

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ENHANCING PHYSICAL PLAUSIBILITY IN VIDEO GENERATION BY REASONING THE IMPLAUSIBILITY

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion models can generate realistic videos, but existing methods rely on implicitly learning physical reasoning from large-scale text-video datasets, which is costly, difficult to scale, and still prone to producing implausible motions that violate fundamental physical laws. We introduce a training-free framework that improves physical plausibility at inference time by explicitly reasoning about implausibility and guiding the generation away from it. Specifically, we employ a lightweight physics-aware reasoning pipeline to construct counterfactual prompts that deliberately encode physics-violating behaviors. Then, we propose a novel *Synchronized Decoupled Guidance* (SDG) strategy, which leverages these prompts through synchronized directional normalization to counteract lagged suppression and trajectory-decoupled denoising to mitigate cumulative trajectory bias, ensuring that implausible content is suppressed immediately and consistently throughout denoising. Experiments across different physical domains show that our approach substantially enhances physical fidelity while maintaining photorealism, despite requiring no additional training. Ablation studies confirm the complementary effectiveness of both the physics-aware reasoning component and SDG. In particular, the aforementioned two designs of SDG are also individually validated to contribute critically to the suppression of implausible content and the overall gains in physical plausibility. This establishes a new and plug-and-play physics-aware paradigm for video generation.

1 INTRODUCTION

Recent text-to-video diffusion models (Wan et al., 2025; Yang et al., 2025b) produce strikingly realistic sequences across diverse visual concepts and prompts. Yet despite impressive progress in fidelity and prompt adherence, their behavior often departs from everyday physics: objects accelerate without cause, fluids ignore gravity, and phase transitions misfire. These failure modes matter because if video generative models are to serve as general-purpose world simulators (Liu et al., 2025), they must respect physical commonsense, not merely aesthetics.

Emerging benchmarks explicitly validate such physical plausibility. For example, PhyGen-Bench (Meng et al., 2024) curates 160 prompts spanning 27 physical laws across four domains (mechanics, optics, thermal, and material properties) and introduces an automated evaluator. In parallel, VideoPhy (Bansal et al., 2025) evaluates real-world actions with fine-grained human judgments over semantic adherence, physical commonsense, and grounded physical-rule violations. Together, these studies show that current models frequently violate physical commonsense and that scaling or prompt-engineering alone does not solve the problem, highlighting a persistent gap that current video generation models can render, but struggle to reason physically.

Our core idea is to enhance physical plausibility by reasoning about implausibility, then guiding the video generation away from it. Specifically, motivated by the fact that user prompts are typically underspecified with respect to entities, scene conditions, interactions, and expected causal evolution, we first leverage a LLM-empowered physics-aware reasoning (PAR) pipeline to infer a physically valid trajectory, and construct a targeted counterfactual that violates the governing physical law while remaining visually plausible. To guide generations away from these counterfactuals, a naive way is to use negative prompting, but for which we identify two core gaps that limit the effectiveness, i.e., *lagged suppression effect* and *cumulative trajectory bias*. We therefore propose a novel Synchronized

054 Decoupled Guidance (SDG) approach with two designs (synchronized directional normalization
 055 and trajectory-decoupled denoising) that directly address these gaps. Notably, SDG serves as a
 056 plug-and-play inference-time strategy that requires no retraining or finetuning.
 057

058 Extensive experiments validate that our framework maintains photorealism while improving physics-
 059 related scores across different physical phenomena such as solid mechanics, fluid dynamics, optics,
 060 and thermodynamics. On the PhyGenBench and VideoPhy benchmarks, we achieve consistent
 061 gains over strong base models such as CogVideoX-5B and Wan2.1-14B, and remain competitive
 062 with several physics-aware approaches that are not training-free. Ablation studies confirm that both
 063 components are necessary; PAR provides targeted, physics-aware counterfactuals, while SDG, via its
 064 two designs, turns those signals into non-delayed, unbiased suppression of implausible content.
 065

066 In summary, our contributions are threefold. *First*, we introduce a reason-then-guide framework
 067 for physics-aware video generation that is training-free and model-agnostic. *Second*, we propose
 068 Synchronized Decoupled Guidance (SDG) with synchronized directional normalization and trajectory-
 069 decoupled denoising, addressing the lagged suppression and cumulative trajectory bias of negative
 070 prompting. *Third*, we demonstrate improvements on physics-focused benchmarks and validate
 071 through ablations the complementary roles of PAR and SDG. Taken together, our findings complement
 072 and extend the evidence from recent benchmarks that current video models need explicit physics-
 073 aware control to approach physically plausible generation.
 074

075 2 PRELIMINARIES

076 2.1 CLASSIFIER-FREE GUIDANCE IN DIFFUSION MODELS

077 Diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021; Song et al., 2021) have emerged as
 078 a powerful family of generative methods. They define a forward process where Gaussian noise
 079 is progressively injected into a clean data x_0 over T timesteps, yielding a fully noised sample
 080 $x_T \sim \mathcal{N}(0, \mathbf{I})$. The forward dynamics are expressed as:

$$081 q(x_t | x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t \mathbf{I}), \quad (1)$$

082 where x_t denotes the corrupted data at step t , and $\beta_{t=1}^T$ specifies the variance schedule controlling the
 083 noise level. To generate data, one trains a reverse denoising process that recovers x_{t-1} from x_t . A
 084 neural network parameterized by θ is used to approximate the conditional distribution:
 085

$$086 p_\theta(x_{t-1} | x_t) = \mathcal{N}(x_{t-1}; \mu_\theta(x_t), \sigma_\theta^2(x_t) \mathbf{I}). \quad (2)$$

087 In practice, the model $\epsilon_\theta(x_t, c, t)$ can be trained to predict the additive noise ϵ_t at each step, con-
 088 ditioned on side information c such as a text prompt, rather than reconstructing x_{t-1} directly. To
 089 better control the quality and relevance of generated samples, classifier-free guidance (CFG) (Ho
 090 & Salimans, 2022) is commonly adopted. CFG modifies the predicted noise at inference time by
 091 interpolating between the unconditional estimate $\epsilon_\theta(x_t, \emptyset, t)$ and the conditional estimate $\epsilon_\theta(x_t, c, t)$.
 092 Using a guidance strength $w > 1$, the final adjusted prediction is:

$$093 \hat{\epsilon}_t \leftarrow \epsilon_\theta(x_t, \emptyset, t) + w \cdot (\epsilon_\theta(x_t, c, t) - \epsilon_\theta(x_t, \emptyset, t)). \quad (3)$$

094 This simple mechanism provides a tunable trade-off between sample fidelity and diversity. Once the
 095 guided noise prediction $\hat{\epsilon}_t$ is obtained, the state update from x_t to x_{t-1} can be performed using a
 096 generic update rule that leverages $\hat{\epsilon}_t$:

$$097 x_{t-1} = \alpha_t x_t + \beta_t \hat{\epsilon}_t + \eta_t, \quad (4)$$

098 where α_t and β_t are coefficients determined by the sampler, and η_t represents optional stochasticity.
 099

100 2.2 NEGATIVE PROMPTING

101 Negative prompting was first introduced in the Stable Diffusion 2.0 release and has since become a
 102 widely used technique for improving controllability in diffusion models (Stability AI, 2022; Woolf,
 103 2023). The central idea is to not only specify desirable attributes through a positive prompt p_+ , but
 104 also to explicitly provide a negative prompt p_- that encodes features the model should avoid.
 105

106 In contrast to classifier-free guidance (CFG), which interpolates between unconditional and condi-
 107 tional predictions (Eq. 3), negative prompting can be interpreted as anchoring the prediction on the

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

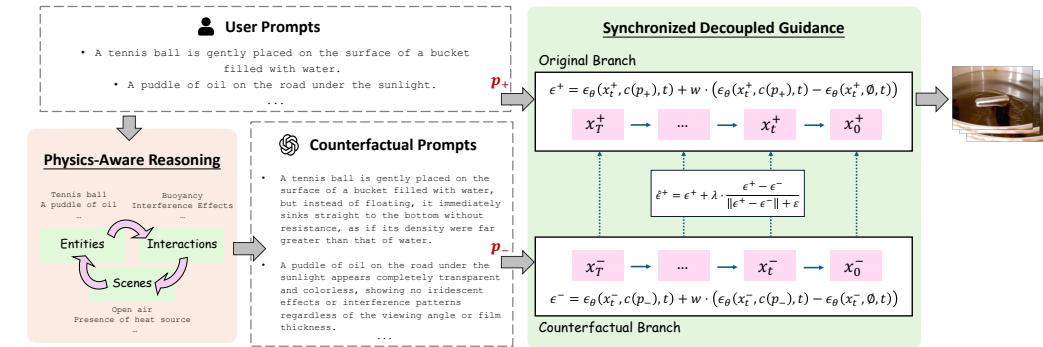


Figure 1: Overall framework. **Left: Physics-Aware Reasoning (PAR).** Given a user prompt, an LLM identifies entities, interactions, and scene conditions to produce a structured analysis of the underlying physical process. Based on this reasoning, it constructs counterfactual prompts that preserve the same entities and scenes but deliberately violate the governing physical law, yielding targeted physics-aware negatives. **Right: Synchronized Decoupled Guidance (SDG).** During denoising, we evolve two branches conditioned on the user prompt and the counterfactual prompt, respectively. Their noise estimates are combined with directional normalization and trajectory decoupling, ensuring that implausible structures are suppressed immediately and consistently throughout generation.

positive prompt while pushing it away from the negative prompt. This yields the following adjusted noise estimate (Armandpour et al., 2023):

$$\hat{\epsilon}_t \leftarrow \epsilon_\theta(x_t, c(p_+), t) + w \cdot (\epsilon_\theta(x_t, c(p_+), t) - \epsilon_\theta(x_t, c(p_-), t)), \quad (5)$$

where $c(p_+)$ is the embedding of the positive prompt (i.e., user prompt), $c(p_-)$ is the embedding of the negative prompt, and $w > 0$ controls the strength of suppression.

3 METHODOLOGY

Our methodology is built on two key components: (i) the construction of counterfactual prompts that deliberately invoke physically implausible behaviors, and (ii) a new guidance mechanism that leverages these prompts to enforce physics-awareness during video generation. Together, these components allow us to systematically expose and suppress violations of physical laws, without requiring retraining of the underlying diffusion model. The remainder of this section is organized as follows: Sec. 3.1 describes how counterfactual prompts are generated using a physics-aware reasoning pipeline. Sec. 3.2 then analyzes why naively incorporating these prompts through existing negative prompting remains insufficient, identifying two fundamental gaps. Finally, Sec. 3.3 presents our proposed *Synchronized Decoupled Guidance* (SDG), which integrates synchronized directional normalization and trajectory-decoupled denoising to directly address these gaps and fully exploit the counterfactuals for physics-aware generation.

3.1 PHYSICS-AWARE REASONING FOR COUNTERFACTUAL CONSTRUCTION

The pipeline. As shown in Fig. 1 (Left), we design a lightweight physics-aware reasoning pipeline powered by a large language model (LLM) to generate structured counterfactual prompts. Given a user prompt, the LLM performs two steps. First, in **physics reasoning**, it identifies relevant attributes such as entities, interactions, and environmental conditions, and infers the temporal evolution of the process, yielding a structured description of how the event would normally unfold under physical laws. Second, in **counterfactual construction**, it synthesizes a variant of the event that preserves the same entities and scene but deliberately violates the expected causal chain (e.g., the absence of bubbling when acid and base are mixed, or an object sinking instead of floating). These counterfactuals remain visually plausible yet physically implausible, providing targeted signals for subsequent guidance.

162 **The need for physics reasoning.** User-provided prompts are typically underspecified, often de-
 163 scribing the surface-level visual content without reference to the underlying physical processes. For
 164 example, a prompt such as “A timelapse captures the transformation as water vapor in a humid
 165 environment comes into contact with a cool glass surface” specifies the entities (water vapor, glass
 166 surface) but omits the expected physical phenomenon and its outcome. Reasoning is therefore
 167 essential to enrich these prompts with the missing physical context, ensuring they become physically
 168 well-specified and suitable for constructing meaningful counterfactuals.

169 **The needs for constructing targeted and structured counterfactuals.** Our central idea is to
 170 improve physical plausibility by explicitly reasoning about implausibility. Such implausibility is
 171 informed by the constructed counterfactual prompt, which is leveraged by our proposed synchronized
 172 decoupled guidance (SDG) strategy (Sec. 3.3) to consistently steer the generation away from such
 173 implausible outcomes. To achieve effective guidance, we need the constructed counterfactuals to be
 174 targeted and structured.

175 Using the aforementioned user prompt as an example, under normal physical laws, this situation is
 176 governed by the principle of condensation: as warm vapor meets the cooler surface, the vapor cools
 177 to its dew point, releases latent heat, and gradually forms liquid droplets that coalesce and drip down.
 178 A meaningful counterfactual prompt in this case should therefore deliberately *violate condensation*
 179 *dynamics*, for instance by describing the surface as being covered with droplets instantly from the start,
 180 without any observable phase transition. However, when there is no explicit physics-aware reasoning
 181 about which entities interact, in what scene, and under which governing principles, counterfactual
 182 prompts risk violating irrelevant or unintended laws. For example, as shown in our ablation (Fig. 14),
 183 without physics-aware reasoning, the generation may result in a counterfactual such as “the vapor
 184 instantly freezes into solid ice upon contact,” which is implausible in this context and fails to violate
 185 the expected condensation law. Instead of targeting the intended physical principle, such generic
 186 counterfactuals introduce unrelated violations.

187 To ensure that counterfactuals consistently target the correct physical law, we construct structured
 188 counterfactuals through physics-aware reasoning. By explicitly reasoning about entities, interac-
 189 tions, and scene conditions and keeping the entities and scene context unchanged, we can generate
 190 counterfactuals that remain visually plausible yet deliberately contradict the governing laws of the
 191 process, thereby providing effective signals for our guidance strategy (Sec. 3.3). Using the same
 192 example, our constructed counterfactual is “The glass surface is instantly covered in water droplets
 193 from the beginning, without any observable condensation or gradual droplet formation.” Unlike the
 194 generic counterfactuals that introduce unrelated violations, this counterfactual directly contradicts
 195 the governing condensation law while preserving the same entities and scene context as the original
 196 prompt. By doing so, it avoids drifting into irrelevant outcomes and instead provides a targeted
 197 violation that the guidance mechanism can consistently suppress.

198 3.2 GAPS IN EXISTING NEGATIVE PROMPT GUIDANCE

200 A naive way to leverage our constructed counterfactuals for addressing the physical implausibility
 201 challenge is through the use of negative prompting (Woolf, 2023; Armandpour et al., 2023), which
 202 has proven useful for suppressing undesired semantics. However, we find its effectiveness to be
 203 inherently limited by the technique it is integrated into the CFG from the following two perspectives.

204 **Lagged Suppression Effect.** Eq. 5 shows that negative prompting modifies the predicted noise by
 205 subtracting a weighted discrepancy between the positive condition $c(p_+)$ (i.e., conditioned on the
 206 original user prompt) and negative condition $c(p_-)$ (i.e., conditioned on the undesired prompt, and in
 207 our case, this will be our constructed counterfactual prompts). Let the discrepancy vector at time t be:

$$209 \quad \Delta_t = \epsilon_\theta(x_t, c(p_+), t) - \epsilon_\theta(x_t, c(p_-), t). \quad (6)$$

211 Rewriting the equation for negative prompting (Eq. 5) gives:

$$212 \quad \hat{\epsilon}_t \leftarrow \epsilon_\theta(x_t, c(p_+), t) + w \cdot \Delta_t, \quad (7)$$

214 where $w \cdot \Delta_t$ contains the suppression effect from negative prompting. Interestingly, during the
 215 earliest denoising steps, the discrepancy Δ_t is typically small in magnitude, since x_t remains close to
 isotropic Gaussian noise. At this stage, the conditional prediction $\epsilon_\theta(x_t, c(p_+), t)$ steers the model

toward coarse, low-frequency structure, such as object placement and scene layout (Chen et al., 2025a) (e.g., if we ask for ‘a cat in a box’, the model starts forming ‘cat-like’ blobs anchored in ‘box’ structure). In contrast, in later steps, the attention of the denoiser is shifted to restoring the high-frequency details, and the magnitude of Δ_t turns larger. Formally, if we consider the Jacobian of the denoiser with respect to its input to see how the predicted noise updates the input:

$$J_t = \frac{\partial \epsilon_\theta(x_t, c, t)}{\partial x_t}, \quad (8)$$

its eigen-decomposition $J_t v_i = \lambda_{i,t} v_i$ reveals the principal update directions v_i in latent space, with corresponding eigenvalues $\lambda_{i,t}$ quantifying the update strength in each direction. Intuitively, each eigenvector v_i defines a semantic or structural axis along which the noise prediction can perturb the latent x_t , while the eigenvalue determines the relative amplification or suppression along that axis. In early denoising steps, the dominant eigenvectors (those with the largest magnitude eigenvalues $|\lambda_{i,t}|$) typically align with coarse, low-frequency structure directions that correspond to high-level semantics such as object placement and global scene layout. We denote such leading directions at step t as $v_{l,t}$, where $|\lambda_{l,t}| = \max(|\lambda_{i,t}|)$. The suppression effect of negative prompting along the dominant coarse-layout directions can be expressed as:

$$\text{suppression}_t^{(-)} \propto v_{l,t}^\top (-w \Delta_t) = -w \langle v_{l,t}, \Delta_t \rangle = -w \|v_{l,t}\| \cdot \|\Delta_t\| \cdot \cos(\theta), \quad (9)$$

where θ is the angle between the coarse-layout direction $v_{l,t}$ and the suppression direction Δ_t . Since $\|v_{l,t}\|$ is fixed by the denoiser and the prompt conditioning, and $\cos(\theta)$ is also fixed by the angle θ between the directions, the magnitude of the suppression effect is governed primarily by $\|\Delta_t\|$. During early steps, when $\|\Delta_t\|$ is small, the counterfactual prompt exerts minimal influence precisely along the directions that determine global structure. Only at later steps, when $\|\Delta_t\|$ grows larger, can suppression meaningfully counteract the user prompt. Thus, the dynamics of Eq. 9 explain the *lagged suppression effect*: the user condition $c(p_+)$ establishes coarse semantic anchors that shape the global layout in the early denoising steps, while the effect of the counterfactual condition $c(p_-)$ is lagged and only becomes appreciable once those structures are already formed, allowing it to attenuate but not prevent undesired effects. As a result, this vanilla negative prompting functions more as a late-stage retroactive corrector, rather than as a proactive, preventive blocker of early implausible or undesired content.

Cumulative Trajectory Bias. Even once Δ_t becomes substantial at later stages, the corrective capacity of the guidance remains fundamentally limited because the denoiser’s predictions are always conditioned on the same latent trajectory x_t . As shown in Eq. 4, this trajectory has already been predominantly shaped by the original branch during the early denoising updates when updating from x_t to x_{t-1} . Consequently, when evaluating $\epsilon_\theta(x_t, c(p_-), t)$, the input x_t already encodes semantic anchors introduced by the user prompt, biasing the prediction toward those configurations. In effect, the guidance is forced to operate on latents that have inherited accumulated influence from the original prompt, attempting to correct content that is already ‘locked in’ by earlier conditioning. This persistent entanglement produces a *cumulative trajectory bias*, which constrains the suppressive power of the counterfactual prompt and limits its ability to fully eliminate implausible or undesired structures.

3.3 SYNCHRONIZED DECOUPLED GUIDANCE

To overcome the two gaps identified above, we propose **Synchronized Decoupled Guidance (SDG)**, a new guidance strategy that integrates two complementary designs. Each design is tailored to directly address one of the fundamental limitations previously identified.

Synchronized Directional Normalization. To mitigate the *lagged suppression effect*, we align the effects of user prompt p_+ and the counterfactual prompt p_- from the earliest denoising steps. Rather than relying on the raw magnitude of the discrepancy Δ_t , which is small when x_t is still close to isotropic Gaussian noise, we focus on its direction. Specifically, we normalize the discrepancy to apply a consistent correction:

$$\hat{\epsilon}_t \leftarrow \epsilon_\theta(x_t, c(p_+), t) + \lambda \cdot \frac{\epsilon_\theta(x_t, c(p_+), t) - \epsilon_\theta(x_t, c(p_-), t)}{\|\epsilon_\theta(x_t, c(p_+), t) - \epsilon_\theta(x_t, c(p_-), t)\| + \varepsilon} \quad (10)$$

270 where λ is a scaling factor controlling the magnitude of the perturbation, and ε is a small constant
 271 to ensure numerical stability. This unit-normalized directional correction emphasizes the direction
 272 of the suppression effect and makes the counterfactual prompt’s suppressive influence temporally
 273 synchronized with the user prompt’s constructive effect. By enforcing a direction-focused correction
 274 of constant scale, suppression remains active from the very first iteration, preventing implausible
 275 structures before they can emerge instead of only erasing them retroactively.

277 **Trajectory-Decoupled Denoising.** To address the *cumulative trajectory bias*, we decouple the
 278 conditioning paths of the user prompt and the counterfactual prompt. Instead of deriving both
 279 predictions from the same latent trajectory x_t , which has already been shaped by the user prompt and
 280 has potentially accumulated physical errors, we evolve two separate latents in parallel: one *original*
 281 x_t^+ for the user prompt p_+ , and one *counterfactual branch* x_t^- for the counterfactual prompt
 282 p_- . Specifically, their noise predictions are:

$$\epsilon^+ = \epsilon_\theta(x_t^+, c(p_+), t) + w \cdot (\epsilon_\theta(x_t^+, c(p_+), t) - \epsilon_\theta(x_t^+, \emptyset, t)), \quad (11)$$

$$\epsilon^- = \epsilon_\theta(x_t^-, c(p_-), t) + w \cdot (\epsilon_\theta(x_t^-, c(p_-), t) - \epsilon_\theta(x_t^-, \emptyset, t)). \quad (12)$$

285 By decoupling the trajectories, the counterfactual branch is free from the accumulated physical
 286 bias introduced by user-prompt conditioning. This ensures that the guidance can exert effective
 287 suppression throughout the process, even when undesired physical phenomena would otherwise be
 288 locked into the shared trajectory.

290 **Summary.** By integrating both designs, SDG transforms the guidance process from a *late-stage*
 291 *biased retroactive corrector* into an *early-stage unbiased proactive preventer*. The final correction
 292 applied combines synchronized normalization with trajectory decoupling:

$$\hat{\epsilon}^+ = \epsilon^+ + \lambda \cdot \frac{\epsilon^+ - \epsilon^-}{\|\epsilon^+ - \epsilon^-\| + \varepsilon}, \quad (13)$$

296 In this formulation, the user and counterfactual prompts co-evolve synchronously along distinct
 297 latent paths, and their interaction is governed by a normalized, direction-aware contrastive term.
 298 By ensuring that suppression is both non-delayed and unbiased, SDG not only overcomes the
 299 inherent limitations of negative prompting but also **maximizes the utility of our reasoning-based**
 300 **physical counterfactuals**. The proposed guidance strategy is able to fully empower them as proactive
 301 constraints, ensuring that implausible structures are suppressed consistently throughout the denoising
 302 process.

303 4 RESULTS

304 4.1 SETUP

307 **Backbones.** We evaluate our method on two representative open-source text-to-video models,
 308 *CogVideoX-5B* (Yang et al., 2025b) and *Wan2.1-14B* (Wan et al., 2025), and report results both on the
 309 base models and on their variants that are enhanced by our training-free framework.

311 **Compared methods.** For context, we further report: *base models*, including CogVideoX-2B (Yang
 312 et al., 2025b), LaVie (Wang et al., 2023b), VideoCrafter2 (Chen et al., 2024), Open-Sora (Zheng et al.,
 313 2024), Vchitect 2.0 (Fan et al., 2025), Cosmos-Diffusion-7B (Agarwal et al., 2025), and *physics-aware*
 314 *models* that incorporate additional training or bespoke modules, including PhyT2V (Xue et al., 2025),
 315 DiffPhy (Zhang et al., 2025a), VideoREPA-5B (Zhang et al., 2025b), CogVideoX-5B+WISA (Wang
 316 et al., 2025). These serve as external references to position our training-free approach.

317 **Benchmarks.** We evaluate on two complementary suites. *PhyGenBench* (Meng et al., 2024)
 318 provides 160 prompts spanning 27 physical laws across four domains (mechanics, optics, thermal,
 319 material) and includes an automated evaluator that reports *Physical Commonsense Alignment* (PCA).
 320 *VideoPhy* (Bansal et al., 2025) assesses real-world actions with fine-grained human-calibrated metrics
 321 for *Semantic Adherence* (SA) and *Physical Commonsense* (PC).¹

323 ¹VideoPhy’s evaluator does not have access to the user prompt at test time; it judges only the rendered video,
 which limits sensitivity to some fine-grained physical phenomena.

324 **Implementational details.** For CogVideoX-5B we use 480×720 resolution; for Wan2.1-14B,
 325 480×832 . Each video has 25 frames generated with 50 inference steps. All experiments are run on a
 326 single NVIDIA RTX 5090 (32GB).

328 **4.2 COMPARISONS WITH STATE-OF-THE-ART BASELINES**
 329

Model	Training-Free	VideoPhy SA	VideoPhy PC	PhyGenBench
<i>Base models</i>				
CogVideoX-2B	–	–	–	0.39
LaVie	–	–	–	0.43
VideoCrafter2	–	0.47	0.36	0.48
Open-Sora	–	0.38	0.43	0.45
Vchitect 2.0	–	–	–	0.45
Cosmos-Diffusion-7B	–	0.52	0.27	0.24
<i>Physics-aware models (trained/fine-tuned)</i>				
PhyT2V (Round 4)	no	0.59	0.42	0.42
DiffPhy	no	–	–	0.54
VideoREPA-5B	no	0.72	0.40	–
CogVideoX-5B + WISA	no	0.67	0.38	0.43
<i>Ours (training-free, inference-time) with two baselines</i>				
CogVideoX-5B	–	0.48	0.39	0.47
CogVideoX-5B + Ours	yes	0.49	0.40	0.49
Wan2.1-14B	–	0.49	0.35	0.40
Wan2.1-14B + Ours	yes	0.52	0.35	0.50

349 Table 1: Quantitative comparisons on VideoPhy and PhyGenBench. Our training-free SDG yields
 350 consistent gains on both backbones, with larger improvements on Wan2.1-14B and on PhyGenBench.

351 We first benchmark against prior base models and physics-aware systems on VideoPhy and Phy-
 352 GenBench (Tab. 1). On both CogVideoX-5B and Wan2.1-14B, adding our training-free SDG yields
 353 consistent improvements in physics-related scores; gains are modest on CogVideoX-5B and larger
 354 on Wan2.1-14B (e.g., PhyGenBench PCA $0.40 \rightarrow 0.50$). Relative to earlier base models, our SDG-
 355 enhanced variants are competitive on VideoPhy and generally stronger on PhyGenBench. We note
 356 that the VideoPhy evaluator does not access the user prompt and therefore may miss fine-grained
 357 physical cues visible only with prompt context; PhyGenBench’s automated scoring can reflect such
 358 cues better. Compared with physics-aware methods that rely on additional training (e.g., PhyT2V,
 359 WISA), our approach remains competitive while requiring *no* retraining or fine-tuning, making SDG
 360 a preferred inference-time strategy.

Model	Physical Domains (\uparrow)				
	Mechanics	Optics	Thermal	Material	Average
CogVideoX-5B (Baseline)	0.43	0.55	0.42	0.46	0.47
+ Ours	0.49	0.58	0.42	0.48	0.49
Wan2.1-14B (Baseline)	0.36	0.53	0.36	0.33	0.40
+ Ours	0.47	0.60	0.51	0.40	0.50

368 Table 2: Quantitative comparisons of different physical domains (mechanics, optics, thermal, mate-
 369 rial). Our training-free method provides consistent gains on average and across domains.

370 We further analyze results across different physical domains on PhyGenBench and report its PCA
 371 in Tab. 2, comparing to both CogVideoX-5B and Wan2.1-14B baselines. Prompts are categorized
 372 into mechanics, optics, thermal, and material interactions. Our method improves performance across
 373 all four domains, showing that our method effectively generalizes and captures diverse physics
 374 phenomena. Gains are modest for CogVideoX-5B (average $0.47 \rightarrow 0.49$) but more pronounced for
 375 Wan2.1-14B (average $0.40 \rightarrow 0.50$), with particularly notable increases in thermal ($0.36 \rightarrow 0.51$) and
 376 mechanics ($0.36 \rightarrow 0.47$). These results indicate that our approach enhances the physical fidelity of
 377 diverse scenarios.

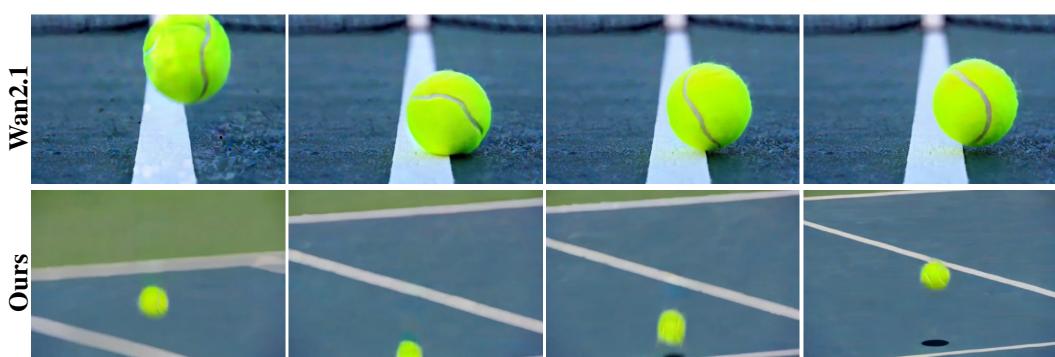


Figure 2: Qualitative comparison with Wan2.1. **Prompt:** “A vibrant, elastic tennis ball is thrown forcefully towards the ground, capturing its dynamic interaction with the surface upon impact.” **Baseline:** The tennis ball’s motion is inconsistent with gravity-driven dynamics, with limited deformation on impact and abrupt transitions across frames. The bounce lacks elasticity. **Ours:** Our result shows a more natural downward trajectory, visible compression upon impact, and a smoother rebound trajectory, yielding a closer match to expected mechanics.

In addition to quantitative gains, we also provide qualitative comparisons with the Wan2.1 and CogVideoX baselines. As shown in Fig. 2, when simulating the dynamics of a tennis ball bouncing on the ground, Wan2.1-14B produces motion that is inconsistent with gravity-driven mechanics, exhibiting limited deformation on impact and abrupt transitions across frames. In contrast, our method generates a more natural trajectory, with visible compression upon impact and a smoother rebound, resulting in a closer match to expected elastic behavior. Similarly, Fig. 3 illustrates a scenario involving a highlighter marking cardboard. CogVideoX-5B fails to capture the proper interaction between ink and surface: strokes appear flat and disconnected from the cardboard texture, with inconsistent pen–surface contact. By comparison, our method produces strokes that adhere naturally to the surface, with ink blending seamlessly into the cardboard. These examples demonstrate improvements in both mechanics (object dynamics) and materials (object-surface interaction), reinforcing that physics-aware reasoning combined with SDG yields more physically plausible video generations. For additional qualitative comparisons across a wider set of prompts, please refer to Appendix Sec. A.1. Full video results are available in the Supplementary Material, where the dynamic effects of our approach can be more clearly observed.

4.3 ABLATION STUDIES

Model	Average
Wan2.1-14B	0.40
w/o Synchronized decoupled guidance	0.43
w/o Physics-aware reasoning	0.47
w/o Synchronized directional normalization	0.47
w/o Trajectory-decoupled denoising	0.48
Full version (Ours)	0.50

Table 3: Ablation experiments on PhyGenBench, reporting the average Physical Commonsense Alignment (PCA) across four domains. Removing physics-aware reasoning (PAR) reduces performance, while dropping either one of the two designs (synchronized directional normalization and trajectory-decoupled denoising) within synchronized decoupled guidance (SDG) also leads to noticeable degradation. Eliminating both designs (i.e., w/o SDG) causes an even larger drop. The full framework achieves the highest score, underscoring that PAR and both SDG designs are critical and complementary for enhancing physical plausibility.

To better understand the contributions of each component in our framework, we conduct ablation studies on PhyGenBench, as reported in Tab. 3. We examine the impact of removing the Physics-aware reasoning (PAR) module, as well as the designs within our proposed Synchronized Decoupled Guidance (SDG). SDG itself is composed of two complementary designs: Synchronized directional normalization (SDN) and Trajectory-decoupled denoising (TDD).

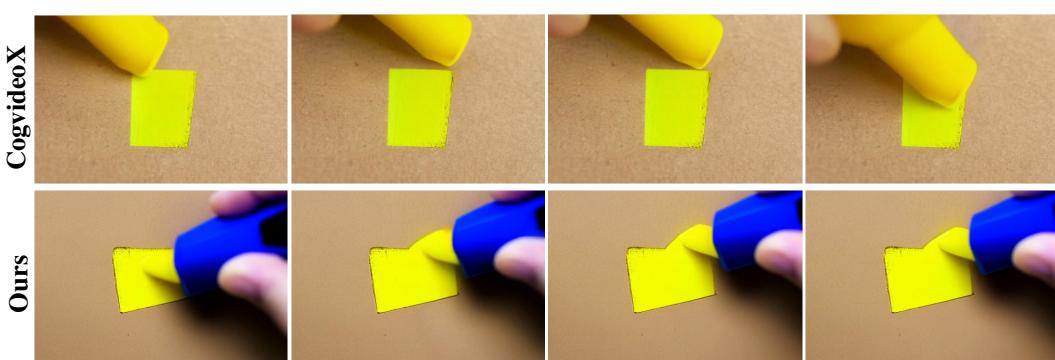


Figure 3: Qualitative comparison with CogvideoX. **Prompt:** “A yellow highlighter is used to mark on the rough, brown surface of a cardboard, showcasing the interaction between the highlighter and the cardboard surface.” **Baseline:** Generates inconsistent strokes, with the yellow mark appearing flat and disconnected from the cardboard’s texture. The contact point with the marker is visually unconvincing. **Ours:** Produces a stroke that properly adheres to the surface, with the ink visibly blending with the cardboard texture. The pen-surface interaction is sharper and more consistent.

To enhance clarity, we provide detailed definitions of all ablation settings below:

- **w/o Synchronized Decoupled Guidance (SDG):** Removes the entire SDG module, including both synchronized directional normalization and trajectory-decoupled denoising.
- **w/o Physics-aware Reasoning (PAR):** Replaces our LLM-generated structured counterfactual prompts with the default negative prompt used in Wan2.1’s original classifier-free guidance. This isolates the effect of the reasoning component.
- **w/o Synchronized Directional Normalization (SDN):** Removes the first component of SDG described in Sec. 3.3, disabling the normalization and synchronization of guidance directions between the forward and counterfactual trajectories.
- **w/o Trajectory-Decoupled Denoising (TDD):** Removes the second component of SDG described in Sec. 3.3 and reintroduces coupling between the forward and counterfactual trajectories. This version keeps inference cost identical to the full model, isolating only the effect of trajectory coupling.

The results show that the full version of our framework achieves the best overall performance, with an average score of 0.50 across the four physical domains. Removing either SDN or TDD leads to clear performance degradation (0.47–0.48 average), confirming that both designs make complementary contributions. When both are removed, i.e., in the w/o SDG variant, the performance drops further to 0.43. This demonstrates that the dual-branch design and the directional correction within SDG are both critical for enforcing consistent suppression of implausible content.

We also evaluate the effect of PAR by replacing structured reasoning with simple instructions to construct negative prompts. The w/o PAR variant achieves an average score of 0.47, which is better than the Wan2.1-14B baseline but still lower than the full version. This confirms that PAR provides more targeted and physics-aware counterfactual prompts, which empower SDG to operate effectively. A qualitative ablation study of PAR is also provided in Fig. 14, which compares counterfactual prompts generated with and without structural reasoning. Without structural reasoning, the counterfactual prompt tends to introduce irrelevant or arbitrary violations (e.g., predicting that orange juice with baking soda solidifies into a glass-like block), which are disconnected from the underlying physical process. In contrast, with structural reasoning, the LLM is guided to identify entities, interactions, and scene conditions, and then generate a counterfactual that violates the expected causal chain (e.g., the mixture remains completely still without bubbling despite the acid–base reaction). This illustrates how PAR yields higher-quality, physics-aware counterfactual prompts that directly target the intended violations of physical laws.

Overall, the ablation studies validate the importance of both major components: PAR ensures the construction of meaningful counterfactual prompts, while SDG, and specifically its two designs, SDN and TDD, ensure these prompts are fully leveraged during guidance. Together, they yield the consistent improvements observed in the full model.

486 **5 CONCLUSION**
 487

488 We presented a training-free framework for enhancing physical plausibility in diffusion-based video
 489 generation by explicitly reasoning about implausibility and guiding the generative process. Our
 490 approach introduces a reasoning pipeline to construct counterfactual prompts that capture targeted
 491 physics-violating behaviors, and a novel *Synchronized Decoupled Guidance* (SDG) strategy that
 492 fully leverages these prompts. By addressing the two key limitations of negative prompting: lagged
 493 suppression effect and cumulative trajectory bias, through synchronized directional normalization
 494 and trajectory-decoupled denoising, SDG ensures that suppression of implausible content is both
 495 immediate and unbiased. Extensive experiments across solid mechanics, fluid dynamics, optics, and
 496 thermodynamics, along with detailed ablation studies, demonstrate that our framework significantly
 497 improves physical fidelity while preserving photorealism. This work establishes a physics-informed
 498 paradigm for video generation and highlights the potential of combining structured reasoning with
 499 inference-time guidance to advance physics-aware generative modeling.
 500

501 **6 ETHICS STATEMENT**
 502

503 We acknowledge that all authors of this work have read and commit to adhering to the ICLR Code of
 504 Ethics. This paper does not raise any potential violations such as harmful insights, discrimination,
 505 unfairness, privacy or security issues, or conflicts of interest. Our study does not involve human
 506 subjects, sensitive data, or applications that could cause societal harm.
 507

508 **7 REPRODUCIBILITY STATEMENT**
 509

510 We have made efforts to ensure the reproducibility of our work. Implementation details are provided
 511 in Sec. 4.1 and Sec. A.2. Quantitative comparisons and ablations are included in Sec. 4.2 and Sec. 4.3,
 512 and qualitative comparisons and ablations are included in Sec. A.1 and Sec. A.3 to further clarify
 513 our findings. Code will be released upon paper acceptance, and a ZIP file containing examples of
 514 generated videos is included in the Supplementary Material.
 515

516 **REFERENCES**
 517

518 Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, et al. Cosmos world: Foundation model
 519 platform for physical ai. *arXiv preprint arXiv:2501.03575*, 2025.

520 Luca Savant Aira, Antonio Montanaro, Emanuele Aiello, Diego Valsesia, and Enrico Magli. Motion-
 521 craft: Physics-based zero-shot video generation. *arXiv preprint arXiv:2405.13557*, 2024.

522 Mohammadreza Armandpour, Ali Sadeghian, Huangjie Zheng, Amir Sadeghian, and Mingyuan Zhou.
 523 Perp-neg: Re-imagine the negative prompt algorithm. *arXiv preprint arXiv:2304.04968*, 2023.

524 Hritik Bansal, Clark Peng, Yonatan Bitton, Roman Goldenberg, Aditya Grovera, and Kai-Wei Chang.
 525 Videophy-2: A challenging action-centric physical commonsense evaluation in video generation.
 526 *arXiv preprint arXiv:2503.06800*, 2025.

527 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
 528 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, Varun Jampani, and Robin Rombach.
 529 Stable video diffusion: Scaling latent video diffusion models to large datasets. *arXiv preprint
 530 arXiv:2311.15127*, 2023.

531 Chen Chen, Daochang Liu, Mubarak Shah, and Chang Xu. Exploring local memorization in diffusion
 532 models via bright ending attention. *ICLR*, 2025a.

533 Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying
 534 Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models. *arXiv
 535 preprint arXiv:2401.09047*, 2024.

536 Harold Haodong Chen, Haojian Huang, Qifeng Chen, Harry Yang, and Ser-Nam Lim. Hierarchical
 537 fine-grained preference optimization for physically plausible video generation. *arXiv preprint
 538 arXiv:2508.10858*, 2025b.

540 Yunuo Chen, Junli Cao, Anil Kag, Vudit Goel, Sergei Korolev, Chenfanfu Jiang, Sergey Tulyakov,
 541 and Jian Ren. Towards physical understanding in video generation: A 3d point regularization
 542 approach. *arXiv preprint arXiv:2502.03639*, 2025c.

543

544 Simon Le Cleac'h, Hong-Xing Yu, Michelle Guo, Taylor A. Howell, Ruohan Gao, Jiajun Wu, Zachary
 545 Manchester, and Mac Schwager. Differentiable physics simulation of dynamics-augmented neural
 546 objects. *arXiv preprint arXiv:2210.09420*, 2022.

547

548 Patrick Esser, Johnathan Chiu, Parmida Atighehchian, Jonathan Granskog, and Anastasis Ger-
 549 manidis. Structure and content-guided video synthesis with diffusion models. *arXiv preprint
 549 arXiv:2302.03011*, 2023.

550

551 Weichen Fan, Chenyang Si, Junhao Song, Zhenyu Yang, Yinan He, Long Zhuo, Ziqi Huang, Ziyue
 552 Dong, Jingwen He, Dongwei Pan, Yi Wang, Yuming Jiang, Yaohui Wang, Peng Gao, Xinyuan
 553 Chen, Hengjie Li, Duhua Lin, Yu Qiao, Ziwei Liu, et al. Vchitect-2.0: Parallel transformer for
 554 scaling up video diffusion models. *arXiv preprint arXiv:2501.08453*, 2025.

555

556 Rohit Girdhar, Mannat Singh, Andrew Brown, Quentin Duval, Samaneh Azadi, Sai Saketh Rambhatla,
 557 Akbar Shah, Xi Yin, Devi Parikh, and Ishan Misra. Emu video: Factorizing text-to-video generation
 558 by explicit image conditioning. *arXiv preprint arXiv:2311.10709*, 2023.

559

560 Google DeepMind. Veo 3: Advanced generative video model. <https://deepmind.google/discover/blog/veo-3-generative-video-model/>, 2025. Accessed: 2025-09-21.

561

562 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv:2207.12598*, 2022.

563

564 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*,
 volume 33, pp. 6840–6851, 2020.

565

566 Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P.
 567 Kingma, Ben Poole, Mohammad Norouzi, David J. Fleet, and Tim Salimans. Imagen video: High
 568 definition video generation with diffusion models. *arXiv preprint arXiv:2210.02303*, 2022a.

569

570 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J.
 571 Fleet. Video diffusion models. *arXiv preprint arXiv:2204.03458*, 2022b.

572

573 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, et al. Hunyuanyvideo: A systematic framework for
 574 large video generative models. *arXiv preprint arXiv:2412.03603*, 2024.

575

576 Kuaishou. Kling: Video generation model. <https://klingai.kuaishou.com/>, 2024. Ac-
 577 cessed: 2025-09-21.

578

579 Chenyu Li, Oscar Michel, Xichen Pan, Sainan Liu, Mike Roberts, and Saining Xie. Pisa experiments:
 580 Exploring physics post-training for video diffusion models by watching stuff drop. *arXiv preprint
 581 arXiv:2503.09595*, 2025.

582

583 Wang Lin, Liyu Jia, Wentao Hu, Kaihang Pan, Zhongqi Yue, Wei Zhao, Jingyuan Chen, Fei Wu,
 584 and Hanwang Zhang. Reasoning physical video generation with diffusion timestep tokens via
 585 reinforcement learning. *arXiv preprint arXiv:2504.15932*, 2025.

586

587 Daochang Liu, Junyu Zhang, Anh-Dung Dinh, Eunbyung Park, Shichao Zhang, and Chang Xu.
 588 Generative physical ai in vision: A survey. *arXiv preprint arXiv:2501.10928*, 2025.

589

590 Shaowei Liu, Zhongzheng Ren, Saurabh Gupta, and Shenlong Wang. Physgen: Rigid-body physics-
 591 grounded image-to-video generation. In *Proceedings of the European Conference on Computer
 592 Vision (ECCV)*, 2024.

593

594 Guoqing Ma, Haoyang Huang, Kun Yan, et al. Step-video-t2v technical report: The practice,
 595 challenges, and future of video foundation model. *arXiv preprint arXiv:2502.10248*, 2025.

596

597 Fanqing Meng, Jiaqi Liao, Xinyu Tan, Wenqi Shao, Quanfeng Lu, Kaipeng Zhang, Yu Cheng, Dianqi
 598 Li, Yu Qiao, and Ping Luo. Towards world simulator: Crafting physical commonsense-based
 599 benchmark for video generation. *arXiv preprint arXiv:2410.05363*, 2024.

594 Saman Motamed, Laura Culp, Kevin Swersky, Priyank Jaini, and Robert Geirhos. Do generative
 595 video models understand physical principles? *arXiv preprint arXiv:2501.09038*, 2025.
 596

597 Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In *ICML*,
 598 2021.

599 OpenAI. Video generation models as world simulators, 2024. URL <https://openai.com/index/video-generation-models-as-world-simulators/>.
 600

601 William Peebles and Saining Xie. Scalable diffusion models with transformers. *arXiv preprint
 602 arXiv:2212.09748*, 2022.
 603

604 Xuanchi Ren, Tianchang Shen, Jiahui Huang, Huan Ling, Yifan Lu, Merlin Nimier-David, Thomas
 605 Müller, Alexander Keller, Sanja Fidler, and Jun Gao. GEN3C: 3d-informed world-consistent video
 606 generation with precise camera control. In *Proceedings of the IEEE/CVF Conference on Computer
 607 Vision and Pattern Recognition (CVPR)*, 2025.

608 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 609 resolution image synthesis with latent diffusion models. In *CVPR*, pp. 10684–10695, 2022.
 610

611 Runway. Introducing gen-3 alpha, 2024. URL <https://runwayml.com/research/introducing-gen-3-alpha>.
 612

613 Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
 614 Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman. Make-a-video:
 615 Text-to-video generation without text-video data. *arXiv preprint arXiv:2209.14792*, 2022.
 616

617 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 618 Poole. Score-based generative modeling through stochastic differential equations. In *ICLR*, 2021.

619 Stability AI. Stable diffusion 2.0 release. <https://stability.ai/news/stable-diffusion-v2-release>, 2022.
 620

621 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, et al. Wan: Open and advanced large-scale
 622 video generative models. *arXiv preprint arXiv:2503.20314*, 2025.
 623

624 Jing Wang, Ao Ma, Ke Cao, Jun Zheng, Zhanjie Zhang, Jiasong Feng, Shanyuan Liu, Yuhang Ma,
 625 Bo Cheng, Dawei Leng, Yuhui Yin, and Xiaodan Liang. Wisa: World simulator assistant for
 626 physics-aware text-to-video generation. *arXiv preprint arXiv:2503.08153*, 2025.

627 Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang. Mod-
 628 elsing text-to-video technical report. *arXiv preprint arXiv:2308.06571*, 2023a.
 629

630 Yaohui Wang, Xinyuan Chen, Xin Ma, Shangchen Zhou, Ziqi Huang, Yi Wang, Ceyuan Yang, Yinan
 631 He, Jiashuo Yu, Peiqing Yang, Yuwei Guo, Tianxing Wu, Chenyang Si, Yuming Jiang, Cunjian
 632 Chen, Chen Change Loy, Bo Dai, Dahua Lin, Yu Qiao, and Ziwei Liu. Lavie: High-quality video
 633 generation with cascaded latent diffusion models. *arXiv preprint arXiv:2309.15103*, 2023b.
 634

635 Melvin Wong, Yueming Lyu, Thiago Rios, Stefan Menzel, and Yew-Soon Ong. Llm-to-phy3d:
 636 Physically conform online 3d object generation with llms. *arXiv preprint arXiv:2506.11148*, 2025.
 637

638 Max Woolf. Stable diffusion 2.0 and the importance of negative prompts for good results. <https://minimaxir.com/2022/11/stable-diffusion-negative-prompt/>, 2023.

639 Tianyi Xie, Yiwei Zhao, Ying Jiang, and Chenfanfu Jiang. Physanimator: Physics-guided generative
 640 cartoon animation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 641 Recognition (CVPR)*, 2025.

642 Qiyao Xue, Xiangyu Yin, Boyuan Yang, and Wei Gao. Phyt2v: Llm-guided iterative self-refinement
 643 for physics-grounded text-to-video generation. In *Proceedings of the IEEE/CVF Conference on
 644 Computer Vision and Pattern Recognition (CVPR)*, pp. 18826–18836, 2025.
 645

646 Xindi Yang, Baolu Li, Yiming Zhang, Zhenfei Yin, Lei Bai, Liqian Ma, Zhiyong Wang, Jianfei Cai,
 647 Tien-Tsin Wong, Huchuan Lu, and Xu Jia. Vlipp: Towards physically plausible video generation
 648 with vision and language informed physical prior. *arXiv preprint arXiv:2503.23368*, 2025a.

648 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
649 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Yuxuan Zhang, Weihan Wang, Yean Cheng,
650 Bin Xu, Xiaotao Gu, Yuxiao Dong, and Jie Tang. Cogvideox: Text-to-video diffusion models with
651 an expert transformer. In *International Conference on Learning Representations (ICLR)*, 2025b.
652

653 Ke Zhang, Cihan Xiao, Jiacong Xu, Yiqun Mei, and Vishal M. Patel. Think before you diffuse:
654 Llms-guided physics-aware video generation. *arXiv preprint arXiv:2505.21653*, 2025a.
655

656 Xiangdong Zhang, Jiaqi Liao, Shaofeng Zhang, Fanqing Meng, Xiangpeng Wan, Junchi Yan, and
657 Yu Cheng. Videorepa: Learning physics for video generation through relational alignment with
658 foundation models. *arXiv preprint arXiv:2505.23656*, 2025b.
659

660 Zhenghao Zhang, Junchao Liao, Menghao Li, Zuozhuo Dai, Bingxue Qiu, Siyu Zhu, Long Qin, and
661 Weizhi Wang. Tora: Trajectory-oriented diffusion transformer for video generation. In *Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2025c.
662

663 Qi Zhao, Xingyu Ni, Ziyu Wang, Feng Cheng, Ziyuan Yang, Lu Jiang, and Bohan Wang. Synthetic
664 video enhances physical fidelity in video synthesis. *arXiv preprint arXiv:2503.20822*, 2025.
665

666 Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun Zhou,
667 Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all. *arXiv
preprint arXiv:2412.20404*, 2024.
668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A APPENDIX

704 **Outline.** This appendix provides additional results, implementation details, ablation analyses, a
 705 literature review, and a declaration on our LLM usage to further support the main paper. It is organized
 706 as follows:

- 708 • **Sec. A.1** presents *additional qualitative comparisons* with CogVideoX-5B and Wan2.1-
 709 14B across mechanics, thermodynamics, optics, and material interactions. Figures 4–9
 710 provide side-by-side visual comparisons; Fig. 10 augments these with *automated GPT-4o*
 711 *assessments* from PhyGenBench of the physical plausibility of each video; and Fig. 11
 712 further compares our approach against *negative prompting (NP)* within *CFG*, highlighting
 713 the limited gains of NP relative to our SDG. Together, these examples complement the
 714 quantitative results by showing improved fluid-object interactions, material transformations,
 715 and object dynamics.
- 716 • **Sec. A.2** provides *additional implementation details* for reproducibility. Fig. 12 shares
 717 the *instruction template* used to guide the LLM, including constraints and strict output
 718 format; Fig. 13 illustrates *worked examples* across domains (optics and thermodynamics),
 719 demonstrating how the analysis stage grounds the subsequent counterfactual.
- 720 • **Sec. A.3** reports a *qualitative ablation of Physics-aware Reasoning (PAR)* for counterfactual
 721 prompt construction (Fig. 14). We compare counterfactuals generated *with vs. without*
 722 structured reasoning for thermodynamics prompts and show that PAR yields targeted,
 723 physics-aware violations (e.g., condensation) rather than generic negatives.
- 724 • **Sec. A.4** provides a *literature review* that summarizes related works and highlights the gaps
 725 our method addresses.
- 726 • **Sec. A.5** provides a *declaration* on our LLM usage.

727 All figures include detailed captions to support discussion and analysis of the findings. For completeness,
 728 the *Supplementary Material* additionally contains full videos of all qualitative examples, where
 729 the physical dynamics are best appreciated in motion.

731 A.1 ADDITIONAL QUALITATIVE COMPARISONS

733 This section provides additional qualitative comparisons between our method and the CogVideoX-5B
 734 and Wan2.1-14B baselines across prompts spanning mechanics, thermodynamics, optics, and material
 735 interactions.

736 Figures 4–9 present side-by-side comparisons, where baseline models often generate visually ap-
 737 pealing sequences but overlook key physical processes, such as the absence of condensation during
 738 boiling, incomplete material phase transitions, or unrealistic object-surface interactions. In contrast,
 739 our method produces outcomes that better align with physical commonsense: for example, more
 740 coherent fluid-object interactions (Fig. 4, 5), smoother material transformations (Fig. 8, 9), and more
 741 faithful object dynamics (Fig. 2, 3).

742 Beyond visual inspection, Fig. 10 shows qualitative results accompanied by evaluations generated by
 743 PhyGenBench’s automatic evaluator through the GPT-4o API, which assess the physical plausibility of
 744 each video. Finally, Fig. 11 compares our approach not only with the baselines but also with negative
 745 prompting (NP) within classifier-free guidance, highlighting that NP yields only limited improvements
 746 while our Synchronized Decoupled Guidance (SDG) effectively mitigates the shortcomings. These
 747 qualitative studies complement our quantitative evaluations and illustrate how combining Physics-
 748 aware Reasoning (PAR) with SDG improves physical plausibility while preserving photorealism, all
 749 without retraining or fine-tuning.

750 We provide detailed per-example captions in this section, and please refer to the Supplementary
 751 Material for full video results, where the dynamics can be best appreciated.

753 A.2 ADDITIONAL IMPLEMENTATION DETAILS

755 We include further implementation details to improve reproducibility of our physics-aware reasoning
 pipeline. Fig. 12 provides the instruction template used to guide the LLM during counterfactual

Figure 4: Qualitative comparison with Wan2.1. **Prompt:** “A silver spoon is slowly inserted into a glass of crystal-clear water, revealing the fascinating visual changes and reflections as the spoon interacts with the liquid.” **Baseline:** The generated sequence struggles to capture realistic refraction and liquid interaction. The spoon appears disconnected from the water surface, and the reflections lack physical plausibility. **Ours:** Our method produces a coherent depiction of the spoon entering the water, with realistic ripples, refraction, and surface reflections. This creates a more physically faithful impression of object-fluid interaction.

Figure 5: Qualitative comparison with Wan2.1. **Prompt:** “A timelapse captures the transformation of water in a pot as the temperature rapidly rises above 100°C.” **Baseline:** The sequence unrealistically depicts explosive splashes, ignoring the gradual bubbling and vapor release expected from water heating above 100°C. **Ours:** Our method captures progressive bubbling and the formation of rising vapor clouds, consistent with the condensation process. This produces a more physically plausible thermal interaction.

prompt construction. The template specifies that the LLM should first output a structured analysis describing entities, environments, interactions, and temporal evolution of the event, followed by a counterfactual description that is visually plausible yet physically implausible. It also enforces key requirements such as maintaining subjects and settings, avoiding repetition, and ensuring clear violations of physical laws, and it defines a strict output format to ensure consistency. Fig. 13 further illustrates two representative examples of physics-aware reasoning across different domains. In the optics case, the model analyzes refraction through a magnifying glass and generates a counterfactual where the embossing shrinks instead of enlarging. In the thermodynamics case, the model reasons about heat transfer and the phase transition of butter, then generates a counterfactual where butter is fully liquefied from the start without any melting process. These examples highlight how the LLM is able to identify relevant entities, interactions, and governing principles, and then construct counterfactuals that are both plausible to the viewer and explicitly violate physical laws. Lastly, for the guidance strength of SDG in Eq. 13, we find $\lambda = 30$ to be the best choice in general.

Figure 6: Qualitative comparison with Wan2.1. **Prompt:** “A small burning stick was thrown into a pile of hay.” **Baseline:** The ignition of hay is abrupt and spatially inconsistent, with flames appearing unnaturally large and sudden. **Ours:** Our model shows fire propagating gradually from the burning stick to the hay, with smoother flame development and more realistic local ignition dynamics.

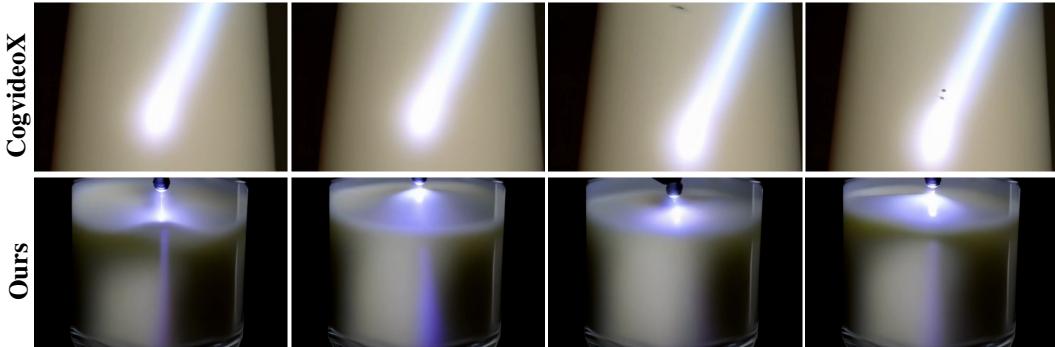


Figure 7: Qualitative comparison with CogvideoX. **Prompt:** “A concentrated, bright beam of light generated by a laser pointer is passing through a glass of thick whole milk, creating a mesmerizing display as the light interacts with the milk’s particles, casting intricate patterns and subtle hues within the fluid.” **Baseline:** The light beam appears static and detached from the milk medium, with minimal scattering or hue variation, failing to show how light interacts with particles in the liquid. **Ours:** Our sequence captures a concentrated beam penetrating the milk, producing scattering and subtle glow effects that vary realistically across frames, aligning with optical refraction principles.

A.3 QUALITATIVE ABLATION OF PHYSICS-AWARE REASONING

Figure 14 shows a qualitative ablation of physics-aware reasoning (PAR) for counterfactual prompt construction. We present two thermodynamics-related prompts with highly similar descriptions. Without PAR, the generated counterfactual prompts are overly generic and lack specificity, failing to capture the relevant physical phenomenon (e.g., condensation). In contrast, with PAR, the LLM first infers the detailed underlying process and then produces counterfactuals that are not only more physically grounded but also visually realistic. This demonstrates that structured reasoning is essential for generating counterfactual prompts that directly target meaningful violations of physical laws.

A.4 RELATED WORK

Video generative models. Video generative modeling has rapidly progressed by extending image generative frameworks to capture temporal dynamics (Blattmann et al., 2023; Wang et al., 2023a; Chen et al., 2024; Girdhar et al., 2023). Early diffusion-based approaches, such as Video Diffusion Models (Ho et al., 2022b), adopted 3D convolutional architectures to extend denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020; Nichol & Dhariwal, 2021) into the video domain, but were limited in scale and realism. Subsequent advances leveraged pretrained text-to-image

Figure 8: **Prompt:** “*Qualitative comparison with CogvideoX. A timelapse captures the gradual transformation of butter as the temperature rises significantly.*” **Baseline:** The butter remains largely unchanged, with rigid textures and little indication of gradual phase transition. The thermal process is not conveyed. **Ours:** Our method depicts butter softening and progressively melting, accompanied by rising vapor. This better reflects the heat-driven transition from solid to liquid.

Figure 9: Qualitative comparison with CogvideoX. **Prompt:** “*Equal amounts of red and blue paint are rapidly combined, with the mixture being vigorously stirred until fully blended.*” **Baseline:** The mixing of red and blue paint is incomplete and static, with colors remaining largely separated. The blending dynamics are underdeveloped. **Ours:** Our sequence shows vigorous stirring, with swirling patterns and gradual blending into purple, consistent with fluid mixing behavior.

(T2I) models, notably Stable Diffusion (Rombach et al., 2022), to build stronger text-to-video (T2V) systems. Make-A-Video (Singer et al., 2022) and Imagen Video (Ho et al., 2022a) pioneered this paradigm, showing that reusing large T2I backbones and augmenting them with temporal layers could produce plausible short clips. Other systems such as Runway Gen-1 (Esser et al., 2023) extended controllability by incorporating text, image, and video conditions for editing and stylization.

The field has since advanced through architectural innovations and scaling. Diffusion Transformers (DiTs) (Peebles & Xie, 2022) demonstrated strong spatiotemporal modeling capacity, enabling models such as Open-Sora (Zheng et al., 2024), Cosmos (Agarwal et al., 2025), CogVideoX (Yang et al., 2025b), HunyuanVideo (Kong et al., 2024), Kling (Kuaishou, 2024), and Wan2.1 (Wan et al., 2025) to achieve substantial gains in video quality, motion realism, and scalability. Beyond raw scale, several works target stronger spatiotemporal structure and control: Step-Video-T2V (Ma et al., 2025) couples a deep-compression Video-VAE with a 30B DiT trained via flow matching to extend clip length and bilingual prompting; GEN3C (Ren et al., 2025) introduces 3D-informed, camera-consistent generation; and Tora (Zhang et al., 2025c) studies trajectory-oriented DiT design for longer, coherent motion. Proprietary systems such as Sora (OpenAI, 2024), Gen-3 (Runway, 2024), and Google DeepMind’s Veo series (Google DeepMind, 2025) have further captured public attention by producing long, high-fidelity videos with rich dynamics. These milestones collectively

Figure 10: Additional qualitative samples generated by our model across diverse prompts. Alongside the visual results, we include the evaluations provided by GPT-4o, invoked through the automatic evaluator of PhyGenBench, which assesses the overall physical plausibility of each video. Please refer to the Supplementary Material for full video results, as the physical dynamics are best appreciated in motion.

underscore the effectiveness of scaling DiT-based architectures and leveraging massive video-text datasets.

Despite these successes, existing video generative models primarily fit data distributions drawn from large-scale internet corpora, where explicit representations of physical laws are rare and physical phenomena are underrepresented. As a result, even state-of-the-art systems often produce videos that deviate from physical commonsense, for instance, fluids ignoring gravity or phase transitions behaving unrealistically. Our work is motivated by this gap: while recent T2V models have achieved remarkable photorealism and temporal consistency, ensuring compliance with real-world physics remains an open challenge.

Physics-aware video generations. Researchers have increasingly focused on improving and evaluating the physical consistency of generated videos (Liu et al., 2025; Motamed et al., 2025; Lin et al., 2025; Zhao et al., 2025; Li et al., 2025; Chen et al., 2025b;c; Yang et al., 2025a; Wong et al., 2025; Xie et al., 2025). One line of effort has been to build dedicated benchmarks. For example, VideoPhy (Bansal et al., 2025) evaluates real-world actions using fine-grained human judgments across semantic adherence, physical commonsense, and explicit rule violations. PhyGenBench (Meng et al., 2024) curates 160 prompts spanning 27 physical laws across four domains and introduces an automated evaluator for physical commonsense alignment. Together, these resources have revealed that

972 even state-of-the-art video diffusion models frequently generate outputs that deviate from real-world
 973 physics.
 974

975 In parallel, several works attempt to explicitly encode physical constraints into generative processes.
 976 Early approaches such as DANO (Cleac'h et al., 2022), MotionCraft (Aira et al., 2024), and Phys-
 977 Gen (Liu et al., 2024) parse objects from static images and estimate their rigid-body dynamics in
 978 a differentiable manner, then animate these estimates into short videos. While interpretable, these
 979 pipelines are limited to predefined physical categories (rigid motion) and static scenarios, which
 980 hinders their applicability to complex or diverse phenomena.
 981

982 More recent models have pursued broader physics-awareness within diffusion-based video generation.
 983 PhyT2V (Xue et al., 2025) uses large language and vision-language models to detect inconsistencies
 984 in generated videos and iteratively refine prompts with physics-based feedback, though this introduces
 985 substantial inference overhead. Then, several contemporary works also contribute to this effort. For
 986 example, DiffPhy (Zhang et al., 2025a) integrates differentiable physics simulation into the training
 987 loop, encouraging the generator to respect Newtonian laws, but requires re-training on curated
 988 physics datasets. VideoREPA (Zhang et al., 2025b) incorporates structured physical signals during
 989 pre-training to enhance physical perception, while WISA (Wang et al., 2025) augments training data
 990 with explicitly annotated physical phenomena, enabling the model to learn structured physical priors.
 991 Despite their promising results, all these methods rely on additional training or fine-tuning.
 992

993 By contrast, our framework is training-free and inference-time only. We introduce physics-aware
 994 reasoning (PAR) to construct targeted counterfactual prompts that deliberately violate governing laws,
 995 and Synchronized Decoupled Guidance (SDG) to suppress implausible generations. This allows
 996 us to improve physical plausibility on strong backbones without the cost of retraining, offering a
 997 complementary direction to recent physics-aware efforts.
 998

999 A.5 DECLARATION ON LLM USAGE

1000 LLM is only used to aid or polish writing in addition to facilitating the physics-aware reasoning
 1001 for constructing the counterfactuals (Sec. 3.1). We have also provided *additional implementational*
 1002 *details* in Sec.A.2, including the *instruction template* used to guide the LLM, including constraints
 1003 and strict output format (Fig. 12), and some *worked examples* of leveraging LLM for constructing
 1004 counterfactual prompts (Fig. 13).
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

Figure 11: Additional comparisons with both the baseline and using negative prompting (NP) in CFG. The symbols (-) and (+) denote user prompts and counterfactual prompts, respectively. The descriptions on the right report the overall physical plausibility of the generated videos, as assessed by PhyGenBench’s automatic evaluator through the GPT-4o API. As highlighted in orange, our method effectively mitigates the shortcomings of the baseline, whereas NP yields only limited improvement.

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

Instruction for Physics-Aware Reasoning

You are a physicist specializing in <**main physical category / states of matter**>. Your task is to construct captions for a video generation system that reflect physically accurate processes involving <**main physical category / states of matter**>. Your goal is to highlight physical phenomena by producing both physically accurate descriptions and counterfactual variants that violate the underlying physical laws.

For each input caption tag describing a physically valid event:

1. Generate a precise phenomenological *Analysis* that includes:
 - (i) Identification of the primary **physical entities and environment**.
 - (ii) A temporal description of the process, from initiation to conclusion.
 - (iii) Key **physical interactions** governed by the stated physics category.
2. Create a *Counterfactual Caption* that describes a visually plausible but physically impossible version of the same phenomenon. This counterfactual must adhere to the following constraints:

Counterfactual Caption Requirements:

- (i) The **subjects and setting** must be the same as those in the original caption.
- (ii) The caption should describe a **dynamic process** suitable for video generation, avoiding purely static or abstract scenarios.
- (iii) The event described must be **physically implausible under the given conditions**, while remaining **visually realistic and compelling**.
- (iv) The counterfactual scenario must not describe a phenomenon that could plausibly occur in any slightly modified or analogous setting, ensuring that viewers recognize the violation through visual cues alone, without needing the caption.
- (v) Each violating caption must be **unique** across the dataset and **non-repetitive**.
- (vi) The counterfactual event must be **simple and focused**: it may include elements that exist in reality, but their behavior must violate the relevant physical laws within the specific context.
- (vii) Avoid absurd or comically exaggerated scenarios. The violation should feel subtle and believable at first glance, but clearly inconsistent with physical principles upon scrutiny.

Example (good counterfactual):

"In a space station, a hand tilts a cup of water. As the water exits the cup, it freezes instantly mid-air, transforming into a cluster of rigid, perfectly hexagonal ice crystals that remain suspended and motionless, maintaining their geometric shape without melting or drifting."

Output Format (strict):

All outputs must be returned in a Python dictionary structure with the following keys:

```
{
  'Analysis': '<Detailed physical description>',
  'Counterfactual Caption': '<Single-sentence, visually plausible but physically impossible description>'
}
```

Figure 12: Instruction template used for physics-aware reasoning. The LLM is prompted to generate counterfactual captions by first producing a structured analysis that identifies entities, environments, interactions, and temporal evolution, followed by a counterfactual description that is visually plausible yet physically implausible. The figure specifies key requirements for constructing counterfactuals (e.g., maintaining subjects and settings, ensuring non-repetition, and enforcing clear violations of physical laws), provides an example of a valid counterfactual, and defines the strict output format. These implementational details are included to enhance reproducibility and to ensure consistent generation of physics-aware counterfactual prompts across experiments.

1134	
1135	
1136	
1137	
1138	
1139	
1140	User
1141	model: GPT-4o
1142	e.g. Category of Optics
1143	Instruction: You are a physicist specializing in optics ...
1144	
1145	Caption: A magnifying glass is gradually moving closer to a coin, revealing the intricate details and textures of the embossed design as it approaches.
1146	
1147	
1148	{
1149	'Analysis': 'The primary optical entities in this scene are the magnifying glass, the coin, and the ambient light source illuminating the scene. The environment is brightly lit, likely indoors, allowing for clear observation of the coin's details. As the magnifying glass moves closer to the coin, the light passing through the lens undergoes refraction due to the curved glass surface. This refraction bends the light rays, magnifying the image of the coin beneath it. Over time, as the distance between the magnifying glass and the coin decreases, the level of magnification increases, making the intricate textured details of the coin's embossed design more visible. The key optical principle involved here is refraction, governed by Snell's Law, which explains how light bends when it passes through different media with varying refractive indices.'
1150	
1151	
1152	
1153	
1154	
1155	
1156	
1157	'Counterfactual Caption': 'As the magnifying glass moves closer to the coin, the embossing details appear to shrink rather than enlarge, with the design becoming less visible and more blurred.'
1158	}
1159	
1160	e.g. Category of Thermal
1161	Instruction: You are a physicist specializing in thermodynamics ...
1162	
1163	Caption: A timelapse captures the gradual transformation of butter as the temperature rises significantly.
1164	
1165	{
1166	'Analysis': 'The process involves butter, which is initially solid, placed in an environment where the temperature is gradually increased. As the temperature rises, the butter begins to soften and eventually reaches a point where it starts to melt, transitioning from a solid to a liquid state. This transformation occurs over time, as the heat energy is absorbed by the butter, leading to a change in its molecular structure. The governing principles include the phase transition dynamics of fats and the conservation of energy, where heat is transferred from the environment into the butter, causing it to melt progressively.'
1167	
1168	
1169	
1170	
1171	
1172	'Counterfactual Caption': 'The timelapse immediately shows fully liquefied butter from the start, with no visible temperature increase or melting process observed.'
1173	
1174	}

Figure 13: Examples of physics-aware reasoning for counterfactual prompt construction across different physical domains. In the optics case (top), the model analyzes how light refracts through a magnifying glass and generates a counterfactual where the embossing shrinks rather than enlarges. In the thermodynamics case (bottom), the model reasons about heat transfer and phase transition of butter, then generates a counterfactual where butter is fully liquefied from the start, with no observable melting process. These examples illustrate how physics-aware reasoning allows the LLM to identify relevant entities, interactions, and governing principles, and then produce counterfactuals that are both visually plausible and explicitly violate the expected physical laws.

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Ablation of Physics-Aware Reasoning

Original Prompt

- ① A timelapse captures the transformation as water vapor in a humid environment comes into contact with a cool glass surface.
- ② A timelapse captures the transformation as steam in a kitchen environment comes into contact with a cool metal pot lid.

w/o Physics-Aware Reasoning

- ① *Counterfactual Caption:* 'A timelapse captures the transformation as water vapor in a humid environment **instantly freezes into solid ice upon contact with a cool glass surface.**'
- ② *Counterfactual Caption:* 'A timelapse captures the transformation as steam in a kitchen environment comes into contact with a cool metal pot lid, **instantly freezing into a solid layer of ice.**'

w/ Physics-Aware Reasoning

- ① *{Analysis:}* 'The process involves water vapor in the air coming into contact with a cooler glass surface, causing the vapor to condense into liquid water droplets due to the temperature difference. This transformation is governed by the principles of condensation, where the vapor reaches its dew point upon touching the cooler surface, releasing latent heat and forming droplets. Over time, these droplets may grow larger as more vapor condenses, eventually coalescing and possibly dripping down the surface. This process is influenced by the ambient humidity, the temperature of the glass, and the surrounding air pressure.'
- ② *Counterfactual Caption:* 'The glass surface is **instantly covered in water droplets from the beginning, without any observable condensation or gradual droplet formation.**'
- ② *{Analysis:}* 'The process begins with steam, which is water vapor in a gaseous state, rising in a kitchen environment where a pot is in use. This steam comes into contact with a cooler metal pot lid. As the steam touches the lid, it loses heat to the cooler surface, causing it to condense into liquid water droplets. This transformation from gas to liquid occurs gradually, as the heat transfer continues, and more steam condenses over time. The governing principles include heat transfer, specifically thermal conduction from the steam to the metal, and phase transition dynamics as the steam reaches its dew point and condenses into water droplets.'

Counterfactual Caption: 'The pot lid is **already covered in droplets from the start, with no observable steam or condensation process taking place.**'

Figure 14: Qualitative ablation of physics-aware reasoning for counterfactual prompt construction. We show two thermodynamics-related prompts with similar descriptions. Without physics-aware reasoning, the generated counterfactual prompts are generic and lack specificity, failing to capture the relevant physical process (e.g., condensation). In contrast, with physics-aware reasoning, the LLM first infers the detailed underlying physical phenomenon and then produces counterfactuals that are both more physically grounded and visually realistic.