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ABSTRACT

Unsupervised Anomaly Detection (UAD) plays a crucial role in identifying abnor-
mal patterns within data without labeled examples, holding significant practical
implications across various domains. Although the individual contributions of
representation learning and clustering to anomaly detection are well-established,
their interdependencies remain under-explored due to the absence of a unified
theoretical framework. Consequently, their collective potential to enhance anomaly
detection performance remains largely untapped. To bridge this gap, in this paper,
we propose a novel probabilistic mixture model for anomaly detection to establish
a theoretical connection among representation learning, clustering, and anomaly
detection. By maximizing a novel anomaly-aware data likelihood, representation
learning and clustering can effectively reduce the adverse impact of anomalous
data and collaboratively benefit anomaly detection. Meanwhile, a theoretically sub-
stantiated anomaly score is naturally derived from this framework. Lastly, drawing
inspiration from gravitational analysis in physics, we have devised an improved
anomaly score that more effectively harnesses the combined power of representa-
tion learning and clustering. Extensive experiments, involving 17 baseline methods
across 30 diverse datasets, validate the effectiveness and generalization capability
of the proposed method, surpassing state-of-the-art methods.

1 INTRODUCTION

Unsupervised Anomaly Detection (UAD) refers to the task dedicated to identifying abnormal patterns
or instances within data in the absence of labeled examples Chandola et al. (2009). It has long
received extensive attention in the past decades for its wide-ranging applications in numerous practical
scenarios, including financial auditing Bakumenko & Elragal (2022), healthcare monitoring Salem
et al. (2014) and e-commerce sector Kou et al. (2004). Due to the lack of explicit label guidance, the
key to UAD is to uncover the dominant patterns that widely exist in the dataset so that samples do not
conform to these patterns can be recognized as anomalies. To achieve this, early works Chalapathy
& Chawla (2019) have heavily relied on powerful unsupervised representation learning methods
to extract the normal patterns from high-dimensional and complex data such as images, text, and
graphs. More recent works Song et al. (2021); Aytekin et al. (2018) have utilized clustering, a
widely observed natural pattern in real-world data, to provide critical global information for anomaly
detection and achieved tremendous success.

While the individual contributions of representation learning and clustering to anomaly detection
are well-established, their interrelationships remain largely unexplored. Intuitively, discriminative
representation learning can leverage accurate clustering results to differentiate samples from distinct
clusters in the embedding space (i.e., ➀). Similarly, it can utilize accurate anomaly detection to
avoid preserving abnormal patterns (i.e., ➁). For accurate clustering, it can gain advantages from
representation learning by operating in the discriminative embedding space (i.e., ➂). Meanwhile, it
can potentially benefit from accurate anomaly detection by excluding anomalies when formulating
clusters (i.e., ➃). Anomaly detection can greatly benefit from both discriminative representation
learning and accurate clustering (i.e., ➄ & ➅). However, these benefits hinge on the successful
identification of anomalies and the reduction of their detrimental impact on the aforementioned
tasks. As depicted in Figure 1, the integration of these three elements exhibits a significant reciprocal
nature. In summary, representation learning, clustering, and anomaly detection are interdependent and
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Figure 1: Interdependent relationships among representation learning, clustering, and anomaly
detection.

intricately intertwined. Therefore, it is crucial for anomaly detection to fully leverage and mutually
enhance the relationships among these three components.

Despite the intuitive significance of the interactions among representation learning, clustering, and
anomaly detection, existing methods have only made limited attempts to exploit them and fall short of
expectations. On one hand, some methods Zong et al. (2018) have acknowledged the interplay among
these three factors, but their focus remains primarily on the interactions between two factors at a time,
making only targeted improvements. For instance, some strategies include explicitly removing outlier
samples during the clustering process Chawla & Gionis (2013) or designing robust representation
learning methods Cho et al. (2021) to mitigate the influence of anomalies. On the other hand, recent
methods Song et al. (2021) have begun to explore the simultaneous optimization of these three factors
within a single framework. However, these attempts are still in the stage of merely superimposing
the objectives of the three factors without a unified theoretical framework. This lack of a guiding
framework prevents the adequate modeling of the interdependencies among these factors, thereby
limiting their collective contribution to a unified anomaly detection objective. Consequently, we aim
to address the following question: Is it possible to employ a unified theoretical framework to jointly
model these three interdependent objectives, thereby leveraging their respective strengths to enhance
anomaly detection?

In this paper, we try to answer this question and propose a novel model named UniCAD for anomaly
detection. The proposed UniCAD integrates representation learning, clustering, and anomaly de-
tection into a unified framework, achieved through the theoretical guidance of maximizing the
anomaly-aware data likelihood. Specifically, we explicitly model the relationships between samples
and multiple clusters in the representation space using the probabilistic mixture models for the
likelihood estimation. Moreover, we creatively introduce a learnable indicator function into the
objective of maximum likelihood to explicitly attenuate the influence of anomalies on representation
learning and clustering. Under this framework, we can theoretically derive an anomaly score that
indicates the abnormality of samples, rather than heuristically designing it based on clustering results
as existing works do. Furthermore, building upon this theoretically supported anomaly score and
inspired by the theory of universal gravitation, we propose a more comprehensive anomaly metric
that considers the complex relationships between samples and multiple clusters. This allows us to
better utilize the learned representations and clustering results from this framework for anomaly
detection. We conduct extensive experiments with 15 baselines on 30 datasets from different data
domains to evaluate the effectiveness of the proposed method. The results verify the effectiveness
and generalization capability in detecting anomalies in real-world applications.

To sum up, we underline our contributions as follows:

• We propose a unified theoretical framework to jointly optimize representation learning, clustering,
and anomaly detection, allowing their mutual enhancement and aid in anomaly detection.

• Based on the proposed framework, we derive a theoretically grounded anomaly score and further
introduce a more comprehensive score with the vector summation, which fully releases the power
of the framework for effective anomaly detection.

• Extensive experiments have been conducted on 30 datasets to validate the superior unsupervised
anomaly detection performance of our approach, which surpassed the state-of-the-art through
comparative evaluations with 17 baseline methods.
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2 RELATED WORK

Typical unsupervised anomaly detection (UAD) methods calculate a continuous score for each sample
to measure its anomaly degree. Various UAD methods have been proposed based on different assump-
tions, making them suitable for detecting various types of anomaly patterns, including subspace-based
models Kriegel et al. (2009), statistical models Goldstein & Dengel (2012), linear models Wold et al.
(1987); Manevitz & Yousef (2001), density-based models Breunig et al. (2000); Peterson (2009),
ensemble-based models Pevnỳ (2016); Liu et al. (2008), probability-based models Reynolds et al.
(2009); Zong et al. (2018); Li et al. (2022; 2020), representation-based models Ruff et al. (2018); Xu
et al. (2023), and cluster-based models He et al. (2003); Chawla & Gionis (2013). Considering the
field of anomaly detection has progressed by integrating clustering information to enhance detection
accuracy Li et al. (2021); Zhou et al. (2022), we primarily focus on and analyze anomaly patterns
related to clustering, incorporating a global clustering perspective to assess the degree of anomaly.
Notable methods in this context include CBLOF He et al. (2003), which evaluates anomalies based
on the size of the nearest cluster and the distance to the nearest large cluster. Similarly, DCFOD Song
et al. (2021) introduces innovation by applying the self-training architecture of the deep cluster-
ing Xie et al. (2016) to outlier detection. Meanwhile, DAGMM Zong et al. (2018) combines deep
autoencoders with Gaussian mixture models, utilizing sample energy as a metric to quantify the
anomaly degree. In contrast, our approach introduces a unified theoretical framework that integrates
representation learning, clustering, and anomaly detection, overcoming the limitations of heuristic
designs and the overlooked anomaly influence in existing methods.

3 METHODOLOGY

In this section, we first define the problem we studied and the notations used in this paper. Then we
elaborate on the proposed method UniCAD. More specifically, we first introduce a novel learning
objective that optimizes representation learning, clustering, and anomaly detection within a unified
theoretical framework by maximizing the data likelihood. A novel anomaly score with theoretical
support is also naturally derived from this framework. Then, inspired by the concept of universal
gravitation, we further propose an enhanced anomaly scoring approach that leverages the intricate
relationship between samples and clustering to detect anomalies effectively. Finally, we present an
efficient iterative optimization strategy to optimize this model and provide a complexity analysis for
the proposed model.

Definition 1 (Unsupervised Anomaly Detection). Given a dataset X ∈ RN×D comprising N
instances with D-dimensional features, unsupervised anomaly detection aims to learn an anomaly
score oi for each instance xi in an unsupervised manner so that the abnormal ones have higher
scores than the normal ones.

3.1 MAXIMIZING ANOMALY-AWARE LIKELIHOOD

Previous research has demonstrated the importance of discriminative representation and accurate
clustering in anomaly detection Song et al. (2021). However, the presence of anomalous samples can
significantly disrupt the effectiveness of both representation learning and clustering Duan et al. (2009).
While some existing studies have attempted to integrate these three separate learning objectives, the
lack of a unified theoretical framework has hindered their mutual enhancement, leading to suboptimal
results.

To tackle this issue, in this paper, we propose a unified and coherent approach that considers
representation learning, clustering, and anomaly detection by maximizing the likelihood of the
observed data. Specifically, we denote the parameters of representation learning as Θ, the clustering
parameter as Φ, and the dynamic indicator function for anomaly detection as δ(·). These parameters
are optimized simultaneously by maximizing the likelihood of the observed data X:

max log p(X|Θ,Φ) = max

N∑
i=1

δ(xi) log p(xi|Θ,Φ) = max

N∑
i=1

δ(xi) log

K∑
k=1

p(xi, ci = k|Θ,Φ),

(1)
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where ci represents the latent cluster variable associated with xi, and ci = k denotes the probabilistic
event that xi belongs to the k-th cluster. The δ(xi) is an indicator function that determines whether a
sample xi is an anomaly of value 0 or a normal sample of value 1.

3.1.1 JOINT REPRESENTATION LEARNING AND CLUSTERING WITH p(xi|Θ,Φ)

Based on the aforementioned advantages of MMs, we estimate the likelihood p(xi|Θ,Φ) with mixture
models defined as:

p(xi|Θ,Φ) =

K∑
k=1

p(xi, ci = k|Θ,Φ) =

K∑
k=1

p(ci = k) · p(xi|ci = k,Θ,µk,Σk)

=

K∑
k=1

ωk · p(xi|ci = k,Θ,µk,Σk),

(2)

where Φ = {ωk,µk,Σk}. The mixture model is parameterized by the prototypes µk, covariance
matrices Σk, and mixture weights ωk from all clusters.

∑K
k=1 ωk = 1, and k = 1, 2, · · · ,K.

In practice, the samples are usually attributed to high-dimensional features and it is challenging to
detect anomalies from the raw feature space Ruff et al. (2021). Therefore, modern anomaly detection
methods Ruff et al. (2018); Zong et al. (2018) often map raw data samples X = {xi} ∈ RN×D into
a low-dimensional representation space Z = {zi} ∈ RN×d with a representation learning function
zi = fΘ(xi) and detect anomalies within this latent representation space.

Following this widely adopted practice, we model the distribution of samples in the latent represen-
tation space with a multivariate Student’s-t distribution giving its cluster ci = k. The Student’s-t
distribution is robust against outliers due to its heavy tails. Bayesian robustness theory leverages
such distributions to dismiss outlier data, favoring reliable sources, making the Student’s-t process
preferable over Gaussian processes for data with atypical information Andrade (2023). Thus the
probability distribution of generating xi with latent representation zi given its cluster ci = k can be
expressed as:

p(xi|ci = k,Θ,µk,Σk) =
Γ(ν+1

2 )|Σk|−1/2

Γ(ν2 )
√
νπ

(
1 +

1

ν
DM (zi,µk)

2

)− ν+1
2

, (3)

where zi = fΘ(xi) denotes the representation obtained from the data mapped through the neural
network parameterized by Θ. Γ denotes the gamma function while ν is the degree of freedom.

Σk is the scale parameter. DM (zi,µk) =
√

(zi − µk)TΣ
−1
k (zi − µk) represents the Mahalanobis

distance McLachlan (1999). In the unsupervised setting, as cross-validating ν on a validation set or
learning it is unnecessary, ν is set as 1 for all experiments Xie et al. (2016); Van Der Maaten (2009).
The overall marginal likelihood of the observed data xi can be simplified as:

p(xi|Θ,Φ) =

K∑
k=1

ωk ·
π−1 · |Σk|−1/2

1 +DM (zi,µk)2
. (4)

3.1.2 ANOMALY INDICATOR δ(xi) AND SCORE oi

As we have discussed, the indicator function δ(xi) not only benefits both representation and clustering
but also directly serves as the output of anomaly detection. Ideally, with the percentage of outliers
denoted as l, an optimal solution for δ(xi) that maximizes the objective function J(Θ,Φ) entails
setting all δ(xi) = 0 for xi among the l percent of outliers with lowest generation possibility
p(xi|Θ,Φ), and otherwise δ(xi) = 1 is set for the remaining normal samples. Therefore, the
indicator function is determined as:

δ(xi) =

{
0, if p(xi|Θ,Φ) is among the l lowest,
1, otherwise.

(5)
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As this method involves sorting the samples based on the generation probability as being anomalous,
the values of p(xi|Θ,Φ) can serve as a form of anomaly score, a classic approach within the mixture
model framework Reynolds et al. (2009); Zong et al. (2018). This suggests that the likelihood of a
sample being anomalous is inversely related to its generative probability since a lower generative
probability indicates a higher chance of the sample being an outlier. Thus the anomaly score of
sample xi can be defined as:

oi =
1

p(xi|Θ,Φ)
=

1∑K
k=1 ωk · π−1·|Σk|−1/2

1+DM (zi,µk)2

. (6)

3.2 GRAVITY-INSPIRED ANOMALY SCORING

In practical applications, it is proved that anomaly scores derived from generation probabilities often
yield suboptimal performance Han et al. (2022). This observation prompts a reconsideration of how to
fully leverage the complex relationships among samples or even across multiple clusters for anomaly
detection. In this section, we first provide a brief introduction to the concept of Newton’s Law of
Universal Gravitation Newton (1833) and then demonstrate how the anomaly score is intriguingly
similar to this cross-field principle. Finally, we discuss the advantages of introducing the vector sum
operation into the anomaly score inspired by the analogy.

3.2.1 ANALOG ANOMALY SCORING AND FORCE ANALYSIS

To begin with, Newton’s Law of Universal Gravitation Newton (1833) stands as a fundamental
framework for describing the interactions among entities in the physical world. According to this
law, every object in the universe experiences an attractive force from another object. In classical
mechanics, force analysis involves calculating the vector sum of all forces acting on an object, known
as the resultant force, which is crucial in determining an object’s acceleration or change in motion:

F⃗i,total =

K∑
k=1

F⃗ik, with F⃗ik =
G ·mimk

r2ik
· r⃗ik, (7)

where F⃗ik represents the k-th force acting on the object i. This force is proportional to the product of
their masses, (mi and mk), and inversely proportional to the square of the distance rik between them.
G represents the gravitational constant, and r⃗ij is the unit direction vector.

Similarly, if denoting: F̃ik = p(xi, ci = k|Θ,Φ) = ωk · π−1·|Σk|−1/2

1+DM (zi,µk)2
, the score of Equation equa-

tion 6 bears analogies to the summation of the magnitudes of forces as:

oi =
1∑K

k=1 F̃ik

, with F̃ik =
G̃ · m̃im̃k

r̃2ik
, (8)

where G̃ = π−1, m̃k = ωk|Σk|−1/2, m̃i = 1, and r̃ik =
√

1 +DM (zi,µk)2. Here, r̃ik is taken as
the measure of distance within the representation space, modified slightly by an additional term for
smoothness. The constant G̃ serves a role akin to the gravitational constant in this analogy, whereas
m̃k resembles the concept of mass for the cluster. The notation m̃i suggests a standardization where
the mass of each data point is considered uniform and not differentiated.

3.2.2 ANOMALY SCORING WITH VECTOR SUM

Comparing Equation equation 7 with Equation equation 8, what still differs is that, unlike a simple
sum of the scalar value, the resultant force F⃗i,total employs the vector sum and incorporates both
the magnitude and direction r̂ik of each force. This distinction is crucial because forces in different
directions can neutralize each other with a large angle between them or enhance each other’s effects
with a small angle. Inspired by this difference, we consider modeling the relationship between
samples and clusters as a vector, and aggregating them through vector summation. The vector-formed
anomaly score oVi is defined as:

oVi =
1

∥
∑K

k=1 F̃ik · r⃗ik∥
, (9)
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(a) Scalar Sum (b) Vector Sum

Figure 2: Analysis of gravitational force.

where r⃗ik represents the unit direction vector in the representation space from the sample zi to the
cluster prototype µk , and ∥ · ∥ represents the L2 norm.

3.2.3 ADVANTAGES OF VECTOR SUM

The application of the vector sum principle extends beyond physical mechanics and finds relevance
in various domains. In relational embedding Bordes et al. (2013), for example, relationships can be
represented as vectors. Aggregating these vectors allows for capturing complexities like transitivity,
symmetry, and antisymmetry.

Similarly, in our context, the vector sum can help capture more complex relationships along clusters.
In Figure 2, a sample v is attracted to two groups of cluster prototypes, {µ1,µ2} and {µ3,µ4},
with equal mass and distances. While both groups exert equal forces, we argue that their influences
differ: a sample near two clusters with a large difference is more likely to be an anomaly than one
near similar clusters. For instance, a user liking both money-saving tips and luxury items is more
anomalous than one liking two similar luxury items. The vector sum shows that the total force
from {µ1,µ2} is smaller, leading to a higher anomaly score, thus demonstrating its effectiveness in
identifying subtle distinctions among clusters.

3.3 ITERATIVE OPTIMIZATION

Given the challenge posed by the interdependence of the parameters of the network Θ and those of the
mixture model {ωk,µk,Σk} in joint optimization, we propose an iterative optimization procedure.
The pseudocode for training the model is presented in Algorithm 1.

3.3.1 UPDATE Φ

To update the parameters of the mixture model Φ = {ωk,µk,Σk}, we use the Expectation-
Maximization (EM) algorithm to maximize equation equation 1 Peel & McLachlan (2000). The
detailed derivation is included in Appendix B.

E-step. During the E-step of iteration (t+ 1), our goal is to compute the posterior probabilities of
each data point belonging to the k-th cluster within the mixture model. Given the observed sample
xi and the current estimates of the parameters Θ(t) and Φ(t), the expected value of the likelihood
function of latent variable ck, or the posterior possibilities, can be expressed as:

τ
(t+1)
ik = p(ci = k|xi,Θ,Φ(t)) =

p(xi, ci = k|Θ,Φ(t))∑K
j=1 p(xi, ci = j|Θ,Φ(t))

=
F̃

(t)
ik∑K

j=1 F̃
(t)
ij

. (10)

The scale factorPeel & McLachlan (2000) serving as an intermediate result for subsequent updates in
the M-step is :

u
(t+1)
ik =

2

1 +DM (z
(t)
i ,µ

(t)
k )

. (11)

M-step. In the M-step of iteration (t + 1), given the gradients ∂J(Θ,Φ)
∂ωk

= 0, ∂J(Θ,Φ)
∂µk

= 0, and
∂J(Θ,Φ)

∂Σk
= 0, we derive the analytical solutions for the mixture model parameters ωk, µk, and Σk.

6
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Algorithm 1 Model training for UniCAD

Input: data points X, cluster number K, outlier ratio l, tolerance λ, iterations t
Output: network parameters Θ, mixture parameters {ωk,µk,Σk}

1: Initialize Θ and {µk, ωk,Σk};
2: for i = 1 to t do
3: if i = 1 then
4: Xi ← X;
5: else
6: Re-order the point in X such that o1 ≥ · · · ≥ on;
7: Li ← {x1, . . . , x⌊N∗l⌋};
8: Xi ← X \ Li;
9: end if

10: Update Θ with equation 15;
11: while |J(Θ,Φ)− Jold(Θ,Φ)| > λ do
12: Jold(Θ,Φ) = J(Θ,Φ);
13: Calculate τ with equation 10;
14: Update {ωk,µk,Σk} with equation 12, equation 13 and equation 14;
15: end while
16: Calculate oi with equation 9;
17: end for
18: return Θ and {ωk,µk,Σk}

Assume the anomalous ratio is l ∈ [0, 1], the number of the normal samples is n = int(l ∗N). The
updating process for {ω(t+1)

k ,µ
(t+1)
k ,Σ

(t+1)
k } is as follows:

• The mixture weights ωk are updated by averaging the posterior probabilities over all data points
with the number of samples , reflecting the relative presence of each component in the mixture:

ω
(t+1)
k =

n∑
i=1

τ
(t+1)
ik /n. (12)

• The prototypes µk are updated to be the weighted average of the data points, where weights are the
posterior probabilities:

µ
(t+1)
k =

n∑
i=1

(
τ
(t+1)
ik u

(t+1)
ik zi

)
/

n∑
i=1

(
τ
(t+1)
ik u

(t+1)
ik

)
. (13)

• The covariance matrices Σk are updated by considering the dispersion of the data around the newly
computed prototypes:

Σ
(t+1)
k =

∑n
i=1 τ

(t+1)
ik u

(t+1)
ik (zi − µ

(t+1)
k )(zi − µ

(t+1)
k )⊺∑K

j=1 τ
(t+1)
ij

. (14)

3.3.2 UPDATE Θ

We focus on anomaly-aware representation learning and use stochastic gradient descent to optimize
the network parameters Θ, by minimizing the following joint loss:

L = −J(Θ,Φ) + g(Θ), (15)

where J(Θ,Φ) = log p(X|Θ,Φ). An additional constraint term g(Θ) is introduced to prevent
shortcut solution Geirhos et al. (2020). In practice, an autoencoder architecture is implemented,
utilizing a reconstruction loss g(Θ) = ∥x− x̂∥2 as the constraint.

These updates are iteratively performed until convergence, resulting in optimized model parameters
that best fit the given data according to the mixture model framework.

7
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4 EXPERIMENTS

4.1 DATASETS & BASELINES

We evaluated UniCAD on an extensive collection of datasets, comprising 30 tabular datasets that
span 16 diverse fields. We specifically focused on naturally occurring anomaly patterns, rather
than synthetically generated or injected anomalies, as this aligns more closely with real-world
scenarios. The detailed descriptions are provided in Table 4 of Appendix D.1. Following the setup in
ADBench Han et al. (2022), we adopt an inductive setting to predict newly emerging data, a highly
beneficial approach for practical applications.

To assess the effectiveness of UniCAD, we compared it with 17 advanced unsupervised anomaly
detection methods, including: (1) traditional methods: SOD Kriegel et al. (2009) and HBOS Goldstein
& Dengel (2012); (2) linear methods: PCA Wold et al. (1987) and OCSVM Manevitz & Yousef
(2001); (3) density-based methods: LOF Breunig et al. (2000) and KNN Peterson (2009); (4) ensemble-
based methods: LODA Pevnỳ (2016) and IForest Liu et al. (2008); (5) probability-based methods:
DAGMM Zong et al. (2018), ECOD Li et al. (2022), and COPOD Li et al. (2020); (6) cluster-based
methods: DBSCAN Ester et al. (1996), CBLOF He et al. (2003), DCOD Song et al. (2021) and
KMeans-- Chawla & Gionis (2013); and (7) representation-based methods: DeepSVDD Ruff et al.
(2018) and DIF Xu et al. (2023). These baselines encompass the majority of the latest methods,
providing a comprehensive overview of the state-of-the-art. For a detailed description, please refer to
Appendix D.2.

4.2 EXPERIMENT SETTINGS

In the unsupervised setting, we employ the default hyperparameters from the original papers for all
comparison methods. Similarly, the UniCAD also utilizes a fixed set of parameters to ensure a fair
comparison. For all datasets, we employ a two-layer MLP with a hidden dimension of d = 128 and
ReLU activation function as both encoder and decoder. We utilize the Adam optimizer Kingma & Ba
(2014) with a learning rate of 1e−4 for 100 epochs. For the EM process, we set the maximum iteration
number to 100 and a tolerance of 1e−3 for stopping training when the objectives converge. The
number of components in the mixture model is set as k = 10, and the proportion of the outlier is set
as l = 1%. We evaluate the methods using Area Under the Receiver Operating Characteristic (AUC-
ROC) and Area Under the Precision-Recall Curve (AUC-PR) metrics Han et al. (2022), reporting the
average ranking (Avg. Rank) across all datasets. All experiments are run 3 times with different seeds,
and the mean results are reported.

4.3 PERFORMANCE AND ANALYSIS

Performance Comparison. Table 1 presents a comparison of UniCAD with 10 unsupervised
baseline methods across 30 tabular datasets using the AUC-ROC metric. The experimental results,
which encompass 17 baselines, are included in Tables 5 and 6 of Appendix D.3, with additional
experiments on other data domains presented in Appendix E. Our proposed UniCAD achieves the
top average ranking, exhibiting the best or near-best performance on a larger number of datasets
and confirming advanced capabilities. It is noteworthy that there is no one-size-fits-all unsupervised
anomaly detection method suitable for every type of dataset, as demonstrated by the observation that
other methods have also achieved some of the best results on certain datasets. However, our model
showcased a remarkable ability to generalize across most datasets featuring natural anomalies, as
evidenced by statistical average ranking. As for clustering-based methods such as KMeans--, DCOD,
and CBLOF, they mostly rank in the top tier among all baseline methods, supporting the advantage of
combining deep clustering with anomaly detection. However, our method significantly outperformed
these methods by mitigating their limitations and further providing a unified framework for joint
representation learning, clustering, and anomaly detection.

Effectiveness of Vector Sum in Anomaly Scoring. As demonstrated in Table 1, we compare the
anomaly score oi derived directly from the generation possibility with its vector summation form oV

i .
According to our statistical findings, we observe that vector scores oV

i consistently outperform scalar
scores oi. This indicates that the introduction of the vector summation, analogous to the concept
of resultant force, makes a substantial difference in anomaly detection scenarios involving multiple
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Table 1: AUCROC of 10 unsupervised algorithms on 30 tabular benchmark datasets. In each dataset,
the algorithm with the highest AUCROC is marked in red, the second highest in blue, and the third
highest in green.

Dataset OC
SVM LOF IForest DA

GMM ECOD DB
SCAN CBLOF DCOD KMeans-- DIF UniCAD

w/ oSi
UniCAD

w/ oVi
annthyroid 57.23 70.20 82.01 56.53 78.66 50.08 62.28 55.01 64.99 66.76 75.27 72.72
backdoor 85.04 85.79 72.15 55.98 86.08 76.55 81.91 79.57 89.11 92.87 87.28 89.24
breastw 80.30 40.61 98.32 N/A 99.17 85.20 96.86 99.02 97.05 77.45 98.15 98.56

campaign 65.70 59.04 71.71 56.03 76.10 50.60 64.34 63.16 63.51 67.53 73.52 73.64
celeba 70.70 38.95 70.41 44.74 76.48 50.36 73.99 91.41 56.76 65.29 81.38 82.00
census 54.90 47.46 59.52 59.65 67.63 58.50 60.17 72.84 63.33 59.66 67.90 67.84
glass 35.36 69.20 77.13 76.09 65.83 54.55 78.30 78.07 77.30 84.57 79.52 82.17

Hepatitis 67.75 38.06 69.75 54.80 75.22 68.12 73.05 48.38 64.64 74.24 75.53 80.62
http 99.59 27.46 99.96 N/A 98.10 49.97 99.60 99.53 99.55 99.49 99.53 99.52

Ionosphere 75.92 90.59 84.50 73.41 73.15 81.12 90.79 57.78 91.36 89.74 92.04 90.37
landsat 36.15 53.90 47.64 43.92 36.10 50.17 63.69 33.40 55.31 54.84 49.60 57.37

Lymphography 99.54 89.86 99.81 72.11 99.52 74.16 99.81 81.19 100.00 83.67 99.29 99.73
mnist 82.95 67.13 80.98 67.23 74.61 50.00 79.96 65.23 82.45 88.16 86.00 86.64
musk 80.58 41.18 99.99 76.85 95.40 50.00 100.00 42.19 72.16 98.22 99.92 100.00

pendigits 93.75 47.99 94.76 64.22 93.01 55.33 96.93 94.33 94.37 93.79 95.12 95.52
Pima 66.92 65.71 72.87 55.93 63.05 51.39 71.49 72.16 70.44 67.28 75.16 74.87

satellite 59.02 55.88 70.43 62.33 58.09 55.52 71.32 55.97 67.71 74.52 72.46 77.65
satimage-2 97.35 47.36 99.16 96.29 96.28 75.74 99.84 86.01 99.88 99.63 99.87 99.88

shuttle 97.40 57.11 99.56 97.92 99.13 50.40 93.07 97.20 69.97 97.00 99.15 98.75
skin 49.45 46.47 68.21 N/A 49.08 50.00 68.03 64.34 65.47 66.36 72.26 69.69

Stamps 83.86 51.26 91.21 88.89 87.87 52.08 69.89 93.41 79.78 87.95 91.37 94.18
thyroid 87.92 86.86 98.30 79.75 97.94 53.57 94.74 78.55 92.26 96.26 97.66 97.48

vertebral 37.99 49.29 36.66 53.20 40.66 49.74 41.01 38.13 38.14 47.20 33.11 47.37
vowels 61.59 93.12 73.94 60.58 62.24 57.50 92.12 51.56 93.45 81.02 88.38 92.09

Waveform 56.29 73.32 71.47 49.35 62.36 66.41 71.27 63.47 74.35 75.33 71.81 74.29
WBC 99.03 54.17 99.01 N/A 99.11 87.43 96.88 94.92 97.45 81.27 97.68 98.93
Wilt 31.28 50.65 41.94 37.29 36.30 49.96 34.50 44.71 34.91 39.46 48.95 52.56
wine 73.07 37.74 80.37 61.70 77.22 40.33 27.14 82.18 27.36 41.69 82.72 95.25

WPBC 45.35 41.41 46.63 47.80 46.65 52.22 45.32 49.67 45.01 44.69 48.02 49.90

Avg. Rank 7.8 8.9 5.1 8.7 6.4 9.3 5.7 7.4 6.0 5.8 3.7 2.6

(a) Optimization Analysis (b) AUC-ROC Surface (c) AUC-PR Surface

Figure 3: (a) demonstrates the performance variations during the optimization process on the satimage-
2 dataset. (b) & (c) Analysis of cluster count k, anomaly ratio l.

clusters. The performance gains of the vector sum scores strongly demonstrate the effectiveness
of the UniCAD in capturing the subtle differences in the distinctions among multiple clusters and
underscore the utility of this factor in the context of anomaly detection based on clustering.

Runtime Comparison. We present a analysis of the runtime performance of various methods,
including our proposed approach, as detailed in Table 2. Our experiments, conducted on the backdoor
dataset, reveal that while non-deep learning methods exhibit lower runtime, they often simplify the
problem space excessively, failing to capture the complex non-linear relationships present in the
data. In contrast, our method, when compared to existing deep learning techniques, demonstrates
a significant reduction in computational time. This indicates that our approach not only manages
to efficiently model complex patterns but also achieves an optimal balance between computational
efficiency and modeling capability.
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Table 2: Runtime Comparison. The runtime is reported in seconds (s).

Phase IForest KMeans-- DAGMM DCOD UniCAD
Fit 0.256 103.697 795.004 4548.634 246.113
Infer 0.018 0.059 4.190 16.190 0.079

Table 3: Ablation study on AUC-ROC scores, calculated across 30 datasets.

Metric w/ Gauss. w/o J(Θ,Φ) w/o δ(xi) Full Model
Avg. Rank (w/ baselines & variants) 6.2 6.6 5.0 4.2

4.4 ABLATION STUDIES

In this section, we examine the contributions of different components in UniCAD. Tables 3 reports the
results. We make three major observations. Firstly, the anomaly detection performance experiences a
significant drop when replacing the Student’s t distribution with a Gaussian distribution for the Mixture
Model, highlighting the robustness of the Student’s t distribution in unsupervised anomaly detection.
Secondly, omitting the likelihood maximization loss (w/o J(Θ,Φ)) also results in a considerable
decrease in overall performance. This observation underscores the importance of deriving both
the optimization objectives and anomaly scores from the likelihood generation probability through
a theoretical framework, which allows for unified joint optimization of anomaly detection and
clustering in the representation space. Furthermore, the indicator function δ(xi) also contributes to a
performance increase. These results further confirm the effectiveness of our UniCAD in mitigating the
negative influence of anomalies in the clustering process, as the existence of outliers may significantly
degrade the performance of clustering. In summary, all these ablation studies clearly demonstrate
the effectiveness of our theoretical framework in simultaneously considering representation learning,
clustering, and anomaly detection.

4.5 HYPERPARAMETERS ANALYSIS

This section analyzes how hyperparameters affect our model’s performance during the iterative
training process. As shown in Figure 3a, we tracked iteration counts from 0 to 10 for the satimage-2
dataset, keeping other parameters constant. The AUC-ROC and AUC-PR curves demonstrated stable
performance with only minor fluctuations initially, highlighting the convergence of the iterative EM
optimization. We also conducted a sensitivity analysis on key hyperparameters for the donors dataset,
focusing on the number of clusters k and the outlier set proportion l. The results, shown in Figure 3,
reveal that the optimal l is generally lower than the actual anomaly proportion. Furthermore, a pattern
was observed with the number of clusters k, where the model performance initially improved with an
increase in k, followed by a subsequent decline. This suggests the existence of an optimal range for
the number of clusters, which should be carefully selected based on the specific application context.

5 CONCLUSION

This paper presents UniCAD, a novel model for Unsupervised Anomaly Detection (UAD) that
seamlessly integrates representation learning, clustering, and anomaly detection within a unified
theoretical framework. Specifically, UniCAD introduces an anomaly-aware data likelihood based on
the mixture model with the Student-t distribution to guide the joint optimization process, effectively
mitigating the impact of anomalies on representation learning and clustering. This framework
enables a theoretically grounded anomaly score inspired by universal gravitation, which considers
complex relationships between samples and multiple clusters. Extensive experiments on 30 datasets
across various domains demonstrate the effectiveness and generalization capability of UniCAD,
surpassing 15 baseline methods and establishing it as a state-of-the-art solution in unsupervised
anomaly detection. Despite its potential, the proposed method’s applicability to broader fields like
time series and multimodal anomaly detection requires further exploration and validation, highlighting
a significant area for future work.
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A ITERATIVE TRAINING ALGORITHM

B DERIVATION OF EM ALGORITHM

This appendix provides the detailed derivation of the Expectation-Maximization (EM) algorithm
for optimizing the parameters of a mixture model based on Student’s t-distribution. The focus is
on deriving analytical solutions for the maximization of the parameters Φ = {µk,Σk, ωk} of the
mixture components. The EM algorithm alternates between two steps:

In the E-step, we calculate the posterior probabilities τik, representing the probability of data point
i belonging to cluster k, given the current parameters. The posterior probabilities for a Student’s
t-distribution mixture model are formulated as:

τik =
ωk · p(zi|µk,Σk)∑K
j=1 ωj · p(zi|µj ,Σj)

, (16)

where τ (zi|µk,Σk) denotes the Student’s t-distribution for data point i with respect to cluster k, and
K is the number of mixture components.

The Student’s t-distribution is depicted as a hierarchical conditional probability, resembling a Gaussian
distribution with an accuracy scale factor u, where its latent variable follows a gamma distribution.
Adopting a degree of freedom ν = 1, the value of uik is given by:

uik =
ν + 1

ν +DM (zi,µk)
=

2

1 +DM (zi,µk)
(17)

In the M-step, we update the parameters Φ = {ωk, µk, and Σk} using the derivatives obtained in
the previous steps. In our model, the likelihood function for a Student’s-t Distribution Mixture Model
(SMM) is represented as:

L(ω,µ,Σ) =

N∑
i=1

K∑
k=1

ωk ·
π−1 · |Σk|−

1
2

1 + (zi − µk)TΣ
−1
k (zi − µk)

, (18)

where ωk are the mixture weights, Σk the covariance matrices, µk the means, and zi the data points.

The derivative with respect to ωk must consider the constraint that the sum of the mixture weights
equals 1, i.e.,

∑
k ωk = 1. Hence, we introduce a Lagrange multiplier λ to address this constraint

and construct the Lagrangian L′:

L′(ω,µ,Σ, λ) = L(ω,µ,Σ) + λ

(
1−

K∑
k=1

ωk

)
, (19)

The derivative with respect to ωk is:

∂L′

∂ωk
=

∂L

∂ωk
− λ, (20)

Substituting the definition of L(ω,µ,Σ), we obtain:

∂L

∂ωk
=
∑
i

p(zi|µk,Σk)∑K
j=1 ωj · p(zi|µj ,Σj)

=
∑
i

τik
ωk

, (21)

To solve for ωk, we first multiply both sides of the equation by ωk and apply the constraint condition:

∑
k

ωk

(∑
i

τik
ωk
− λ

)
= 0, (22)

Upon further organization, we find that the Lagrange multiplier λ actually equals the total number of
data points N (since

∑
i τik = Nk, where Nk is the expected total number of data points belonging

to the kth component, and the sum of all Nk equals the total number of data points N ).
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Figure 4: Score comparison with other methods.

Finally, we can solve for ωk:

ωk =

∑
i τik
N

, (23)

This result indicates that the weight ωk of each mixture component equals the proportion of the
posterior probabilities of the data points it contains relative to all data points.

To update µk and Σk, we consider the conditional expectation of the data log-likelihood function:

Q(µk,Σk) =

N∑
i=1

τik

(
− log(π)− 1

2
log |σk|+

1

2
log uik

−1

2
uik(zi − µk)

TΣ−1
k (zi − µk)

) (24)

Maximizing Q(µk,Σk) with respect to µk leads to:

∂Q

∂µk
=

1

2

N∑
i=1

τikuik(2Σ
−1
k µk − 2Σ−1

k zik) (25)

Setting ∂Q
∂µk

= 0 results in the updated mean µ
(t+1)
k :

µ
(t+1)
k =

n∑
i=1

(
τ
(t+1)
ik u

(t+1)
ik zi

)
/

n∑
i=1

(
τ
(t+1)
ik u

(t+1)
ik

)
. (26)

Considering the derivative of Q(µk,Σk) with respect to Σ−1
k :

∂Q

∂Σ−1
k

=
1

2

N∑
i=1

τik
(
Σk − uik(zi − µk)× (zi − µk)

T
)
. (27)

Setting ∂Q
∂µk

= 0 yields the updated covariance matrix Σ
(t+1)
k :

Σ
(t+1)
k =

∑n
i=1 τ

(t+1)
ik u

(t+1)
ik (zi − µ

(t+1)
k )(zi − µ

(t+1)
k )T∑K

j=1 τ
(t+1)
ij

. (28)

C ANOMALY SCORE WITH VECTOR SUM

C.1 TOY EXAMPLE

In the appendix, as illustrated in Figure 4, we investigated a toy example. We discussed a specific
pattern of anomalies termed group anomalies, where a small number of anomalous samples cluster
together. It is crucial to note that we do not claim this anomaly pattern is common in real-world data;
our goal is merely to point out a specific anomaly pattern that is challenging for traditional cluster-
based anomaly detection methods to detect. Specifically, we utilize three Gaussian distributions with
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high variance (each generating 300 data samples) and one with lower variance (generating 30 data
samples). Because the samples from the smaller Gaussian follow a different generative mechanism
and represent a minority in the dataset, we consider them anomalies.

We set the cluster number for KMeans-- and GMM at four, indicating that the Gaussian distribution
comprising anomalous samples was also recognized as a cluster. KMeans-- employs a cluster-based
approach, using the distance to the nearest cluster center as the anomaly score, while GMM uses
a probability-based approach, considering the samples’ likelihood in the mixture model as the
anomaly score. However, both approaches are ineffective in this scenario. Rather than identifying the
small cluster as anomalous, they tend to misidentify samples on the peripheries of larger clusters as
anomalies.

By contrast, our scoring method views the entire small cluster as more likely anomalous, followed by
outlier samples on the margins of the larger clusters. This visualization provides a perspective that
distinguishes our method from previous efforts.

D EXPERIMENTAL SUPPLEMENTARY

D.1 BENCHMARK DATASETS DETAILS

Due to space constraints in the main text, we utilized 30 public datasets from ADBench Han et al.
(2022), covering all different types of data. The details of the 30 datasets are presented in Table 4.

Table 4: Statistics of tabular benchmark datasets.

Data # Samples # Features # Anomaly % Anomaly Category

annthyroid 7200 6 534 7.42 Healthcare
backdoor 95329 196 2329 2.44 Network
breastw 683 9 239 34.99 Healthcare

campaign 41188 62 4640 11.27 Finance
celeba 202599 39 4547 2.24 Image
census 299285 500 18568 6.20 Sociology
glass 214 7 9 4.21 Forensic

Hepaitis 80 19 13 16.25 Healthcare
http 567498 3 2211 0.39 Web

Ionosphere 351 33 126 35.90 Oryctognosy
landsat 6435 36 1333 20.71 Astronautics

Lymphography 148 18 6 4.05 Healthcare
magic.gamma 19020 10 6688 35.16 Physical

mnist 7603 100 700 9.21 Image
musk 3062 166 97 3.17 Chemistry

pendigits 6870 16 156 2.27 Image
Pima 768 8 268 34.90 Healthcare

satellite 6435 36 2036 31.64 Astronautics
satimage-2 5803 36 71 1.22 Astronautics

shuttle 49097 9 3511 7.15 Astronautics
skin 245057 3 50859 20.75 Image

Stamps 340 9 31 9.12 Document
thyroid 3772 6 93 2.47 Healthcare

vertebral 240 6 30 12.50 Biology
vowels 1456 12 50 3.43 Linguistics

Waveform 3443 21 100 2.90 Physics
WBC 223 9 10 4. 48 Healthcare
Wilt 4819 5 257 5.33 Botany
wine 129 13 10 7.75 Chemistry

WPBC 198 33 47 23.74 Healthcare
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D.2 BASELINES DETAILS

A comprehensive overview of the unsupervised anomaly detection methods is presented below.

D.2.1 TRADITIONAL MODELS

• Subspace Outlier Detection (SOD) Kriegel et al. (2009): Identifies outliers in varying sub-
spaces of a high-dimensional feature space, targeting anomalies that emerge in lower-dimensional
projections.

• Histogram-based Outlier Detection (HBOS) Goldstein & Dengel (2012): Assumes feature
independence and calculates outlyingness via histograms, offering scalability and efficiency.

D.2.2 LINEAR MODELS

• Principal Component Analysis (PCA) Wold et al. (1987): Utilizes singular value decomposition
for dimensionality reduction, with anomalies indicated by reconstruction errors.

• One-class SVM (OCSVM) Manevitz & Yousef (2001): Defines a decision boundary to separate
normal samples from outliers, maximizing the margin from the data origin.

D.2.3 DENSITY-BASED MODELS

• Local Outlier Factor (LOF) Breunig et al. (2000) : Measures local density deviation, marking
samples as outliers if they lie in less dense regions compared to their neighbors.

• K-Nearest Neighbors (KNN) Peterson (2009): Anomaly scores are assigned based on the distance
to the k-th nearest neighbor, embodying a simple yet effective approach.

D.2.4 ENSEMBLE-BASED MODELS

• Lightweight On-line Detector of Anomalies (LODA) Pevnỳ (2016) : An ensemble method
suitable for real-time processing and adaptable to concept drift through random projections and
histograms.

• Isolation Forest (IForest) Liu et al. (2008): Isolates anomalies by randomly selecting features
and split values, leveraging the ease of isolating anomalies to identify them efficiently.

D.2.5 PROBABILITY-BASED MODELS

• Deep Autoencoding Gaussian Mixture Model (DAGMM) Zong et al. (2018): Combines a deep
autoencoder with a GMM for anomaly scoring, utilizing both low-dimensional representation and
reconstruction error.

• Empirical-Cumulative-distribution-based Outlier Detection (ECOD) Li et al. (2022): Uses
ECDFs to estimate feature densities independently, targeting outliers in distribution tails.

• Copula Based Outlier Detector (COPOD) Li et al. (2020): A hyperparameter-free method
leveraging empirical copula models for interpretable and efficient outlier detection.

D.2.6 CLUSTER-BASED MODELS

• DBSCAN Ester et al. (1996): A density-based clustering algorithm that identifies clusters based
on the density of data points, effectively separating high-density clusters from low-density noise,
and is widely used for anomaly detection in spatial data.

• Clustering Based Local Outlier Factor (CBLOF) He et al. (2003): Calculates anomaly scores
based on cluster distances, using global data distribution.

• KMeans-- Song et al. (2021): Extends k-means to include outlier detection in the clustering
process, offering an integrated approach to anomaly detection.

• Deep Clustering-based Fair Outlier Detection (DCFOD) Chawla & Gionis (2013): Enhances
outlier detection with a focus on fairness, combining deep clustering and adversarial training for
representation learning.
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Table 5: AUCROC of 17 unsupervised algorithms on 30 tabular benchmark datasets. In each dataset,
the algorithm with the highest AUCROC is marked in red, the second highest in blue, and the third
highest in green.

Dataset SOD HBOS PCA OC
SVM LOF KNN LODA IForest DA

GMM ECOD COPOD DB
SCAN CBLOF DCOD KMeans-- Deep

SVDD DIF UniCAD
(Scalar)

UniCAD
(Vector)

annthyroid 77.38 60.15 66.24 57.23 70.20 71.69 41.02 82.01 56.53 78.66 76.80 50.08 62.28 55.01 64.99 76.09 66.76 75.27 72.72
backdoor 68.77 71.56 80.16 85.04 85.79 80.58 66.38 72.15 55.98 86.08 80.97 76.55 81.91 79.57 89.11 78.83 92.87 87.28 89.24
breastw 93.97 98.94 95.13 80.30 40.61 97.01 98.49 98.32 N/A 99.17 99.68 85.20 96.86 99.02 97.05 63.36 77.45 98.15 98.56

campaign 69.16 78.55 72.78 65.70 59.04 72.27 51.67 71.71 56.03 76.10 77.69 50.60 64.34 63.16 63.51 54.42 67.53 73.52 73.64
celeba 48.44 76.18 79.38 70.70 38.95 59.63 60.17 70.41 44.74 76.48 75.68 50.36 73.99 91.41 56.76 45.17 65.29 81.38 82.00
census 62.12 64.89 68.74 54.90 47.46 66.88 37.14 59.52 59.65 67.63 69.07 58.50 60.17 72.84 63.33 54.16 59.66 67.90 67.84
glass 73.36 77.23 66.29 35.36 69.20 82.29 73.13 77.13 76.09 65.83 72.43 54.55 78.30 78.07 77.30 55.71 84.57 79.52 82.17

Hepatitis 67.83 79.85 75.95 67.75 38.06 52.76 64.87 69.75 54.80 75.22 82.05 68.12 73.05 48.38 64.64 57.45 74.24 75.53 80.62
http 78.04 99.53 99.72 99.59 27.46 3.37 12.48 99.96 N/A 98.10 99.29 49.97 99.60 99.53 99.55 60.38 99.49 99.53 99.52

Ionosphere 86.37 62.49 79.19 75.92 90.59 88.26 78.42 84.50 73.41 73.15 79.34 81.12 90.79 57.78 91.36 53.94 89.74 92.04 90.37
landsat 59.54 55.14 35.76 36.15 53.90 57.95 38.17 47.64 43.92 36.10 41.55 50.17 63.69 33.40 55.31 62.48 54.84 49.60 57.37

Lymphography 71.22 99.49 99.82 99.54 89.86 55.91 85.55 99.81 72.11 99.52 99.48 74.16 99.81 81.19 100.00 71.91 83.67 99.29 99.73
mnist 60.10 60.42 85.29 82.95 67.13 80.58 72.27 80.98 67.23 74.61 77.74 50.00 79.96 65.23 82.45 50.98 88.16 86.00 86.64
musk 74.09 100.00 100.00 80.58 41.18 69.89 95.11 99.99 76.85 95.40 94.20 50.00 100.00 42.19 72.16 66.02 98.22 99.92 100.00

pendigits 66.29 93.04 93.73 93.75 47.99 72.95 89.10 94.76 64.22 93.01 90.68 55.33 96.93 94.33 94.37 27.32 93.79 95.12 95.52
Pima 61.25 71.07 70.77 66.92 65.71 73.43 65.93 72.87 55.93 63.05 69.10 51.39 71.49 72.16 70.44 49.49 67.28 75.16 74.87

satellite 63.96 74.80 59.62 59.02 55.88 65.18 61.98 70.43 62.33 58.09 63.20 55.52 71.32 55.97 67.71 57.40 74.52 72.46 77.65
satimage-2 83.08 97.65 97.62 97.35 47.36 92.60 97.56 99.16 96.29 96.28 97.21 75.74 99.84 86.01 99.88 55.68 99.63 99.87 99.88

shuttle 69.51 98.63 98.62 97.40 57.11 69.64 60.95 99.56 97.92 99.13 99.35 50.40 93.07 97.20 69.97 51.81 97.00 99.15 98.75
skin 60.35 60.15 45.26 49.45 46.47 71.46 45.75 68.21 N/A 49.08 47.55 50.00 68.03 64.34 65.47 45.69 66.36 72.26 69.69

Stamps 73.26 90.73 91.47 83.86 51.26 68.61 87.18 91.21 88.89 87.87 93.40 52.08 69.89 93.41 79.78 59.48 87.95 91.37 94.18
thyroid 92.81 95.62 96.34 87.92 86.86 95.93 74.30 98.30 79.75 97.94 94.30 53.57 94.74 78.55 92.26 52.14 96.26 97.66 97.48

vertebral 40.32 28.56 37.06 37.99 49.29 33.79 30.57 36.66 53.20 40.66 25.64 49.74 41.01 38.13 38.14 37.81 47.20 33.11 47.37
vowels 92.65 72.21 65.29 61.59 93.12 97.26 70.36 73.94 60.58 62.24 53.15 57.50 92.12 51.56 93.45 49.87 81.02 88.38 92.09

Waveform 68.57 68.77 65.48 56.29 73.32 73.78 60.13 71.47 49.35 62.36 75.03 66.41 71.27 63.47 74.35 53.94 75.33 71.81 74.29
WBC 94.60 98.72 98.20 99.03 54.17 90.56 96.91 99.01 N/A 99.11 99.11 87.43 96.88 94.92 97.45 62.46 81.27 97.68 98.93
Wilt 53.25 32.49 20.39 31.28 50.65 48.42 26.42 41.94 37.29 36.30 33.40 49.96 34.50 44.71 34.91 45.90 39.46 48.95 52.56
wine 46.11 91.36 84.37 73.07 37.74 44.98 90.12 80.37 61.70 77.22 88.65 40.33 27.14 82.18 27.36 64.26 41.69 82.72 95.25

WPBC 51.28 51.24 46.01 45.35 41.41 46.59 49.31 46.63 47.80 46.65 49.34 52.22 45.32 49.67 45.01 44.01 44.69 48.02 49.90

Avg. Rank 11.00 8.26 8.98 11.59 13.59 10.00 13.24 7.09 13.24 9.19 8.29 14.21 8.07 10.90 8.71 15.48 8.38 5.41 3.59

(a) AUC-ROC (b) AUC-PR

Figure 5: Critical difference diagrams for AUC-ROC and AUC-PR.

D.2.7 REPRESENTATION-BASED MODELS

• Deep Support Vector Data Description (DeepSVDD) Ruff et al. (2018): Minimizes the volume
of a hypersphere enclosing network data representations, isolating anomalies outside this sphere.

• Deep Isolation Forest for Anomaly Detection (DIF) Xu et al. (2023): Utilizes deep learning to
enhance traditional isolation forest techniques, offering improved anomaly detection in complex
datasets with minimal parameter tuning.

Each method’s unique mechanism and application context provide a rich landscape of techniques
for unsupervised anomaly detection, illustrating the field’s diverse methodologies and the breadth of
approaches to tackling anomaly detection challenges.

D.3 SUPPLEMENTARY EXPERIMENTAL RESULTS

In the appendix, we detail the statistical analysis conducted to compare the performance of various
anomaly detectors. We obtained this diagram by conducting a Friedman test (p-value: 4.657e-19),
indicating significant differences among different detectors. We utilized average ranks and the
Nemenyi test to generate the critical difference diagram, as shown in Figure 5. It is noteworthy that
the vector version exhibits significantly superior performance compared to the scalar version across
more methods. The detailed outcomes for the AUCROC and AUCPR metrics, spanning 30 datasets
and against 17 baseline approaches, are showcased in Table 5 and Table 6.
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Table 6: AUCPR of 17 unsupervised algorithms on 30 tabular benchmark datasets. In each dataset,
the algorithm with the highest AUCPR is marked in red, the second highest in blue, and the third
highest in green.

Dataset SOD HBOS PCA OC
SVM LOF KNN LODA IForest DA

GMM ECOD COPOD DB
SCAN CBLOF DCOD KMeans-- Deep

SVDD DIF UniCAD
(Scalar)

UniCAD
(Vector)

annthyroid 18.84 16.99 16.12 10.37 15.71 16.74 7.06 30.47 9.64 25.35 16.58 7.60 13.74 10.01 15.41 21.75 18.93 26.37 25.03
backdoor 37.07 4.96 31.29 8.79 26.14 44.37 13.84 4.75 5.47 10.72 7.69 21.04 7.03 6.77 15.47 55.70 41.46 37.77 36.36
breastw 84.88 97.71 95.11 82.70 28.55 92.19 97.04 96.04 N/A 98.54 99.40 78.42 91.94 96.83 92.25 48.60 50.65 94.47 95.90

campaign 19.14 38.01 27.90 29.25 14.59 27.18 14.11 32.26 14.54 36.65 38.58 11.43 20.88 19.61 18.86 16.75 26.52 27.66 27.12
celeba 2.36 13.82 15.89 10.73 1.73 3.14 4.04 8.96 1.95 13.96 13.69 2.32 11.22 17.48 3.19 2.73 5.44 15.12 14.66
census 8.54 8.68 10.02 6.82 5.48 9.04 5.03 7.78 9.03 9.46 9.92 7.52 7.52 10.92 8.13 8.42 7.42 9.70 9.75
glass 18.73 11.82 10.05 8.02 20.11 20.26 13.37 10.99 24.58 15.35 9.78 6.88 11.57 9.66 14.66 8.46 18.86 13.29 15.33

Hepatitis 24.73 37.73 36.65 29.44 13.67 21.95 30.90 26.25 22.93 32.80 41.50 22.31 36.54 19.53 25.14 30.04 34.93 36.08 43.37
http 8.32 44.79 56.43 46.86 3.82 0.70 0.67 90.83 N/A 16.61 35.19 0.37 47.53 44.03 45.09 13.39 41.72 43.53 43.52

Ionosphere 85.88 41.78 73.92 74.54 88.07 90.41 73.04 80.41 64.97 64.69 69.89 63.04 89.77 47.63 91.36 43.24 87.45 89.55 87.61
landsat 26.38 22.03 16.18 16.21 24.69 24.65 18.86 19.81 24.48 16.24 17.48 20.80 31.05 15.57 22.40 36.92 24.35 20.84 23.27

Lymphography 22.00 91.83 97.02 93.59 23.08 38.69 44.54 97.31 19.52 90.87 88.68 7.66 97.31 12.34 100.00 34.58 32.84 91.69 96.66
mnist 19.15 12.51 39.93 33.20 20.90 35.53 25.86 27.71 23.75 17.45 21.35 9.21 30.60 23.59 37.12 20.18 44.55 41.19 41.94
musk 7.59 100.00 99.89 10.61 2.82 9.65 47.60 99.61 32.76 50.13 34.79 3.16 100.00 2.87 37.55 8.78 70.70 97.65 99.96

pendigits 4.46 29.27 23.65 23.52 3.78 6.50 18.71 26.05 4.67 30.65 21.22 2.94 32.87 22.21 32.67 1.53 23.75 24.86 21.68
Pima 48.24 56.61 54.03 50.00 47.18 55.14 44.09 55.82 41.55 50.45 55.19 36.65 52.99 50.24 53.50 35.02 46.34 54.66 54.23

satellite 47.23 67.25 59.64 57.61 37.68 50.01 61.94 65.92 58.33 52.22 56.58 37.56 61.43 43.31 54.68 41.77 68.92 71.68 75.13
satimage-2 26.11 78.04 85.69 82.71 4.30 39.14 80.52 93.45 22.07 64.49 76.55 12.08 97.09 8.12 97.13 2.58 72.90 97.33 97.31

shuttle 20.27 96.40 92.35 85.29 13.76 20.38 48.75 97.62 93.20 90.45 96.56 7.68 79.89 81.82 32.66 12.41 67.23 92.05 92.36
skin 24.61 23.70 17.40 19.03 18.25 28.72 18.44 26.08 N/A 18.37 17.99 20.89 28.34 26.29 25.58 19.06 25.36 28.87 28.72

Stamps 20.28 35.24 41.09 31.39 21.29 23.53 34.60 39.49 43.73 33.21 43.10 11.03 24.46 47.36 35.63 12.07 34.68 42.39 50.94
thyroid 23.56 50.98 44.34 21.23 20.81 34.98 14.68 63.11 16.06 51.06 19.64 9.44 29.88 10.56 31.69 2.70 50.36 60.99 60.06

vertebral 11.79 9.23 10.49 10.94 14.24 10.57 9.68 10.46 15.24 11.84 8.89 13.11 11.43 11.58 10.54 10.62 14.31 9.78 12.96
vowels 38.88 13.41 8.92 8.24 34.42 63.41 13.82 15.12 12.22 10.56 4.14 13.27 35.14 3.58 49.10 4.58 14.97 26.52 32.42

Waveform 9.66 5.86 5.79 4.37 11.33 13.04 4.71 6.24 3.11 4.76 6.90 5.33 17.93 4.26 19.74 4.41 11.28 6.49 7.83
WBC 54.00 73.56 82.29 89.87 5.57 66.55 78.67 90.49 N/A 86.19 86.19 30.25 67.31 33.43 71.88 8.99 13.32 68.69 83.14
Wilt 5.53 3.84 3.13 3.62 5.05 4.73 3.36 4.23 4.00 3.93 3.69 5.33 3.74 4.62 3.76 4.65 4.05 4.80 5.19
wine 7.95 43.08 30.87 21.56 7.77 8.43 48.82 25.96 17.51 23.54 45.71 8.11 5.98 24.44 6.27 18.78 8.38 21.40 49.59

WPBC 25.62 23.04 23.01 22.93 20.29 21.49 25.39 22.42 22.49 21.24 22.81 23.86 21.08 22.86 20.58 25.00 20.73 22.71 24.90

Avg. Rank 10.83 8.19 8.31 11.14 13.24 9.36 11.79 7.29 11.96 9.36 9.53 14.91 8.53 11.97 9.03 13.41 9.10 6.31 4.74

D.3.1 DEGREES OF FREEDOM IN T-DISTRIBUTION

In fixed degrees of freedom scenarios, specifically when set to 1, the benefits of utilizing the
t-distribution become less pronounced. Drawing from existing literature Xie et al. (2016); Van
Der Maaten (2009), the flexibility to learn the degrees of freedom or to perform cross-validation on
the validation set is particularly pertinent in unsupervised contexts. For the sake of simplicity and to
minimize computational demands, we opted to maintain the degrees of freedom at 1, which provided
robust performance while reducing complexity.

Table 7: Comparison of Performance: Learning vs. Fixed Degrees of Freedom

Metric Learn v Fix v = 1

AUC-ROC Avg. Rank 4.4 3.34
AUC-PR Avg. Rank 5.05 4.47

D.3.2 ABLATION STUDY ON HYPERPARAMETER SETTINGS

An ablation study was conducted to evaluate the impact of hyperparameters k and l. A grid search
was performed over various values of these hyperparameters across 30 datasets, benchmarking against
17 baseline methods. The comprehensive results, showcasing average ranks based on AUC-ROC, are
summarized in the following table:

Table 8: Results of Hyperparameter Grid Search

l\k 10 20 30 40

0.01 3.34 4.31 4.69 4.71
0.05 4.44 4.23 4.65 4.88
0.10 4.27 4.46 4.48 4.88

The findings indicate that the method exhibits robustness across specific parameter ranges. To ensure
fair comparisons, a consistent parameter set (k = 10, l = 1%) was applied, demonstrating strong
performance across the majority of datasets.

Additionally, guidelines for selecting hyperparameters were examined. While techniques such as
the elbow method and silhouette coefficient were considered for determining the optimal number of
clusters, they proved to be time-consuming and exhibited weak correlation with anomaly detection

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 9: Statistics of graph benchmark datasets.

Dataset # Nodes # Edges # Features # Anomaly Category

Disney 124 670 28 6 co-purchase network
Weibo 8,405 407,963 400 868 social media network
Reddit 10,984 168,016 64 366 user-subreddit network

T-Finance 39,357 42,445,086 10 1,803 trading network

performance. An ensemble learning approach, which involved random searches of k values and
aggregation of anomaly scores, showed promise in enhancing performance and model robustness for
certain datasets. Future research will further explore this area.

D.4 COMPLEXITY ANALYSIS

The complexity of each iteration in UniCAD involves three parts: constructing the outlier set,
updating the network parameters Θ, and optimizing the mixture model using the EM algorithm.
Constructing the outlier set requires a sorting operation, for which we use Numpy’s built-in quantile
calculation with a time complexity of O(N logN). Considering the number of network parameters
along with the computation of the loss function, the computational complexity for optimizing Θ is
approximately O(TNDd+ TNKd). The EM algorithm for the Student’s t mixture model includes
two main steps: the E-step, where the complexity for computing the probability (or responsibility)
of each data point belonging to each component is approximately O(NKd), and the M-step, where
the full computational complexity of updating the parameters (mean, covariance matrix) of each
component is O(NKd2). In practice, we use diagonal covariance matrices, which reduces the
update complexity to roughly O(NKd). If the EM algorithm requires T round to converge, its
time complexity is approximately O(TNKd). Therefore, the time complexity for t-iterations is
O(tN(logN + Td(D +K))).

E ADDITIONAL EXPERIMENTS ON GRAPH

E.1 BASELINES

Our proposed method was compared with 16 graph domain baseline methods grouped into three
categories as follows:

• Contrastive Learning-based Methods: This group includes CoLA Liu et al. (2021), SL-
GAD Zheng et al. (2021), CONAD Xu et al. (2022), and ANEMONE Jin et al. (2021). These
methods primarily assume that the contrastive loss between anomalous nodes and their neighbor-
hoods is more significant.

• Autoencoder-based Methods: This category consists of MLPAE Sakurada & Yairi (2014), GC-
NAE Kipf & Welling (2016), DOMINANT Ding et al. (2019), GUIDE Yuan et al. (2021),
ComGA Luo et al. (2022), AnomalyDAE Fan et al. (2020), ALARM Peng et al. (2020),
DONE/AdONE Bandyopadhyay et al. (2020) and AAGNN Zhou et al. (2021). These meth-
ods focus on the reconstruction errors of anomalous nodes during the process of reconstructing the
graph structure or features.

• Clustering-based Methods: This category of methods encompasses SCAN Xu et al. (2007),
CBLOF He et al. (2003), and DCFOD Song et al. (2021). These methods generally identify
anomalies by detecting if a sample deviates from the clustering.

E.2 DATASETS

We assess the performance of our model using four graph benchmark datasets containing organic
anomalies. Table 9 presents the statistical summary for each dataset. These datasets contain naturally
occurring real-world anomalies and are valuable for assessing the performance of anomaly detection
algorithms in real-world scenarios. The sources and compositions of these datasets are as follows:
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• WeiboJiang (2016) is a labeled graph comprising user posts extracted from the social media
platform Tencent Weibo. The user-user graph establishes connections between users who exhibit
similar topic labels. A user is considered anomalous if they have engaged in a minimum of five
suspicious events, whereas normal nodes represent users who have not.

• RedditKumar et al. (2019) consists of a user-subreddit graph extracted from the popular social
media platform Reddit. This publicly accessible dataset encompasses user posts within various
subreddits over a month. Each user is assigned a binary label indicating whether they have been
banned on the platform. Our assumption is that banned users exhibit anomalous behavior compared
to regular Reddit users.

• DisneyMüller et al. (2013) is a co-purchase network of movies that includes attributes such as
price, rating, and the number of reviews. The ground truth labels, indicating whether a movie is
considered anomalous or not, were assigned by high school students through majority voting.

• T-FinanceTang et al. (2022) aims to identify anomalous accounts within a trading network. The
nodes in this network represent unique anonymous accounts, each characterized by ten features
related to registration duration, recorded activity, and interaction frequency. Graph edges denote
transaction records between accounts. If a node is associated with activities such as fraud, money
laundering, or online gambling, human experts will designate it as an anomaly.

E.3 EXPERIMENT SETTINGS

Table 10: AUC-ROC and AUC-PR of 16 unsupervised algorithms on 4 graph benchmark datasets.

Group Method Weibo Reddit Disney T-Finance
AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR

CL-Based

CoLA 0.382 0.087 0.527 0.036 0.455 0.060 0.243 0.031
SL-GAD 0.421 0.109 0.594 0.040 0.494 0.061 0.442 0.041

ANEMONE 0.320 0.082 0.536 0.036 0.454 0.068 0.226 0.030
CONAD 0.806 0.432 0.551 0.037 0.600 0.138 N/A N/A

AE-Based

MLPAE 0.880 0.629 0.501 0.035 0.563 0.064 0.299 0.030
GCNAE 0.847 0.567 0.526 0.033 0.517 0.059 0.295 0.030
GUIDE 0.897 0.692 0.566 0.040 0.521 0.060 N/A N/A

DOMINANT 0.927 0.797 0.561 0.037 0.590 0.077 N/A N/A
ComGA 0.925 0.809 0.568 0.037 0.494 0.058 N/A N/A

AnomalyDAE 0.892 0.694 0.560 0.037 0.520 0.070 N/A N/A
ALARM 0.952 0.843 0.559 0.037 0.595 0.123 N/A N/A
DONE 0.856 0.579 0.551 0.037 0.517 0.061 0.550 0.046

AAGNN 0.804 0.530 0.564 0.045 0.479 0.059 N/A N/A

Cluster-Based

SCAN 0.701 0.186 0.496 0.033 0.548 0.053 N/A N/A
CBLOF* 0.972 0.875 0.503 0.035 0.574 0.146 0.524 0.046
DCFOD* 0.684 0.196 0.552 0.038 0.675 0.119 0.521 0.066
UniCAD * 0.985 0.927 0.560 0.040 0.701 0.130 0.876 0.422

In this experiment, we compared graph-based methods on relational data. For methods originally
designed around feature vectors, including CBLOF, DCFOD, and our approach, we uniformly
employed the same graph representation learning technique as described in BGRL Thakoor et al.
(2021). Specifically, we used a two-layer Graph Convolutional Network (GCN) for encoding, which
produced output embeddings with a dimensionality of 128. The training epochs were set to 3000,
including a warm-up period of 300 epochs. The hidden size of the predictor was set to 512, and the
momentum was fixed at 0.99.

E.4 PERFORMANCE ANALYSIS

The performance of UniCAD compared to 16 baseline methods on the four datasets are summarized in
Table 10. From the results, we have the following observations: Our model consistently outperforms
the baseline methods on most datasets, underlining its effectiveness in anomaly detection even within
graph data contexts. This highlights the superiority of UniCAD in detecting anomalies in real-world
graph data.

When comparing UniCAD with the four contrastive learning-based methods, it exhibits a distinct
advantage, outperforming them by a substantial margin across all metrics. Unlike contrastive learning
methods that rely on the local neighborhood for anomaly detection, UniCAD leverages the global
clustering distribution. This key difference contributes to its consistently superior performance.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Although CONAD incorporates human prior knowledge about anomalies, enabling it to outperform
other similar methods on the Weibo and Disney datasets, it still falls short compared to our proposed
UniCAD.

Compared to the autoencoder-based methods, UniCAD offers the advantage of lower memory
requirements along with better performance. Graph autoencoders typically reconstruct the entire
adjacency matrix during full graph training, resulting in memory usage of at leastO(N2). In contrast,
UniCAD, as a clustering-based method, only requires O(N ×K). Among the autoencoder-based
methods, GCNAE, DONE, and AdONE can be extended to the T-Finance dataset as they only
reconstruct the sampled subgraphs rather than the entire adjacency matrix. However, UniCAD still
showcases superior performance while being more memory-efficient.

UniCAD also demonstrates superior performance compared to various other clustering-based methods,
including traditional structural clustering (SCAN) methods that treat the embedding from BGRL as
tabular data (CBLOF, DCFOD).
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