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ABSTRACT

Numerical simulation is an essential tool in many areas of science and engineer-
ing, but its performance often limits application in practice or when used to ex-
plore large parameter spaces. On the other hand, surrogate deep learning models,
while accelerating simulations, often exhibit poor accuracy and ability to gen-
eralise. In order to improve these two factors, we introduce REMuS-GNN, a
rotation-equivariant multi-scale model for simulating continuum dynamical sys-
tems encompassing a range of length scales. REMuS-GNN is designed to predict
an output vector field from an input vector field on a physical domain discretised
into an unstructured set of nodes. Equivariance to rotations of the domain is a
desirable inductive bias that allows the network to learn the underlying physics
more efficiently, leading to improved accuracy and generalisation compared with
similar architectures that lack such symmetry. We demonstrate and evaluate this
method on the incompressible flow around elliptical cylinders.

1 INTRODUCTION

Continuum dynamics models often describe the underlying physical laws by one or more partial
differential equations (PDEs). Numerical methods are well-established for approximately solving
PDEs with high accuracy, however, they are computationally expensive (Karniadakis & Sherwin,
2013). Deep learning techniques have been shown to accelerate physical simulations (Guo et al.,
2016), however, their relatively poor accuracy and limited ability to generalise restricts their ap-
plication in practice. Most deep learning models for simulating continuum physics have been de-
veloped around convolutional neural networks (CNNs) (Thuerey et al., 2018; Wiewel et al., 2019).
CNNs constrain input and output fields to be defined on rectangular domains represented by regular
grids, which is not suitable for more complex domains. This has motivated the recent interest in
graph neural networks (GNN) for learning to simulate continuum dynamics, which allow complex
domains to be represented and the resolution spatially varied (Pfaff et al., 2021).

Most physical processes possess several symmetries, among which translation and rotation are per-
haps the most common. Translation invariance/equivariance can be easily satisfied by using CNNs
or GNNs (Battaglia et al., 2018). For rotation, the general approach is to approximately learn in-
variance/equivariance by training against augmented training data which includes rotations (Chu
& Thuerey, 2017; Li et al., 2019; Mrowca et al., 2018; Lino et al., 2021). Here, we propose
REMuS-GNN, a Rotation Equivariant Multi-Scale GNN model that enforces the rotation equiv-
ariance of input and output vector fields, and improves the accuracy and generalisation over the
data-augmentation approach. REMuS-GNN forecasts the spatio-temporal evolution of continuum
systems, discretised on unstructured sets of nodes, and processes the physical data at different res-
olutions or length scales, enabling the network to more accurately and efficiently learn spatially
global dynamics. We introduce a general directional message-passing (MP) algorithm and an edge-
unpooling algorithm that is rotation invariant. The accuracy and generalisation of REMuS-GNN

1



Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

was assessed on simulations of the incompressible flow around elliptical cylinders, an example of
Eulerian dynamics with a global behaviour due the infinite speed of the pressure waves.

2 RELATED WORK

Neural solvers During the last five years, most of the neural network models used for simulat-
ing continuum physics have included convolutional layers. For instance, CNNs have been used to
solve the Poisson’s equation (Tang et al., 2018; Özbay et al., 2019) and to solve the Navier-Stokes
equations (Guo et al., 2016; Thuerey et al., 2018; Lee & You, 2019; Kim et al., 2019; Wiewel et al.,
2019), achieving an speed-up of one to four orders of magnitude with respect to numerical solvers.
To the best of our knowledge Alet et al. (2019) were the first to explore the use of GNNs to infer
continuum physics by solving the Poisson PDE, and subsequently Pfaff et al. (2021) proposed a
mesh-based GNN to simulate a wide range of continuum dynamics. Multi-resolution graph models
were later introduced by Li et al. (2020); Lino et al. (2021); Liu et al. (2021) and Chen et al. (2021).

Rotation invariance and equivariance There has been a constant interest to develop neural net-
works that are equivariant to symmetries, and particularly to rotation. For instance, Weiler & Cesa
(2019) and Weiler et al. (2018) introduced an SE(2)-equivariant and an SE(3)-equivariant CNNs
respectively, both later applied to simulate continuum dynamics by Wang et al. (2021) and Siddani
et al. (2021). However, rotation equivariant CNNs only achieve equivariance with respect to a small
set of rotations, unlike rotation equivariant GNNs (Thomas et al., 2018; Fuchs et al., 2020; Schütt
et al., 2021; Satorras et al., 2021). All these rotation equivariant networks require a careful design
of each of their components. On the other hand, rotation invariant GNNs, such as directional MP
neural networks (Klicpera et al., 2020; 2021b), ensure the rotation invariance by a proper selection
of the input and output attributes (Klicpera et al., 2021a; Liu et al., 2022). Nevertheless, these GNNs
can only be applied to scalar fields, but not vector fields (Klicpera et al., 2020). On the other hand,
although Tensor Flow Networks (Thomas et al., 2018) and SE(3)-Transformers (Fuchs et al., 2020)
can handle equivariant vector fields and could be applied to Eulerian dynamics, they lack an efficient
mechanism for processing and propagating node features across long distances.

3 REMUS-GNN

For a PDE ∂u
∂t = F(u) on a spatial domainD ⊂ R2, REMuS-GNN infers the temporal evolution of

the two-dimensional vector field u(t,x) at a finite set of nodes V 1, with coordinates x1
i ∈ D. Given

an input vector field u(t0,xV 1) at time t = t0 and at the V 1 nodes, a single evaluation of REMuS-
GNN returns the output field u(t0 + dt,xV 1), where dt is a fixed time-step size. REMuS-GNN is
equivariant to rotations of D, i.e., if a two-dimensional rotation R : x → Rx with R ∈ R2×2 is
applied to xV 1 and u(t0,xV 1) then the output field is Ru(t0+dt,xV 1). Such rotation equivariance
is achieved through the selection of input attributes that are agnostic to the orientation of the domain
(but still contain information about the relative position of the nodes) and the design of a neural
network that is invariant to rotations. REMuS-GNN is applied to a data structure expanded from
a directed graph. We denote it as H1 := (V 1, E1, A1), where E1 := {(i, j)|i, j ∈ V 1} is a set
of directed edges and A1 := {(i, j, k)|(i, j), (j, k) ∈ E1} is a set of directed angles. The edges
in E1 are obtained using a k-nearest neighbours (k-NN) algorithm that guarantees that each node
has exactly κ incoming edges. Unlike traditional GNNs, there are no input node-attributes to the
network. The input attributes at edge (i, j) are eij := [uij , p(xj),Ωj ], where p(x) can be any
physical parameter and Ωj = 1 on Dirichlet boundaries and Ωj = 0 elsewhere. The edge attribute
uij is defined as

uij := êij · u(t0,xj), (1)

where êij := (xj − xi)/||xj − xi||2; that is, uij is the projection of the input vector field at
node j along the direction of the incoming edge (i, j) (see Figure 2a). The input attributes at angle
(i, j, k) are aijk := [||xj − xi||2, ||xk − xj ||2, cos(αijk), sin(αijk)], where αijk := ∡(i, j)(j, k).
Since all the input attributes are independent of the chosen coordinate system, any function applied
exclusively to them is invariant to both rotations and translations.

We denote as u′
ij ∈ R to the output at edge (i, j) of a forward pass through the network, and it

represents the projection of the output vector field at node j along the direction of the incoming
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edge (i, j). In order to obtain the desired output vectors at each node, u(t0 + dt,xV 1), from these
scalar values; we solve the overdetermined system of equations (if κ > 2) given by

[ê11:κ,j ][u(t0 + dt,xj)] = [u′
1:κ,j ], ∀j ∈ V 1, (2)

where matrix [ê1:κ,j ] ∈ Rκ×2 contains in its rows the unit vectors along the directions of the κ
incoming edges at node j, [u(t0 + dt,xj)] ∈ R2×1 is a column vector with the horizontal and
vertical components of the output vector field at node j, and [u′

1:κ,j ] ∈ Rκ×1 is another column
vector with the value of u′ at each of the κ incoming edges. This step can be regarded as the inverse
of the projection in equation (1). To solve equation (2) we use the Moore-Penrose pseudo-inverse
of [ê1:κ,j ], which we denote as [ê1:κ,j ]

+ ∈ R2×κ. Thus, if we define the projection-aggregation
function at scale ℓ, ρℓ : Rκ → R2, as the matrix-vector product given by

ρℓ(e1, e2, . . . , eκ) := [êℓ1:κ,j ]
+[e1, e2, . . . , eκ]

T (3)

then u(t0 + dt,xj) = ρ1(u′
1:κ,j) (see Figure 2b).

The output u(t0 + dt,xV 1) can be successively re-fed to REMuS-GNN to produce temporal roll-
outs. In each forward pass the information processing happens at L length-scales in a U-Net fashion,
as illustrated in Figure 3. A single MP layer applied to H1 propagates the edge features only locally
between adjacent edges. To process the information at larger length-scales, REMuS-GNN creates
an H representation for each level, where MP is also applied. The lower-resolution representations
(H2, H3, . . . ,HL; with |V1| > |V2| > · · · > |VL|) possess fewer nodes, and hence, a single MP
layer can propagate the features of edges and angles over longer distances more efficiently. Each
V ℓ+1 is a subset of V ℓ obtained using Guillard’s coarsening algorithm (Guillard, 1993), and Eℓ+1

and Aℓ+1 are obtained in an analogous manner to how E1 and A1 were obtained, as well as their
attributes eℓ+1

ij and aℓ+1
ij . Before being fed to the network, all the edge attributes eℓij and angle

attributes aℓ
ij are encoded through independent multi-layer perceptrons (MLPs). At the end, another

MLP decodes the output edge-features of E1 to return u′
ij . As depicted in Figure 3, the building

blocks of REMuS-GNN’s network are a directional MP (EdgeMP) layer, an edge-pooling layer and
an edge-unpooling layer.

EdgeMP layer Based on the GNBlock introduced by Sanchez-Gonzalez et al. (2018) and
Battaglia et al. (2018) to update node and edge attributes, we define a general MP layer to up-
date angle and edge attributes. The angle-update, angle-aggregation and edge-update at scale ℓ are
given by

aℓ
ijk ← fa([aℓ

ijk, e
ℓ
ij , e

ℓ
jk]), ∀(i, j, k) ∈ Aℓ, (4)

aℓ
jk ←

1

κ

∑
k∈N−

j

aℓ
ijk, ∀(j, k) ∈ Eℓ, (5)

eℓjk ← fe([ejk,a
ℓ
jk]), ∀(j, k) ∈ Eℓ. (6)

Functions fa and fe are MLPs in the present work. This algorithm is illustrated in Figure 4.

Edge-pooling layer Given a node j ∈ V ℓ (hence j ∈ V ℓ−1 too), an outgoing edge (j, k) ∈ Eℓ

and its κ incoming edges (i, j) ∈ Eℓ−1, we can define κ new angles (i, j, k) ∈ Aℓ−1,ℓ that connect
scale ℓ−1 to scale ℓ. Pooling from Hℓ−1 to Hℓ is performed as the EdgeMP, but using the incoming
edges (i, j) ∈ Eℓ−1, outcoming edge (j, k) ∈ Eℓ and angles (i, j, k) ∈ Aℓ−1,ℓ.

Edge-unpooling layer To perform the unpooling from Hℓ+1 to Hℓ we first aggregate the features
of incoming edges into node features. Namely, given the κ incoming edges at node j ∈ V ℓ+1

and their F -dimensional edge-features, eℓ+1
ij = [(e1)

ℓ+1
i,j , (e2)

ℓ+1
i,j , . . . , (eF )

ℓ+1
i,j ], the node-feature

matrix W ℓ+1
j ∈ R2×F is obtained applying the projection-aggregation function ρℓ+1 to each com-

ponent of the edge features according to

W ℓ+1
j =

[
ρℓ
(
(e1)

ℓ+1
1:κ,j

)T ∣∣∣ρℓ((e2)ℓ+1
1:κ,j

)T ∣∣∣ . . . ∣∣∣ρℓ((eF )ℓ+1
1:κ,j

)T]
, (7)
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where · | · denotes the horizontal concatenation of column vectors. Then, W ℓ+1
j is interpolated to

the set of nodes V ℓ following the interpolation algorithm introduced by Qi et al. (2017), yielding
W ℓ

k ∈ R2×F at each node k ∈ V ℓ. Next, these node features are projected to each edge (l, k) on Eℓ

to obtain wℓ
lk ∈ RF , where

wℓ
lk := êℓlkW

ℓ
k , ∀(l, k) ∈ Eℓ. (8)

Finally, the MLP fu is used to update the edge features eℓlk as

eℓlk ← fu([eℓlk,w
ℓ
lk]), ∀(l, k) ∈ Eℓ. (9)

4 EXPERIMENTS

Datasets Datasets Ns and NsVal where use for training and validation respectively. Both contain
solutions of the incompressible Navier-Stokes equations for the flow around an elliptical cylinder
with an aspect ratio b ∈ [0.5, 0.8] on a rectangular fluid domain with top and bottom boundaries
separated by a distance H ∈ [5, 6]. Each sample consists of the vector-valued velocity field at 100
time-points within the periodic vortex-shedding regime with a Reynolds number Re ∈ [500, 1000].
Domains are discretised with between 4800 and 9200 nodes. In REMuS-GNN, the input u(t,x)
corresponds to the velocity field and p(x) to Re. Besides these datasets, six datasets with out-of-
distribution values for b, H and Re were used for assessing the generalisation of the models; and
dataset NsAoA includes rotated ellipses. Further details are included in Appendix C.

Models We compare REMuS-GNN with MultiScaleGNN (Lino et al., 2021), a state-of-the-art
model for inferring continuum dynamics; and with MultiScaleGNNg, a modified version of Mul-
tiScaleGNN. MultiScaleGNN and MultiScaleGNNg possess the same U-Net-like architecture as
REMuS-GNN, while MultiScaleGNNg and REMuS-GNN also share the same low-resolution rep-
resentations. The benchmark models are not rotation equivariant, so they were trained with and
without rotations of the domain. All the models have three scales (L = 3) and a similar number of
learnable parameters. For hyper-parameter choices and training setup see Appendix D.

Figure 1: MAE (×10−2) on the NsVal dataset under
rotations of D.

Results From Figure 1 it is clear that the
MAEs of the predictions of MultiScaleGNN
and MultiScaleGNNg trained without rotations
grow significantly during inference on rotations
of the domain greater than 5 degrees. On the
other hand, these models trained with rotations
are able to maintain an approximately constant
MAE for each rotation of the domain. Hence,
from now on we only consider these benchmark
models. It can be seen that REMuS-GNN out-
performs the benchmark models on every rota-
tion of the validation dataset. Table 1 collects
the MAE on the velocity field (measured with
the free-stream as reference) and the MAE on
the x-coordinate of the separation point on the
upper wall of the ellipses. It can be concluded
that REMuS-GNN also has a much better gen-
eralisation than the benchmark models. Addi-

tional results are included in Appendix E.

5 CONCLUSION

We proposed a translation and rotational equivariant model for predicting the spatio-temporal evo-
lution of vector fields defined on continuous domains, where the dynamics may encompass a range
of length scales and/or be spatially global. The proposed model employs a generalised directional
message-passing algorithm and a novel edge-unpooling algorithm specifically designed to satisfy the
rotation invariance requirement. The incorporation of rotation equivariance as a strong inductive bias
results in a higher accuracy and better generalisation compared with the vanilla data-augmentation
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Table 1: MAE ×10−2 in the velocity field and the x-coordinate of the separation point

NsLowRe NsHighRe NsThin NsThick NsNarrow NsWide NsAoA

REMuS-GNN
Velocity field 4.514 9.576 3.152 4.430 2.861 2.873 2.504
Separation point 3.082 6.464 2.477 4.488 2.934 2.964 3.219

MultiScaleGNN
Velocity field 5.723 13.886 3.703 5.531 3.583 3.454 3.451
Separation point 4.424 7.524 2.825 4.873 3.830 3.959 4.386

MultiScaleGNNg
Velocity field 4.826 8.552 4.085 7.201 4.759 4.666 4.593
Separation point 4.414 7.264 3.025 6.405 4.222 4.468 4.993

approach for approximately learning the rotation equivariance. To the best of the authors’ knowl-
edge, REMuS-GNN is the first multi-scale and rotation-equivariant GNN model for inferring Eule-
rian dynamics.
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A DIAGRAMS OF REMUS-GNN’S BUILDING BLOCKS

(a) (b)

Figure 2: Diagrams of the projection step and projection-aggregation step (with κ = 3). The projection allows
to encode a vector defined at node j, uj , as its projection along the direction of the κ incoming edges. The
projection-aggregation is equivalent to the inverse of the projection step. Given the projection of uj along the
κ incoming edges, e1:κ,j ; it restores the vector uj by solving the overdetermined system of equations given by
equation (2).

Figure 3: REMuS-GNN architecture. H1 is a high-resolution representation, Hℓ with ℓ ≥ 2 are lower-
resolution representations.

Figure 4: Diagram of the EdgeMP algorithm applied to update the edge attribute ejk (in the diagram κ = 3).
The algorithm has three steps: update of the angle attributes, aggregation of the angle attributes and update of
the edge attributes. In this case the angle-update step must be repeated 3 times (once for each incoming edge at
node j).

B ROTATION INVARIANCE OF THE EDGE-UNPOOLING LAYER

To achieve the rotation equivariance of REMuS-GNN it is required that the MP layers, edge-pooling
layers and edge-unpooling layers are invariant to rotations. It is easy to see that MP and pooling
layers (equations (4) to (6)) are rotation invariant. As for the unpooling from scale ℓ+ 1 to scale ℓ,
the edge-unpooling layers in REMuS-GNN perform four steps:

1. Aggregation of the incoming-edges’ feature-vectors at each node in V ℓ+1 —equation (7).
2. Interpolation of the obtained features from V ℓ+1 to V ℓ —knn-interpolation in (Qi et al.,

2017).
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3. Projection of the interpolated node-features along the direction of the incoming edges at
scale ℓ —equation (8).

4. Update of the edge features —equation (9).

Steps 2 and 4 are invariant to rotations since they do not depend on the particular directions of the
edges on V ℓ nor V ℓ+1. On the other hand, step 1 is not rotation invariant since a two-dimensional
rotation R : x → xR of D (and V 1) modifies the output of the projection-aggregation function
given by equation (3) to

([êℓ1:κ,j ]R)+[e1, e2, . . . , eκ]
T = R+[êℓ1:κ,j ]

+[e1, e2, . . . , eκ]
T

= R−1ρℓ+1(e1, e2, . . . , eκ).

Hence, according to equation (7), the result of the step 1 in the edge-unpooling layer is R−1W ℓ+1
j

for all j ∈ V ℓ+1, and the result of step 2 (rotation invariant) is R−1W ℓ
k for all k ∈ V ℓ. Step 3 is not

rotation invariant, and given the input R−1W ℓ
k , the output that follows is

(êℓlkR)(R−1W ℓ
k) = êℓlkW

ℓ
k

= wℓ
lk.

Thus, despite step 1 and 3 are not invariant to rotations separately, they are when applied jointly.

C DATASETS DETAILS

Figure 5: Set of nodes V1 for a simu-
lation on the Ns dataset.

We solved the two-dimensional incompressible Navier-Stokes
equation using the high-order solver Nektar++ (Cantwell et al.,
2015). The Navier-Stokes equations read

∂u

∂x
+

∂v

∂y
= 0, (10)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
, (11)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
, (12)

where u(t, x, y) and v(t, x, y) are the horizontal and vertical
components of the velocity field, p(t, x, y) is the pressure field,
and Re is the Reynolds number. We consider the flow around
an elliptical cylinder with major axis equal to one and minor axis b on a rectangular fluid domain of
dimensions 8.5×D (see Figure 5). The left, top and bottom boundaries have as boundary condition
u = 1, v = 0 and ∂p/∂x = 0; the right boundary is an outlet with ∂u/∂x = 0, ∂v/∂x = 0
and p = 0; and the cylinder wall has a no-slip condition u = v = 0. In our simulations we only
selected Re values that yield solutions within the laminar vortex-shedding regime. The sets of nodes
V 1 employed for each simulation were created using Gmsh with an element-size equal to h at the
corners of the domain and 0.3h on the cylinder wall. Each simulation contains 100 time-points
equispaced by a time-step size dt = 0.1. The parameters of the training, validation and testing
datasets are collated in Table 2.

D MODELS DETAILS

The implementation of the benchmark model MultiScaleGNN is taken from Lino et al. (2021).
MultiScaleGNNg is a modified version of MultiScaleGNN to follow the pooling and unpooling
used by Liu et al. (2021). For this model, the low-resolution sets of nodes were generated using
Guillard’s coarsening algorithm (Guillard, 1993) as in REMuS-GNN. This way, both models share
the same high and low-resolution discretisations. For a fair comparison all the models considered in
the present work follow the same U-Net-like architecture and have in common the hyper-parameters
and training setup described below. Hence, they have a similar number of learnable parameters
(∼ 2.2M).

9
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Table 2: Incompressible flow datasets

Dataset Re b H AoA (deg) h #Simulations Purpose

Ns 500-1000 0.5-0.8 5-6 0 0.10-0.16 5000 Training
NsVal 500-1000 0.5-0.8 5-6 0 0.10-0.16 500 Validation
NsLowRe 200-500 0.5-0.8 5-6 0 0.10-0.16 500 Testing
NsHighRe 1000-1500 0.5-0.8 5-6 0 0.10-0.16 500 Testing
NsThin 500-1000 0.3-0.5 5-6 0 0.10-0.16 500 Testing
NsThick 500-1000 0.8-1.0 5-6 0 0.10-0.16 500 Testing
NsNarrow 500-1000 0.5-0.8 4-5 0 0.10-0.16 500 Testing
NsWide 500-1000 0.5-0.8 6-7 0 0.10-0.16 500 Testing
NsAoA 500-1000 0.5-0.8 5.5 0-10 0.12 240 Testing

Hyper-parameters choice The number of incoming edges at each node was set to κ = 5, and the
number of linear layers in each MLP is 2 (except for fu, which has 3 linear layers), with 128 neurons
per hidden layer. All MLPs use SELU activation functions (Klambauer et al., 2017), and, batch
normalisation (Ba et al., 2016). The number of MP layers we used at each scale are 2 ×M1 = 8,
2×M2 = 4 and M3 = 4.

Training details During training four graphs were fed per iteration. First, each training iteration
predicted a single time-point, and every time the training loss decreased below 0.02 we increased
the number of iterative time-steps by one, up to a limit of 10. We used the loss function given by

L = MSE
(
û(t,x1

V 1),u(t,x1
V 1)

)
+ λd MAE

(
û(t,x1

V 1 ∈ ∂DD),u(t,x1
V 1 ∈ ∂DD)

)
,

with λd = 0.25. The initial time-point t0 was randomly selected for each prediction, and, we
added to the initial field noise following a uniform distribution between -0.01 and 0.01. After each
time-step, the models’ weights were updated using the Adam optimiser with its standard parameters
(Kingma & Ba, 2015). The learning rate was set to 10−4 and multiplied by 0.5 when the training
loss did not decrease after two consecutive epochs, also, we applied gradient clipping to keep the
Frobenius norm of the weights’ gradients below or equal to one.

E ADDITIONAL RESULTS

REMuS-GNN is rotation equivariant by design, whereas traditionally this symmetry is learnt
through data augmentation of the training dataset with random rotations of the physical domain.
Figure 6 shows the ground truth and predictions after 100 time-steps of the horizontal velocity on a
sample from the NsVal dataset that has been rotated 10 degrees. It can be observed that the bench-
mark models trained without rotations produce unstable simulations, whereas all the other models
produce realistic results. Among these, REMuS-GNN has the lower MAE and produces a better
resolved solution. Figure 7 shows the ground truth and predictions after 100 time-steps of the hor-
izontal velocity on a sample from the NsAoA dataset. In this case the ellipse has been rotated 10
degrees clockwise (i.e. the angle of attack is 10 degrees). It is possible to notice that in REMuS-
GNN’s prediction the position of the wake and vortices, as well as their shape, is more similar to the
ground truth than in the other two benchmark models (both trained with rotations). This illustrates
the better generalisation of REMuS-GNN with respect to models that are not designed to be rotation
equivariant. Simulations with the ground truth and predictions of REMuS-GNN and the benchmark
models can be found here.

10
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(a) Target (b) REMuS-GNN
MAE = 0.0210

(c) MultiScaleGNN
train no rots.

MAE = 0.1051

(d) MultiScaleGNN
train rots.

MAE = 0.0245

(e) MultiScaleGNNg
train no rots.

MAE = 0.0997

(f) MultiScaleGNNg
train rots.

MAE = 0.0587

Figure 6: Target and predictions (after 100 time-steps) of the horizontal velocity field with a rotation of 10
degrees of the physical domain (sample from the validation dataset NsVal with Re = 864).

(a) Target (b) REMuS-GNN
(MAE = 0.0148)

(c) MultiScaleGNN
(MAE = 0.0223)

(d) MultiScaleGNNg
(MAE = 0.0735)

Figure 7: Target and predictions (after 100 time-steps) of the horizontal velocity field around an ellipse with
an angle of attack of 10º and Re = 800 (sample from the NsAoA dataset).
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