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ABSTRACT

Diffusion models can generate realistic videos, but existing methods rely on im-
plicitly learning physical reasoning from large-scale text-video datasets, which
is costly, difficult to scale, and still prone to producing implausible motions that
violate fundamental physical laws. We introduce a training-free framework that
improves physical plausibility at inference time by explicitly reasoning about im-
plausibility and guiding the generation away from it. Specifically, we employ a
lightweight physics-aware reasoning pipeline to construct counterfactual prompts
that deliberately encode physics-violating behaviors. Then, we propose a novel
Synchronized Decoupled Guidance (SDG) strategy, which leverages these prompts
through synchronized directional normalization to counteract lagged suppression
and trajectory-decoupled denoising to mitigate cumulative trajectory bias, ensuring
that implausible content is suppressed immediately and consistently throughout
denoising. Experiments across different physical domains show that our approach
substantially enhances physical fidelity while maintaining photorealism, despite
requiring no additional training. Ablation studies confirm the complementary effec-
tiveness of both the physics-aware reasoning component and SDG. In particular, the
aforementioned two designs of SDG are also individually validated to contribute
critically to the suppression of implausible content and the overall gains in physical
plausibility. This establishes a new and plug-and-play physics-aware paradigm for
video generation.

1 INTRODUCTION

Recent text-to-video diffusion models (Wan et al., 2025; Yang et al., 2025b) produce strikingly
realistic sequences across diverse visual concepts and prompts. Yet despite impressive progress in
fidelity and prompt adherence, their behavior often departs from everyday physics: objects accelerate
without cause, fluids ignore gravity, and phase transitions misfire. These failure modes matter because
if video generative models are to serve as general-purpose world simulators (Liu et al., 2025), they
must respect physical commonsense, not merely aesthetics.

Emerging benchmarks explicitly validate such physical plausibility. For example, PhyGen-
Bench (Meng et al., 2024) curates 160 prompts spanning 27 physical laws across four domains
(mechanics, optics, thermal, and material properties) and introduces an automated evaluator. In paral-
lel, VideoPhy (Bansal et al., 2025) evaluates real-world actions with fine-grained human judgments
over semantic adherence, physical commonsense, and grounded physical-rule violations. Together,
these studies show that current models frequently violate physical commonsense and that scaling or
prompt-engineering alone does not solve the problem, highlighting a persistent gap that current video
generation models can render, but struggle to reason physically.

Our core idea is to enhance physical plausibility by reasoning about implausibility, then guiding the
video generation away from it. Specifically, motivated by the fact that user prompts are typically
underspecified with respect to entities, scene conditions, interactions, and expected causal evolution,
we first leverage a LLM-empowered physics-aware reasoning (PAR) pipeline to infer a physically
valid trajectory, and construct a targeted counterfactual that violates the governing physical law while
remaining visually plausible. To guide generations away from these counterfactuals, a naive way is
to use negative prompting, but for which we identify two core gaps that limit the effectiveness, i.e.,
lagged suppression effect and cumulative trajectory bias. We therefore propose a novel Synchronized
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Decoupled Guidance (SDG) approach with two designs (synchronized directional normalization
and trajectory-decoupled denoising) that directly address these gaps. Notably, SDG serves as a
plug-and-play inference-time strategy that requires no retraining or finetuning.

Extensive experiments validate that our framework maintains photorealism while improving physics-
related scores across different physical phenomena such as solid mechanics, fluid dynamics, optics,
and thermodynamics. On the PhyGenBench and VideoPhy benchmarks, we achieve consistent
gains over strong base models such as CogVideoX-5B and Wan2.1-14B, and remain competitive
with several physics-aware approaches that are not training-free. Ablation studies confirm that both
components are necessary; PAR provides targeted, physics-aware counterfactuals, while SDG, via its
two designs, turns those signals into non-delayed, unbiased suppression of implausible content.

In summary, our contributions are threefold. First, we introduce a reason-then-guide framework
for physics-aware video generation that is training-free and model-agnostic. Second, we propose
Synchronized Decoupled Guidance (SDG) with synchronized directional normalization and trajectory-
decoupled denoising, addressing the lagged suppression and cumulative trajectory bias of negative
prompting. Third, we demonstrate improvements on physics-focused benchmarks and validate
through ablations the complementary roles of PAR and SDG. Taken together, our findings complement
and extend the evidence from recent benchmarks that current video models need explicit physics-
aware control to approach physically plausible generation.

2 PRELIMINARIES

2.1 CLASSIFIER-FREE GUIDANCE IN DIFFUSION MODELS

Diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021; Song et al., 2021) have emerged as
a powerful family of generative methods. They define a forward process where Gaussian noise
is progressively injected into a clean data x0 over T timesteps, yielding a fully noised sample
xT ∼ N (0, I). The forward dynamics are expressed as:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where xt denotes the corrupted data at step t, and βT
t=1 specifies the variance schedule controlling the

noise level. To generate data, one trains a reverse denoising process that recovers xt−1 from xt. A
neural network parameterized by θ is used to approximate the conditional distribution:

pθ(xt−1|xt) = N (xt−1;µθ(xt), σ
2
θ(xt)I). (2)

In practice, the model ϵθ(xt, c, t) can be trained to predict the additive noise ϵt at each step, con-
ditioned on side information c such as a text prompt, rather than reconstructing xt−1 directly. To
better control the quality and relevance of generated samples, classifier-free guidance (CFG) (Ho
& Salimans, 2022) is commonly adopted. CFG modifies the predicted noise at inference time by
interpolating between the unconditional estimate ϵθ(xt, ∅, t) and the conditional estimate ϵθ(xt, c, t).
Using a guidance strength w > 1, the final adjusted prediction is:

ϵ̂t ← ϵθ(xt, ∅, t) + w · (ϵθ(xt, c, t)− ϵθ(xt, ∅, t)). (3)

This simple mechanism provides a tunable trade-off between sample fidelity and diversity. Once the
guided noise prediction ϵ̂t is obtained, the state update from xt to xt−1 can be performed using a
generic update rule that leverages ϵ̂t:

xt−1 = αtxt + βtϵ̂t + ηt, (4)

where αt and βt are coefficients determined by the sampler, and ηt represents optional stochasticity.

2.2 NEGATIVE PROMPTING

Negative prompting was first introduced in the Stable Diffusion 2.0 release and has since become a
widely used technique for improving controllability in diffusion models (Stability AI, 2022; Woolf,
2023). The central idea is to not only specify desirable attributes through a positive prompt p+, but
also to explicitly provide a negative prompt p− that encodes features the model should avoid.

In contrast to classifier-free guidance (CFG), which interpolates between unconditional and condi-
tional predictions (Eq. 3), negative prompting can be interpreted as anchoring the prediction on the
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• A tennis ball is gently placed on the surface of a bucket 

filled with water.

• A puddle of oil on the road under the sunlight.
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Figure 1: Overall framework. Left: Physics-Aware Reasoning (PAR). Given a user prompt, an LLM
identifies entities, interactions, and scene conditions to produce a structured analysis of the underlying
physical process. Based on this reasoning, it constructs counterfactual prompts that preserve the same
entities and scenes but deliberately violate the governing physical law, yielding targeted physics-
aware negatives. Right: Synchronized Decoupled Guidance (SDG). During denoising, we evolve
two branches conditioned on the user prompt and the counterfactual prompt, respectively. Their
noise estimates are combined with directional normalization and trajectory decoupling, ensuring that
implausible structures are suppressed immediately and consistently throughout generation.

positive prompt while pushing it away from the negative prompt. This yields the following adjusted
noise estimate (Armandpour et al., 2023):

ϵ̂t ← ϵθ(xt, c(p+), t) + w ·
(
ϵθ(xt, c(p+), t)− ϵθ(xt, c(p−), t)

)
, (5)

where c(p+) is the embedding of the positive prompt (i.e., user prompt), c(p−) is the embedding of
the negative prompt, and w > 0 controls the strength of suppression.

3 METHODOLOGY

Our methodology is built on two key components: (i) the construction of counterfactual prompts
that deliberately invoke physically implausible behaviors, and (ii) a new guidance mechanism that
leverages these prompts to enforce physics-awareness during video generation. Together, these
components allow us to systematically expose and suppress violations of physical laws, without
requiring retraining of the underlying diffusion model. The remainder of this section is organized
as follows: Sec. 3.1 describes how counterfactual prompts are generated using a physics-aware
reasoning pipeline. Sec. 3.2 then analyzes why naively incorporating these prompts through existing
negative prompting remains insufficient, identifying two fundamental gaps. Finally, Sec. 3.3 presents
our proposed Synchronized Decoupled Guidance (SDG), which integrates synchronized directional
normalization and trajectory-decoupled denoising to directly address these gaps and fully exploit the
counterfactuals for physics-aware generation.

3.1 PHYSICS-AWARE REASONING FOR COUNTERFACTUAL CONSTRUCTION

The pipeline. As shown in Fig. 1 (Left), we design a lightweight physics-aware reasoning pipeline
powered by a large language model (LLM) to generate structured counterfactual prompts. Given a
user prompt, the LLM performs two steps. First, in physics reasoning, it identifies relevant attributes
such as entities, interactions, and environmental conditions, and infers the temporal evolution of the
process, yielding a structured description of how the event would normally unfold under physical laws.
Second, in counterfactual construction, it synthesizes a variant of the event that preserves the same
entities and scene but deliberately violates the expected causal chain (e.g., the absence of bubbling
when acid and base are mixed, or an object sinking instead of floating). These counterfactuals remain
visually plausible yet physically implausible, providing targeted signals for subsequent guidance.
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The need for physics reasoning. User-provided prompts are typically underspecified, often de-
scribing the surface-level visual content without reference to the underlying physical processes. For
example, a prompt such as “A timelapse captures the transformation as water vapor in a humid
environment comes into contact with a cool glass surface” specifies the entities (water vapor, glass
surface) but omits the expected physical phenomenon and its outcome. Reasoning is therefore
essential to enrich these prompts with the missing physical context, ensuring they become physically
well-specified and suitable for constructing meaningful counterfactuals.

The needs for constructing targeted and structured counterfacturals. Our central idea is to
improve physical plausibility by explicitly reasoning about implausibility. Such implausibility is
informed by the constructed counterfactual prompt, which is leveraged by our proposed synchronized
decoupled guidance (SDG) strategy (Sec. 3.3) to consistently steer the generation away from such
implausible outcomes. To achieve effective guidance, we need the constructed counterfacturals to be
targeted and structured.

Using the aforementioned user prompt as an example, under normal physical laws, this situation is
governed by the principle of condensation: as warm vapor meets the cooler surface, the vapor cools
to its dew point, releases latent heat, and gradually forms liquid droplets that coalesce and drip down.
A meaningful counterfactual prompt in this case should therefore deliberately violate condensation
dynamics, for instance by describing the surface as being covered with droplets instantly from the start,
without any observable phase transition. However, when there is no explicit physics-aware reasoning
about which entities interact, in what scene, and under which governing principles, counterfactual
prompts risk violating irrelevant or unintended laws. For example, as shown in our ablation (Fig. 14),
without physics-aware reasoning, the generation may result in a counterfactual such as “the vapor
instantly freezes into solid ice upon contact,” which is implausible in this context and fails to violate
the expected condensation law. Instead of targeting the intended physical principle, such generic
counterfacturals introduce unrelated violations.

To ensure that counterfactuals consistently target the correct physical law, we construct structured
counterfactuals through physics-aware reasoning. By explicitly reasoning about entities, interac-
tions, and scene conditions and keeping the entities and scene context unchanged, we can generate
counterfactuals that remain visually plausible yet deliberately contradict the governing laws of the
process, thereby providing effective signals for our guidance strategy (Sec. 3.3). Using the same
example, our constructed counterfactual is “The glass surface is instantly covered in water droplets
from the beginning, without any observable condensation or gradual droplet formation.” Unlike the
generic counterfacturals that introduce unrelated violations, this counterfactual directly contradicts
the governing condensation law while preserving the same entities and scene context as the original
prompt. By doing so, it avoids drifting into irrelevant outcomes and instead provides a targeted
violation that the guidance mechanism can consistently suppress.

3.2 GAPS IN EXISTING NEGATIVE PROMPT GUIDANCE

A naive way to leverage our constructed counterfactuals for addressing the physical implausibility
challenge is through the use of negative prompting (Woolf, 2023; Armandpour et al., 2023), which
has proven useful for suppressing undesired semantics. However, we find its effectiveness to be
inherently limited by the technique it is integrated into the CFG from the following two perspectives.

Lagged Suppression Effect. Eq. 5 shows that negative prompting modifies the predicted noise by
subtracting a weighted discrepancy between the positive condition c(p+) (i.e., conditioned on the
original user prompt) and negative condition c(p−) (i.e., conditioned on the undesired prompt, and in
our case, this will be our constructed counterfactual prompts). Let the discrepancy vector at time t be:

∆t = ϵθ(xt, c(p+), t)− ϵθ(xt, c(p−), t). (6)

Rewriting the equation for negative prompting (Eq. 5) gives:

ϵ̂t ← ϵθ(xt, c(p+), t) + w ·∆t, (7)

where w · ∆t contains the suppression effect from negative prompting. Interestingly, during the
earliest denoising steps, the discrepancy ∆t is typically small in magnitude, since xt remains close to
isotropic Gaussian noise. At this stage, the conditional prediction ϵθ(xt, c(p+), t) steers the model
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toward coarse, low-frequency structure, such as object placement and scene layout (Chen et al.,
2025a) (e.g., if we ask for ‘a cat in a box’, the model starts forming ‘cat-like’ blobs anchored in
‘box’ structure). In contrast, in later steps, the attention of the denoiser is shifted to restoring the
high-frequency details, and the magnitude of ∆t turns larger. Formally, if we consider the Jacobian
of the denoiser with respect to its input to see how the predicted noise updates the input:

Jt =
∂ϵθ(xt, c, t)

∂xt
, (8)

its eigen-decomposition Jtvi = λi,tvi reveals the principal update directions vi in latent space, with
corresponding eigenvalues λi,t quantifying the update strength in each direction. Intuitively, each
eigenvector vi defines a semantic or structural axis along which the noise prediction can perturb the
latent xt, while the eigenvalue determines the relative amplification or suppression along that axis.
In early denoising steps, the dominant eigenvectors (those with the largest magnitude eigenvalues
|λi,t|) typically align with coarse, low-frequency structure directions that correspond to high-level
semantics such as object placement and global scene layout. We denote such leading directions at
step t as vl,t, where |λl,t| = max(|λi,t|). The suppression effect of negative prompting along the
dominant coarse-layout directions can be expressed as:

suppression(−)
t ∝ v⊤l,t(−w∆t) = −w⟨vl,t,∆t⟩ = −w||vl,t|| · ||∆t|| · cos(θ), (9)

where θ is the angle between the coarse-layout direction vl,t and the suppression direction ∆t. Since
||vl,t|| is fixed by the denoiser and the prompt conditioning, and cos(θ) is also fixed by the angle
θ between the directions, the magnitude of the suppression effect is governed primarily by ||∆t||.
During early steps, when ||∆t|| is small, the counterfactual prompt exerts minimal influence precisely
along the directions that determine global structure. Only at later steps, when ||∆t|| grows larger, can
suppression meaningfully counteract the user prompt. Thus, the dynamics of Eq. 9 explain the lagged
suppression effect: the user condition c(p+) establishes coarse semantic anchors that shape the global
layout in the early denoising steps, while the effect of the counterfactural condition c(p−) is lagged
and only becomes appreciable once those structures are already formed, allowing it to attenuate
but not prevent undesired effects. As a result, this vanilla negative prompting functions more as a
late-stage retroactive corrector, rather than as a proactive, preventive blocker of early implausible or
undesired content.

Cumulative Trajectory Bias. Even once ∆t becomes substantial at later stages, the corrective
capacity of the guidance remains fundamentally limited because the denoiser’s predictions are always
conditioned on the same latent trajectory xt. As shown in Eq. 4, this trajectory has already been
predominantly shaped by the original branch during the early denoising updates when updating from
xt to xt−1. Consequently, when evaluating ϵθ(xt, c(p−), t), the input xt already encodes semantic
anchors introduced by the user prompt, biasing the prediction toward those configurations. In effect,
the guidance is forced to operate on latents that have inherited accumulated influence from the
original prompt, attempting to correct content that is already ‘locked in’ by earlier conditioning. This
persistent entanglement produces a cumulative trajectory bias, which constrains the suppressive
power of the counterfactual prompt and limits its ability to fully eliminate implausible or undesired
structures.

3.3 SYNCHRONIZED DECOUPLED GUIDANCE

To overcome the two gaps identified above, we propose Synchronized Decoupled Guidance (SDG),
a new guidance strategy that integrates two complementary designs. Each design is tailored to directly
address one of the fundamental limitations previously identified.

Synchronized Directional Normalization. To mitigate the lagged suppression effect, we align the
effects of user prompt p+ and the counterfactual prompt p− from the earliest denoising steps. Rather
than relying on the raw magnitude of the discrepancy ∆t, which is small when xt is still close to
isotropic Gaussian noise, we focus on its direction. Specifically, we normalize the discrepancy to
apply a consistent correction:

ϵ̂t ← ϵθ(xt, c(p+), t) + λ · ϵθ(xt, c(p+), t)− ϵθ(xt, c(p−), t)

||ϵθ(xt, c(p+), t)− ϵθ(xt, c(p−), t)||+ ε
(10)
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where λ is a scaling factor controlling the magnitude of the perturbation, and ε is a small constant
to ensure numerical stability. This unit-normalized directional correction emphasizes the direction
of the suppression effect and makes the counterfactual prompt’s suppressive influence temporally
synchronized with the user prompt’s constructive effect. By enforcing a direction-focused correction
of constant scale, suppression remains active from the very first iteration, preventing implausible
structures before they can emerge instead of only erasing them retroactively.

Trajectory-Decoupled Denoising. To address the cumulative trajectory bias, we decouple the
conditioning paths of the user prompt and the counterfactual prompt. Instead of deriving both
predictions from the same latent trajectory xt, which has already been shaped by the user prompt and
has potentially accumulated physical errors, we evolve two separate latents in parallel: one original
branch x+

t for the user prompt p+, and one counterfactual branch x−
t for the counterfactual prompt

p−. Specifically, their noise predictions are:

ϵ+ = ϵθ(x
+
t , c(p+), t) + w · (ϵθ(x+

t , c(p+), t)− ϵθ(x
+
t , ∅, t)), (11)

ϵ− = ϵθ(x
−
t , c(p−), t) + w · (ϵθ(x−

t , c(p−), t)− ϵθ(x
−
t , ∅, t)). (12)

By decoupling the trajectories, the counterfactual branch is free from the accumulated physical
bias introduced by user-prompt conditioning. This ensures that the guidance can exert effective
suppression throughout the precess, even when undesired physical phenomena would otherwise be
locked into the shared trajectory.

Summary. By integrating both designs, SDG transforms the guidance process from a late-stage
biased retroactive corrector into an early-stage unbiased proactive preventer. The final correction
applied combines synchronized normalization with trajectory decoupling:

ϵ̂+ = ϵ+ + λ · ϵ+ − ϵ−

||ϵ+ − ϵ−||+ ε
, (13)

In this formulation, the user and counterfactual prompts co-evolve synchronously along distinct
latent paths, and their interaction is governed by a normalized, direction-aware contrastive term.
By ensuring that suppression is both non-delayed and unbiased, SDG not only overcomes the
inherent limitations of negative prompting but also maximizes the utility of our reasoning-based
physical counterfactuals. The proposed guidance strategy is able to fully empower them as proactive
constraints, ensuring that implausible structures are suppressed consistently throughout the denoising
process.

4 RESULTS

4.1 SETUP

Backbones. We evaluate our method on two representative open-source text-to-video models,
CogVideoX-5B (Yang et al., 2025b) and Wan2.1-14B (Wan et al., 2025), and report results both on the
base models and on their variants that are enhanced by our training-free framework.

Compared methods. For context, we further report: base models, including CogVideoX-2B (Yang
et al., 2025b), LaVie (Wang et al., 2023b), VideoCrafter2 (Chen et al., 2024), Open-Sora (Zheng et al.,
2024), Vchitect 2.0 (Fan et al., 2025), Cosmos-Diffusion-7B (Agarwal et al., 2025), and physics-aware
models that incorporate additional training or bespoke modules, including PhyT2V (Xue et al., 2025),
DiffPhy (Zhang et al., 2025a), VideoREPA-5B (Zhang et al., 2025b), CogVideoX-5B+WISA (Wang
et al., 2025). These serve as external references to position our training-free approach.

Benchmarks. We evaluate on two complementary suites. PhyGenBench (Meng et al., 2024)
provides 160 prompts spanning 27 physical laws across four domains (mechanics, optics, thermal,
material) and includes an automated evaluator that reports Physical Commonsense Alignment (PCA).
VideoPhy (Bansal et al., 2025) assesses real-world actions with fine-grained human-calibrated metrics
for Semantic Adherence (SA) and Physical Commonsense (PC).1

1VideoPhy’s evaluator does not have access to the user prompt at test time; it judges only the rendered video,
which limits sensitivity to some fine-grained physical phenomena.
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Implementational details. For CogVideoX-5B we use 480 × 720 resolution; for Wan2.1-14B,
480× 832. Each video has 25 frames generated with 50 inference steps. All experiments are run on a
single NVIDIA RTX 5090 (32GB).

4.2 COMPARISONS WITH STATE-OF-THE-ART BASELINES

Model Training-Free VideoPhy PhyGenBenchSA PC
Base models
CogVideoX-2B – – – 0.39
LaVie – – – 0.43
VideoCrafter2 – 0.47 0.36 0.48
Open-Sora – 0.38 0.43 0.45
Vchitect 2.0 – – – 0.45
Cosmos-Diffusion-7B – 0.52 0.27 0.24
Physics-aware models (trained/fine-tuned)
PhyT2V (Round 4) no 0.59 0.42 0.42
DiffPhy no – – 0.54
VideoREPA-5B no 0.72 0.40 –
CogVideoX-5B + WISA no 0.67 0.38 0.43
Ours (training-free, inference-time) with two baselines
CogVideoX-5B – 0.48 0.39 0.47
CogVideoX-5B + Ours yes 0.49 0.40 0.49
Wan2.1-14B – 0.49 0.35 0.40
Wan2.1-14B + Ours yes 0.52 0.35 0.50

Table 1: Quantitative comparisons on VideoPhy and PhyGenBench. Our training-free SDG yields
consistent gains on both backbones, with larger improvements on Wan2.1-14B and on PhyGenBench.

We first benchmark against prior base models and physics-aware systems on VideoPhy and Phy-
GenBench (Tab. 1). On both CogVideoX-5B and Wan2.1-14B, adding our training-free SDG yields
consistent improvements in physics-related scores; gains are modest on CogVideoX-5B and larger
on Wan2.1-14B (e.g., PhyGenBench PCA 0.40→ 0.50). Relative to earlier base models, our SDG-
enhanced variants are competitive on VideoPhy and generally stronger on PhyGenBench. We note
that the VideoPhy evaluator does not access the user prompt and therefore may miss fine-grained
physical cues visible only with prompt context; PhyGenBench’s automated scoring can reflect such
cues better. Compared with physics-aware methods that rely on additional training (e.g., PhyT2V,
WISA), our approach remains competitive while requiring no retraining or fine-tuning, making SDG
a preferred inference-time strategy.

Model Physical Domains (↑)
Mechanics Optics Thermal Material Average

CogVideoX-5B (Baseline) 0.43 0.55 0.42 0.46 0.47
+ Ours 0.49 0.58 0.42 0.48 0.49

Wan2.1-14B (Baseline) 0.36 0.53 0.36 0.33 0.40
+ Ours 0.47 0.60 0.51 0.40 0.50

Table 2: Quantitative comparisons of different physical domains (mechanics, optics, thermal, mate-
rial). Our training-free method provides consistent gains on average and across domains.

We further analyze results across different physical domains on PhyGenBench and report its PCA
in Tab. 2, comparing to both CogVideoX-5B and Wan2.1-14B baselines. Prompts are categorized
into mechanics, optics, thermal, and material interactions. Our method improves performance across
all four domains, showing that our method effectively generalizes and captures diverse physics
phenomena. Gains are modest for CogVideoX-5B (average 0.47→ 0.49) but more pronounced for
Wan2.1-14B (average 0.40→ 0.50), with particularly notable increases in thermal (0.36→ 0.51) and
mechanics (0.36→0.47). These results indicate that our approach enhances the physical fidelity of
diverse scenarios.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

W
an

2.
1

O
ur

s

Figure 2: Qualitative comparison with Wan2.1. Prompt: “A vibrant, elastic tennis ball is thrown
forcefully towards the ground, capturing its dynamic interaction with the surface upon impact.” Base-
line: The tennis ball’s motion is inconsistent with gravity-driven dynamics, with limited deformation
on impact and abrupt transitions across frames. The bounce lacks elasticity. Ours: Our result shows
a more natural downward trajectory, visible compression upon impact, and a smoother rebound
trajectory, yielding a closer match to expected mechanics.

In addition to quantitative gains, we also provide qualitative comparisons with the Wan2.1 and
CogVideoX baselines. As shown in Fig. 2, when simulating the dynamics of a tennis ball bouncing
on the ground, Wan2.1-14B produces motion that is inconsistent with gravity-driven mechanics,
exhibiting limited deformation on impact and abrupt transitions across frames. In contrast, our method
generates a more natural trajectory, with visible compression upon impact and a smoother rebound,
resulting in a closer match to expected elastic behavior. Similarly, Fig. 3 illustrates a scenario involving
a highlighter marking cardboard. CogVideoX-5B fails to capture the proper interaction between
ink and surface: strokes appear flat and disconnected from the cardboard texture, with inconsistent
pen–surface contact. By comparison, our method produces strokes that adhere naturally to the
surface, with ink blending seamlessly into the cardboard. These examples demonstrate improvements
in both mechanics (object dynamics) and materials (object-surface interaction), reinforcing that
physics-aware reasoning combined with SDG yields more physically plausible video generations. For
additional qualitative comparisons across a wider set of prompts, please refer to Appendix Sec. A.1.
Full video results are available in the Supplementary Material, where the dynamic effects of our
approach can be more clearly observed.

4.3 ABLATION STUDIES

Model Average
Wan2.1-14B 0.40

w/o Synchronized decoupled guidance 0.43
w/o Physics-aware reasoning 0.47

w/o Synchronized directional normalization 0.47
w/o Trajectory-decoupled denoising 0.48

Full version (Ours) 0.50

Table 3: Ablation experiments on PhyGenBench, reporting the average Physical Commonsense
Alignment (PCA) across four domains. Removing physics-aware reasoning (PAR) reduces per-
formance, while dropping either one of the two designs (synchronized directional normalization
and trajectory-decoupled denoising) within synchronized decoupled guidance (SDG) also leads to
noticeable degradation. Eliminating both designs (i.e., w/o SDG) causes an even larger drop. The full
framework achieves the highest score, underscoring that PAR and both SDG designs are critical and
complementary for enhancing physical plausibility.

To better understand the contributions of each component in our framework, we conduct ablation
studies on PhyGenBench, as reported in Tab. 3. We examine the impact of removing the Physics-
aware reasoning (PAR) module, as well as the designs within our proposed Synchronized Decoupled
Guidance (SDG). SDG itself is composed of two complementary designs: Synchronized directional
normalization (SDN) and Trajectory-decoupled denoising (TDD).
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Figure 3: Qualitative comparison with CogvideoX. Prompt: “A yellow highlighter is used to mark
on the rough, brown surface of a cardboard, showcasing the interaction between the highlighter and
the cardboard surface.” Baseline: Generates inconsistent strokes, with the yellow mark appearing
flat and disconnected from the cardboard’s texture. The contact point with the marker is visually
unconvincing. Ours: Produces a stroke that properly adheres to the surface, with the ink visibly
blending with the cardboard texture. The pen-surface interaction is sharper and more consistent.

To enhance clarity, we provide detailed definitions of all ablation settings below:

• w/o Synchronized Decoupled Guidance (SDG): Removes the entire SDG module, includ-
ing both synchronized directional normalization and trajectory-decoupled denoising.

• w/o Physics-aware Reasoning (PAR): Replaces our LLM-generated structured counter-
factual prompts with the default negative prompt used in Wan2.1’s original classifier-free
guidance. This isolates the effect of the reasoning component.

• w/o Synchronized Directional Normalization (SDN): Removes the first component of
SDG described in Sec. 3.3, disabling the normalization and synchronization of guidance
directions between the forward and counterfactual trajectories.

• w/o Trajectory-Decoupled Denoising (TDD): Removes the second component of SDG
described in Sec. 3.3 and reintroduces coupling between the forward and counterfactual
trajectories. This version keeps inference cost identical to the full model, isolating only the
effect of trajectory coupling.

The results show that the full version of our framework achieves the best overall performance, with an
average score of 0.50 across the four physical domains. Removing either SDN or TDD leads to clear
performance degradation (0.47–0.48 average), confirming that both designs make complementary
contributions. When both are removed, i.e., in the w/o SDG variant, the performance drops further to
0.43. This demonstrates that the dual-branch design and the directional correction within SDG are
both critical for enforcing consistent suppression of implausible content.

We also evaluate the effect of PAR by replacing structured reasoning with simple instructions to
construct negative prompts. The w/o PAR variant achieves an average score of 0.47, which is better
than the Wan2.1-14B baseline but still lower than the full version. This confirms that PAR provides
more targeted and physics-aware counterfactual prompts, which empower SDG to operate effectively.
A qualitative ablation study of PAR is also provided in Fig. 14, which compares counterfactual prompts
generated with and without structural reasoning. Without structural reasoning, the counterfactual
prompt tends to introduce irrelevant or arbitrary violations (e.g., predicting that orange juice with
baking soda solidifies into a glass-like block), which are disconnected from the underlying physical
process. In contrast, with structural reasoning, the LLM is guided to identify entities, interactions,
and scene conditions, and then generate a counterfactual that violates the expected causal chain (e.g.,
the mixture remains completely still without bubbling despite the acid–base reaction). This illustrates
how PAR yields higher-quality, physics-aware counterfactual prompts that directly target the intended
violations of physical laws.

Overall, the ablation studies validate the importance of both major components: PAR ensures the
construction of meaningful counterfactual prompts, while SDG, and specifically its two designs,
SDN and TDD, ensure these prompts are fully leveraged during guidance. Together, they yield the
consistent improvements observed in the full model.
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5 CONCLUSION

We presented a training-free framework for enhancing physical plausibility in diffusion-based video
generation by explicitly reasoning about implausibility and guiding the generative process. Our
approach introduces a reasoning pipeline to construct counterfactual prompts that capture targeted
physics-violating behaviors, and a novel Synchronized Decoupled Guidance (SDG) strategy that
fully leverages these prompts. By addressing the two key limitations of negative prompting: lagged
suppression effect and cumulative trajectory bias, through synchronized directional normalization
and trajectory-decoupled denoising, SDG ensures that suppression of implausible content is both
immediate and unbiased. Extensive experiments across solid mechanics, fluid dynamics, optics, and
thermodynamics, along with detailed ablation studies, demonstrate that our framework significantly
improves physical fidelity while preserving photorealism. This work establishes a physics-informed
paradigm for video generation and highlights the potential of combining structured reasoning with
inference-time guidance to advance physics-aware generative modeling.

6 ETHICS STATEMENT

We acknowledge that all authors of this work have read and commit to adhering to the ICLR Code of
Ethics. This paper does not raise any potential violations such as harmful insights, discrimination,
unfairness, privacy or security issues, or conflicts of interest. Our study does not involve human
subjects, sensitive data, or applications that could cause societal harm.

7 REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of our work. Implementation details are provided
in Sec. 4.1 and Sec. A.2. Quantitative comparisons and ablations are included in Sec. 4.2 and Sec. 4.3,
and qualitative comparisons and ablations are included in Sec. A.1 and Sec. A.3 to further clarify
our findings. Code will be released upon paper acceptance, and a ZIP file containing examples of
generated videos is included in the Supplementary Material.
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A APPENDIX

Outline. This appendix provides additional results, implementation details, ablation analyses, a
literature review, and a declaration on our LLM usage to further support the main paper. It is organized
as follows:

• Sec. A.1 presents additional qualitative comparisons with CogVideoX-5B and Wan2.1-
14B across mechanics, thermodynamics, optics, and material interactions. Figures 4–9
provide side-by-side visual comparisons; Fig. 10 augments these with automated GPT-4o
assessments from PhyGenBench of the physical plausibility of each video; and Fig. 11
further compares our approach against negative prompting (NP) within CFG, highlighting
the limited gains of NP relative to our SDG. Together, these examples complement the
quantitative results by showing improved fluid-object interactions, material transformations,
and object dynamics.

• Sec. A.2 provides additional implementation details for reproducibility. Fig. 12 shares
the instruction template used to guide the LLM, including constraints and strict output
format; Fig. 13 illustrates worked examples across domains (optics and thermodynamics),
demonstrating how the analysis stage grounds the subsequent counterfactual.

• Sec. A.3 reports a qualitative ablation of Physics-aware Reasoning (PAR) for counterfactual
prompt construction (Fig. 14). We compare counterfactuals generated with vs. without
structured reasoning for thermodynamics prompts and show that PAR yields targeted,
physics-aware violations (e.g., condensation) rather than generic negatives.

• Sec. A.4 provides a literature review that summarizes related works and highlights the gaps
our method addresses.

• Sec. A.5 provides a declaration on our LLM usage.

All figures include detailed captions to support discussion and analysis of the findings. For complete-
ness, the Supplementary Material additionally contains full videos of all qualitative examples, where
the physical dynamics are best appreciated in motion.

A.1 ADDITIONAL QUALITATIVE COMPARISONS

This section provides additional qualitative comparisons between our method and the CogVideoX-5B
and Wan2.1-14B baselines across prompts spanning mechanics, thermodynamics, optics, and material
interactions.

Figures 4-9 present side-by-side comparisons, where baseline models often generate visually ap-
pealing sequences but overlook key physical processes, such as the absence of condensation during
boiling, incomplete material phase transitions, or unrealistic object-surface interactions. In contrast,
our method produces outcomes that better align with physical commonsense: for example, more
coherent fluid-object interactions (Fig. 4, 5), smoother material transformations (Fig. 8, 9), and more
faithful object dynamics (Fig. 2, 3).

Beyond visual inspection, Fig. 10 shows qualitative results accompanied by evaluations generated by
PhyGenBench’s automatic evaluator through the GPT-4o API, which assess the physical plausibility of
each video. Finally, Fig. 11 compares our approach not only with the baselines but also with negative
prompting (NP) within classifier-free guidance, highlighting that NP yields only limited improvements
while our Synchronized Decoupled Guidance (SDG) effectively mitigates the shortcomings. These
qualitative studies complement our quantitative evaluations and illustrate how combining Physics-
aware Reasoning (PAR) with SDG improves physical plausibility while preserving photorealism, all
without retraining or fine-tuning.

We provide detailed per-example captions in this section, and please refer to the Supplementary
Material for full video results, where the dynamics can be best appreciated.

A.2 ADDITIONAL IMPLEMENTATION DETAILS

We include further implementation details to improve reproducibility of our physics-aware reasoning
pipeline. Fig. 12 provides the instruction template used to guide the LLM during counterfactual
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Figure 4: Qualitative comparison with Wan2.1. Prompt: “A silver spoon is slowly inserted into a
glass of crystal-clear water, revealing the fascinating visual changes and reflections as the spoon
interacts with the liquid.” Baseline: The generated sequence struggles to capture realistic refraction
and liquid interaction. The spoon appears disconnected from the water surface, and the reflections
lack physical plausibility. Ours: Our method produces a coherent depiction of the spoon entering the
water, with realistic ripples, refraction, and surface reflections. This creates a more physically faithful
impression of object-fluid interaction.
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Figure 5: Qualitative comparison with Wan2.1. Prompt: “A timelapse captures the transformation of
water in a pot as the temperature rapidly rises above 100°C.” Baseline: The sequence unrealistically
depicts explosive splashes, ignoring the gradual bubbling and vapor release expected from water
heating above 100°C. Ours: Our method captures progressive bubbling and the formation of rising
vapor clouds, consistent with the condensation process. This produces a more physically plausible
thermal interaction.

prompt construction. The template specifies that the LLM should first output a structured analysis
describing entities, environments, interactions, and temporal evolution of the event, followed by
a counterfactual description that is visually plausible yet physically implausible. It also enforces
key requirements such as maintaining subjects and settings, avoiding repetition, and ensuring clear
violations of physical laws, and it defines a strict output format to ensure consistency. Fig. 13 further
illustrates two representative examples of physics-aware reasoning across different domains. In the
optics case, the model analyzes refraction through a magnifying glass and generates a counterfactual
where the embossing shrinks instead of enlarging. In the thermodynamics case, the model reasons
about heat transfer and the phase transition of butter, then generates a counterfactual where butter
is fully liquefied from the start without any melting process. These examples highlight how the
LLM is able to identify relevant entities, interactions, and governing principles, and then construct
counterfactuals that are both plausible to the viewer and explicitly violate physical laws. Lastly, for
the guidance strength of SDG in Eq. 13, we find λ = 30 to be the best choice in general.
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Figure 6: Qualitative comparison with Wan2.1. Prompt: “A small burning stick was thrown into a
pile of hay.” Baseline: The ignition of hay is abrupt and spatially inconsistent, with flames appearing
unnaturally large and sudden. Ours: Our model shows fire propagating gradually from the burning
stick to the hay, with smoother flame development and more realistic local ignition dynamics.
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Figure 7: Qualitative comparison with CogvideoX. Prompt: “A concentrated, bright beam of light
generated by a laser pointer is passing through a glass of thick whole milk, creating a mesmerizing
display as the light interacts with the milk’s particles, casting intricate patterns and subtle hues
within the fluid.” Baseline: The light beam appears static and detached from the milk medium, with
minimal scattering or hue variation, failing to show how light interacts with particles in the liquid.
Ours: Our sequence captures a concentrated beam penetrating the milk, producing scattering and
subtle glow effects that vary realistically across frames, aligning with optical refraction principles.

A.3 QUALITATIVE ABLATION OF PHYSICS-AWARE REASONING

Figure 14 shows a qualitative ablation of physics-aware reasoning (PAR) for counterfactual prompt
construction. We present two thermodynamics-related prompts with highly similar descriptions.
Without PAR, the generated counterfactual prompts are overly generic and lack specificity, failing
to capture the relevant physical phenomenon (e.g., condensation). In contrast, with PAR, the LLM
first infers the detailed underlying process and then produces counterfactuals that are not only more
physically grounded but also visually realistic. This demonstrates that structured reasoning is essential
for generating counterfactual prompts that directly target meaningful violations of physical laws.

A.4 RELATED WORK

Video generative models. Video generative modeling has rapidly progressed by extending image
generative frameworks to capture temporal dynamics (Blattmann et al., 2023; Wang et al., 2023a;
Chen et al., 2024; Girdhar et al., 2023). Early diffusion-based approaches, such as Video Diffusion
Models (Ho et al., 2022b), adopted 3D convolutional architectures to extend denoising diffusion
probabilistic models (DDPMs) (Ho et al., 2020; Nichol & Dhariwal, 2021) into the video domain,
but were limited in scale and realism. Subsequent advances leveraged pretrained text-to-image
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Figure 8: Prompt: “Qualitative comparison with CogvideoX. A timelapse captures the gradual
transformation of butter as the temperature rises significantly.” Baseline: The butter remains largely
unchanged, with rigid textures and little indication of gradual phase transition. The thermal process
is not conveyed. Ours: Our method depicts butter softening and progressively melting, accompanied
by rising vapor. This better reflects the heat-driven transition from solid to liquid.
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Figure 9: Qualitative comparison with CogvideoX. Prompt: “Equal amounts of red and blue paint
are rapidly combined, with the mixture being vigorously stirred until fully blended.” Baseline: The
mixing of red and blue paint is incomplete and static, with colors remaining largely separated. The
blending dynamics are underdeveloped. Ours: Our sequence shows vigorous stirring, with swirling
patterns and gradual blending into purple, consistent with fluid mixing behavior.

(T2I) models, notably Stable Diffusion (Rombach et al., 2022), to build stronger text-to-video (T2V)
systems. Make-A-Video (Singer et al., 2022) and Imagen Video (Ho et al., 2022a) pioneered this
paradigm, showing that reusing large T2I backbones and augmenting them with temporal layers could
produce plausible short clips. Other systems such as Runway Gen-1 (Esser et al., 2023) extended
controllability by incorporating text, image, and video conditions for editing and stylization.

The field has since advanced through architectural innovations and scaling. Diffusion Transformers
(DiTs) (Peebles & Xie, 2022) demonstrated strong spatiotemporal modeling capacity, enabling
models such as Open-Sora (Zheng et al., 2024), Cosmos (Agarwal et al., 2025), CogVideoX (Yang
et al., 2025b), HunyuanVideo (Kong et al., 2024), Kling (Kuaishou, 2024), and Wan2.1 (Wan et al.,
2025) to achieve substantial gains in video quality, motion realism, and scalability. Beyond raw
scale, several works target stronger spatiotemporal structure and control: Step-Video-T2V (Ma
et al., 2025) couples a deep-compression Video-VAE with a 30B DiT trained via flow matching
to extend clip length and bilingual prompting; GEN3C (Ren et al., 2025) introduces 3D-informed,
camera-consistent generation; and Tora (Zhang et al., 2025c) studies trajectory-oriented DiT design
for longer, coherent motion. Proprietary systems such as Sora (OpenAI, 2024), Gen-3 (Runway,
2024), and Google DeepMind’s Veo series (Google DeepMind, 2025) have further captured public
attention by producing long, high-fidelity videos with rich dynamics. These milestones collectively
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Stress: The images show the balloon being pressed, but it does not 
exhibit the expected deformation and shrinking behavior under stress. 
Instead, it maintains its shape without significant changes, which is not 
typical for a balloon under pressure.

A timelapse of a balloon filled with air being pressed down by hand, with the pressure intensifying 
rapidly over time.

Stress: The images show a balloon being pressed down by a hand, and 
it appears to deform and shrink in a manner consistent with increasing 
pressure. The deformation aligns with the expected behavior of a 
balloon under stress, as described in the Almost Realistic category. 
There are no visible fantastical or highly unrealistic elements, and the 
behavior seems to closely follow real-world physics.
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A group of oil droplets is floating on the surface of water in the sunlight.

Description of GPT-4o

Interference & Diffraction: The video shows oil droplets floating on the 
water surface, which is realistic. However, the colors and patterns 
appear slightly exaggerated and not entirely consistent with natural 
interference and diffraction effects.

Interference & Diffraction: The video shows oil droplets floating on the 
water surface with natural coloring patterns that are consistent with 
interference and diffraction effects. The colors appear vibrant and 
realistic under sunlight, aligning with expected physical phenomena.O

ur
s 
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Boiling: The video appears to show the tea boiling with bubbles 
forming and steam rising, which aligns with the expected physical 
process. However, there may be minor distortions such as slightly 
unnatural bubble shapes or timing.

A timelapse captures the transformation of tea in a teapot as the temperature rapidly rises above 
100°C.

Boiling: The video shows the soup in the saucepan reaching a boiling 
point with bubbles forming and rising to the surface in a manner 
consistent with real boiling. There are no noticeable distortions or 
unrealistic behaviors in the boiling process, accurately reflecting the 
physical law of boiling at 100°C.
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A small burning match was thrown into a pile of dry leaves.

Combustibility: The video shows the match igniting the leaves with an 
intensity and speed that is exaggerated compared to real-world 
expectations. The flames spread too quickly and the leaves burn away 
almost instantaneously, which does not align with the gradual and 
natural combustion process expected in reality. 

Combustibility: The video shows a match being thrown into a pile of 
dry leaves, which then ignites and burns in a manner consistent with 
real-world physics. The ignition and spread of the fire appear natural, 
with the flames following the contour of the pile and burning at a 
plausible speed and intensity. There are no exaggerated or fantastical 
elements present.
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Figure 10: Additional qualitative samples generated by our model across diverse prompts. Alongside
the visual results, we include the evaluations provided by GPT-4o, invoked through the automatic
evaluator of PhyGenBench, which assesses the overall physical plausibility of each video. Please refer
to the Supplementary Material for full video results, as the physical dynamics are best appreciated in
motion.

underscore the effectiveness of scaling DiT-based architectures and leveraging massive video-text
datasets.

Despite these successes, existing video generative models primarily fit data distributions drawn from
large-scale internet corpora, where explicit representations of physical laws are rare and physical
phenomena are underrepresented. As a result, even state-of-the-art systems often produce videos
that deviate from physical commonsense, for instance, fluids ignoring gravity or phase transitions
behaving unrealistically. Our work is motivated by this gap: while recent T2V models have achieved
remarkable photorealism and temporal consistency, ensuring compliance with real-world physics
remains an open challenge.

Physics-aware video generations. Researchers have increasingly focused on improving and eval-
uating the physical consistency of generated videos (Liu et al., 2025; Motamed et al., 2025; Lin
et al., 2025; Zhao et al., 2025; Li et al., 2025; Chen et al., 2025b;c; Yang et al., 2025a; Wong et al.,
2025; Xie et al., 2025). One line of effort has been to build dedicated benchmarks. For example,
VideoPhy (Bansal et al., 2025) evaluates real-world actions using fine-grained human judgments
across semantic adherence, physical commonsense, and explicit rule violations. PhyGenBench (Meng
et al., 2024) curates 160 prompts spanning 27 physical laws across four domains and introduces an au-
tomated evaluator for physical commonsense alignment. Together, these resources have revealed that

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

even state-of-the-art video diffusion models frequently generate outputs that deviate from real-world
physics.

In parallel, several works attempt to explicitly encode physical constraints into generative processes.
Early approaches such as DANO (Cleac’h et al., 2022), MotionCraft (Aira et al., 2024), and Phys-
Gen (Liu et al., 2024) parse objects from static images and estimate their rigid-body dynamics in
a differentiable manner, then animate these estimates into short videos. While interpretable, these
pipelines are limited to predefined physical categories (rigid motion) and static scenarios, which
hinders their applicability to complex or diverse phenomena.

More recent models have pursued broader physics-awareness within diffusion-based video generation.
PhyT2V (Xue et al., 2025) uses large language and vision-language models to detect inconsistencies
in generated videos and iteratively refine prompts with physics-based feedback, though this introduces
substantial inference overhead. Then, several contemporary works also contribute to this effort. For
example, DiffPhy (Zhang et al., 2025a) integrates differentiable physics simulation into the training
loop, encouraging the generator to respect Newtonian laws, but requires re-training on curated
physics datasets. VideoREPA (Zhang et al., 2025b) incorporates structured physical signals during
pre-training to enhance physical perception, while WISA (Wang et al., 2025) augments training data
with explicitly annotated physical phenomena, enabling the model to learn structured physical priors.
Despite their promising results, all these methods rely on additional training or fine-tuning.

By contrast, our framework is training-free and inference-time only. We introduce physics-aware
reasoning (PAR) to construct targeted counterfactual prompts that deliberately violate governing laws,
and Synchronized Decoupled Guidance (SDG) to suppress implausible generations. This allows
us to improve physical plausibility on strong backbones without the cost of retraining, offering a
complementary direction to recent physics-aware efforts.

A.5 DECLARATION ON LLM USAGE

LLM is only used to aid or polish writing in addition to facilitating the physics-aware reasoning
for constructing the counterfactuals (Sec. 3.1). We have also provided additional implementational
details in Sec.A.2, including the instruction template used to guide the LLM, including constraints
and strict output format (Fig. 12), and some worked examples of leveraging LLM for constructing
counterfactual prompts (Fig. 13).
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(+): A metal fork is gently placed into a glass of crystal-clear water, displaying the interesting visual distortions and 
reflections as the fork meets the liquid.
(-): A metal fork is gently placed into a glass of crystal-clear water, but the entire utensil appears perfectly straight and 
continuous through the surface, with no visible refraction or distortion.

The images show the fork with exaggerated distortions and large
ripples that are not consistent with the subtle effects of refraction.
The visual artifacts are overly pronounced, indicating a detachment
from the expected physical properties of light and water interaction.

The video shows the metal fork with subtle distortions at the point 
where it meets the water. The distortions are not overly exaggerated, 
but there are minor deviations from expected refraction angles, 
indicating slight inaccuracies in the visual representation of 
refraction. 

At the water surface, the fork appears slightly misaligned between 
the part above and the part submerged in water. This small offset is 
consistent with light bending at the air–water interface. The effect 
is realistic and visually coherent.

W
an

2
.1

O
ur
s

N
P

(+): A timelapse captures the transformation of soup in a saucepan as the temperature rapidly rises above 100°C.
(-): A timelapse captures the transformation of soup in a saucepan as the temperature rapidly rises above 100 °C, yet the 
soup remains completely still and silent, with no bubbling or surface disturbance throughout the heating process.

The video shows the soup reaching a temperature of 117°C, which is 
above the normal boiling point of water (100°C) at standard 
atmospheric pressure. Despite this, the soup does not exhibit the 
expected vigorous boiling with a large number of bubbles surging to 
the surface.

The video shows a scene where the soup does not appear to boil 
despite reaching a temperature above 100°C, which contradicts the 
physical law that states the soup should boil and bubbles should rise 
to the surface. 

The video shows the soup in the saucepan reaching a boiling point 
with bubbles forming and rising to the surface in a manner 
consistent with real boiling. There are no noticeable distortions or 
unrealistic behaviors in the boiling process, accurately reflecting the 
physical law of boiling at 100°C.
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(+): A vibrant, elastic tennis ball is thrown forcefully towards the ground, capturing its dynamic interaction with the 
surface upon impact.
(-): A vibrant, elastic tennis ball is thrown forcefully towards the ground, but instead of bouncing, it collapses and clings 
flat against the surface, refusing to rebound despite its elastic structure. 

The images show the tennis ball hitting the ground and then rolling 
without bouncing back up, which contradicts the expected behavior 
of an elastic ball. This behavior disregards the laws of elasticity, as 
the ball should bounce back up upon impact.

The yellow ball touches and rolls/spreads on the wavy surface 
without showing visible compression or a rebound trajectory. The 
video does not exhibit the expected elastic bounce behavior; it 
shows more of a rolling or sliding motion instead.

The video shows a tennis ball hitting the ground and bouncing back 
up in a manner consistent with the principles of elasticity. There 
are no noticeable distortions or deviations from expected behavior, 
such as unrealistic changes in speed, height, or angle. The 
interaction between the ball and the surface appears to align well 
with real-world physics
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Figure 11: Additional comparisons with both the baseline and using negative prompting (NP) in
CFG. The symbols (-) and (+) denote user prompts and counterfactual prompts, respectively. The
descriptions on the right report the overall physical plausibility of the generated videos, as assessed by
PhyGenBench’s automatic evaluator through the GPT-4o API. As highlighted in orange, our method
effectively mitigates the shortcomings of the baseline, whereas NP yields only limited improvement.
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Figure 12: Instruction template used for physics-aware reasoning. The LLM is prompted to generate
counterfactual captions by first producing a structured analysis that identifies entities, environments,
interactions, and temporal evolution, followed by a counterfactual description that is visually plausible
yet physically implausible. The figure specifies key requirements for constructing counterfactuals
(e.g., maintaining subjects and settings, ensuring non-repetition, and enforcing clear violations of
physical laws), provides an example of a valid counterfactual, and defines the strict output format.
These implementational details are included to enhance reproducibility and to ensure consistent
generation of physics-aware counterfactual prompts across experiments.
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Figure 13: Examples of physics-aware reasoning for counterfactual prompt construction across
different physical domains. In the optics case (top), the model analyzes how light refracts through a
magnifying glass and generates a counterfactual where the embossing shrinks rather than enlarges.
In the thermodynamics case (bottom), the model reasons about heat transfer and phase transition of
butter, then generates a counterfactual where butter is fully liquefied from the start, with no observable
melting process. These examples illustrate how physics-aware reasoning allows the LLM to identify
relevant entities, interactions, and governing principles, and then produce counterfactuals that are
both visually plausible and explicitly violate the expected physical laws.
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Figure 14: Qualitative ablation of physics-aware reasoning for counterfactual prompt construction.
We show two thermodynamics-related prompts with similar descriptions. Without physics-aware
reasoning, the generated counterfactual prompts are generic and lack specificity, failing to capture the
relevant physical process (e.g., condensation). In contrast, with physics-aware reasoning, the LLM
first infers the detailed underlying physical phenomenon and then produces counterfactuals that are
both more physically grounded and visually realistic.
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