MOSDT: Self-Distillation-Based Decision Transformer
for Multi-Agent Offline Safe Reinforcement Learning

Yuchen Xia! Yunjian Xu'*
IThe Chinese University of Hong Kong
ycxia@link.cuhk.edu.hk, yjxu®@mae.cuhk.edu.hk

Abstract

We introduce MOSDT, the first algorithm designed for multi-agent offline safe rein-
forcement learning (MOSRL), alongside MOSDB, the first dataset and benchmark
for this domain. Different from most existing knowledge distillation-based multi-
agent RL methods, we propose policy self-distillation (PSD) with a new global
information reconstruction scheme by fusing the observation features of all agents,
streamlining training and improving parameter efficiency. We adopt full parameter
sharing across agents, significantly slashing parameter count and boosting returns
up to 38.4-fold by stabilizing training. We propose a new plug-and-play cost binary
embedding (CBE) module, which binarizes cumulative costs as safety signals and
embeds the signals into return features for efficient information aggregation. On the
strong MOSDB benchmark, MOSDT achieves state-of-the-art (SOTA) returns in 14
out of 18 tasks (across all base environments including MuJoCo, Safety Gym, and
Isaac Gym) while ensuring complete safety, with only 65% of the execution param-
eter count of a SOTA single-agent offline safe RL method CDT. Code, dataset, and

results are available at this website: https://github.com/Lucian1115/MOSDT.git

1 Introduction

Offline reinforcement learning (Offline RL) leverages
static datasets to derive policies [[1]]. Its applications span
diverse domains, such as large language models (LLMs)
[2], robotics [3], and power systems [4]. Offline RL has
spawned specialized subfields, including offline multi-
agent RL (offline MARL) [5) 6] for systems with inter-
acting agents, and offline safe RL [7} 8] for safety-critical
problems. However, multi-agent offline safe RL (MOSRL)
remains largely unstudied. MOSRL seeks to learn safe
policies for multiple agents in an interaction-free way, of-
fering significant potential for distributed safety-critical
applications, like autonomous vehicle coordination [9]],
power grid scheduling [10], and robot collaboration [11].
While existing offline RL methods provide a solid foun-
dation, they may not fully address the complexities of
multi-agent cooperation, offline learning, and safety assur-
ance within such contexts.

Addressing MOSRL requires tackling the key challenges
from both offline MARL and offline safe RL. For offline

—
=]
i=—=1 MOSDB dataset

000

Reward-safety signal fused features
Data-wise considerations
Forward propagation

g}):} (0 \
= b = PisiS
Full parameter shared student networks

l Forward propagation PSD? T

@Teacher network

Model-wise considerations
ICost binary embedding MOSDT model
.

*Policy self-distillation

!
|
|
|
|
I
|
|
|
|
I
|
|
|
|
I
|
|
I
|
I
|
|
I
|
I
|
|
|
|

1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/

\
~

Figure 1: Training MOSDT on MOSDB.

MARL, the centralized training with decentralized execution (CTDE) framework has emerged as

*corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

a prevalent communication-free solution. Within this paradigm, knowledge distillation (KD) [[12]-
based methods (like MADTKD) [S]] show strong performance by training a teacher network and then
distilling policy from the teacher to students. Self-distillation (SD) [[13]] is a streamlined KD variant
with teacher-student integration and the synchronization of supervised learning and distillation. SD is
well-suited for multi-agent applications due to its efficiency. Despite the success of SD in computer
vision [13} 14} [15], its effectiveness in MARL remains untested. Besides, MARL methods generally
suffer from training instability resulting from dynamic policy improvements among different agents
(L6 [17]).

In offline safe RL, decision transformer (DT) [18]-based methods, such as CDT [7], achieve notable
performance by leveraging the causal transformer network [[19]. These approaches need targets for
returns and cumulative costs to launch the execution. Existing methods typically set cost targets
as specific values (like predetermined thresholds [7]), converging actual cumulative costs to the
predetermined values [20, 21]. Unfortunately, such convergence may lead to suboptimal and/or
potentially unsafe actions along trajectories. In addition, as causal transformers can only attend
to preceding tokens, they would overlook the cumulative cost or the return, specifically whichever
occurs later in the input sequence.

This work proposes MOSDT (multi-agent offline safe decision transformer), the first algorithm
tailored to MOSRL. Fig. [1|shows the process of training MOSDT on our proposed MOSDB dataset.
To streamline the training process and the network structure, we propose policy self-distillation (PSD)
to build an efficient CTDE framework instead of adopting the two-stage conventional KD (used
in MADTKD [5]]). For MARL, PSD distinguishes from SD [13]] with a new global information
reconstruction scheme by summing up the observation features of all agents. PSD integrates stu-
dent networks within the teacher network and is performed synchronously with policy supervised
learning—a pioneering design reducing training parameter count by 35% and training time by 24%.
MOSDT marks the first demonstration that SD is effective in MARL, hinting at broader applicability
for existing methods.

To ensure training stability, we adopt full parameter sharing across all agents, while other offline
MARL methods with sharing designs [22} 23] share a subset of parameters. Compared to the case
with no/partial parameter sharing, full parameter sharing significantly boosts returns for tasks with
three or more agents (in MuJoCo environment [24]): 10.1 to 38.4-fold for a three-agent task, 2.2
to 2.3-fold for a four-agent task, and 1.6 to 5.6-fold for a six-agent task. Full parameter sharing
significantly slashes training parameter count by 47% and execution parameter count by 58%, making
MOSDT much more lightweight and scalable.

To improve existing cost processing methods, we propose cost binary embedding (CBE), a plug-and-
play module consisting of cost binarization and safety signal embedding. CBE fuzzifies cost targets
to prevent actual cumulative costs from converging to predetermined values in execution. Towards
this goal, we binarize cumulative costs as safety signals during training. We embedded the safety
signals into returns, explicitly passing reward-cost correlations to causal transformers for sharper
information aggregation. While ensuring safety, CBE improves returns on 14 out of 18 tasks (across
all base environments, including MuJoCo [24], Safety Gym [25]], and Isaac Gym [26]) in MOSDT.

Finally, we build the MOSDB dataset by collecting training data from 2 online algorithms [27]
on all safe MARL tasks in Safety Gymnasium [28], following the online-collection paradigm in
DSRL [29] (a widely used single-agent safe RL dataset). Given the absence of direct baselines for
MOSRL, we follow [30] to compare MOSDT with centralized single-agent offline safe RL methods
on MOSDB. Extensive experiments demonstrate the state-of-the-art (SOTA) performance of MOSDT.
Ablation experiments validate the contributions of PSD, full parameter sharing, and CBE to return
enhancement and risk control.

Our contributions are: (1) MOSDT, the first MOSRL algorithm, achieving high parameter efficiency
and a streamlined training process by PSD. (2) A full parameter sharing design that stabilizes training
and makes MOSDT lightweight and scalable. (3) CBE, A plug-and-play module, offering an intuitive
alternative to specific cost targets and improving information aggregation. (4) MOSDB, the first
MOSRL dataset and benchmark, on which MOSDT achieves SOTA performance in 14 out of 18
tasks with only 65% of the execution parameter count of our base model CDT [77]].

2 Related work

Offline RL. DT [18] proposes a powerful paradigm that formulates offline RL as a sequence
modeling problem, inspiring subsequent research. For example, MGDT [31]] achieves rapid adaptation
to new tasks through fine-tuning. EDT [32] supports trajectory stitching by adjusting history lengths.
HDT [33] leverages subgoal states to make decisions. However, the performance of DT in MOSRL
remains unstudied.

Offline MARL For multi-agent systems, the CTDE framework eliminates information dependen-
cies between training and execution, bypassing the communication requirements posed by partial
observability. Recent works [5, 134} 35]] adopt KD to implement the CTDE framework. MADTKD
[S] aligns the output between partially observable student DTs and a globally observable teacher
DT. PTDE [34] tailors the global information to each agent and distills it into partial observations.
LDPD [35] uses LLMs as teachers to train compact students. The two-stage training of KD may
lead to scalability issues in MARL [5]. SD [13]] offers a streamlined alternative to KD, although its
suitability for MARL remains unknown. Additionally, while existing offline MARL methods at most
partially share parameters across agents [22} [23]], full parameter sharing has not been attempted.

Offline safe R DT-based methods again show impressive performance. For example, CDT
[7] sends augmented data into a causal transformer in the order of returns, cumulative costs, and
observations to predict actions. Saformer [21] leverages cost-related tokens and posterior safety
checks to craft constraint-compliant policies. SDT [20] employs signal temporal logic to define
time-sensitive safety rules for agents. Despite these strides, predetermined cost targets would
make actual cumulative costs converge to predetermined targets. Moreover, due to the masked
attention mechanism, causal transformers inherently overlook either the cumulative cost or the
return—whichever appears later in the sequence.

Most offline safe RL algorithms are trained on the DSRL dataset [29]. It is gathered from environ-
ments like Safety Gymnasium [28]]. However, there is a lack of datasets tailored for MOSRL.

3 Methods

Following CDT [[7], we formulate MOSRL as a probability distribution learning problem, in which
agent i (z = 1,..., N and N is the number of agents) uses offline data to learn a safe policy
w8 x A* — [0, 1], where S* is the state space and A" is the action space.

For MOSRL, we propose the first algorithm, MOSDT. Following CDT [7], we adopt DT as the
base network. Inspired by MADTKD [5]], we also build the CTDE architecture through distillation.
Specifically, for agent ¢ at time ¢, in centralized training, a teacher network 77 regresses its action a;
from a historical trajectory T; = (Ry, C1,01,a1,..., R, Ct, o), containing the global information

preceding ai. R; = Zﬁit r, is the system reward return (r, is the system reward at time 7,

and M is the maximum episode length). C; = Zf/lt ¢, 1s the system cumulative cost (c, is the
system cost at time 7). o; is the global observation, and a; is the joint action ground truth. In
decentralized execution, @ is predicted by a student network 7% from partial information 7,/ =
(Rl, Ci ol al, ... R CY ot) For the tasks where environments offer only system rewards and

costs (cf. Tablein Appendix[C), we set R} = R, and C} = C.

3.1 CTDE via policy self-distillation (PSD)

Given the intrinsic applicability of SD [[13] for MARL, we propose to utilize it to build the CTDE
architecture. Student outputs, teacher outputs, and ground truths are aligned by three synchronous
processes during training: decentralized student supervised learning (DSSL), centralized teacher
supervised learning (CTSL), and policy self-distillation (PSD). Fig. [J]illustrates the network structure
of MOSDT.

Decentralized student supervised learning (DSSL) Each agent adopts an individual DSSL module
based on CDT [7] to directly align the policy to ground truths. We propose to adopt full parameter
sharing across all DSSLs (as detailed in Section[3.2). For agent i at time ¢, the details of DSSL

/ //@:7 PSD Fi, e oTSL, ~ MQSDT\
AN

- (at time t)

(ai < Hg P Dss@\ (abe{nil-7t,—{pi] &)
~_/ \ ~_~/ /\f/

Frp¢ ot Far \ Fo,t‘
A A A AN T

)
2
o
o
a
=
8
=]
»n
1S
=
"8
=]
7]
g
a
-
-

.
{}
2@

— | | [Teacher causal transformer]

\
|
|
|
|
|
|
|
|
|
|
|
|
|

| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

F, ;: global feature

(_ J:encoder TT~o

H: action head

P: feature projector
\\(\ _): policy supervised learning

~<

Full

/

Figure 2: The network structure of the proposed MOSDT algorithm. The purple areas indicate
our proposed innovative modules. The green areas represent data, while the blue areas represent
networks. We enlarge one of the DSSL modules and display it in detail in the upper left corner. We
only illustrate the situation at time ¢.

are shown in the “DSSL“’ box in Fig. I Each input is encoded into a feature representation by a
distinct encoder. In this encodlng process, our proposed CBE module binarizes O} as a safety signal
B; and obtains a reward-safety signal fused feature ff, ¢ (as detailed in Section | The encoded
features fji (x* € {RB, o0, a}) are refined by a student causal transformer. We use F7 + to denote the
refined features. a; is generated by a student action head H}; from the refined observation feature

FO’It Following MADTKD [3], we insert a student feature projector P before H to perform feature
distillation.

Supervised learning for student policies (the blue dashed circles at the top-left of Fig. [Z) minimizes
the following loss function:

M
i 1 i (0| T i i
LossS:M;—logﬂs (ap | T') — NoH (%) ,)
where M is the training sequence length, and H (W?S) weighted by learnable \% is a widely used
entropy regularization term [36].

Centralized teacher supervised learning (CTSL) CTSL directly aligns teacher outputs with
ground truths. At time ¢, the details of CTSL are shown in the “CTSL,” box in Fig. 2] Inspired by the
success of SD in computer vision [13} 114} [15], we integrate student networks into the teacher network
for decision making. To this end, we propose a new global information reconstruction scheme for SD
in MARL, by summing up F? across all agents to gain a global feature:

*t—z e)

as indicated by the purple straight arrows in Fig. [2} Similar to the DSSL module, a teacher causal
transformer and a teacher action head H. (with a teacher feature projector P%) are used to map the
global feature F, ; into the action output a;. The teacher causal transformer is shared across agents,
while P4 and H% possess distinct parameters for each individual i.

We keep F!, in the computational graph of Eq (2) instead of detaching it to get better results
(cf. Tablemm Append1x- Through Eq. (2), students serve as components of the teacher for
teacher-student policy integration, and the teacher 1s able to access global information 7;, achieving a
centralized teacher training.

Supervised learning for the teacher policy (the blue dashed circles in the “CTSL,” box in Fig. [2)
minimizes the following loss function:

M
o o : :
Lossl, = i Z —log 7 (ay | T¢) — NpH () (3)

t=1
where A% is the learnable weight for entropy regularization.

In execution, we only use student policies 7% to predict actions a; from partial information 7",
decentralizing the execution.

Policy self-distillation (PSD) PSD aligns student outputs with teacher outputs, achieving a novel in-
tegration of SD and MARL. We bridge the performance gap between partially observable students and
the teacher with global information access by aligning both their actions and feature representations.
We minimize the following loss function:

Losszb =waDgky, (WZS | W%w) + wFH}";S — fé’THQ, (@]

as shown by the two purple curved arrows with “PSD” in Fig. [2} Dy, (* | *) is the KL divergence.

F' 4 is the whole observation feature generated by the student feature projector P%, and F? ;. is the

whole observation feature generated by the teacher feature projector Ps.. |||, is the Euclidean norm.
w4 and wr are weights that indicate the importance of action and feature distillation, respectively
(both are set to 0.5 with reference to MADTKD [5])). In Eq. , the teacher policy 7% and the teacher
projected feature Fg’T are detached from the computational graph so that PSD only updates student
policies.

Following SD [13]], we carry out PSD synchronously with DSSL and CTSL to streamline the training
process. Specifically, we minimize the following total loss function:

N
Loss = Z Loss's 4+ Loss’ + Loss',. 4)
i=1

All loss functions are averaged across samples in a mini-batch.

Network details Network details are consistent with those in CDT [7] if available. The data
augmentation in CDT [7] is also adopted in MOSDT with the same settings. We use linear layers
as the encoders. Timestamp embeddings are added to the encoded features to incorporate temporal
information. Feature projectors are linear layers followed by GELU activation functions [37]. Each
action head consists of 2 linear layers: one for computing mean values of action distributions and
another for standard deviations (the latter is not used in execution). More network details of MOSDT
are summarized in Appendix [A.T] The algorithms of the training and execution processes of MOSDT
are presented in Appendix [A.3]

3.2 Full parameter sharing among agents

To tackle the training instability problem caused by dynamic policy improvements among different
agents and to improve model scalability in offline MARL, we propose to adopt full parameter sharing
across all agents, for the first time. Specifically, each student shares identical parameters, as expressed
in the following equation:

Ty = =x¥, (6)
implying the equivalence of each network component across students throughout the training process.
In practice, we only create one instance of the Student class for all agents.

In the entire MOSDT network, only the teacher action heads and the teacher feature projectors are
distinct for different agents.

3.3 Cost binary embedding (CBE)

Cost binary embedding (CBE) is a straightforward and plug-and-play method (the purple dashed
“CBE” box in Fig. [2) that provides an intuitive alternative to specific cost targets and enhances
information aggregation. CBE consists of cost binarization and safety signal embedding.

Cost binarization In DT-based offline safe RL methods [7, 21} 20]], at the beginning of execution
(t = 1), Ry and C need to be assigned as targets. Most existing algorithms tend to generate
trajectories with cumulative costs approaching the predetermined targets, leading to suboptimal
and/or potentially unsafe actions along trajectories.

To tackle this issue, CBE applies fuzzification to cost targets, preventing the cumulative costs along
actual trajectories from approaching predetermined specific values during execution. Towards this
goal, in training we map C} as a safety signal:

; 0 ifCi<ec

B} = L= 7

¢ {1 otherwise, 7
where c is the cost threshold (often fixed). “0” represents “safe”, and “1” represents “unsafe”. After
training MOSDT with Eq. (8)), we input By = 0 to the model throughout execution, guiding the
model to yield safe trajectories. (R] is set to a task-related large value as CDT [[7]).

Safety signal embedding CDT [7] separately processes R: and C; by a causal transformer, which
prevents the model from capturing their correlations during the processing of R! until C; starts being
processed, due to the masked attention mechanism. To allow MOSDT to always access the prior
information about the reward-cost correlation, we embed the safety signal feature f}é,t into the return

feature f} , by concatenating them together. By slight abuse of notation, we use f% , to denote the
fused feature:

f}'?lB’t = concatenate (f}éyt, f};vt) . ®)
[k and fh , are of 64 dimensions, half the size of f} , and f! ,. Their concatenation results in a
128-dimensional f}; ;, ensuring the dimensional consistency throughout MOSDT.

3.4 MOSDB dataset

We introduce MOSDB, the first dataset and benchmark for MOSRL. To obtain diverse trajectory
data, we train 2 online safe MARL methods, MACPO and MAPPO-Lagrangian [27], across all 18
safe MARL tasks in Safety Gymnasium [28]] (except for tasks in “Goal 0” series with constantly zero
cost). For each task, training was conducted with 3 cost thresholds: 25 (the default), 15, and 5 (two
lower values selected to ensure dense trajectory distributions in sub-threshold regions). All other
training hyperparameters retained their default settings. The collected trajectory data is filtered by
the density filter in the DSRL dataset [29]] to maintain suitable densities over return-cumulative cost
planes (cf. Fig. in Appendix . MOSDB dataset comprises approximately 2 x 107 data tuples,
occupying 18.7 GB on Linux.

The MOSDB benchmark contains 3 task sets:
* MOS Velocity. Robots are required to move as quickly as possible while adhering to velocity

constraints. Multiple agents need to control distinct body segments cooperatively.

* MOS Goal. Each agent is required to reach its color-designated target while avoiding
collisions and hazardous terrain.

e MOS Isaac Gym. It focuses on collaborative robotic tasks, such as coordinated ball-
handovers between dual manipulators, with enforced safety constraints on joint movements.

4 Experiments

We use PyTorch to program on Linux. Experiments are conducted at an NVIDIA® GeForce
RTX™ 4090 D GPU (24 GB VRAM) with an AMD® Ryzen™ 9 7950X CPU.

4.1 MOSDB benchmark and the performance of MOSDT

We use the MOSDB dataset to train MOSDT and all single-agent offline safe RL methods provided
by the DSRL dataset [29]:

* BC [7]: Behavior cloning.

Table 1: MOSDB benchmark and the performance of MOSDT. Results are in the “return (cumulative
cost)” format. The cost threshold c is 25 (consistent with the original online tasks), and the maximum
return of each task is shown in Table[T3]in Appendix [C| Blue: Safe policies with the highest rewards.
Red: Unsafe policies. Due to space constraints, the sample standard deviation across multiple runs of

each experiment is shown in Table[TT]in Appendix [B.6]

Task BC[7 BCQ-Lag [8 BEAR-Lag [§] CDT|[7 COptiDICE [41] CPQ [8] MOSDT (ours)
MOS Velocity

2x1Swimmer 5.08 (7.27) 8.13 (11.53) 5.24(9.33) 9.25 (12.70) 0.97 (12.13) 8.20 (13.30) 11.64 (20.33)
2x3HalfCheetah 2043.94 (22.83) 2162.67 (62.43) 2181.00 (57.90) 2087.33 (40.03) 2029.00 (10.03) 406.90 (8.97) 2052.64 (22.27)
2x3Walker2d 1512.75 (0.00) 1578.59 (10.17) 1515.60 (3.53) 1526.43 (3.67) 1540.41 (0.00) 315.20(15.97) 1584.87 (3.83)
2x4Ant 2361.63 (0.00) 2472.33 (6.77) 2217.89 (0.90) 2116.81 (7.77) 2125.14 (1.67) -1488.45 (0.50) 2054.88 (0.87)
3x1Hopper 31.63 (0.30) 40.20 (1.83) 82.24 (8.33) 27.15 (0.00) 69.02 (7.40) 121.58 (1.07) 1122.23 (4.00)
4x2Ant 831.82 (0.00) 779.85 (0.00) 792.78 (0.00) 923.72 (0.00) 816.86 (0.00) -466.82 (0.83) 2083.85(3.53)
6x1HalfCheetah 447.13 (0.00) 339.63 (0.03) 334.62 (0.00) 397.80 (0.00) 321.46 (0.00) -201.40 (0.87) 1853.64 (21.97)
9I8Humanoid 575.73 (20.70) 581.42(19.27) 571.16 (18.57) 545.80 (20.87) 554.40 (15.27) 404.48 (18.53) 444.71 (22.80)
MOS Goal

Multi-Ant1 23.41 (17.00) 15.78 (23.85) 21.31 (9.50) 28.94 (10.67) 33.75 (14.00) 0.61 (0.00) 38.38 (14.50)
Multi-Ant2 2.59 (8.00) 1.90 (21.05) 2.71 (16.17) 1.93 (17.50) 3.55(17.33) 0.51 (0.00) 2.96 (7.50)
Multi-Point1 6.47 (17.17) -1.43 (25.48) 4.28 (7.67) 9.25(14.83) 2.11(8.17) 2.84 (7.67) 9.65 (12.67)
Multi-Point2 -0.06 (4.33) -8.59 (36.53) 1.20 (14.00) 3.07 (19.33) -1.23 (18.83) 0.95 (9.67) -1.08 (21.00)
MOS Isaac Gym

CloseDrawerMA -5.23 (1.00) -5.15 (0.80) -4.49 (3.57) 3.45 (0.00) -5.28 (0.00) -5.43 (0.00) 3.45 (0.00)
PickAndPlaceMA -5.72 (3.73) -4.92 (0.27) -4.26 (0.00) -5.50 (0.00) -7.58 (2.67) -5.32(2.47) -2.67 (0.00)
CatchFingerMA 0.19 (0.00) 0.20 (2.60) 0.23 (0.00) 0.18 (7.60) 0.22 (0.00) 0.11 (6.23) 0.25 (6.33)
CatchJointMA 0.21 (0.00) 0.19 (0.00) 0.20 (0.00) 0.26 (0.80) 0.24 (0.00) 0.15(5.97) 0.31 (0.00)
OverFingerMA 0.43 (0.00) 0.46 (0.07) 0.44 (0.00) 0.52 (0.00) 0.44 (0.00) 0.39 (8.00) 0.52 (0.00)
OverJointMA 0.45 (0.00) 0.47 (0.00) 0.46 (0.00) 0.46 (5.63) 0.44 (0.00) 0.42 (8.00) 0.47 (1.03)
Summary 0 SOTA (safe) 3 SOTA (unsafe) 0 SOTA (unsafe) 4 SOTA (unsafe) 0 SOTA (safe) 0 SOTA (safe) 14 SOTA (safe)

* BC-Safe [7]: Behavior cloning using only safe trajectories (results are presented in Table[3]
in Appendix [B.T).

* BCQ-Lag [8]: A BCQ [38]-based method incorporating cost thresholds with PID-
Lagrangian [39].

* BEAR-Lag [8]: A BEAR [40]-based method that deals with safety constraints by PID-
Lagrangian [39].

* CDT [7]: A DT [18]-based method that sends augmented data into a causal transformer in
the order of returns, cumulative costs, and observations to predict actions.

* COptiDICE [41]]: A OptiDICE [42]-based method using the Lagrangian approach to main-
tain safety.

* CPQ [8]]: A constrained Q-updating method that incorporates penalties for unseen or unsafe
actions.

Baseline algorithms are trained within the CTCE framework, accessing global information and thus
yielding better performance. All methods are trained for 10° steps, with evaluations conducted at 40
checkpoints during training. Each evaluation is averaged over 10 interaction episodes with Safety
Gymnasium [28]]. Experiments are repeated across 3 fixed random seeds. All above hyperparameters
are consistent with those in the DSRL dataset [29]. More training and evaluation settings are presented
in Appendix[A.2] We report the highest returns achieved under the cost threshold as final performance.
For unsafe policies, we report the returns with the lowest cumulative costs. Table[T] summarizes the
MOSDB benchmark and the performance of MOSDT.

While the strong baseline methods leverage global information, MOSDT utilizes only partial in-
formation and achieves the highest returns on 14 out of 18 tasks (across all base environments
including MuJoCo [24l], Safety Gym [23l], and Isaac Gym [26]) while guaranteeing safety on all tasks,
demonstrating its outstanding capability in balancing return maximization and risk control. MOSDT
delivers very strong performance in tasks with more than three agents, “3x1Hopper”, “4x2Ant”, and
“6x 1 HalfCheetah”, indicating a remarkable capability to address multi-agent challenges. MOSDT
attains SOTA returns across all challenging “MOS Isaac Gym” tasks with high-dimensional action
spaces (cf. Table[I3]in Appendix [C), demonstrating its superiority in making complex decisions.

We evaluate the parameter efficiency of MOSDT against its base model CDT [[7] by averaging their
total/execution parameter counts across all tasks. The parameter counts of CDT [7]], MOSDT, and
MOSDT variants are presented in Fig. [3] Due to the lightweight student network design and the full
parameter sharing, MOSDT requires only 65% of the execution parameter count of CDT [[7] while

Table 2: Ablation study results. Results are in the “return (cumulative cost)” format. The cost
threshold c is 25 (consistent with the original online tasks). The maximum return of each task is
shown in Table [13|in Appendix |C| “|}”’: Policies with lower returns than full MOSDT or unsafe
policies. Red: Unsafe policies. “Partial PS”: Without parameter sharing for student action heads. “No
PS”: No parameter sharing. “w/o SE”: Without safety signal embedding. Due to space constraints, the
sample standard deviation across multiple runs of each experiment is shown in Table [12|in Appendix

B0,

Task MOSDT w/o PSD Partial PS No PS w/o SE w/o CBE

MOS Velocity

2x1Swimmer 11.64 (20.33) 11 11.58 (9.40) 1 10.97 (15.33) 110.32 (4.20) 1} 10.40 (16.80) |1 11.08 (23.00)
2x3HalfCheetah 2052.64 (22.27) |1 2081.00 (39.83) |} 2050.14 (23.00) |} 2013.23 (22.13) | 2034.48 (22.03) |} 2009.30 (20.63)
2x3Walker2d 1584.87 (3.83) | 1576.03 (4.23) 1585.52 (2.07) 1597.48 (2.03) 11 1577.04(2.93) | 1568.17 (6.77)
2x4Ant 2054.88 (0.87) 112033.27 (2.97) 112049.88 (1.73) 2059.04 (7.90) 12008.38 (6.17) 1} 2023.90 (2.93)
3x1Hopper 1122.23 (4.00) 1239.49 (10.67) 11110.93 (1.33) 129.26 (0.00) U 1115.51 (13.60) |} 1112.48 (6.03)
4x2Ant 2083.85(3.53) 2189.01 (5.57) 11962.59 (0.00) 1914.51 (0.00) 2128.76 (3.43) 112070.38 (8.00)
6x1HalfCheetah 1853.64 (21.97) | 1823.33 (27.27) |} 1169.26 (0.10) |} 528.80 (0.00) 1 1835.89 (22.93) |} 1823.27 (22.53)
9I18Humanoid 44471 (22.80) 477.70 (21.50) 474.87 (21.73) 482.17 (21.60) 453.52 (21.67) 456.21 (21.87)
MOS Goal

Multi-Antl 38.38 (14.50) 1.37.79 (20.33) 1 36.87 (10.50) 11 33.91 (8.83) 40.13 (19.33) 130.93 (16.50)
Multi-Ant2 2.96 (7.50) 5.40 (11.83) 4.60 (11.67) 112.29(11.33) 12.03(1.41) 12.28 (11.83)
Multi-Point1 9.65 (12.67) 13.09 (14.67) 10.42 (14.83) 14.13 (18.67) 10.87 (12.33) 16.90 (12.50)
Multi-Point2 -1.08 (21.00) 1-2.17 (11.50) 0.33 (7.83) 1.18 (16.67) 2.84 (17.00) 11-2.20 (8.67)
MOS Isaac Gym

CloseDrawerMA -3.45 (0.00) 1}.-3.74 (0.00) | -3.46 (0.00) -3.32(0.00) 1 -3.49 (0.00) -3.21 (0.00)
PickAndPlaceMA -2.67 (0.00) -2.23 (0.00) -2.24 (0.00) -2.00 (0.00) -2.34(2.67) 1} -2.71 (0.00)
CatchFingerMA 0.25 (6.33) 10.21 (4.40) 10.23 (5.33) 110.20 (3.37) 11 0.22(2.87) 10.21 (7.40)
CatchJointMA 0.31 (0.00) 10.23 (0.00) 110.27 (0.00) 110.26 (0.00) 1.0.22 (0.00) 10.23 (0.00)
OverFingerMA 0.52 (0.00) 110.45 (0.93) 110.48 (0.00) 110.44 (0.00) 10.45 (0.00) 0.60 (3.53)
OverJointMA 0.47 (1.03) 110.44 (0.30) 110.46 (0.00) 11045 (0.00) 1.0.45 (0.00) 0.56 (5.17)
Summary (safe) 12 |} (unsafe) 12 | (safe) 11 | (safe) 12 |} (safe) 14 || (safe)

achieving better performance. Therefore, MOSDT is well-suited for memory-constrained application
scenarios, such as micro-robots.

MOSDT consumes less execution time than CDT [7] owing to the lightweight design of the student
network. MOSDT performs an inference for one agent in 0.80 milliseconds on average, compared to
0.86 milliseconds for CDT [[7]. Detailed efficiency analysis is presented in Appendix

4.2 Ablation study

We conduct massive ablation experiments to evaluate 16
the effectiveness of each component in MOSDT. The 4 Training parameters) 43
training and evaluation settings are consistent with S Exccution parameters
those in Section]l Table 2l summarizes the ablation 2 12 = 113
study results. g 1.0
i 0.8 0.76) 72 0.76 0.76

The effect of PSD To analyze the effectiveness of 5

. L0 5 0.6
PSD, we remove it by minimizing only Eq. (I)) dur- 2 047 047 047
ing training, converting MOSDT into a decentralized £ 04
training with decentralized execution (DTDE) archi- 0.2
tecture. The “w/o PSD” column of Table 2] shows 0.0

CDT MOSDT Using KD NoPS w/o CBE

the critical role of PSD. Its absence degrades returns M
ethod

on 12 out of 18 tasks and renders the model unsafe.
Given that safety is a fundamental requirement in
MOSRL, PSD is vital for MOSDT.

We further verify the effectiveness of the action distil-
lation and the feature distillation (the two terms of Eq.
(@), finding that removing either impairs performance

(cf. Table[f]in Appendix [B.3).

To analyze the efficiency improvements provided by
PSD, we train MOSDT by the conventional KD used
in MADTKD [5] for comparison. In this setting, policy distillation is performed after the completion
of centralized teacher training. The comparison between the “MOSDT” column and “Using KD”

Figure 3: Number of parameters. “Using
KD”: Using conventional KD instead of PSD.
“No PS”’: No parameter sharing. MOSDT
only requires 65% of the execution param-
eter count of CDT. PSD reduces the train-
ing/execution parameter counts by 47%/58%.

(a) Reward return (b) Reward return with no PS (c) Cumulative cost
60 1 ags]] [emmmemmeem e
275 Threshold
2 20
E £ 25.0 8
£ 4001 3 2
E g 22.5 :g 10,
5200 5 £
—— MOSDT 20.0 A O —— MOSDT
—— NoPS /ﬁ 0 —— NoPS
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Training step (k) Training step (k) Training step (k)

Figure 4: Visualization of the training on the “3x1Hopper” task. “No PS”: No parameter sharing. The
purple curve in Subgraph (a) is enlarged and displayed in detail in Subgraph (b) for better viewing.
Shaded areas represent sample standard deviations across multiple runs. We adopt the smoothing in
TensorBoard to better view time-series data trends.

column in Fig. reveals that PSD reduces the number of training parameters by 35% compared to
using KD, due to the proposed teacher-student policy integration. In addition, PSD decreases the
average training time by 24% (cf. Table|5|in Appendix through the synchronization of policy
supervised learning and policy distillation.

The effect of full parameter sharing To verify the effects of full parameter sharing, we train
MOSDT with no parameter sharing. The Comparison between the “MOSDT” column and “No PS”
column of Table 2]reveals that full parameter sharing enhances returns in 11 out of 18 tasks without
compromising safety. We observe significant improvements on tasks involving at least three agents in
MuJoCo environment [24]: a 38.4-fold increase on the “3x1Hopper” task with three agents, a 2.3-fold
increase on the “4x2Ant” task with four agents, and a 3.5-fold increase on the “6x1HalfCheetah” task
with six agents.

To verify the role of full parameter sharing in stabilizing training, we visualize the training process
on the “3x1Hopper” task with full and no parameter sharing in Fig. 4] Fig. 4] (a) shows a constantly
rising return curve with full parameter sharing, contrasting with a persistently low return curve
without it. Focusing on the case without full parameter sharing in Fig. [(b), the return curve exhibits
a fluctuation with a sharp decline in the early training stage, indicating instability. Additionally, the
absolute variation coefficient across multiple runs is 0.27 and 0.35 (averaged over all tasks) with full
and no parameter sharing, further showing the stabilizing effect of full parameter sharing.

Fig. |4|(c) compares the cumulative cost curves with full and no parameter sharing. With full parameter
sharing, MOSDT engages in more aggressive exploration during training, achieving an effective
return-cost tradeoff.

To benchmark against partial parameter sharing, we keep the sharing of all parameters except the
student action heads H§. The result is shown in the “Partial PS” column of Table [2| indicating that
performance degradation occurs on 12 out of 18 tasks. Training MOSDT without parameter sharing
for any one of the network components causes performance loss on 12 to 14 (out of 18) tasks (cf.

Table 8]in Appendix [B.4).

In Fig. 3] the comparison between the “MOSDT” and “No PS” columns shows that full parameter
sharing substantially reduces the number of training parameters by 47% and the number of execution
parameters by 58%, contributing to the scalability of MOSDT. Full parameter sharing introduces no
additional time consumption in both training and execution (cf. Table[5|in Appendix [B.2).

The effect of cost CBE To demonstrate the efficacy of CBE, we set cost targets as the given
threshold and separately send return features and cumulative cost features into the causal transformer
as CDT [7]]. The comparison between the “MOSDT” and “w/o CBE” columns in Table reveals
that CBE increases returns on 14 out of 18 tasks, covering all base environments including MuJoCo
[24]], Safety Gym [25], and Isaac Gym [26]. In addition, CBE introduces no additional parameter
requirement or computational burden (cf. Appendix[B.2). As a plug-and-play method, CBE can be
seamlessly integrated into existing safe RL algorithms.

The comparison between the “MOSDT” and “w/o SE” columns in Table [2] shows that the safety
signal embedding boosts returns on 12 out of 18 tasks. It enables MOSDT to always access the prior
information of correlations between returns and cumulative costs, avoiding MOSDT overlooking
either of them (whichever arises later in the input sequence).

According to the training curves (cf. the link in the abstract), CBE has three main advantages on
training dynamics:

» Stabilizing training. On most tasks (e.g., “2x3HalfCheetah”, ‘“2x3Walker2d”, and
“3x1Hopper”), CBE results in smoother learning curves, compared with MOSDT with-
out CBE. CBE mitigates volatility and reduces sharp declines. The cost binarization in CBE
eliminates the noise in the cost information, thereby stabilizing the training.

Better training initialization. In most tasks (e.g., “2x4Ant”, “4x2Ant”, and “Multi-Point1”),
CBE yields higher returns with safe cumulative costs at the beginning of training. CBE
directly transmits the prior information about the reward-cost correlation to MOSDT by
embedding safety signals into returns, enabling agents to learn more efficiently. The cost
binarization in CBE eliminates the noise of cost data, improving data efficiency, thereby
offering a better training initialization.

Better safety control. In most tasks (e.g., “2x1Swimmer”, “2x4Ant”, and “OverFingerMA”),
CBE yields cumulative cost learning curves with faster and more stable convergence. For 11
out of 18 tasks, CBE reduces the cumulative costs (cf. the ablation study results in Table 2).
CBE provides better safety control by improving the processing of cost information.

Summary PSD is indispensable for safety, while full parameter sharing and CBE deliver the most
substantial and the broadest return enhancements, respectively. These three components together
enable MOSDT to address the challenges of multi-agent cooperation, offline learning, and safety
assurance, achieving SOTA overall performance on MOSDB. Moreover, they reduce parameter
counts and time consumption instead of introducing additional overhead.

4.3 Analysis of unsafe cases

There are three major causes for the violation of safety constraints:

* High risk in the early stage of training. As shown in the training curves (cf. the link in the
abstract), most failure cases show excessive cumulative costs at the initial stages of training.
For example, on the “2x3HalfCheetah” task (the cost limit is 25), when 10% of the training
(10k steps) is completed, the complete MOSDT only yields a cumulative cost of 13.1, while
the MOSDT without PSD yields a cumulative cost of 18.8, and CDT [7]] yields a cumulative
cost of 62, resulting the violation of safety constraints of the latter two methods (cf. Tables!T]

and[2).

Instability of the cumulative costs in training. In most failure cases, the training curves of
cumulative costs show severe fluctuations (e.g., the training curves of BCQ-Lag [8] on the
“Multi-Point2” task). This instability indicates that the model often enters unsafe states and
cannot maintain safety.

* Lack of communication among agents. Maintaining global safety requires cooperation
among agents. Lack of communication among agents could cause them to violate safety
constraints. For example, in the “2x3HalfCheetah” task, rollout visualizations of the MOSDT
without PSD (i.e., lacking centralized training) revealed that the agent’s hind leg persistently
accelerated, while its front leg remained stationary to decelerate. This uncoordinated action
led to over-speeding and eventual task failure (cf. Table[2).

5 Conclusion

This work lays the foundation for MOSRL, providing its first algorithm MOSDT with the first dataset
and benchmark MOSDB. Leveraging a novel architecture integrating PSD, full parameter sharing,
and CBE, MOSDT achieves a superior tradeoff among returns, safety, and scalability on MOSDB,
compared to SOTA single-agent offline safe RL methods (in the CTCE framework).

10

References

[1] R. F. Prudencio, M. R. Maximo, and E. L. Colombini, “A survey on offline reinforcement
learning: Taxonomy, review, and open problems,” IEEE Transactions on Neural Networks and
Learning Systems, 2023.

[2] R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn, “Direct preference
optimization: Your language model is secretly a reward model,” Advances in Neural Information
Processing Systems, vol. 36, pp. 53 728-53 741, 2023.

[3] S. Sinha, A. Mandlekar, and A. Garg, “S4rl: Surprisingly simple self-supervision for offline
reinforcement learning in robotics,” in Conference on Robot Learning. PMLR, 2022, pp.
907-917.

[4] G. Zhang, C. Zhang, W. Wang, H. Cao, Z. Chen, and Y. Niu, “Offline reinforcement learning
control for electricity and heat coordination in a supercritical chp unit,” Energy, vol. 266, p.
126485, 2023.

[5] W.-C. Tseng, T.-H. J. Wang, Y.-C. Lin, and P. Isola, “Offline multi-agent reinforcement learning
with knowledge distillation,” Advances in Neural Information Processing Systems, vol. 35, pp.
226-237, 2022.

[6] Y. Yang, X. Ma, C. Li, Z. Zheng, Q. Zhang, G. Huang, J. Yang, and Q. Zhao, “Believe what you
see: Implicit constraint approach for offline multi-agent reinforcement learning,” Advances in
Neural Information Processing Systems, vol. 34, pp. 10299-10312, 2021.

[7] Z.Liu, Z. Guo, Y. Yao, Z. Cen, W. Yu, T. Zhang, and D. Zhao, “Constrained decision transformer
for offline safe reinforcement learning,” in International Conference on Machine Learning.
PMLR, 2023, pp. 21 611-21630.

[8] H. Xu, X. Zhan, and X. Zhu, “Constraints penalized g-learning for safe offline reinforcement
learning,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 8, 2022,
pp- 8753-8760.

[9] Y. Chen, C. Ji, Y. Cai, T. Yan, and B. Su, “Deep reinforcement learning in autonomous car path
planning and control: A survey,” arXiv preprint arXiv:2404.00340, 2024.

[10] X. Chen, G. Qu, Y. Tang, S. Low, and N. Li, “Reinforcement learning for selective key
applications in power systems: Recent advances and future challenges,” IEEE Transactions on
Smart Grid, vol. 13, no. 4, pp. 2935-2958, 2022.

[11] B. Singh, R. Kumar, and V. P. Singh, “Reinforcement learning in robotic applications: a
comprehensive survey,” Artificial Intelligence Review, vol. 55, no. 2, pp. 945-990, 2022.

[12] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” arXiv
preprint arXiv:1503.02531, 2015.

[13] L. Zhang, J. Song, A. Gao, J. Chen, C. Bao, and K. Ma, “Be your own teacher: Improve
the performance of convolutional neural networks via self distillation,” in Proceedings of the
IEEE/CVF international conference on computer vision, 2019, pp. 3713-3722.

[14] L. Zhang, C. Bao, and K. Ma, “Self-distillation: Towards efficient and compact neural networks,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 8, pp. 4388-4403,
2021.

[15] Z. Allen-Zhu and Y. Li, “Towards understanding ensemble, knowledge distillation and self-
distillation in deep learning,” arXiv preprint arXiv:2012.09816, 2020.

[16] Z.Zhu, M. Liu, L. Mao, B. Kang, M. Xu, Y. Yu, S. Ermon, and W. Zhang, “Madift: Offline multi-
agent learning with diffusion models,” Advances in Neural Information Processing Systems,
vol. 37, pp. 4177-4206, 2024.

[17] P.Barde, J. Foerster, D. Nowrouzezahrai, and A. Zhang, “A model-based solution to the offline
multi-agent reinforcement learning coordination problem,” arXiv preprint arXiv:2305.17198,
2023.

[18] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch, “Decision transformer: Reinforcement learning via sequence modeling,” Advances
in neural information processing systems, vol. 34, pp. 15084-15097, 2021.

11

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, .. Kaiser, and
I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems,

vol. 30, 2017.

[20] Z. Guo, W. Zhou, and W. Li, “Temporal logic specification-conditioned decision transformer
for offline safe reinforcement learning,” arXiv preprint arXiv:2402.17217, 2024.
[21] Q. Zhang, L. Zhang, H. Xu, L. Shen, B. Wang, Y. Chang, X. Wang, B. Yuan, and D. Tao,

“Saformer: A conditional sequence modeling approach to offline safe reinforcement learning,
arXiv preprint arXiv:2301.12203, 2023.

[22] Z.Zhu, M. Liu, L. Mao, B. Kang, M. Xu, Y. Yu, S. Ermon, and W. Zhang, “Madift: Offline multi-
agent learning with diffusion models,” Advances in Neural Information Processing Systems,
vol. 37, pp. 4177-4206, 2024.

[23] Q. Tian, K. Kuang, F. Liu, and B. Wang, “Learning from good trajectories in offline multi-agent
reinforcement learning,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 37, no. 10, 2023, pp. 11 672-11 680.

[24] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,” in
2012 IEEE/RSJ international conference on intelligent robots and systems. 1EEE, 2012, pp.
5026-5033.

[25] A. Ray, J. Achiam, and D. Amodei, “Benchmarking safe exploration in deep reinforcement
learning,” arXiv preprint arXiv:1910.01708, vol. 7, no. 1, p. 2, 2019.

[26] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa et al., “Isaac gym: High performance gpu-based physics simulation for
robot learning,” arXiv preprint arXiv:2108.10470, 2021.

[27] S. Gu, J. G. Kuba, Y. Chen, Y. Du, L. Yang, A. Knoll, and Y. Yang, “Safe multi-agent
reinforcement learning for multi-robot control,” Artificial Intelligence, vol. 319, p. 103905,
2023.

[28] I. Ji, B. Zhang, J. Zhou, X. Pan, W. Huang, R. Sun, Y. Geng, Y. Zhong, J. Dai, and Y. Yang,
“Safety gymnasium: A unified safe reinforcement learning benchmark,” Advances in Neural
Information Processing Systems, vol. 36, pp. 18 964-18 993, 2023.

[29] Z. Liu, Z. Guo, H. Lin, Y. Yao, J. Zhu, Z. Cen, H. Hu, W. Yu, T. Zhang, J. Tan et al., “Datasets
and benchmarks for offline safe reinforcement learning,” arXiv preprint arXiv:2306.09303,
2023.

[30] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M. Lanctot,
N. Sonnerat, J. Z. Leibo, K. Tuyls et al., “Value-decomposition networks for cooperative
multi-agent learning,” arXiv preprint arXiv:1706.05296, 2017.

[31] K.-H. Lee, O. Nachum, M. S. Yang, L. Lee, D. Freeman, S. Guadarrama, 1. Fischer, W. Xu,
E. Jang, H. Michalewski et al., “Multi-game decision transformers,” Advances in Neural
Information Processing Systems, vol. 35, pp. 27 921-27 936, 2022.

[32] Y.-H. Wu, X. Wang, and M. Hamaya, “Elastic decision transformer,” Advances in neural
information processing systems, vol. 36, pp. 18 532—-18 550, 2023.

[33] A. Correia and L. A. Alexandre, “Hierarchical decision transformer,” in 2023 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). 1EEE, 2023, pp. 1661-1666.

[34] Y. Chen, H. Mao, J. Mao, S. Wu, T. Zhang, B. Zhang, W. Yang, and H. Chang, “Ptde: Personal-
ized training with distilled execution for multi-agent reinforcement learning,” arXiv preprint
arXiv:2210.08872, 2022.

[35] J. Liu, C. Xu, P. Hang, J. Sun, M. Ding, W. Zhan, and M. Tomizuka, “Language-driven policy
distillation for cooperative driving in multi-agent reinforcement learning,” IEEE Robotics and
Automation Letters, 2025.

[36] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor,” in International conference on machine
learning. Pmlr, 2018, pp. 1861-1870.

[37] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv preprint
arXiv:1606.08415, 2016.

12

[38] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement learning without explo-
ration,” in International conference on machine learning. PMLR, 2019, pp. 2052-2062.

[39] A. Stooke, J. Achiam, and P. Abbeel, “Responsive safety in reinforcement learning by pid
lagrangian methods,” in International Conference on Machine Learning. PMLR, 2020, pp.
9133-9143.

[40] A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine, “Stabilizing off-policy g-learning via
bootstrapping error reduction,” Advances in neural information processing systems, vol. 32,
2019.

[41] J. Lee, C. Paduraru, D. J. Mankowitz, N. Heess, D. Precup, K.-E. Kim, and A. Guez, “Coptidice:
Offline constrained reinforcement learning via stationary distribution correction estimation,”
arXiv preprint arXiv:2204.08957, 2022.

[42] J. Lee, W. Jeon, B. Lee, J. Pineau, and K.-E. Kim, “Optidice: Offline policy optimization via

stationary distribution correction estimation,” in International Conference on Machine Learning.
PMLR, 2021, pp. 6120-6130.

[43] J.L.Ba,J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint arXiv:1607.06450,
2016.

[44] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple
way to prevent neural networks from overfitting,” The journal of machine learning research,
vol. 15, no. 1, pp. 1929-1958, 2014.

[45] D. P. Kingma, “Adam: A method for stochastic optimization,” arXiv preprint arXiv.:1412.6980,
2014.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.
770-778.

[47] S. Gu, L. Yang, Y. Du, G. Chen, F. Walter, J. Wang, and A. Knoll, “A review of safe reinforce-
ment learning: Methods, theories and applications,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024.

13

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly outline our motivations, approaches,
and results, aligning closely with the paper’s actual contributions without overstatement.
The points in the abstract and introduction are supported by the detailed descriptions and
experimental results in the following part of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We include a “Limitations and future work™ section in the appendix to discuss
the key limitations.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

14

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper focuses on empirical contributions in multi-agent offline safe
reinforcement learning rather than theoretical results. No formal theorems, proofs, or
assumptions are presented.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides all the information needed to reproduce the main experi-
mental results by directly stating or citing in the main text and the appendix, rendering a
complete reproduction. The open access to our code and data also ensures reproducibility.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

15

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper explicitly states that “Code, dataset, and results are available at this
website” in the abstract, indicating providing open access.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper details all the training and evaluation details necessary to understand
the results by directly stating or citing in the main text and the appendix. The open access to
the code and data also ensures complete details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We detail the sample standard deviations of all results from tables in the
appendix. In addition, Fig. ff]notes that "Shaded areas represent sample standard deviations
across multiple runs", showing statistical variability.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides the information of GPU and CPU, and the time consump-
tion of training and execution in the main text and the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines)?

Answer: [Yes]

Justification: The paper focuses on technical advancements in multi-agent offline safe
reinforcement learning without involving sensitive data, human subjects, methods that raise
ethical concerns, or other components that may violate the NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

17

https://neurips.cc/public/EthicsGuidelines

11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper lists several potential positive applications in the introduction and
also explicitly states that “MOSRL may be used for negative applications such as drone
surveillance” in the “Limitations and future work™ section in the appendix, indicating both
potential positive societal impacts and negative societal impacts of our work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper explicitly states that “Upon closer inspection, no data at high risk of
such misuse is observed in MOSDB” in the “Limitations and future work™ section in the
appendix, providing a safeguard for the misuse of the proposed MOSDB dataset, such as
the drone surveillance.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

18

13.

14.

Answer: [Yes]

Justification: We build our model and dataset based on several existing code repositories on
GitHub. We properly cite their papers and strictly respect their licenses, most of which are
Apache License 2.0.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide detailed guidance documents for using our code and dataset at the
website of our open-access.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper involves no crowdsourcing or human subjects, focusing solely on
algorithmic and dataset development in multi-agent offline safe reinforcement learning.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

19

paperswithcode.com/datasets

15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects are involved, so IRB approvals or equivalent are not
applicable.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs are not parts of our core methodology. We use LLMs only for writing,
editing, or formatting purposes.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Appendix

A More implementation details

A.1 Network details of MOSDT

Each linear layer is a single-layer fully connected network. The linear layers for encoding returns
and safety signals are 64-dimensional, and other linear layers are 128-dimensional. MOSDT contains
3 causal transformer layers with 128 dimensions and 8 attention heads. Layer Normalization (LN)
[43]] and Dropout [44] (drop ratio is 0.1) are added before the student causal transformer. We adopt
LNs subsequent to both student and teacher causal transformers.

The features before the student causal transformer are arranged in an ordered sequence
(f;%B vforsfars s TrBar fonr ;M) where M is the training sequence length. The refined

feature sequence is divided into 3 subsequences (f! ,,..., fi ;) (x € {RB,0,a}).

A.2 More training and evaluation settings

For baseline methods, we adopt the same training and evaluation hyperparameters as DSRL [29],
except for the batch size, which is set to 64 in all baseline methods (so as the proposed MOSDT) to
reduce training time and yield better performance. For MOSDT, we adopt the same hyperparameters
as CDT (one of the baseline methods). The learning rate is 1 x 10~%. We use the Adam optimizer
[45] with B; = 0.9 and B> = 0.999. The value of Weight Decay is 1 x 10~%. We clip gradients to a
maximum value of 0.25. We take the first 500 training steps as a warm-up [46].

Following HDT [33]], in evaluation, we let CDT [7] and MOSDT perform each execution twice, with
the return target of the maximum value in training data and half of the maximum value (the better
result is recorded as the final performance). Unlike HDT, we do not set large return targets as they
degrade performance.

A3 MOSDT algorithm

Algorithm [T|and Algorithm 2] summarize the training and execution processes of MOSDT, respec-
tively.

Algorithm 1 MOSDT training algorithm

Require: Offline dataset D
1: for each training step do ' S _ o
2: Sample trajectory mini-batch B ~ D. BB contains T, = (Rll, Ci,0%,ay,..., Ry, Cly, OM)
and a’;, where M is the training sequence length

3 for each agent i do

4 Map C! to B} by Eq.

5 Generate student features F/ ; and action estimations @} by a student network 7
6: Compute the student supervised learning loss Loss’ by Eq.

7: end for

8 Generate a global feature F ; by Eq. (2)

9 Generate action estimations a; by teacher networks 7.

10: Compute the teacher supervised learning loss Loss?. by Eq.

11: Compute the PSD loss Loss®, by Eq.

12: Update 7g (full parameter shared across all agents) and 7. by minimizing the total loss in
Eq. (3)

13: end for

B Further experimental results

The training and evaluation settings are consistent with those in Section

21

Algorithm 2 MOSDT execution algorithm

Require: Trained agent policies 7ng, environment Env)
1: Get an initial observation: oﬁ < Env.reset()
2: Initialize an input sequence 7} < (‘=R, B =0, oli), where R’ is predetermined large
return targets (task-related).

3: fort =1,..., M (M is the maximum episode length) do
4: for each agent ¢ do

5: Predict action a; from 7’ by the trained policy 7%
6: end for

7 Execute the action: o}, 7}, ci + Env.step (af,...,a3)
8: Compute input sequences for the next step:

9: Ty« (Riyy = Ri—r},Bj;; =0,0,,)
10: if Env.terminated() = True then

11: Break
12: end if
13: end for

B.1 The performance of BC-Safe

Table [T] presents the performance of the methods trained on the entire MOSDB dataset. The perfor-
mance of BC-Safe [7] (trained by only safe trajectories) is shown in Table[3] It achieves SOTA return
on no task.

Table 3: The performance of BC-Safe [[7] on the MOSDB dataset. Results are in the “return &+ sample
standard deviation (cumulative cost &= sample standard deviation)” format. The cost threshold c is 25,
and the maximum return of each task is shown in Table[T3]in Appendix[C|

Task BC-Safe [7]

MOS Velocity

2x1Swimmer 5.79 £ 1.05 (2.30 £ 1.97)
2x3HalfCheetah 2041.64 £ 13.71 (19.60 £ 2.61)
2x3Walker2d 1562.08 £+ 42.31 (1.10 £ 1.91)
2x4Ant 2406.86 £ 63.19 (0.00 £ 0.00)
3x1Hopper 28.16 +5.96 (0.70 £ 0.82)
4x2Ant 803.14 £+ 54.20 (0.00 £ 0.00)
6x1HalfCheetah 407.18 £ 61.72 (0.00 £ 0.00)
9I18Humanoid 563.67 £ 40.13 (20.37 £ 0.38)
MOS Goal

Multi-Ant1 17.18 4+ 4.58 (17.50 4 9.54)
Multi-Ant2 1.63 £ 0.13 (7.67 £ 6.75)

Multi-Point1
Multi-Point2

5.53 £2.68 (10.33 £+ 9.61)
0.83 £0.75 (12.33 = 11.79)

MOS Isaac Gym

CloseDrawerMA -5.23 4+ 0.45 (1.00 4 1.73)
PickAndPlaceMA -5.72 £ 0.57 (3.73 4+ 4.03)
CatchFingerMA 0.19 £ 0.03 (0.00 £ 0.00)
CatchJointMA 0.21 £ 0.01 (0.00 £ 0.00)
OverFingerMA 0.43 £ 0.01 (0.00 £ 0.00)
OverJointMA 0.45 £ 0.02 (0.00 £ 0.00)
Summary 0 SOTA (safe)

B.2 Detailed efficiency analysis

Table 4] summarizes the parameter counts of CDT [7], MOSDT, and MOSDT variants. Table E]
summarizes their time consumption for training and execution. Compared with CDT [7], MOSDT
requires only 65% of the execution parameters and consumes less execution time while achieving
better performance. MOSDT needs about twice the training time of CDT. PSD, full parameter sharing,
and CBE reduce parameter counts and time consumption rather than introducing additional overhead.

22

Table 4: The details of parameter counts. Results are in millions (M). “TP”’: Total parameter count.
“EP”: Execution parameter count. “Using KD”’: Using conventional KD instead of PSD. “No PS™:
No parameter sharing.

Task CDT [7] MOSDT Using KD No PS w/o CBE

TP EP TP EP TP EP TP EP TP EP
MOS Velocity
2x1Swimmer 0.7315 0.7287 0.7771 0.3468 0.9102 0.3468 1.1238 0.6935 0.7774 0.3470
2x3HalfCheetah 0.7377 0.7326 0.7801 0.3487 0.9159 0.3487 1.1287 0.6974 0.7803 0.3489
2x3Walker2d 0.7377 0.7326 0.7801 0.3487 0.9159 0.3487 1.1287 0.6974 0.7803 0.3489
2x4Ant 0.7436 0.7359 0.7822 0.3503 0.9209 0.3503 1.1326 0.7007 0.7825 0.3506
3x1Hopper 0.7376 0.7319 0.7944 0.3473 0.9304 0.3473 1.4889 1.0418 0.7946 0.3475
4x2Ant 0.7606 0.7443 0.8147 0.5481 1.3584 0.5481 24590 2.1924 0.8150 0.5484
6x1HalfCheetah 0.7634 0.7454 0.8458 0.5467 1.3911 0.5467 3.5793 3.2801 0.8461 0.5469
9I8Humanoid 0.9265 0.8287 0.8314 0.5952 14571 0.5952 1.4266 1.1904 0.8317 0.5955
MOS Goal
Multi-Antl 0.8398 0.7853 0.8090 0.5733 1.3916 0.5733 1.3823 1.1467 0.8093 0.5736
Multi-Ant2 0.8398 0.7853 0.8090 0.5733 1.3916 0.5733 1.3823 1.1467 0.8093 0.5736
Multi-Point1 0.8063 0.7663 0.7964 0.5638 1.3631 0.5638 1.3603 1.1277 0.7967 0.5641
Multi-Point2 0.8063 0.7663 0.7964 0.5638 1.3631 0.5638 1.3603 1.1277 0.7967 0.5641
MOS Isaac Gym

CloseDrawerMA 0.6264 0.6146 0.6623 0.4261 1.0749 0.4261 1.0885 0.8523 0.6626 0.4264
PickAndPlaceMA 0.6290 0.6158 0.6630 0.4268 1.0769 0.4268 1.0897 0.8535 0.6632 0.4270
CatchFingerMA 0.7334 0.6756 0.6997 0.4547 1.1630 0.4547 1.1544 0.9094 0.6999 0.4550
CatchJointMA 0.7334 0.6756 0.6997 0.4547 1.1630 0.4547 1.1544 0.9094 0.6999 0.4550
OverFingerMA 0.7226 0.6679 0.6927 0.4509 1.1514 0.4509 1.1436 0.9017 0.6930 0.4511
OverJointMA 0.7226 0.6679 0.6927 0.4509 1.1514 0.4509 1.1436 0.9017 0.6930 0.4511

Average 0.7554 0.7223 0.7626 0.4650 1.1717 0.4650 1.4293 1.1317 0.7629 0.4653

B.3 Detailed ablation study for PSD

Table [6] shows the results of detailed ablation experiments for PSD (the sample standard deviation of
each result is presented in Table[7).

The “w/o ASD” column and the “w/o FSD” column in Table 6] show that removing the action/feature
distillation (the two terms of Eq. reduces returns on 13/12 (out of 18) tasks.

The “Using SRSD” column in Table @ shows that the structural relation distillation in MADTKD [5]
is not well compatible with the MOSDB dataset or the MOSDT architecture.

B.4 Detailed ablation study for partial parameter sharing

Table 8| shows the results of partial parameter sharing (the sample standard deviations are presented
in Table[0). Partial parameter sharing leads to performance losses on 12 to 14 (out of 18) tasks.

B.5 Ablation study for network designs

Table presents the results of detaching the agent features Fit from the computational graph of Eq.
(), showing performance degradation on 10 out of 18 tasks.

B.6 Standard deviation results

Table[TT] shows the sample standard deviation of each value in Table[I] Table[I2]shows the sample
standard deviation of each value in Table

C More details of the MOSDB dataset

Table [T3] shows the details of the MOSDB dataset. Fig. [5|presents the data distribution over the
reward-cost plane of each task in MOSDB.

23

Table 5: The details of time consumption. Results are in milliseconds (ms). “TT”: The time
consumption of one training step. “ET”: The time consumption of an inference for one agent. “Using
KD”: Using conventional KD instead of PSD. “No PS”: No parameter sharing. The results in “Using
KD-ET” are identical to those in “MOSDT-ET”, because using KD has no effect during execution.

CDT [7] MOSDT Using KD No PS w/o CBE

Task

TP EP TP EP TP EP TP EP TP EP
MOS Velocity
2x1Swimmer 6.65 0.76 11.19 054 1527 054 11.68 0.56 1092 0.55
2x3HalfCheetah 6.06 075 11.30 054 14.15 054 1123 055 1097 0.55
2x3Walker2d 6.21 092 1097 058 1435 058 11.77 056 11.02 0.54
2x4Ant 628 076 11.13 056 1442 056 11.61 0.58 11.14 0.56
3x1Hopper 6.19 092 13.84 059 1684 059 1488 0.66 1471 0.57
4x2Ant 624 077 1875 0.71 22.13 0.71 20.51 0.73 1942 0.68
6x1HalfCheetah 6.32 076 2644 0.71 29.63 0.71 30.13 0.74 2633 0.70
918 Humanoid 721 0.88 12.84 0.85 1742 0.85 1245 0.78 13.00 0.76
MOS Goal
Multi-Antl 6.85 079 11.76 0.74 16.70 0.74 12.17 0.74 1222 0.75
Multi-Ant2 6.59 0.78 1230 0.72 1659 0.72 12.08 0.75 1235 0.76
Multi-Point1 6.65 078 1195 0.73 1640 0.73 1222 0.76 1197 0.73
Multi-Point2 648 0.79 1195 0.75 1632 0.75 12.65 0.78 12.07 0.75
MOS Isaac Gym

CloseDrawerMA 6.63 1.02 11.61 1.08 1646 1.08 12.05 1.10 11.53 141
PickAndPlaceMA 6.62 1.03 1157 1.07 1635 1.07 11.82 1.09 11.65 1.07
CatchFingerMA 6.68 094 12.11 1.06 1672 1.06 1253 1.11 12.01 1.05
CatchJointMA 6.81 093 1281 1.06 17.05 1.06 1279 1.12 1249 1.06
OverFingerMA 6.80 093 1221 1.08 16.62 1.08 1272 1.08 1195 1.05
OverJointMA 6.82 093 1253 1.08 1688 1.08 1333 1.14 1195 1.08

Average 6.56 0.86 13.18 0.80 1724 0.80 13.81 0.82 13.21 0.81

D Limitations and future work

MOSRL may be used for negative applications such as drone surveillance. Upon closer inspection,
no data at high risk of such misuse is observed in MOSDB. In addition, the cost binarization in CBE
may constrain the adaptability of models to dynamic cost thresholds. This drawback may not be an
issue in many applications with fixed cost thresholds [[10, 47]]. Future efforts will focus on expanding
the MOSDB dataset.

24

Table 6: The results of detailed ablation experiments for PSD. Results are in the “return (cumulative
cost)” format. The cost threshold ¢ is 25. The maximum return of each task is shown in Table [T3]
in Appendix[C] “|}”: Policies with lower returns than full MOSDT or unsafe policies. Red: Unsafe
policies. “w/o ASD”: Without action self-distillation. “w/o FSD”’: Without feature self-distillation.
“Using SRSD”: Adding a structural relation distillation [5] term in Eq. (). Due to space constraints,
the sample standard deviation across multiple runs of each experiment is shown in Table[7]

Task MOSDT w/o ASD w/o FSD Using SRSD
MOS Velocity

2x1Swimmer 11.64 (20.33) 19.48 (10.20) 1 11.43 (10.67) 1 11.02 (12.53)
2x3HalfCheetah 2052.64 (22.27) 2074.78 (24.17) 1 2084.67 (35.43) |} 2050.06 (24.00)
2x3Walker2d 1584.87 (3.83) | 1583.14 (3.07) 1 1529.36 (0.10) 1 1562.50 (4.57)
2x4Ant 2054.88 (0.87) 1 1971.57 (1.97) 1 2045.89 (5.60) 1 1975.55 (0.90)
3x1Hopper 1122.23 (4.00) 1236.94 (7.10) 1199.86 (11.43) 1 1067.13 (8.53)
4x2Ant 2083.85 (3.53) 1 2080.61 (2.93) 2191.79 (3.50) 2093.81 (0.57)
6x 1HalfCheetah 1853.64 (21.97) |} 1835.71(23.97) |l 1808.95 (25.73) 1862.54 (22.80)
9I8Humanoid 44471 (22.80) 477.64 (21.73) 510.74 (21.47) 460.61 (22.60)
MOS Goal

Multi-Antl 38.38 (14.50) 130.11 (11.33) 44.95 (14.33) 1 35.30 (14.17)
Multi-Ant2 2.96 (7.50) 1 2.85(15.33) 1 3.82 (13.50) 1 1.55(8.33)
Multi-Point1 9.65 (12.67) 1 5.61 (23.00) 11.33 (20.83) 11.88 (21.50)
Multi-Point2 -1.08 (21.00) 1 -1.79 (15.00) | -4.35 (8.33) 0.85 (12.67)
MOS Isaac Gym

CloseDrawerMA -3.45 (0.00) 1 -3.45 (0.00) 1 -3.73 (0.00) -3.44 (0.67)
PickAndPlaceMA -2.67 (0.00) -2.54 (0.00) -2.07 (0.00) | -2.87 (0.00)
CatchFingerMA 0.25 (6.33) 10.21 (4.47) 10.17 (5.57) 0.27 (3.50)
CatchJointMA 0.31 (0.00) 1 0.31 (0.00) 1.0.23 (0.00) 1 0.23 (0.00)
OverFingerMA 0.52 (0.00) 1 0.46 (0.00) 10.43(1.97) 1 0.44 (0.00)
OverJointMA 0.47 (1.03) 0.48 (0.00) 1 0.44 (1.60) 1 0.46 (0.00)
Summary (safe) 13 || (safe) 12 |} (safe) 11 |} (safe)

Table 7: The results of detailed ablation experiments for PSD (sample standard deviation). Results
are in the “return sample standard deviation (cumulative cost sample standard deviation)” format.
“w/o ASD”: Without action distillation. “w/o FSD”’: Without feature distillation. “Using SRSD”:
Adding a structural relation distillation [5] term in Eq. (@)

Task MOSDT w/o ASD w/o FSD Using SRSD
MOS Velocity

2x1Swimmer 1.41 (2.61) 143 (3.37) 1.05(4.92) 2.43(5.07)
2x3HalfCheetah 23.79 (1.88) 4.53(0.57) 37.07 (6.09) 10.40 (0.89)
2x3Walker2d 23.95(5.43) 52.60(2.80) 28.64(0.17) 52.20(7.39)
2x4Ant 73.62 (1.33) 10.77 (2.18) 32.35(2.56) 48.81(0.90)
3x1Hopper 131.42 (4.65) 40.69 (8.02) 4.59(6.48) 167.69 (9.86)
4x2Ant 64.59 (3.39) 41.88(0.76) 21.65(1.21) 48.40(0.15)
6x1HalfCheetah 4295 (1.15) 424 (1.21) 26.32(1.26) 19.34 (1.54)
9I8Humanoid 8.88 (0.10) 31.93(0.35) 11.80(0.71) 11.29(0.92)
MOS Goal

Multi-Ant1 0.84 (12.56) 11.11(8.96) 3.40(10.13) 8.19(11.00)
Multi-Ant2 1.56 (8.35) 0.85(5.11) 1.39(6.54) 0.57 (14.43)
Multi-Point1 2.52 (1.53) 0.71 (1.50) 294 (3.51) 4.00(2.18)
Multi-Point2 2.89 (4.09) 240 (6.06) 3.95(4.54) 3.23(8.39)
MOS Isaac Gym

CloseDrawerMA 0.38 (0.00) 0.38 (0.00) 0.03(0.00) 0.58 (1.15)
PickAndPlaceMA 0.52 (0.00) 1.15(0.00) 0.27 (0.00) 1.07 (0.00)
CatchFingerMA 0.03 (0.15) 0.04 (2.60) 0.01(0.85) 0.11(0.75)
CatchJointMA 0.09 (0.00) 0.10 (0.00) 0.03 (0.00) 0.01 (0.00)
OverFingerMA 0.10 (0.00) 0.04 (0.00) 0.01 (2.89) 0.01 (0.00)
OverJointMA 0.03 (1.05) 0.05 (0.00) 0.03(0.72) 0.04 (0.00)

25

Table 8: The results of partial parameter sharing. Results are in the “return (cumulative cost)” format.
The cost threshold ¢ is 25. The maximum return of each task is shown in Table[I3]in Appendix [C}
“|}”’: Policies with lower returns than full MOSDT or unsafe policies. “w/o PSH”: Without parameter
sharing for student action heads. “w/o PSFP”: Without parameter sharing for student feature projector.
“w/o PST”: Without parameter sharing for student causal transformers. “w/o PSE”: Without parameter
sharing for encoders. Due to space constraints, the sample standard deviation across multiple runs of
each experiment is shown in Table 0]

Partial parameter sharing

Task MOSDT

w/o PSH w/o PSFP w/o PST w/o PSE
MOS Velocity
2x1Swimmer 11.64 (20.33) 11 10.97 (15.33) 119.85 (18.10) 11 10.85 (15.67) 1 8.37 (3.83)
2x3HalfCheetah 2052.64 (22.27) 1} 2050.14 (23.00) |} 2050.25 (23.13) 1} 2049.17 (22.27) |} 2041.74 (23.87)
2x3Walker2d 1584.87 (3.83) 1585.52 (2.07) 11 1558.54 (2.93) | 1578.55(1.43) |} 1557.33 (2.80)
2x4Ant 2054.88 (0.87) 1 2049.88 (1.73) | 1988.90 (0.00) |} 1983.47 (2.30) | 2015.30 (0.33)
3x1Hopper 1122.23 (4.00) |} 110.93 (1.33) 1 47.56 (2.53) 1} 33.54 (0.00) 1 34.09 (0.03)
4x2Ant 2083.85(3.53) 1} 962.59 (0.00) 1934.06 (0.00) 1 910.53 (0.00) 1} 934.31 (0.00)
6x1HalfCheetah 1853.64 (21.97) |} 1169.26 (0.10) |} 407.84 (0.00) 1/330.70 (0.00) 11 436.95 (0.00)
9I8Humanoid 444.71 (22.80) 474.87 (21.73) 489.29 (22.50) 508.10 (20.77) 459.40 (21.97)
MOS Goal
Multi-Antl 38.38 (14.50) 1 36.87 (10.50) 1 36.22 (20.00) 1 34.36 (17.50) 1 33.96 (14.00)
Multi-Ant2 2.96 (7.50) 4.60 (11.67) 3.20 (7.33) 4.29 (19.67) 11 2.60 (17.67)
Multi-Pointl1 9.65 (12.67) 10.42 (14.83) 9.70 (14.67) | 8.18 (20.17) 12.41 (19.83)
Multi-Point2 -1.08 (21.00) 0.33(7.83) -0.82 (14.17) 3.83(18.17) | -3.67 (11.00)
MOS Isaac Gym
CloseDrawerMA -3.45 (0.00) 1 -3.46 (0.00) 1} -3.68 (0.20) -3.30 (0.67) -3.28 (0.67)
PickAndPlaceMA -2.67 (0.00) -2.24 (0.00) 1} -2.85 (0.00) 1} -2.98 (0.00) -2.24 (1.83)
CatchFingerMA 0.25 (6.33) 1023 (5.33) 10.20 (3.10) 10.20 (7.03) 10.22 (7.23)
CatchJointMA 0.31 (0.00) 10.27 (0.00) 0.32 (0.00) 0.36 (0.00) 10.25 (0.00)
OverFingerMA 0.52 (0.00) 10.48 (0.00) 110.49 (0.00) 11 0.46 (0.00) 1/ 0.49 (0.00)
OverJointMA 0.47 (1.03) 1} 0.46 (0.00) 11 0.46 (0.00) 1/ 0.46 (0.00) 1 0.46 (0.00)
Summary (safe) 12 || (safe) 13 |} (safe) 13 |} (safe) 14 || (safe)

Table 9: The results of partial parameter sharing (sample standard deviation). Results are in the
“return sample standard deviation (cumulative cost sample standard deviation)” format. “w/o PSH”:
Without parameter sharing for student action heads. “w/o PSFP”’: Without parameter sharing for
student feature projector. “w/o PST”: Without parameter sharing for student causal transformers.
“w/o PSE”: Without parameter sharing for encoders.

Partial parameter sharing

Task MOSDT

w/o PSH w/o PSFP w/o PST w/o PSE
MOS Velocity
2x1Swimmer 1.41 (2.61) 2.51 (3.19) 2.41 (4.12) 3.46 (3.61) 1.47 (2.40)
2x3HalfCheetah 23.79 (1.88) 4.77 (0.89) 19.05 (1.66) 0.84 (0.90) 14.62 (0.21)
2x3Walker2d 23.95 (5.43) 59.87 (1.37) 66.45 (2.11) 12.86 (1.45) 2.44 (4.85)
2x4Ant 73.62 (1.33) 147.35 (1.70) 14.82 (0.00) 51.64(2.89) 58.57 (0.35)
3x1Hopper 131.42 (4.65) 125.36(2.31) 10.97 (4.39) 6.79 (0.00) 5.46 (0.06)
4x2Ant 64.59 (3.39) 9.76 (0.00) 16.76 (0.00) 4.02 (0.00) 22.29 (0.00)
6x1HalfCheetah 42.95 (1.15) 115.20 (0.17) 67.88 (0.00) 24.06 (0.00) 67.84 (0.00)
9I8Humanoid 8.88 (0.10) 10.98 (0.75) 29.37 (0.36) 60.67 (1.64) 24.41(0.35)
MOS Goal
Multi-Antl 0.84 (12.56) 9.15 (9.73) 4.86 (3.61) 4.25 (3.28) 3.81 (3.12)
Multi-Ant2 1.56 (8.35) 2.54 (7.52) 1.11 (6.83) 2.29 (6.21) 1.83 (5.39)
Multi-Point1 2.52 (1.53) 3.23(8.22) 6.89 (6.11) 2.33(3.18) 2.69 (2.02)
Multi-Point2 2.89 (4.09) 2.20 (7.75) 1.86 (10.75) 4.30 (4.48) 5.26 (10.76)
MOS Isaac Gym
CloseDrawerMA 0.38 (0.00) 0.32 (0.00) 0.44 (0.35) 0.43 (1.15) 0.33 (1.15)
PickAndPlaceMA 0.52 (0.00) 0.41 (0.00) 0.75 (0.00) 0.25 (0.00) 0.47 (3.18)
CatchFingerMA 0.03 (0.15) 0.08 (2.31) 0.04 (2.04) 0.02 (0.95) 0.06 (0.70)
CatchJointMA 0.09 (0.00) 0.06 (0.00) 0.09 (0.00) 0.09 (0.00) 0.09 (0.00)
OverFingerMA 0.10 (0.00) 0.07 (0.00) 0.03 (0.00) 0.02 (0.00) 0.05 (0.00)
OverJointMA 0.03 (1.05) 0.03 (0.00) 0.03 (0.00) 0.01 (0.00) 0.03 (0.00)

26

Table 10: The results of detaching agent features. Results are in the “return + sample standard
deviation (cumulative cost + sample standard deviation)” format. The cost threshold c is 25. The
maximum return of each task is shown in Table in Appendix |[C} “|”: Policies with lower
returns than full MOSDT or unsafe policies. “Detaching”: Detaching agent features £ , from the
computational graph of Eq. (2).

Task MOSDT Detaching

MOS Velocity

2x1Swimmer 11.64 +20.33 (1.41 £ 2.61) |} 8.60 £ 2.13 (12.70 & 9.40)
2x3HalfCheetah 2052.64 +£22.27 (23.79 + 1.88) 2054.66 + 7.79 (23.07 £+ 1.53)
2x3Walker2d 1584.87 +3.83 (23.95 £5.43) |} 1557.64 4+ 13.47 (2.37 £+ 2.30)
2x4Ant 2054.88 £ 0.87 (73.62 = 1.33) |} 2006.04 4+ 46.42 (0.63 + 0.93)
3x1Hopper 1122.23 +£4.00 (131.42 £ 4.65) 1203.32 £ 93.29 (13.13 + 3.86)
4x2Ant 2083.85 +£3.53 (64.59 £3.39) 2114.28 £ 31.37 (6.13 £ 8.11)
6x1HalfCheetah 1853.64 +21.97 (42.95 £ 1.15) 1869.79 + 29.71 (23.30 £ 0.62)
918Humanoid 444.71 £ 22.80 (8.88 £ 0.10) 460.98 £ 2.91 (21.50 4 0.95)
MOS Goal

Multi-Antl 38.38 + 14.50 (0.84 + 12.56) | 28.44 + 12.25 (15.50 £ 5.50)
Multi-Ant2 2.96 + 7.50 (1.56 + 8.35) 112.01 £0.90 (16.67 + 4.93)

Multi-Point1
Multi-Point2

9.65 £ 12.67 (2.52 + 1.53)
-1.08 = 21.00 (2.89 + 4.09)

119.16 £ 1.89 (17.50 + 6.76)
-0.02 +1.16 (11.83 £ 10.75)

MOS Isaac Gym

CloseDrawerMA -3.45 + 0.00 (0.38 + 0.00) -3.25 £0.32 (0.67 £ 1.15)
PickAndPlaceMA -2.67 + 0.00 (0.52 + 0.00) -2.43 £0.57 (2.67 £ 4.62)
CatchFingerMA 0.25 £+ 6.33 (0.03 £ 0.15) 11 0.21 £0.01 (4.03 £2.61)
CatchJointMA 0.31 4+ 0.00 (0.09 +£ 0.00) 11 0.30 £ 0.08 (0.00 £ 0.00)
OverFingerMA 0.52 + 0.00 (0.10 £ 0.00) 11 0.48 £+ 0.04 (0.00 0.00)
OverJointMA 0.47 + 1.03 (0.03 £ 1.05) 11 0.47 £0.04 (1.60 £ 2.77)
Summary (safe) 10 |} (safe)

Table 11: MOSDB benchmark and the performance of MOSDT (sample standard deviation). Results
are in the “return sample standard deviation (cumulative cost sample standard deviation)” format.

Task BC[7] BCQ-Lag [8] BEAR-Lag[8] CDT [7] COptiDICE [41] CPQ [8] MOSDT (ours)
MOS Velocity

2x1Swimmer 1.03 (2.57) 0.70 (4.17) 3.64 (8.04) 1.65 (6.35) 0.77 (2.26) 1047 (11.48) 1.41(2.61)
2x3HalfCheetah 6.54 (0.97) 38.19 (12.88) 67.62 (26.85) 19.86 (3.29) 1520 (1.45) 607.92 (9.27) 23.79 (1.88)
2x3Walker2d 43.72(0.00) 87.21 (11.53) 47.46 (6.03) 65.25(3.18) 12.95 (0.00) 201.40 (6.30) 23.95(5.43)
2x4Ant 124.08 (0.00) 8.48(11.72) 181.20(1.56) 25.58 (2.12) 48.48 (1.14) 1156.58 (0.87) 73.62 (1.33)
3x1Hopper 4.63 (0.52) 23.33(3.09) 16.17 (3.23) 2.88(0.00) 48.44 (10.25) 98.51 (1.85) 131.42 (4.65)
4x2Ant 19.22(0.00) 58.78 (0.00) 41.27 (0.00) 22.55(0.00) 6.10 (0.00) 356.92 (0.84) 64.59 (3.39)
6x1HalfCheetah 35.43(0.00) 87.69 (0.06) 49.45 (0.00) 20.85(0.00) 38.27 (0.00) 122.73 (1.50) 42.95(1.15)
918Humanoid 19.84 (1.30) 24.39(1.30) 28.77 (1.96) 35.03 (0.47) 21.44(1.17) 38.79 (7.79) 8.88 (0.10)
MOS Goal

Multi-Ant1 724(278) 0.16(0.96) 5.80 (12.76) 10.04 (9.57) 1039 (6.73) 0.34 (0.00) 0.84 (12.56)
Multi-Ant2 0.98 (7.09) 0.16 (1.28) 1.13 (12.27) 2.35(4.09) 1.24(7.29) 0.74 (0.00) 1.56 (8.35)
Multi-Point1 422(6.83) 2.64(475) 3.84(5.20) 0.84 (12.41) 1.22(6.83) 221(13.28) 2.52(1.53)
Multi-Point2 0.78 (7.51) 4.51(18.30) 3.02 (6.24) 2.23(5.13) 0.86 (4.65) 0.78 (9.50) 2.89 (4.09)
MOS Isaac Gym

CloseDrawerMA 0.45 (1.73) 0.26 (0.87) 1.53 (4.07) 0.43 (0.00) 0.15 (0.00) 0.35 (0.00) 0.38 (0.00)
PickAndPlaceMA 0.57 (4.03) 0.72 (0.46) 0.43 (0.00) 0.54 (0.00) 1.75 (4.62) 1.52 (4.27) 0.52 (0.00)
CatchFingerMA 0.03 (0.00) 0.01 (1.28) 0.02 (0.00) 0.02 (0.10) 0.05 (0.00) 0.03 (1.50) 0.03 (0.15)
CatchJointMA 0.01 (0.00) 0.04 (0.00) 0.03 (0.00) 0.01 (0.70) 0.06 (0.00) 0.08 (0.55) 0.09 (0.00)
OverFingerMA 0.01 (0.00) 0.02 (0.12) 0.02 (0.00) 0.05 (0.00) 0.03 (0.00) 0.00 (0.00) 0.10 (0.00)
OverJointMA 0.02 (0.00) 0.01 (0.00) 0.03 (0.00) 0.01 (1.55) 0.02 (0.00) 0.01 (0.00) 0.03 (1.05)

27

Table 12: Ablation study results (sample standard deviation). Results are in the “return sample
standard deviation (cumulative cost sample standard deviation)” format. The cost threshold c is
25. The maximum return of each task is shown in Table [I3]in Appendix [C| “Partial PS”: Without
parameter sharing for student action heads. “No PS”: No parameter sharing. “w/o SE”: Without
safety signal embedding.

Task MOSDT w/o PSD Partial PS No PS w/o SE w/o CBE
MOS Velocity

2x 1Swimmer 1.41 (2.61) 1.49 (4.16) 2.51 (3.19) 1.89 (2.66) 1.57 (7.72) 2.39 (1.41)
2x3HalfCheetah 23.79 (1.88) 32.45(5.24) 4.77(0.89) 21.86 (2.70) 3.41 (3.86) 47.33 (5.58)
2x3Walker2d 23.95(543) 73.25(5.52) 59.87 (1.37) 89.35(1.88) 54.69 (5.08) 104.87 (4.76)
2x4Ant 73.62 (1.33) 20.82(2.02) 147.35 (1.70) 88.48 (10.75) 34.64 (8.67) 17.59 (2.46)
3x1Hopper 131.42 (4.65) 16.26 (10.93) 125.36 (2.31) 2.80 (0.00) 171.57 (5.65) 59.61 (7.27)
4x2Ant 64.59 (3.39) 22.42(1.42) 9.76 (0.00) 1.83 (0.00) 48.07 (2.56) 58.66 (7.48)
6x 1HalfCheetah 4295 (1.15) 51.38 (1.80) 115.20 (0.17) 82.59 (0.00) 13.82 (2.42) 4.23(0.74)
9I18Humanoid 8.88 (0.10) 18.53 (1.01) 10.98 (0.75) 51.44(0.36) 24.66 (0.55) 9.89 (0.15)
MOS Goal

Multi-Antl 0.84 (12.56) 11.72 (2.25) 9.15(9.73) 11.09 (11.93) 8.38 (4.01) 9.81(4.92)
Multi-Ant2 1.56 (8.35) 1.61 (10.32) 2.54(7.52) 0.49 (5.03) 0.50 (0.90) 0.33 (4.54)
Multi-Point1 2.52(1.53) 3.02 (5.06) 3.23 (8.22) 3.30 (4.86) 1.46 (8.69) 0.51(11.82)
Multi-Point2 2.89 (4.09) 1.73 (10.33) 2.20(7.75) 5.12 (3.69) 0.71 (9.96) 1.44 (7.77)
MOS Isaac Gym

CloseDrawerMA 0.38 (0.00) 0.06 (0.00) 0.32 (0.00) 0.48 (0.00) 0.20 (0.00) 0.14 (0.00)
PickAndPlaceMA 0.52 (0.00) 0.26 (0.00) 0.41 (0.00) 0.25 (0.00) 0.69 (4.62) 0.44 (0.00)
CatchFingerMA 0.03 (0.15) 0.03 (1.82) 0.08 (2.31) 0.02 (3.94) 0.03 (3.07) 0.02 (0.53)
CatchJointMA 0.09 (0.00) 0.05 (0.00) 0.06 (0.00) 0.01 (0.00) 0.06 (0.00) 0.02 (0.00)
OverFingerMA 0.10 (0.00) 0.01 (0.92) 0.07 (0.00) 0.01 (0.00) 0.02 (0.00) 0.15 (3.50)
OverJointMA 0.03 (1.05) 0.02 (0.44) 0.03 (0.00) 0.02 (0.00) 0.00 (0.00) 0.09 (3.91)

Table 13: The details of the MOSDB dataset. “Full name”: Full name in Safety Gymnasium [28]].
“Observation dimension”: The sum of the observation dimensions of all agents. “Action dimension”:

The sum of action dimensions of all agents. “Credit assignment”: “v/* means the environment yields

respective returns and costs for each agent. “X” means the environment yields system returns and
costs. “Maximum return”: The maximum return in the MOSDB dataset.

Task Full name Numb‘er of Qbser\{gtion AAclionx Cr?dit Maximum
agents dimension dimension assignment return
MOS Velocity
2x1Swimmer Safety2x 1 Swimmer Velocity-v0 2 20 2 X 12.99
2x3HalfCheetah Safety2x3HalfCheetahVelocity-v0 2 38 6 X 1672.97
2x3Walker2d Safety2x3Walker2d Velocity-v0 2 38 6 X 2031.20
2x4Ant Safety2x4AntVelocity-v0 2 58 8 X 1910.11
3x1Hopper Safety3x1HopperVelocity-v0 3 54 3 X 1326.51
4x2Ant Safety4x2AntVelocity-v0 4 124 8 X 1882.12
6x1HalfCheetah Safety6x 1HalfCheetahVelocity-v0 6 138 6 X 1626.53
9I8Humanoid Safety9I8Humanoid Velocity-v0 2 756 17 X 1438.35
MOS Goal
Multi-Antl Safety AntMultiGoal 1-v0 2 420 16 v 36.76
Multi-Ant2 Safety AntMultiGoal2-v0 2 420 16 v 8.47
Multi-Point1 SafetyPointMultiGoal 1-v0 2 308 4 v 17.99
Multi-Point2 SafetyPointMultiGoal2-v0 2 308 4 v 14.49
MOS Isaac Gym
CloseDrawerMA FreightFrankaCloseDrawer 2 90 12 v 10.30
PickAndPlaceMA FreightFrankaPickAndPlace 2 100 12 v -0.83
CatchFingerMA ShadowHandCatchOver2Underarm_Safe_finger 2 446 52 v 7.19
CatchJointMA ShadowHandCatchOver2Underarm_Safe_joint 2 446 52 v 6.21
OverFingerMA ShadowHandOver_Safe_finger 2 422 40 v 6.12
OverJointMA ShadowHandOver_Safe_joint 2 422 40 v 6.58

28

Safety2x 1SwimmerVelocity-v0 Safety2x3HalfCheetah Velocity-v0

£ 20+ £ ST TN
2 2
= 5 i
2 > 1000
2 0 2
3 3]
L k)
I = SO
0 20 40 0 20 40
Trajectory cumulative cost Trajectory cumulative cost

Safety2x3Walker2dVelocity-v0

Safety2x4 AntVelocity-v0
20007 v+ 2000 S
£ g :
2 2 ;
2 2 !
£ 1000 210001
8 8
o =
= i = : HEIEN :.
0 :. e ..~-I 01 ::!;!l}'!' : '
0 20 40 0 20
Trajectory cumulative cost Trajectory cumulative cost
Safety3x1HopperVelocity-v0 Safety4x2 AntVelocity-v0
- . - .
2 2
2 2
g‘ E‘ 1000
3 3
= =
4 I . ! : O 4 : : ; ;
0 20 40 0 20 40
Trajectory cumulative cost Trajectory cumulative cost

Safety6x 1HalfCheetah Velocity-v0 Safety9|8Humanoid Velocity-v0

: - 1500

£ Hoihitd i g
2 : 3 i
o © 10001 .
z 2
2 2
2 2 500

i | | (SEEEEEIESE .

0 20 40 0 20 40

Trajectory cumulative cost Trajectory cumulative cost

Figure 5: The data distribution over the reward-cost plane of the proposed MOSDB dataset (part 1/3).
Each point represents a return-cumulative cost tuple of a trajectory. The cost limit is set to 25.

29

Trajectory return
) N
< <

(=)

Safety AntMultiGoal1-v0

0 20 40
Trajectory cumulative cost

SafetyPointMultiGoal1-v0

201
£
2
2
107
2
3
<’
£ of
0 20 40
Trajectory cumulative cost
FreightFrankaCloseDrawer
£
>
2
3
s
0.0 25 5.0 7.5
Trajectory cumulative cost
ShadowHandCatchOver
2Underarm_Safe finger
E | . 2
E M T S T S -
8 5— . . H . H 1
z
2
8
g
~ 01! ! ' ' !
0 2 4 6 8

Figure 5: The data distribution over the reward-cost plane of the proposed MOSDB dataset (part 2/3).

Trajectory cumulative cost

Safety AntMultiGoal2-v0

£ 10
=]
2
3
g
= 0
0 20 40
Trajectory cumulative cost
SafetyPointMultiGoal2-v0
£
2 101
2
z
2
8
.g 0_
F
0 20 40
Trajectory cumulative cost
FreightFrankaPickAndPlace
g
2
2
540-
3
g
F
—20 j | ;
0.0 2.5 5.0 7.5
Trajectory cumulative cost
ShadowHandCatchOver
2Underarm_Safe joint
£ i
2 5.01 N
& P
2251 | ‘ ’ it
Q = [
5} b
= 0.0/ ‘ ‘ ! i1 i
0 2 4 6 8

Trajectory cumulative cost

Each point represents a return-cumulative cost tuple of a trajectory. The cost limit is set to 25.

30

ShadowHandOver Safe finger ShadowHandOver Safe joint

(o)}

(o)

N

0 2 4 6 8 0 2 4 6 8
Trajectory cumulative cost Trajectory cumulative cost

\S)

Trajectory return
N
Trajectory return
i

(=)
S

Figure 5: The data distribution over the reward-cost plane of the proposed MOSDB dataset (part 3/3).
Each point represents a return-cumulative cost tuple of a trajectory. The cost limit is set to 25.

31

	Introduction
	Related work
	Methods
	CTDE via policy self-distillation (PSD)
	Full parameter sharing among agents
	Cost binary embedding (CBE)
	MOSDB dataset

	Experiments
	MOSDB benchmark and the performance of MOSDT
	Ablation study
	Analysis of unsafe cases

	Conclusion
	More implementation details
	Network details of MOSDT
	More training and evaluation settings
	MOSDT algorithm

	Further experimental results
	The performance of BC-Safe
	Detailed efficiency analysis
	Detailed ablation study for PSD
	Detailed ablation study for partial parameter sharing
	Ablation study for network designs
	Standard deviation results

	More details of the MOSDB dataset
	Limitations and future work

