a/4 = 1/16 = g, where we used the induction hypothesis. For normally distributed wy, 1, this is
also fulfilled with probability (1/a — 1)a/4 = 1/16 > q.

B EXISTENCE OF LINEAR AND UNIVARIATE LOTTERY TICKETS

At least for specific function classes, we can significantly relax the width and depth requirements.
The family of functions that we are particularly interested in are compositions of univariate functions
and multivariate linear functions. This also allows us to leverage the parameter sharing offered
by convolutional layers to gain further improvements. We first focus on fully-connected mother
networks fy, as we can also utilize them along the channel dimension in convolutional layers as
well.

B.1 MULTIVARIATE LINEAR LOTTERY TICKETS

Our first existence results we present for affine linear multivariate functions f(x) = Wax + b. As
every layer of a neural network layer is essentially a composition of this function and an activation
function ¢(f(«)), the main ideas that we present here could be immediately transferred to pruning
for general target networks.

Statement. Assume that ¢, 6 € (0,1) and a target function f : R? 5 S — R™ with f(x) = Wz+b
with M := [max; ; max(|w; ;|,|b;|)], N non-zero parameters, and Q = (sup,cs |||, + 1) are
given. Let each weight and bias of fo with depth L > 2 and architecture 1y be initialized according
to Def. 3] Then, with probability at least 1 — 8, f, contains a sparse approximation f. C fq so that
each output component i is approximated as maxqes | fi(x) — Mfei(z)| < €if

nyo > cLM_dl log (M/ min {5/(2(m + d)(L — 1) + N +1),¢/Q})

for L > 2 and

M
n1,0 > CMdlog (min {6/(N + 1),€/Q}>

forL=2and \ = Hlel(Qa;yll).

Proof. First, we analyze the amount of error ¢; that we can make with each parameter and still meet
our approximation objective.
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Error propagation:
Let us assume we approximate a target function component f;(z) = w” @ + b; with another mul-
tivariate affine linear function g.(x) = a’x + ¢ with close parameters so that |a; — w;| < ¢ and

|b;—c| < €. Then, it follows that sup,c s | fi (@) —ge,i(@)] < supges Z?Zl lwj—aj||z|+]bi—c| <
€ (Supges [zl +1) = Qe < e if ¢ < €/Q.

Lottery ticket construction:

Next, we have to construct a lottery ticket that computes such a function g.(x) for each output
component. Our construction strategy depends on the available depth L. We start with the case
L=2.

Case L = 2:

As [Pensia et al.| (2020), we utilize solutions to the subset sum problem. In addition, however, we
have to deal with the fact that our parameters are not necessarily bounded by 1 and that we have
non-zero biases. While Layer 0 and Layer 2 of both f, and our ticket f. are fixed to the input and
output neurons respectively, we can only prune Layer 1 of f;;, which has width ng ;. How could we
represent our target f in this setting? We can write each output component of our target as

d d d
fi(x) = ijxj +b; = ij¢($j) + Z(—wj)¢(—$j) + bip(1),

utilizing the identity z = ¢(x) — ¢(—z) for ReLUs. This shows that we can represent f as 2-layer
neural network consisting of 2d + 1 neurons in Layer 1, i.e., ¢(x;), ¢(—=x;), and ¢(1).

Let us thus prune n, out of the ng ; neurons in f; to neurons of the form w;¢(v;z;) with v; > 0 to
help represent w;¢(x;) and prune n, of the neurons in f; to neurons of the form u; é(vjx;) with
v; < 0 to help represent (—wj;)¢(—x;) and prune n, neurons to u;¢(v;) with v; > 0 to represent

bip(1).

How large must ng ; be so that this pruning is feasible with probability at least 1 — ¢’ for a given n,,
and ¢’ > 0? (Note that this was assumed to be possible in (Pensia et al., 2020) with probability one,
which is not entirely correct.) To use the union bound to answer this question, let us first estimate
the probability that we cannot find n, neurons of each type. If we could not find those then at least
ng,1 — np + 1 neurons in fo must be useless to prevent pruning of a neuron of a specific type. A
neuron is useless for a specific type with probability 0.5, since v; > 0 (or v; > 0) with probability
0.5. We only have (d + 1) possible cases of failed pruning, because pruning can only fail for one of
the types w;¢(z;) or (—w;)p(—x;) but not for both, since each neuron in Layer 1 of f; falls in one
of the two categories. It follows that with the help of a union bound, we can thus ensure that we can
find enough neurons of each type with probability at least 1 —§” if 1 — ¢’ = 1 — (d+1)0.5m0.1~"»+1
and thus

no,1 > max (n, + log(2)log ((d +1)/8"), (2d + 1)n,) . (12)

Now that we have n, neurons for each of the 2d + 1 neurons that we want to approximate. We can
utilize them as ground set in solving a subset sum problem to achieve a small approximation error
of each w;¢(z;).

Using Lemma|8|or Lemma[10] we are successful with our approximation up to error €’ with proba-
bility at least 1 — §" if

n, > CMlog (M/min{é",€"}).

Putting everything together, we have to ensure that the pruning works (see Eq. (IZ)) with probability
(1 — ¢’) and that every approximation of each of the N non-zero parameters is successful with
probability (1 — ¢”). This is achieved with probability (1 — ¢) for 6” = ¢ = 6/(N + 1), as
we obtain from a union bound. Furthermore, we can allow an approximation error of each single
parameter of € = €/Q), as we derived earlier. This can all be achieved by

M
n1,0 > CMdlog (min {6/(N + 1),6/62}) '

Case L > 2:
In comparison to the case L = 2, we have the additional advantage that we can also prune Layers
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2,...,L — 1. As in the proof of the case L = 2, we need in total n = (2d + 1)n,, neurons for a
successful approximation. But utilizing Corollary [T} we can distribute these . neurons on L — 1
layers. Thus, each layer has to cover only ny /(L — 1) neurons.

. Md 1 M

n o .

LO=HT 1% \min {0'/(N + 1),¢/Q)

are therefore sufficient to for a successful approximation with probability at least 1 — 4.

Our construction that achieves this is visualized in Figure|l|(e). It consists of (L — 1) subset sum
blocks, i.e., subnetworks with [(2d + 1)n, /(L — 1)] neurons in the intermediary layer and m out-
puts. Each of these intermediary outputs, say yi (represented by a blue node in the figure), is con-
nected to the final corresponding output 2% along a path of neurons of the form w1 ¢(...¢(w;y))

with w; > 0, thus adding Hf;f w;yy, to the final output 2. Exemplary paths are also highlighted
in orange in the figure.

Corollary [TT] states that each of these contributions is valid in a subset sum approximation, as long
as we can bound the path weight in such a way that we can integrate it into our universal constant
of each width requirement. This is the case for 1 < Hf;f w; < 1/a foran a < 1. In each layer,
we need to find maximally m + d of such w;. Lemma 1| provides us with the result that a random
neuron can be pruned to represent such a neuron ¢(w;x) on that path with probability at least ¢ so
that « = 3/4. Note that ¢ and « are independent of L. This guarantees with the application of a
union bound that

niw > Clog((m +d)/8") (13)

neurons need to be available for pruning to find the desired 2(m + d) neurons with probability at
least 1 — 6", where C' = log(1/(1 — ¢)).

Putting everything together, using a union bound, we can guarantee an overall existence probability
of at least 1 — by setting " = §/(2(m+d)(L—1)+ N+1)and &' = 6(N +1)/(2(m+d)(L —
1) + N + 1), which leads to

9 og (M) min {8/2(m + d)(L — 1) + N + 1),¢/Q})

>
o 2 Oy

B.2 UNIVARIATE LOTTERY TICKETS

A similar reasoning as for linear multivariate lottery tickets allows us to prove our results for uni-
variate lottery tickets, the second important building block of our representation of basis functions.
However, we generally need 3 layers to implement a subset sum approximation instead of the 2
layers required in case of linear multivariate lottery tickets. Note that other results on network prun-
ing would require at least two blocks and thus exactly 4 layers in the mother network (Fischer &
Burkholz, |2021)) (or could not represent the architecture because they are restricted to zero biases
Pensia et al.| (2020)). Our 3-layer block leverages the specific neural network structure that we use
to approximate an univariate function, which we introduce next.

It is well known that every deep neural network with ReLU activation functions ¢(z) = max(x;, 0)
is a piecewise linear function (Arora et al., 2018). Conversely, each piecewise linear function with
a finite number of linear regions can be represented by a ReLU network as long as it has enough
neurons (Arora et al.| [2018; [Daubechies et al.,[2019).

Deep neural networks are generally overparametrized. Yet, all parameters of an univariate network
f can be mapped to the effective parameter vectors a and s that represent f in the following way.
The knots s = (s;);e[ny—1] mark the boundaries of the linear regions and @ = (a;);e[n)] indicate
changes in slopes m; = (f(si+1) — f(8:)) / (Si+1 — si) (with sy := $y_1 + €) from one linear
region to the next. Assuming f(z) = ay for z < s, we can write

N—-1

fn(@) = aid(z—s;) +ay (14)

=0
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witha; = m; —m;_1 for1 <i < N —1, a9 =mg, and ay = f(s0).

The relevant domain, where f varies non-linearly, is defined by [sq, sxy—1]. Without loss of gen-
erality, we assume that f is positive so that f(z) > 0 for all z € [sg, sy—1]. This can always be
achieved by an affine linear transformation of the output that is learned by the last layer. Alterna-
tively, the parameters of the deep neural network could be transformed appropriately. The last layer
of the randomly initialized mother network fj can have either ReLU or linear activation functions,
since we assume f(x) > 0 so that ¢(f(z)) = f(«) holds.

For a given f of this form, we want to find a lottery ticket that is an e-approximation of f. The first
question that we have to answer is how much error we are allowed to make in each parameter in
order to achieve this.

B.2.1 PRUNING ERROR FOR AN UNIVARIATE LOTTERY TICKET

Lemma 13 (Approximation of univariate piecewise linear function). Let ¢ > 0, f be defined as
in Egq. and f. be a piecewise linear function whose parameters fulfill |a; — a; | < €, and
|si — si.e] < €5 with

2 (V4 Dmaxllsol Jsv i)+ Dot ) 2 (N S ad)

Then maXzec(sg,sn_1] |f(1’) - fe(l')‘ <e

€q —

15)

Proof. Tt follows from the definition of f, the triangle inequality, and the fact that |¢(x) — ¢(y)| <
|z — y| that

MZ

|f (@) = aiel|p(@ = si)| + |aicl|d(@ — si) — d(x — sie)| + lan — an.e
N—1
< Z €alr = il +|aiellsi — sie| + €a
i=0
N—-1
<N|$|+1+lez> + Z |ai e
i=1 i=0
N—-1
<N|x| +1+ Z |sz> + ) (Jail + €a)e
1=0
N—-1
<N|x| +1+Z|sz> + 3 (Jai| + 1)es
i=1 i=0
N-1
( max{|sol, [sn_1|} +1+ Y |8i> + €5 <N+ > a,»|>
i=1 i=0
+ < <
- €
2 2
for all x € [sg, $Sn—1], where we have used Eq. in the second to last inequality and assumed
that [sy_1| > 1. O

Letting Q = max{|so|, |snv-1|}, M = (1 + max (max; |a;|, max; |s;|)), and using similar argu-
ments, we can more generally derive that

I;lélé(|f($) —fe(@)| <ea(I1+NQ+ (N —-1)M)+ e NM < e,N(Q+ M)+ e, NM

where we used the fact that M > 1 in the last step. It is therefore sufficient to bound the error in
each individual parameter by |6; — 0; .| < ¢/(2N(Q + M)).

For convenience, we state again Thm. ] before we prove it.
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Statement (Existence of univariate lottery ticket). Assume that €,0 € (0, 1) and an univariate target
network f : R D S in form of Eq. consisting of N intermediary neurons are given. Define
M := (1 + max (max; |a;|, max; |s;|)) and Q = maxgegs |z|. Let each weight and bias of f, with
depth L > 2 and architecture 7 be initialized according to Def.[3| Then, with probability at least
1 =90, fo contains a sparse approximation f. C fo so that max,e[s,,sn_.] | f(2) = AMfe(x)| < e with

max{M, N} M
nio > C FD) log (min {6/[L(N+2)—1],¢/(2(Q + M))}) ' (1o

for L > 3 and

MQ M
nio 2 C— m(mmww+n@@@+Mm>'

for L = 2, where the output is scaled by A = HIL:1 (20.1).

w,l

Proof. Let us start with the case L = 3.

Case L = 3:
Note that we can represent our target network f(x) = Zf\;l a;¢(x — s;) + an as univariate neural
network consisting of 4 layers

N
flx) =" aid (d(x) — (=) — 5,6(1)) + sign(an)d(lan|d(1)),
=1

where the first layer has width nqy = 3 and the second layer has width no, = N + 1. (Note that we
can also apply another ReLU activation function to the output, ¢(f(x)), because we assumed that
f(z) is positive. We omitted it for clarity.) Lemmas [8] or[10]let us solve the associated (2N + 1)
subset sum problems if the first layer represents enough neurons of type ¢(x) and ¢(1) with

M
Mo 2 CMlog (min{é/(3N+ 2),c/2N(@Q +M>>}> ’ "

where each parameter (1, —1, —s;) is approximated up to error /(2N (Q) + M)). The n ¢ neurons
serve the creation of ng o neurons in the next layer, which are approximately of the form ¢(z — s;)
and ap. These in turn are used to solve another set of subset sum problems that approximate the
parameters a;. This is feasible for

ng,0 > C'N log ( (18)

3N +2

5 .
Case L > 3:
Following the same steps of reasoning as in our proof of the existence of linear multivariate lottery
tickets (see Figure[I)), we can distribute the approximation of N + 1 neurons on L — 2 layers. The
approximation of the target f is thus successful with probability 1 — ¢ if each of the 2NV + 1 subset
sum problems is solved and we find the following number of connections (of type w;) that create
paths between our intermediary outputs and the final output. The first layer needs one connection 1,

the second also 1, and all L — 2 remaining layers need maximally N 4 2 connections. In total, this
results in 0’ = 6/((N + 2)L — 1) and thus

max{M, N} o ( M )
L—2 S\ min{o/[LIN+2)—1],¢/2Q+ M)} )"

nyo > C (19)

Case L = 2:

The case L = 2 is more complicated because we do not have enough layers to construct univariate
neurons of the form ¢(x), ¢(—x), and ¢(1). Instead we have to create the required N neurons of the
form ¢(z — s) and ay$(1) directly in Layer 1. We can still achieve this approximation by utilizing
Corollary [/| and thus solving N + 1 subset sum problems. Note that we can associate a neuron
wa(wrx + b) in fo that is used to approximate a neuron a;¢(x — s;) of f with a random variable
X. We construct X such that it contains a uniform distribution U[—1, 1]. With nq ¢ of such X, we
can then approximate our target f using Corollary
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Thus, let us derive the distribution of X. With probability at least ¢ we have that 1 < w; < 2.
(¢ = 1/4 for uniformly initialized w; and ¢ = 1/8 for normally initialized w;.) Given this w,
we can approximate s; within error ¢’ with probability at least ¢'w; /2 > €’1/2 by pruning neurons
to have appropriate b. ws contains a uniform distribution U[—1, 1] with & > 1/4 We can use this
uniform distribution U[—1, 1] to approximate a;/w; up to error €' /w; < €'/2. All together, the
random variable X that reflects the described pruning contains a uniform distribution U[—1, 1] with
a = €'/8. We can use np ¢ random independent copies of X to approximate each of the N + 1
neurons up to error € /2 with probability at least 1 — ¢’. According to Corollary [7} this is achieved
for

1 M
>CM-—1 20
1.0 = a8 (min{é’/(N+1),e’}) ’ 20)
where the choice € = €/(2Q) and ¢’ = ¢ proves the claim of the theorem. O

C EXISTENCE OF UNIVERSAL LOTTERY TICKETS

In the following, we present theorems about the construction of lottery tickets as concatenated basis
functions. Both versions, one for polynomial and the other one for Fourier basis functions, share the
general set-up so that we start with a joint proof beginning.

Proof. To show that f. is a strongly universal lottery ticket with respect to the function family F,
we have to prove that if fulfils Definition|I| Thus, for every g € F we have to find W € R™** and
c € R™ so that

sup [W fe(x) +c—g(z)| <e. 2D
z€[0,1]4
Since g € F, we can write each component as linear combination with respect to our basis functions
b; € B so that gl(ac) = Z?:l aijbj(:c) + d; with Qij, d; € [—1, 1}. If we define Wi = aij)\ and
¢; = d; for a positive scaling factor A > 0, we receive

m k
sup [[Wic(z) +c—g(@)| < sup Y > ail| (Me () — bj (=) | (22)
z€[0,1]4 z€(0,1]4 27 55
< km sup [Afe,j() —bj(x)] (23)
xz€[0,1]4,5€[K]

using |a;;| < 1 and the triangle inequality. Note that this inequality holds for any p-norm ||-|| with
p > 1. Thus, f. is a strongly universal lottery ticket with respect to JF if each component j is
bounded as

€
sup |Afe () —bi(x)] < —. 24)
e (@) by < o

To simplify the notation, in the remainder we drop the index j but understand that both f.(x) and
b(x) have 1-dimensional output. To bound the error, we decompose it into two parts, one that
captures the approximation of b(x) by a target deep neural network fy (and thus a piece-wise linear
function) and one that handles the error related to pruning a mother network fj to obtain the actual
lottery ticket fe.

sup [Me(z) —b(x)| < sup [Afe(z) - fy(z)[+ sup |fn(z)—b(x)|

z€[0,1]4 z€[0,1]¢ x€(0,1]¢
pruning approximation (25)
< : + -
2km 2km km

The last inequality needs to be shown. The approximation error can be controlled by a sensible
choice of the deep neural network architecture, while the pruning error is handled by Theorems [4]
and Theorems[3] In both cases, we also have to consider, however, how the error propagates through
the deep neural network layers. The following arguments depend on the specifics of the construction.

O
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C.1 POLYNOMIAL UNIVERSAL LOTTERY TICKETS

We continue with the proof for polynomial basis functions. For convenience, we restate Thm. [3]
from the main manuscript.

Statement. Let B C {H?:l 0.57 (1 4+ 2;)"|r; < ¢,z € [0, 1]} be a subset of the polynomial basis

Sunctions with bounded maximal degree q of cardinality k = |B|. Let F (B) be the family of bounded
(affine) linear combinations of these basis functions. For €, € (0, 1), with probability 1 — § up to
error €, fo contains a strongly universal lottery ticket f. C fo with respect to F if f has Lj,s > 2
convolutional layers, followed by Ly > 2 fully connected layers, and L.y, > 2 convolutional
layers with channel size or width chosen as in Thms. @ and[3| with the following set of parameters.

Logarithm: 6,3 =1 — (1 — 53, €log = e Niog = 1+ tkm-‘ Miog =2, Quog = 1.

Multivariate: 6multi =1- (1 - 5)1/3; Emulti = f}kﬁ’ Nmulti == kd, Mmulti =4q, Qmulti =d.
Exponential: 6o =1 — (1 — §)1/3, €ep = gor New = 1 + ’th / ]Z:’-‘, Moy =2, Qexp = tlog 2.

Proof. Our objective is to bound the approximation and pruning error in Eq. (23) sufficiently.

Approximation error:
First, we bound the approximation error in Eq. by ¢/(2km). Our basis function b(x) as well
as our approximating deep neural network fy (x) can be written as composition of three functions.

b(a) = g (zjzl aih(xi)), where h(z) = log((1 +2)/2). 0 < a; < ¢. 2% a; < t, and
g(y) = exp(y) for —log(2)t < y < 0, g(y) = 0.5 for y < —log(2)t, and g(y) = 1 fory > 0.
fn(x) = gn (Ele aihN(xi)), where gy and hy are piece-wise linear approximations of g and
h respectively. As we have restricted our approximation to a compact domain, all functions are
Lipschitz continuous. Here, and in the sequel, we use the fact that on any interval, the slope of the
piecewise linear function g is bounded by that of g, which follows from the construction of gy in

Eq. (I4). Therefore, on any interval, the Lipschitz constant of g is also the Lipschitz constant of g .
Thus we can bound the difference between both functions as

d d
g (Z aﬂl@i)) — 9N (Z aﬂN@i))‘
3 i=1

sup |fn(z) —b(z)| = sup

z€[0,1]¢ z€[0,1]¢
d d d
< SELIP] (Z (zi ) -9 (Z aihn(z ) + |9 (Z aihN(xi)> — 9N (Z aihN(xi)>’
x€[0,1]7 = i=1 i=1
< Lot sup [h(z) — hy(2)| + sup l9(z) — gn ()],
z€[0,1] z€[—tlog(2)—¢ ,€e’]

(26)

where we bounded each a; by ¢ and ¢’ denotes the pruning error for now. L, denotes the Lipschitz
constant of g(y) and gy (y) on their domain [—tlog 2 — €', €], which is bounded by 1.

Thus, bounding

sup [h(z) — hy(z)| < and sup 9(z) —gn(2)] < 77—

€
z€]0,1] | — 4kmt z€[—tlog(2)—¢ '] | — 4km

27

would be sufficient to control our approximation error. To achieve this, we have to allow for large
enough number of neurons Ney, and Vo in the univariate representation (Ef]) of gy and hy.

Approximation of h(x) = log((1 + x)/2)

Let us determine Ny, first. We partition the domain [0, 1] of i () into intervals I; = [s;, 8;41) C
[0,1] and In_1 = [sy—2,5n—1] C [0,1] of length A = 1/(N — 1) based on equidistant knots s;
with sp = 0 and sy_; = 1. For every x let 7, mark the index of the interval in which = € I;_ is
contained. Since h(x) = log((1 + x)/2) is concave, we have for all

[h(x) = b ()| = h(z) — by (2) = h(z) = h(si,) — (& = si,) (h(si,11) — hlsi,)) /B, (28)
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where i, = argmin, ,_. ~,x — s; is the index the corresponds to the interval that contains z.
Furthermore, the maximum approximation error is attained on the interval Iy = [0, A]. Accordingly,
we have

sup |h(xz) —hy(x)] = sup log(0.5(1 + x)) —log(0.5) —x+m = sup log(l+x)—xz*xm
z€[0,1] z€[0,A] z€[0,A]

with m = (log(0.5(1 + A)) —1og(0.5))/A = log(1 + A)/A. To identify the position of maximum
error, we set the first derivative with respect to = of the error objective to zero and obtain x* =
1/m — 1. This results in

sup |h(z) —hy(z)] = sup log(l4+z)—axxm=1log(l+1/m—1)—(1/m—1)xm
z€[0,1] z€[0,A]

= —log(m)4+m —1~1/2A —1/8A% + 1/24A% + 1 —1/2A
+1/3A% -1 < 1/4A%

where we used the series expansion of log(1 + z). For 0.25A2 < Thon We can therefore guaranty a

small enough approximation error. Hence, the choice Njog = 1 + |4/ kemt-‘ is sufficient to achieve
the desired bound Eq. (27).

Approximation of g(x) = exp(x)

We can make a similar argument for g(z) = exp(z) on its domain D = [—tlog(2) —¢€/, €']. Since we
cut off g and g outside of the actual support [—t log(2), 0] to avoid amplifying errors that we know
are errors, we can just focus on the domain [—¢log(2), 0]. Note that also exp(-) is monotonously
increasing, but since it is convex, we have

sup  [g(z) —gn(z)|= sup gn(z)—g(z)= sup exp(—=A)+m(z+A)—exp(z)
z€[—tlog(2),0] z€[—A,0] z€[—A,0]

with m = (1 — exp(—=A))/A ~ (A — 0.5A%)/A = 1 — 0.5A. The maximum is attained at
x* = log(m) so that we have

sup lg(x) — gn(x)] = exp(—A) + m(log(m) + A) — m =~ 1/8A27
z€[—tlog(2),0]

where we employed series expansions of exp(x) and log(1 + z). Again, from A = k}gﬂ follows

p—1

that any Neyp > 1+ [t ’“47?—‘ would be sufficient to achieve our approximation objective 1i

Last but not least we mention also the number of non-zero parameters that we want to prune in case
of the multivariate function. As we can represent this function exactly by a deep neural network, we
do not inflict any approximation error and we can set Ny, = dk to the maximum number of its
non-zero parameters.

With this, we have derived the stated N. We still have to bound the pruning error to conclude our
proof.

Pruning error:

The pruning error in Eq. has to be smaller or equal to €/(2km), which we can achieve by
limiting the pruning approximation €rrors €exp, €muli» and €jog in Theorems |4 and [3| to represent the
targets g, hy and the multivariate linear map with matrix A.

Similarly to Eq. (26), we have to consider the error propagation through a composition of functions.
Yet, this time also the multivariate linear map inflicts an error. Recall that our deep neural network

fn () can be written as composition of three functions so that fy(x) = gy (Zle a;hyn (xl)>

Analogously, also our lottery ticket is of similar form: fc(x) = gc (ac (he(z1), ..., he(z4))), where
a. denotes a function from R? to R. A slight complication is that we can approximate each lottery
ticket only up to a scaling factor A\. The scaling factor of each function is not completely arbitrary
because all together have to harmonize with the initialization of biases, as previously explained. The
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exact scaling factors in the theorems ensure that with A = Aexp Amuti Ao, We can write

sup |fn(z) — Afe(z)| = sup
xz€(0,1]4 z€[0,1]¢

d
gnN (Z aihN (xz)> - )\expge ()\multiae ()\loghe ($)))

=1
d
< S[UP] gN (Z aihN(xi)> = 9N (Amuri@e P\loghe(iﬂ)])’
x€[0,1]¢ i=1
+ S[up]d |gN ()\multiae [)\loghe (iL’)D - )\expge ()\mulliae [/\loghe (33)])|
xzc|[0,1

d
< sup Loy | aihn (i) = Anuiae [Noghe ()] + sup 19N (¥) = Aexpge (¥)]
xe[0,1]¢ i=1 y€[—qdlog(2)—€’ €]
<éexp
d d
S sup LgN Zai (hN(xz) - Aloghe(xi)) + sup LgN Zai)\loghe(xi) - )\multiae [)\loghe(a:)] +€exp
x€[0,1]¢ i—1 z€[0,1]¢ i—1
<e€multi

< sup Loyt |hn(2) = Moghe ()] +Lgy €mui + €exp

x€[0,1]

<elog

< LgN telog + LgN Emulti T €exps

(29)
where we have used Theorems [ and [3] to bound the difference between a target network and the
corresponding lottery ticket. Theorem [3|depends on M = ¢ (since all parameters are bounded by
¢) and Q = d, since h(z) € [0,1] and the inputs to the multivariate linear function are bounded

this way. Since L,, < 1, we can thus achieve a pruning error of maximally €/(2km) with with
€log = €/(6kmt), emui = €/(6km), and ey = €/(6km).

With the stated parameter choice, each of the three parts of the lottery ticket exists independently

with probability at least (1 — 6)!/%. All three exist thus with probability at least ((1 — §)/ 3)3 =
(1 — 9), which concludes our proof.

C.1.1 FOURIER UNIVERSAL LOTTERY TICKETS

Similarly, we can also bound the approximation and pruning error in case of the second family of
functions that we have considered. In doing so, we prove the following theorem.

Theorem 14. For e, 0 € (0,1), with probability 1 — § up to error ¢, fo with the specified properties
contains a strongly universal lottery ticket f. C fo with respect to the function family F (BB), which
is defined as bounded affine linear combinations with respect to a finite subset of the Fourier basis

Sfunctions B C {sin (271' (Z?:o n;T; + c)) | n; € [M](Vi € [d]),c€[0,1], ; € [0, 1}} with car-
dinality k = |B|. fo consists of Ly > 2 fully connected layers followed by Ly, > 2 convolutional
layers whose width or number of channels fulfill the requirements of Thms. | and [3|with the follow-
ing set of parameters.

Multivariate: Sy = 1 — (1 — 6)/2, €y =
Sin: 5sin =1- (1 - (5>1/2; €sin =
Quin = (d+ 1) M.

%’ Nmulri = dk’ Mnulti =1 + Mr Qmulli - d
N =1+ [7? arcsin (Esm/Q)_l—‘, Mg, = 14 (d + 1)M,

_€
4km’

Proof. As for polynomial lottery tickets, we have to bound the approximation error and the pruning
error separately to be smaller or equal to €/(2km) to fulfill Eq.

Approximation error:
The basis function b(x) as well as our approximating deep neural network f () can be written as

composition of two functions. b(x) = g (Z?zl n;x; + ci) , where ¢g(y) = sin(27y), 0 < n; < M,
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and ¢ € [0, 1]. Correspondingly, fn(x) = gn (Z?zl n;x; + cl-), where gy is a piece-wise linear

approximations of g. As we have restricted our approximation to a compact domain, all functions
are Lipschitz continuous and we can bound the difference between both functions as

d d
g (Z n;T; + Ci> —gN <Z n;T; + Ci) ‘
=1 i=1

sup |b(x) — fn(x)| = sup

z€[0,1]¢ z€[0,1]¢
< sup [g(y) —gn(y)|= sup [sin(27y) — gNn(Y)],
y€[0,dM+1] y€[0,dM +1]

where [0, dM + 1] is the domain of g and gn. As in the previous proof, we assume that g approx-
imates g on an equidistant grid with linear regions of size A = 1/( Ny, — 1). Similarly as before, a
piece-wise linear approximation inflicts the maximal error

sup  [sin(27y) —gn(y)| <2 sup |sin(27z) — sin(27y)]
y€[0,dM+1] z,y€[0,dM+1—A] s.t. |z—y|<A
— 4 sup sin(r(z — y) cos(m(z + )|

2,y€[0,dM+1-A] st. |z—y|<A
<4 sup [sin(rz)| =4sin(rA)
z€[0,A]

using the addition theorem sin(a + ) — sin(a — ) = 2sin(f) cos(a) with & = 7(z + y) and
B = w(z — y) for the first equality and assuming A < 1/2 to obtain the last equality.

Note that Ny, is always bigger than 3 so that A < 1/2 is fulfilled automatically.

It follows that Ng, > 1+ ’V’N (arcsin (e/ (8km)))71—‘ leads to sufficiently small approximation error.

Pruning error:

The argument for the pruning error is quite similar but the error related to the linear transformation

an(x) = Zle a;z; + ¢; is non-zero and needs to be controlled as well. With A = A\gnAmuli We

can derive

sup |fN(w) - )‘fE(w)| = Ssup |gN (aN(m)) - )\singe ()\multiae(m)”

xe0,1]4 z€(0,1]4
< sup gy (an(®)) — g8 (Amuiae(®))| + sup gy (Amui@e(®)) — Asinge (Amuriae(x))]
z€[0,1]¢ x€[0,1]¢
< Lgy sup |an(x) — Amuiae(z)[+  sup  |gn(y) — Asinge(y)]
xzel0,1]¢ y€[0,dM+1]
Semulli §5>m

< Ly €muii + €sin < €/(2km)

for emui = €/(8kmm) and e = €/(4km), where we have used that Ly, = 2, i.e., the Lipschitz
constant of the function sin(27-).

These estimates hold in reference to Theorems[4] and 3

It might seem strange that these errors do not depend on M. However, in the end, the widths of
both mother neural networks does depend on M, as Theorems |4 and [3| consider the domain and
maximum value of the parameters of the functions gy and a in the error assessment.

We conclude that a lottery ticket and those both parts of the neural network exist with probability at
least (1 — §)Y/2(1 —6)/2 =1—4. O
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