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Abstract—The latest WiFi security standard, IEEE 802.11,
includes a secure authentication protocol called WPA3-SAE.
The protocol is specified at two separate but linked levels:
a traditional cryptographic description of the communication
logic between network devices, and a stateful finite automata
description that realises the former in a single device. Current
formal verification efforts focus mainly on communication
logic. We present detailed formal models of the protocol at both
levels, provide precise specifications of its security properties,
analyse machine-checked proofs in ProVerif and ASMETA,
and show how they link. Particularly novel is the combination
of the above two models, which enabled us to address several
issues in the current IEEE 802.11 specification more thoroughly
than would have been possible otherwise, leading to several
revisions.

1. Introduction

For years security experts, cryptographers, and security
engineers alike have struggled through the process of in-
terpreting large protocol specifications, with the intent of
formalizing, analysing or implementing them, even when
they present ambiguity. Research efforts from the formal
methods community aimed at automating security analysis
are part of a vast body of literature focused on transforming
(often manual and error-prone) specifications into formal
models that can be analysed for security properties [1], [2],
[3], [4], [5], [6], [7], [8].

Since its introduction in 2018, WPA3 has aimed to
enhance the security standards of WiFi networks estab-
lished by WPA2. Nonetheless, recent works demonstrate
how WPA3 remains susceptible to known vulnerabilities [9]
that have been shown for some implementations. This work
aims to complement previous works by presenting a formal
verification of WPA3’s security architecture, providing an
evaluation of its actual security capabilities.

Traditionally, protocol verification has focused primarily
on message exchanges, which, while effective at establishing
verification methodologies [10], [11], [12], often neglects

vulnerabilities that may arise from the behaviour of individ-
ual devices [6]. Such vulnerabilities are critical, as they may
cause severe breaches when the protocol is implemented in
real-world environments.

We focus on WPA3-SAE (Simultaneous Authentication
of Equals), which is a security protocol specified in the latest
IEEE 801.11 standard [13]. Its specification is divided into
two separate but linked sections that reason at two different
levels. The first section describes a traditional cryptographic
description of the communication logic between two parties,
which we call Communication level. This is opposed to a
second section that describes how to realise the protocol in
the first section as a stateful finite automaton in a single
device, that we call Device level.

Our research introduces a dual-level verification ap-
proach that employs traditional Dolev-Yao symbolic analysis
at the Communication level combined with a transition
system analysis at the Device level. The two specifications
are largely self-contained (even when linked), so we mod-
elled them independently first, to discover that they were
misaligned, leading to potential vulnerabilities in different
yet compliant implementations of either of the two. More
interesting in a secondary phase we combined the two mod-
els, feeding one with the other to improve the accuracy of
our formalisms. This allowed us to propose several patches
to the standard1, most of which have been accepted and will
appear in the next revision of the IEEE 802.11. Our results
indicate that each model captures unique aspects of the
protocol’s vulnerabilities, with their integration providing
new insights that significantly improve our understanding
and patching of the standard.

Some of our findings can be linked to previous attacks
on WPA3, confirming their effectiveness in identifying and
describing new vulnerabilities. For example, the memory
exhaustion attacks described by Vanhoef and Ronen in [9],
share the same nature of deadlock situations that we have

1. Hyperlinks and references to documents are omitted here to keep
anonymity, but a redacted version of them is provided in our artifact:
https://doi.org/10.5281/zenodo.14168708. Alongside all of the models.
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noticed at the Device level. These findings contribute to
our development of more secure wireless protocols.

We summarize our contributions as follows.
1) We propose a novel, integrated approach to protocol

verification that addresses both communication and
device-level security;
• as part of this process, we added equations to our

models that capture the modular division operations
involving the group exponentiation (Section 5.1.1),
that are general and reusable in other contexts where
such operations are used.

2) We apply this methodology to WPA3-SAE, uncovering
over 20 new security issues (which have now been
amended in the standard).

3) Finally, we provide validated solutions to these issues,
improving the protocol’s resilience against a variety of
attack vectors.

The rest of the paper is structured as follows: Section 2
summarises work in this area and related literature. In Sec-
tion 3, we introduce the Simultaneous Exchange of Equals
(SAE). We then explain our methodology in Section 4 and
provide details of our analysis of the WPA3-SAE formal
models in Section 5, followed by our results in Section 6. We
finally discuss our findings in Section 7 in relation to real-
world WPA3 implementations and draw our conclusions in
Section 8.

2. Related Works

The unification of multiple tools for the verification of
protocols has come under substantial attention recently [14],
[15], this is not altogether new as it was one of the core
principles of AVISPA [11] a couple of decades ago, whose
intermediate language is based on the AnB logic, and could
not be used to capture enough security aspects of complex
and modern protocols. Later on, the earliest work discussing
unification for modern verifiers was in 2019, where authors
combined the verification of a protocol translating from an
intermediate language to both Tamarin and ProVerif [16].
However, such seminal work was lacking soundness of
translation and the semantics of its language, to the best of
our knowledge, was never completely formalized or studied;
thus, it remains difficult to trust in the domain of formal
verification of security protocols.

Successively, an independent work extended the security
guarantees typically associated with protocol designs to their
actual implementations [15]. This is achieved by instrument-
ing common cryptographic libraries and network interfaces
with a runtime monitor. By focusing on runtime verification,
the paper addresses the dynamic aspects of protocol security,
ensuring that the protocols behave as expected not just in
theory but also in real-world operational environments.

The most recent work advancing on the unification of
protocol verification techniques presents a methodology for
the modular verification of protocol implementations [14].

Its methodology leverages verification logics and tools, sup-
porting a wide range of implementations and programming
languages. The effectiveness of this approach is demon-
strated through the verification of memory safety and se-
curity of various protocol implementations.

Probably the closest work to ours can be found in an
early verification of TLS1.2 [17], where authors identified
that the state machine is an important part of the imple-
mentation, and performed some verification on it. The veri-
fication process includes type-checking the state machine of
the TLS protocol. Type checking is a method of verifying
that the program adheres to the specified types, which in
this context, relate to the correct sequence of operations
and data handling in the protocol. This ensures that the state
transitions in the TLS protocol adhere to the defined security
specifications. Although this is undoubtedly a first step,
authors have never linked the state machine to the upper
layers of the protocol, as we do in our approach, and no
further verification beyond type checking is performed. We
argue these are not distinct steps, and indeed the verification
of the state machine properties can lead to better analysis
of the network protocol and vice versa.

We note that formal analysis is not the only way to
analyse a protocol, and indeed, authors have already run
security evaluations of similar protocols [9], [18], i.e., the
DragonFly protocol, which is the predecessor of the SAE
key exchange. Their work found several vulnerabilities, with
a focus on side channel attacks [9] and communication layer
attacks [18], in several real-world devices that implemented
the key exchange. Their work contributed to a more robust
successor that could introduce numerous changes - including
security patches - that distinguish it significantly from its
predecessor. Such influence can be read from the IEEE
802.11 standard, which was adopted in 2016 and expanded
further in the latest 2020 review. Our work is complementary
to theirs, as we focus less on implementations; indeed, we
formalize the standard for symbolic analysis, identify (some
of) the points of vulnerability and ambiguity that contributed
to these issues appearing in implementations, and find new
sources of potential vulnerabilities.

3. WPA3-SAE

WPA3 security is ensured using the Simultaneous Ex-
change of Equals (SAE) protocol, which is introduced to
replace the Pre Shared Key Exchange (PSK) used in WPA2,
which was known to be vulnerable to attacks [18]. SAE
provides authentication at the Link layer referring to the
TCP/IP stack. It was originally introduced in 2016 as part of
IEEE 802.11 - IEEE Standard for Information Technology–
Telecommunications and Information Exchange between
Systems [19], with claims to resolve the previous vulner-
abilities affecting PSK and WPA2. We focus our security
analysis on the latest version protocol, following the spec-
ifications from IEEE 802.11w [13] when conducting our
assessment.



3.1. The SAE Key Exchange

The SAE key exchange is a two-party protocol that takes
two rounds of messages. Each round is symmetric so that
we do not have a notion of an Initiator and Responder or
of a Supplicant and Authenticator. Each side may initiate
the protocol simultaneously such that each side views itself
as the initiator for a particular run of the protocol. This
design is necessary to address the unique nature of mesh
basic service set [13]. Several variants of SAE are specified;
nonetheless, we only focus on the variant of SAE adopted
in the WPA3 protocol, especially the variant that operates
in finite field cryptography2.

The SAE protocol operates in G, a common and pub-
lic subgroup of Z⋆

p of multiplicative order q, where q is
a Sophie Germain prime, i.e., p = 2q + 1, where the
discrete logarithm problem is assumed to be hard. The
protocol also uses H representing a hash-based message
authentication code (HMAC). Two remote parties, Alice
and Bob, share a common secret password from which
they apply a transformation to calculate a corresponding
password element, PE. Using PE, a secret element can
be derived as described by the Key Derivation Function
KDF, defined in the standard [13]. The (last) confirmation
phase also defines a confirmation function CN, which is also
defined in the standard. Both KDF and CN are calls to the
hash function H. The SAE protocol runs in two rounds:
the commit exchange and the confirmation exchange, as
illustrated in Fig. 1 for the peer A, which communicates
with a symmetric peer B.

3.2. The SAE Message Handling

Message handling in WPA3 is described in §12.4.8 of
the standard, in terms of a state machine, see Figure 2, as
interactions between three entities: 1) Station Management
Entity (SME), 2) Parent Process (PP), and 3) Protocol
Instances (PI).

SME. This entity is a component responsible for managing
various aspects of a wireless station or device. It is primarily
concerned with managing the physical and medium access
control (MAC) layers of the 802.11 protocol. SME provides
an interface for higher-layer protocols to interact with the
lower layers and handles tasks related to the wireless sta-
tion’s configuration, operation, and maintenance. However,
this entity is not strictly described in the standard, which
states:

§6.1, pg. 314

Some functions of the SME are specified in this
standard.

Moreover, the description is fragmented and given incre-
mentally in different parts of the documentation. This easily
causes misinterpretation and misunderstanding.

2. Our models abstract the mathematical operations in the finite field, so
that are analogous to the Elliptic Curve specifications.

Figure 1. SAE protocol in WPA3 [13] at Communication level. A and B
share the secret password w and computed PE in private; PE ∈ G and G
is a subgroup of Z⋆

p of order q; i is a counter. B is symmetric to A and
thus omitted for brevity.

PP. The parent process is in charge of managing the database
of the protocol instances (PIs). It performs a number of
tasks, such as allocating and deallocating instances, and
keeping track of their respective states. Additionally, it is
responsible for routing incoming messages from the envi-
ronment to the correct PI (allocating a new instance when
needed). To accomplish these operations, it sends a suitable
event to drive the state change of the PI. It also keeps the
database updated based on the events it receives from both
the SME and the PIs.

PIs. The processes that ultimately realise the protocol enact
the behaviour specified as a state machine. State changes
are triggered by messages and events received from the PP,
but transitions fire upon the analysis of message content.
Transitions execution is accompanied by actions that the
PI executes before entering a state. Such actions consist of
messages for the peer or generation of error or completion
output events to be sent to the PP for subsequent dealloca-
tion of the instance.

Fig. 2 depicts a simplified version of a PI’s state machine
consisting of four states and having transitions labelled with
the relevant events sent by the PP and able to trigger a



state transition (note that we omit information regarding the
received messages that might prevent transition firing, and
actions performed by the PI when a transition fires).

Figure 2. State machine describing the SAE protocol in WPA3 [13] at the
Device level.
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A PI is in the state Nothing initially, as a new instance,
and finally, as a terminal state before being deallocated
in case of error. Depending on their allocation, new PI
immediately transitions out of the Nothing state to either
Committed or Confirmed. Protocol instances that transition
into the Nothing state shall immediately and irretrievably
be deleted3. A PI enters state Committed when it receives
the event Init from the PP and has sent an SAE commit
message to the peer. In this state, the PI waits for the
Com event from the PP and moves to state Confirmed
having sent an SAE confirm when it receives the correct
SAE commit message from the peer. The PI remains in
this state if a Retransmission4 event happens. When an
unmanageable error occurs, a Del event is sent to the PP,
and the PI moves to state Nothing to be deallocated. In
the state Confirmed, the PI operates as in state Committed
in case of events Del and Retransmission, and moves to
state Accepted on the event Con from the PP and by
receiving a peer’s correct commit message. In the (final)
Accepted state, events Retransmission and Del, if happen,
are dealt with as in the previous states; otherwise, the PI has
successfully concluded the process.

4. Methodology

We here detail the main contributions of our work, which
are threefold, each with distinct approaches: 1) Unified

3. This relevant information is reported only in section 12.4.8.2.2 of [13]
4. This event groups several wrong (but manageable) error cases that

can happen, e.g., wrong order of the received messages, wrong received
group, etc.

Methodology, 2) Security Analysis of WPA3-SAE, and 3)
Validated Solutions.

4.1. Unified Methodology

The unified methodology, at the Communication and
Device level that we propose, concretely involves: a dual-
level modelling, where we specify models that separately
reflect the specification at the Communication and Device
levels; a level-specific analysis, which exploits different
formalisms and verification paradigms at the two levels;
and a unified analysis, where we feed one model with the
results of the other, to reach a single coherent description of
the protocol, which is at the basis of our suggested verified
patches. The formalism at the Communication level uses
a well-established modelling technique, whose analysis is
mechanized and runs on a state-of-the-art formal verification
tool, ProVerif. Whilst the formalism at the Device level is
based on the stateful analysis of state machines, whose ver-
ification is mechanized and runs on a state-of-the-art formal
framework, ASMETA. This approach allows for a much
deeper study of a protocol’s security, allowing for greater
insights into how well the protocol functions (thus allowing
for better implementations). We leverage the strengths of
each level of specification to cover a comprehensive range
of aspects and verification goals contextual to such levels.

At the Communication level, we use the π-calculus
as specification formalism, Horn clauses resolution as a
verification mechanism, and ProVerif [20] as a tool. At this
level, we analyse properties common to other key exchange
verification processes. The properties we verified in the π-
calculus (presented formally in later sections) are:

• Correctness - Verifies that after finalising the ex-
change, both parties share the same key.

• Authentication - Checks that the entities involved in
the communication are who they claim to be, ensuring
that messages are exchanged between legitimate and
verified parties.

• Key secrecy (SK) - Ensures that the shared session
key remains confidential and is only known to the
participating parties.

• Password element secrecy (SPE) - Guarantees that
individual elements derived from the password during
the exchange are not exposed, even if other parts of the
system are compromised.

• Perfect forward secrecy (PFS) - Assures that session
keys cannot be compromised even if the long-term
private keys are exposed in the future.

At the Device level, we use state-based transition sys-
tems as our specification formalism (specifically, the Ab-
stract State Machines [21], [22]), which are efficiently sup-
ported through the tool-set ASMETA [23]. ASMETA has
been used for swift model editing (with AsmetaL notation),
validation (with AsmetaV [24] and its notation Avalla), and
verification using temporal logic properties utilizing model
checking (with AsmetaSMV, which maps AsmetaL models
to the model checker NuSMV [25]). Our analysis focuses



on the compartmentalised analysis of individual agents, i.e.,
PIs, PP, SME, each of which has its own Abstract State
Machine (ASM) that communicates with the others via
events.

At this level, we concentrate on the operational cor-
rectness of message handling, synchronization mechanisms,
queue implementations, and state reachability within the
protocol. Since security and authentication properties have
been handled by verification at the Communication level,
where the messages’ content is thoroughly checked, during
our analysis of the agents’ machines, we focused on the
following verifying properties, listed along with their corre-
sponding CTL formulas:

• Safety - bad configurations do not happen; in CTL,
AG(¬ϕ), which means that the condition ϕ must never
be violated globally.

• Reachability - desired configurations are reachable; in
CTL, EF (ϕ), which states that there exists a future
state in which the property ϕ is true.

• Deadlock-free - it is always possible to exit from given
configurations; in CTL, AG(EX(ϕ)), indicating that in
every state, there is an immediate successor state that
satisfies the property ϕ.

Further CTL formulas have been stated to evaluate cor-
ner cases, such as edge safety property checking for the
possibility of agents’ failure to receive events caused by
a lack of RAM or caused by simultaneous reception of
events from multiple agents. One additional step at the
device level that provides formal guarantees of the model’s
compliance with the specifications is to create scenarios
using the AsmetaV tool. This approach ensures that the
state machine remains consistent, enabling the identification
of specification errors without relying on formal properties.
As a result, this method shortens the verification time and
enhances confidence in the model’s completeness and cor-
rectness. This advantage is significant and, if possible, not
easily achievable with languages that typically model the
Communication level 5.

4.2. Dual-Level Security Analysis of WPA3-SAE

Following the model formalism, verification and analysis
were conducted using ProVerif as the verifier of the models
in π-calculus and ASMETA as the validator and model-
checker of the stateful representations.

Diverging from the usual independent status quo, these
results were then collated and unified in a refinement stage.
Whilst we may wish to treat individual layers of the com-
munication stack as separate, they are inevitably interlinked,
and as such, it is sometimes the case that when a vulner-
ability is found at a specific layer, it might be that it is
incorrectly handled at a different layer (for better or for
worse), leading to false attacks. In theory, this is not always
a problem, indeed finding errors in protocol specifications is

5. Indeed, completely valid interpretations of the specification have
resulted in wrong verification results in previous work [26], due to lack
of conformity checking

a worthwhile exercise even in practice, even in those cases
when this does not lead to an attack that can be verified
from a compliant implementation 6; however, for a real-
world implementation check, having this extra knowledge
is a crucial advantage.

4.3. Validated Solutions

The final stage was to validate the results as well as
patch the attacks. This effort was threefold: 1) formally
verify that our proposed solutions fixed the vulnerabilities by
running the tool on updated models; 2) coordinate with IEEE
802.11 Working Group - those in charge of the changes
to the specification - to update the standard to reflect the
new verified patches; and 3) check the largest open-source
implementation of WPA3 (hostapd), to compare with the
interpretation from the point of view of developers, and see
if and how they handled the issues we have found.

Concerning the second stage, we were added as desig-
nated experts to the IEEE802.11p Working Group. After
explaining our points in several meetings and attending
panel meetings, almost all our corrections were accepted
and introduced into the standard (19/25 accepted) 7. We
would like to note, that although six proposed changes were
not accepted, they were acknowledged as distinct issues,
but deemed too unlikely to warrant a re-specification. This
is another difference between formal analysis and the real
world, where in the formal domain any potential threat
is an error, in the real world, we found, based on these
discussions, that sometimes performance and usability are
valued above a potential, unlikely case of threat.

5. Formal Models of WPA3-SAE

As per phase one of our methodology, we first modelled
the Communication and Device levels of the protocol.

5.1. Symbolic Models at the Communication Level

As can be easily seen, the π-calculus code inside the
boxes in Fig. 3 is the part modelling the protocol scheme
depicted in Fig. 1.

We highlight the symmetric nature of the protocol by
allowing both both processes to write their first message to
the channel before reading from it: in other words, the non-
deterministic symbolic execution will explore both cases
when either peer will read from the channel first.

The π-calculus code outside of the box serves to model
two aspects: first, to implement the usage of the same
password element PE; and second, to model the usage of
the key k after the key exchange for secrecy properties. In
detail, the first line looks for the password element PE in

6. A potential downside of this however is that these lack of relationship
between the error and the fix may lead to the fix being then deleted in later
versions - as happened with WPA2 when moving to WPA3.

7. REDACTED FOR ANONYMITY, we provide the anonymised work-
ing group minutes in our artefact: https://doi.org/10.5281/zenodo.14168708.

https://doi.org/10.5281/zenodo.14168708


Figure 3. The vanilla description of the SAE protocol.

1 PL ← get tp(=L,=R,=pw,PE) in
2 νrL.νmL.
3 let sL = rL +mL in
4 let EL = PE−mL in
5 let cL = (sL, EL) in
6 out(c, cL); in(c, cR);
7 let sR, ER = cR in ;
8 let K = (PEsRER)

rL in
9 let ks = H

(
032,K

)
in

10 let ss = sL + sR in
11 let kc = kcf(ks, ”SAE”, ss) in
12 let k = pmk(ks, ”SAE”, ss) in
13 νiL. // send-confirm
14 let HL = CN(kc, i, cL, cR) in
15 out(c,HL, iL); in(c,HR, iR);
16 out(c, enc(k,m));

the table t that has been computed by the participant, either
Leftmost L or Rightmost R, and intended to be used with
their peer. If t contains a suitable PE to communicate to the
other party, the participant continues; otherwise, it aborts.
It is worth noticing that, however, this would not stop an
active attacker from their attempt to tamper with messages
or craft new ones. Finally, the last line is not part of the
scheme and has been artificially added to verify the secrecy
of the shared key k through the privacy of the message
m. We model the counter send-confirm as the nonce
i to simplify the verification efforts. This assumes that the
counter is unpredictable; though, we observe that it is sent
in clear along with HL (or HR) and thus it is known to the
adversary.

The two parties. The SAE protocol illustrated in Fig. 3 is
constituted by two participants. We call one the Leftmost,
L, and the other the Rightmost, R, for the convenience
of naming in our model; however, we stress that given its
symmetric structure, the protocol can be initiated by any
device. All models of the protocol are variation of the same
vanilla specification, where we abstract out the pairwise
master key as pmk and the EAPOL-Key confirmation key
kcf .

The pre-shared password. A table tp of passwords is filled
with all password elements PE that would be calculated by
the participants before engaging the protocol, i.e., PE ∈ G
is the secret group generator for L and R implemented with
finite field cryptography.

From the point of view of the symbolic protocol design,
picking up from a pool of passwords and then computing
the password element (or generator) is the same as having
directly shared the secret password element.

The models in Fig. 3 are slightly different from the
specification. In particular, the first two lines and the last line
of both processes are unexpected and are syntactic sugar to
better capture the original protocol in our formal definition.

The protocol is supposed to run asynchronously, i.e., the
message order is irrelevant, and the responder may actually

behave as the initiator. However, this is only true for the
first phase, since in the second phase the parties need to
know who sends the double and who sends the single hash
of the key. This behaviour is formalised in the key-exchange
phase by letting both parties output before reading, but this
cannot be done in the key confirmation phase. In addition,
our model does not check if the incoming message is in
the range {2, . . . , p− 2}. Due to the limits of the tool, one
cannot write the group theory in ProVerif to model such
a check. All the variants of the SAE protocol we have
implemented are based on varying the model in Fig. 3.

The main process. Symbolic analysis generally allows for
the security analysis of parallel execution of protocols. To
this end in π-calculus, one can implement the main process,
P , as the parallel execution of two processes: the Leftmost
process PL and the Rightmost process PR, whose details
model the protocol behaviour for each party. Due to its
symmetric nature, any peer can initiate the protocol, so the
implementation could just be a single self-composed process
that will be used by both parties. Unfortunately, such a naive,
direct model of the SAE protocol would easily produce
false attacks where an initiator would speak to itself. To
avoid this unwanted behaviour, a solution is to explicitly
support the session between the two parties. However, the
session, denoted as sID, is not private information and is
known to the attacker. To model that, we simply push it to
the insecure channel c, i.e., out(c, sID). Before calling the
processes PL and PR, we establish which party runs PL and
which runs PR. Doing this, we capture the ability of honest
parties to engage with the protocol with either algorithm,
whose structure is anyway mirrored. This choice requires us
to make sure that the two parties would not engage in the
protocol if they do not share the password element. For this
reason, we also added an environment process PP , which is
in charge of inserting shared password elements into a table
that will be accessed by PL and PR but cannot be accessed
by the attacker.

Several security properties are based on writing custom
events into the execution trace. In order to record such
events, we have a special process PA, which records some
variables in the meanwhile the protocol is executed, at
the convenience of the security properties that we want to
analyse, i.e., correctness. In practice, the process PA would
collect information from additional tables filled with terms
whose content is ultimately put together recording a single
event of agreement of terms generated by different entities.
For those security properties which do not require tables to
record events, the process PA will be simply empty, i.e., 0.

Finally, the main process P that the tool checks has the
following structure:

PSAE ← νsID. out(c, sID);

(PL(L,R, sID) | PR(L,R, sID))

P ← PP | PSAE | PA,



that informally reads as the composition of the setup of
passwords, the protocol, and the final agreement of terms.

Modelling attacks and security properties. Some attacks
or security properties are based on the inspection of the
traces of execution of the protocol. Each trace t in the space
of all infinite traces T is a potentially infinite sequence of
generic elements. A trace is a list that reflects a possible
expansion of all combinations of the concurrent executions
of a process (a protocol)8. A trace is implicitly temporally
ordered, in the sense that i < j implies that t[i] (the i-
th element in the trace t) has been recorded before t[j]
during the expansion. Attacks and security properties are
both statements that relate to the traces of execution. While
to demonstrate an attack, an example is sufficient to show,
conversely, a security property must be a statement (a the-
orem) over those traces that capture desirable behaviour of
the protocol with global validity.

For some security properties, artificial events has to be
injected in the definition of processes. An event e can be
recorded as an element in a trace t. We denote e ∈ t to
say that an event appears in the trace t. For example, if we
inject one event, eBEGIN, that records the beginning of the
protocol, and another event that records its end, eEND, then
we can capture authentication by requiring that the presence
of eEND in all traces t implies the presence of eBEGIN in t
before eEND:

∀t ∈ T. t[j] = eEND ⇒ ∃i < j. t[i] = eBEGIN.

We simplify this notation by removing indices, we can write
equivalently ∀t ∈ T. eEND ∈ t⇒ eBEGIN ∈ t∧ eBEGIN < eEND.
Precise relations that capture security properties, and that
follow from the above basis, will be provided in Section 6
as they are required.

5.1.1. Handling Unsupported Mathematical Operations.
The reader who is more acquainted with the π-calculus must
have already noticed that the mathematical theory behind the
operation K = (PEsRER)

rL in Figure 3 is not supported by
ProVerif. ProVerif only supports the exponential operation,
whose commutativity can be defined as described in its
manual when reasoning about the Diffie-Hellman Key Ex-
change protocol. Conversely, multiplications (and additions)
can only be partly defined. They cannot be fully supported
for the simple reason that commutativity and associativity
would induce the reasoning core to infinite expansions, thus
to non-termination. If the protocol allows it, the designer
can model only part of them: we model commutativity but
do not need associativity. This choice is not unusual; for
the sake of another example, we reference the π-calculus
models of recent models of TLS [27].

An additional complication occurred in the process of
defining the division as the inverse operation to the multi-
plication: modelling the division is required, otherwise the
K cannot be reconstructed by both peers and correctness

8. Some tools can reason about an unbounded number of concurrent
executions, others are capped.

and secrecy cannot be reasoned about. To overcome the
above-known limitation, we modelled the division modulo p,
denoted as ÷p, as an extended destructor. Such destructors
are defined by subexpressions; then, “each subexpression
[...] is rewritten by trying the rewrite rules of [the destructor]
in the order given [...], and applying the first applicable
rewrite rule.” [12].

In detail, we first tried to implement ÷p as a function and
an equation; however, ProVerif could not handle its equa-
tions, as the tool could not prove their convergence (thus
termination). Our next step was then to axiomatically add
their convergence; alas, ProVerif does not allow adding such
axiomatic behaviour (and skip termination check) if more
than one equation uses the same function; in our case, the
blocking function is the standard and (the only) documented
equation to be used to model group exponentiation from the
ProVerif manual.

Finally, were successful with the following extended
destructor:

÷p ≡
[
∀a ∈ G, x, y ∈ N. ax+y ÷p a

y = ax,

∀a, b ∈ G. a÷p b
−1 = ab,

∀a, b ∈ G. ab÷p b = a] .

Clearly, those rewriting rules are far from being able to
define the division comprehensively but are reducing from
the left to the right (to reach termination), and enough
to reconstruct the final key. They are even slightly more
expressive than what is strictly required to reconstruct the
key; this is useful to enrich the capability of the adversary
to enjoy (marginally) stronger guarantees.

5.2. Symbolic Models at the Device Level

Abstract State Machines (ASMs) are a state-based for-
mal method that enhances Finite State Machines (FSMs) by
substituting unstructured control states with algebraic struc-
tures. These structures are defined as domains of objects
that have functions assigned to them. State transitions occur
through the execution of transition rules.

During each computation step, all transition rules are
executed in parallel, resulting in simultaneous and consistent
updates to several memory locations. These locations are
defined as pairs of (function-name, list-of-parameter-values),
which means the interpretation of functions changes from
one state to the next.

Updates to locations are expressed as assignments in the
form of loc := v, where loc represents a location and v signi-
fies its new value. Among various rule constructors utilized,
some relevant for our purposes include constructors for
guarded updates (such as if-then and switch-case),
parallel updates (par), sequential actions (seq), nondeter-
ministic updates (choose), and unrestricted synchronous
parallelism (universal quantification forall).

Functions that are not updated by rule transitions are
termed static, whereas those that are updated are called
dynamic. Dynamic functions can be further classified as



monitored (read by the machine and modified by the en-
vironment) or controlled (read and written by the machine).
The ASMETA framework allowed us to model the state
machines of the PP, the PIs and the SME. As an example,
in Fig. 4, we show an excerpt of the ASM rule of the PP
program called r_SME_Signal9. The rule is part of the
model used for validation; more specifically, it describes
the handling of events produced by the SME agent and
consumed by the PP agent. The INITIATE and KILL events
affect the allocation of new instances of the PI agent,
respectively creating new ones and forcing their removal
from the database.

Figure 4. Allocation of a new instance in the state Nothing after receiving
the event INITIATE.

1 rule r SME Signal=
2 forall $mac in Mac List with signal to Parent Process($mac)
3 !=NOSIGNAL do
4 if(database instance counter($mac)=0 and
5 signal to Parent Process($mac)=INITIATE )then
6 extend ProtocolInstance with $pi first do
7 par
8 state MAC($pi first ):=NOTHING
9 protocol Instance Event($pi first):=INIT

10 database instance counter($mac):=
11 database instance counter($mac)+1
12 database instance($pi first):=true
13 parent Process Event($pi first):=NOEVENT
14 protocol Instance Association($pi first):=$mac
15 open:=open+1
16 endpar
17 ...
18 endif

The producer-consumer logic outlined in the rule op-
erates as follows: The Process Publisher (PP) first checks,
using the forall primitive, for any signals sent by the Ser-
vice Management Entity (SME) indicating an event related
to the selected MAC address from the Mac_List domain,
which includes all MAC addresses under analysis.

Next, the protocol requires checking the cardinality
of MAC instances present in the database. Specifically, it
verifies whether the count of instances for the given MAC
address is zero (database_instance_counter($
mac)=0). This verification occurs when a request
to allocate a new instance is initiated via the
INITIATE event (signal_to_Parent_Process($
mac)=INITIATE).

When this condition is satisfied, the PP employs the
extend primitive to add a new Protocol Instance (PI) to
the ProtocolInstance domain. The newly created PI
is initialized to the NOTHING state(state_MAC($pi
first ):=NOTHING). An INIT event is then sent
to this PI(protocol_Instance_Event($pi
first):=INIT), and its corresponding database
information—such as the number of occurrences and
the binding between the allocated PI and the MAC

9. All the PIs execute the same machine and each PI identifies self as
itself.

address(protocol_Instance_Association($pi
first):=$mac)—is updated accordingly. Finally, the
PP is set to listen for new events by setting to NOEVENT
the controlled function parent_Process_Event($pi
first)) and increments the total number of open
connections in the open variable. Associated rules follow
for all the other transitions from Figure 2.

The model created by combining the programs of all
agents in the protocol was crucial for validating compliance
with the requirements outlined in the standard specification.
This model allowed for a quicker and more efficient refine-
ment process. It soon became apparent that this approach is
versatile and effective in identifying inconsistencies or gaps
in the specification. For example, it revealed issues such
as the use of incorrect or previously unmentioned names,
like in the thirteenth errata, where the variable SYNC was
used instead of the big(sync) event, which describes
the maximum number of allowed synchronizations. This
approach also relieves the verification part of properties that
can be disproved by deploying a scenario, allowing the user
to concentrate on more complex properties.

Unlike the communication part of the specification,
many inconsistencies and incompleteness were found in
the official documentation for the Device level process.
The complete final model has been obtained by a model
refinement process using using Avalla [24]. An example
scenario using AVALLA may be seen in Figure 5.

Figure 5. Scenario based testing of ending of COM event when the PI is
in ACCEPTED, simplified first step out of three.

1 scenario PI Accepted SYNC
2 load SAE 20 scenari.asm
3 ...
4
5 set select mac sme signal :=MAC1;
6 set signal :=NOSIGNAL;
7 set select mac :=MAC2;
8 set message from peer(MAC2) :=EMPTY;
9

10 exec extend ProtocolInstance with $pi do
11 par
12 protocol Instance Association($pi):=MAC1
13 database instance($pi):=true
14 state MAC($pi):=ACCEPTED
15 database instance counter(MAC1):=1
16 save PI:=asSequence(ProtocolInstance)
17 start Timer($pi,TIMER0):=false
18 sync($pi):=6
19 sc($pi):=0
20 endpar
21 ;
22
23 step
24 ...
25
26 set select mac sme signal :=MAC4;
27 set signal :=NOSIGNAL;
28 set select mac :=MAC1;
29 set message from peer(MAC1) :=CONFIRM;
30 ...

Building scenarios to validate the requirements of the



standard was useful in finding inconsistencies and errors
in our model (and the standards specification). Our first
model incorporated all three agents (SME, PP and PI) and
this model focused on understanding the agents’ interaction
and learning whether the rule sets defined for each agent
meet the requirements. Upon the initial phase of model
validation, using AVALLA, the model refinement step was
performed using an iterative approach deriving insight from
the finding of the result of in which we discovered some
inconsistency in the specification. In Figure 5, we can see a
simplified scenario as the protocol steps through the states
and updates the state variables (according to the spec). This
simulation approach allows for a quick test of coherence
prior to running the more expensive verification steps. We
verified our model by using AsmetaSMV, for verification
purposes, the SME model was not considered.

6. Findings and Results

As introduced in Section 4, the WPA3-SAE protocol is
specified in the traditional way of cryptographers, through
explaining how messages are exchanged (Communication
level), and the logic behind them that aim to validate security
properties. In addition to this, a realization of such protocol
is also described as a state machine, which is supposed to
run in a single device (Device level). Such additional de-
scription focuses on state transitions and interface behaviour,
prioritizing properties that relate to operational correctness
within the device’s environment.

We created models to capture the specification at two
different levels - the Communication level, which is anal-
ysed through the lens of a Dolev-Yao attacker [28], and the
Device level, which investigates the safety and completeness
of the machine states of the agents involved in the protocol.

As expected, independent modelling efforts could cap-
ture different aspects of the WPA3-SAE protocol, detailed
in Section 6.1, as well as some common aspects, detailed
in Section 6.2. Interestingly, combining insights from both
verification tasks allowed us to refine one or the other model
to better understand the nature of the vulnerabilities and
misalignments that we found. Consequently, findings in the
verification in one level suggested ways to patch issues in
the other level; for example, from the analysis of correctness
at the Communication level, we could suggest how to patch
the state machine modelling the Device level, something
greatly useful for applying the most appropriate patch. We
detail these combined findings in Section 6.3.

Table 1 reports the classes of checked properties and the
verification results. In the following, only a relevant sample
of these properties is presented.

6.1. Independent findings: Replay Attack and
Deadlock

6.1.1. Replay attack. The verification of the design of
WPA3-SAE in the latest standard [13, §12.4] highlighted
a vulnerability in the logical flow that led to breaking its
authentication in our model.

TABLE 1. SUMMARY OF RESULTS ON FORMAL VERIFICATION OF
SECURITY PROPERTIES IN PROVERIF (LEFT) AND ASMETA (RIGHT).

Communication level

CO SA WA SK SPE PFS

IEEE 802.11:2020
Patched models

Device level

SF DL ES RC

IEEE 802.11:2020
Patched models

Legend. Correctness (CO), Strong/Weak authentication (SA)/(WA), Key
secrecy (SK), Password element secrecy (SPE), Perfect Forward Secrecy
(PFS); Safety (SF), Deadlock (DL), Edge Safety (ES), Reachability (RC).
Outcomes: ( ) - verified, ( ) - some cases are verified, ( ) - attacks found,
( ) - no attacks found, yet a final security proof cannot be automatically
generated.

On the basis of the vanilla code illustrated in Fig. 3,
authentication of L in R (mirroring the process L) can be
captured through the artificial injection of two events, ei in
PL and ef in PR. Informally, ei signifies the belief of L of
having started an authentication process with R, and ef the
belief of R of having terminated an authentication process
that must have been started by L, i.e., R believes that it is
communicating to a genuine L. The standard way to capture
authentication in the symbolic model is through verifying
a correspondence of events in the traces of executions. In
particular, if for all the traces t of the symbolic execution
of P (defined in Section 5.1), the presence of the final
event eF in t is always after a single initial corresponding
presence of eI in the same trace, then we have verified
authentication10. This is called a correspondence of events
and can be formally described as

∀t ∈ T. eF ∈ t⇒ !∃eI ∈ t ∧ eI < eF.

Strictly following the specification of the SAE protocol, the
formal tool ProVerif [12] is able to reconstruct the flow of an
attack as a counterexample of the property described above.
By inspecting the reconstruction, we noticed that it is simply
carried through blocking commit and confirm messages
from L to R, when L initiates the protocol, and finally
reflecting back to L its own messages. Fig. 6 shows the
mathematical operations for which the replay of messages
is (mathematically) acceptable.

The patch to this specific attack would be that of dis-
carding messages with the same sL, EL or both. In our
model, we can add the guard cL ̸= cR just after line 7 of
the model of PL described in Fig. 3 (and likewise for PR

which is omitted). That guard would allow the rest of the
model to run and would stop in the case of a replay, i.e.,
cL = cR. With our patch, the same verification in ProVerif
cannot find any attack on authentication any more.

An interesting note is that the realisation of the protocol
as a single-device the state machine [13, §12.4.8.6.4] ignores

10. For mutual authentication, we need to inject other two analogous
events inverting the processes.



Figure 6. Replay attack at the design level specification of the WPA3-
SAE protocol in IEEE 802.11:2020, the variant that uses finite field
cryptography.
Leftmost Mallory Rightmost

sL, EL blocked!

sR[= sL], ER [= EL]

CN(kc, i, sL, EL, sR, ER) [= CN(kc, i, sL, EL, sL, EL)] blocked!

CN(kc, i, sR, ER, sL, EL) [= CN(kc, i, sL, EL, sL, EL)]

replayed commit messages (allowing sL = sR if EL ̸= ER

and vice versa), de facto evidencing awareness about this
attack. However, by deviating from the protocol specifica-
tion, the state machine can compromise authentication, as
the considerations at the Device level prioritize properties
that relate to the operational correctness within the device’s
environment. It becomes evident that our comprehensive
verification approach across multiple levels plays a crucial
role in ensuring alignment with the intended protocol be-
haviour, thereby reducing the risk of insecure and buggy
implementations.

6.1.2. Deadlock. Requirements in the WPA3 SAE standard
include safety properties stated in natural language that can
be translated into CTL (safety) properties and checked on
the ASM model to ensure its robustness and correctness.
E.g., the specification states that:

§12.4.8.6.1

For any given peer identity, there shall be only one
protocol instance in the Committed or the Confirmed
states.

This could be expressed by the following CTL formula
stating that globally (AG) does not exist a state where two
PIs (pi1 and pi2) have the same mac (i.e., the same identity)
but incompatible state according to the specifications.

AG
(
¬
(
mac(pi1) = mac(pi2)∧(

(state(pi1) = Committed ∧ state(pi2) = Confirmed)
∨ (state(pi1) = Confirmed ∧ state(pi2) = Committed)
∨ (state(pi1) = Confirmed ∧ state(pi2) = Confirmed)
∨ (state(pi1) = Committed ∧ state(pi2) = Committed)

)))
Since this property requires checking the internal states

of multiple PIs, it was verified against the PP model since
PP has information on the current states of the PIs. The
result of the property detects no attacks.

However, the standard documentation does not mention
other relevant properties, such as the absence of deadlock,
necessary to guarantee the completeness of error-handling
cases. During the analysis of the absence of deadlock in
the Committed state, we discovered, through the following
failing property, which states that does not exist a configu-
ration where the PI (pi) is in state Committed and an error
occurs (fail holds),

AG(¬EX(state(pi) = Committed ∧ fail))

that the standard does not handle the error in case of
receiving a wrong commit message. This not-handled error
causes the PI’s state machine to deadlock, with no chance
for the PI to be deallocated by the PP.

The standard specifies that a timer T0 could have miti-
gated the deadlock by sending a Del event when it expired.
However, the timer is deactivated when the PI is in the
Committed state, and it checks the content of the Commit
message, preventing the attack mitigation.

The deadlock is even more severe due to the safety
property mentioned above because the attack can be easily
executed by a malicious agent. Indeed, as a result of this
deadlock, the PP is unable to create any new instances
with the same MAC address as the one associated with the
deadlocked PI. As a result, this may lead to a Denial of
Service (DoS) attack on the affected peer, making it unable
to connect to the network. The attacker could also exploit
this vulnerability to cause a peer to run out of memory, as
it is unable to deallocate all instances that ended up in the
aforementioned error state. The last attack exhibits a similar
pattern to the one described by [9], but it exploits a different
vulnerability. The attack can be easily solved by adding, in
the state machine, two transitions from the Committed state
to the Nothing state. These transitions must involve sending
a Del event to the PP to signal it to deallocate the PI.

6.2. Common findings: Correctness violation and
Stall on bad password identifiers

Both the analyses of the two levels could model common
issues with a novel feature that has been introduced in
the revision 2020 of IEEE 802.11 [13]: the possibility of
using multiple passwords. This change is meant to enhance
security by resisting dictionary attacks, providing (selective)
forward secrecy, allowing user flexibility, preventing creden-
tial sharing, facilitating secure connections for IoT devices,
adapting to evolving threats, and improving overall usability.
To enact this, an SAE entity can require its peer to use a
specific password by sending a password identifier:

§12.4.5.4

If the peer’s SAE Commit message contains a pass-
word identifier, the value of that identifier shall be
used in the construction of the password element for
this exchange.

And failure if no password maps from that password
identifier. We could model the specification of correctness
(from slightly different angles) in all the analysis levels,
Communication and Device levels. In both we found that
correctness was violated: on one hand, the formal verifica-
tion at the protocol design level showed a case where peers
would use a different password and thus, cannot complete
the protocol; on the other hand, the formal verification of
the safety property on the state machine showed that an
unrecognised password identifier would lead to a stall where,
again, the protocol could not complete.



6.2.1. Correctness violation. We implemented the ex-
change of password identifiers and their specified behaviour
in ProVerif and found that this new feature breaks the
security property of correctness in some unhandled cases.
On the basis of the code illustrated in Fig. 3, we modified
line 6 of PL to out(c, (cL, pL)); in(c, (cR, pR)), where pL
and pR are the requested password identifiers. An analogous
change is made for PR. We have three cases: if pR = ⊥, a
password identifier is not requested; if pR ̸= ⊥ but pR is not
valid, then we abort; otherwise if pR is a valid identifier, the
password element PE′ depending on pR is used accordingly.
This behaviour is captured by the following code:

pR ̸= ⊥
get tp

(
=L,=R,=pR,PE

′) in fails if pR not found
let EL = PE′−mL in recalculate message
out(c, (sL, EL)); re-commit

where a missing entry for an invalid pR in tp for L and
R would automatically fail. Then, correctness is captured
as a reachability property of an event eCORR at the end of
the protocol that includes the exchanged key k. The two
processes PL and PR would write their entity names, the
session and the exchanged key, each in their own table, tL
and tR respectively, that cannot be read by the adversary
but it is shared among processes. Then we instantiate the
additional process PA with an event that eCORR that collects
information from both tables. Formally, we first inject the
table writing operation

insert tL(L,R, s, k) and insert tR(R,L, s, k)

just after line 7 of the model of PL described in Fig. 3. Then,
for all sessions s, pairwise master keys k, we require that
the reasoning core is able to show a trace t where the event
eCORR is recorded and is such that two honest participants
agree on their identities, the password, and the key.

∀ s, k. ∃ t. eCORR(A,B, s, k,A,B, s, k) ∈ t.

where A and B are (the only) honest parties, s is the
(common) session ID, and k is the pairwise master key.
If such an event is reached, i.e., eCORR is found in t, then
there exists a run of the protocol in which the two parties
have authenticated each other and they have correctly ex-
changed the same session key. We firstly attempted to write
this formalism in a single model. Unfortunately, ProVerif
could not be conclusive (could not be proven). We
managed to automate the process in ProVerif by hardcoding
all different cases splitted into independent models. The only
cases left out are those where the two peers do not share
a requested password, as it was trivial in ProVerif to see
that, as expected in such cases, the peers could not establish
the communication. All cases are illustrated in Table 2. We
remark that the semantics of the set-set case with different
identifier was absent in the specification, and it has been
agreed upon by the IEEE 802.11 Workgroup in light of our
input.

In our analysis of correctness, if ProVerif is unable
to reach eCORR, then a key cannot be exchanged. In the

TABLE 2. EXPECTED BEHAVIOR OF THE WPA3-SAE PROTOCOL WHEN
PEERS EITHER OMIT OR SPECIFY (SET) A PASSWORD IDENTIFIER

CORRESPONDING TO A PRE-SHARED PASSWORD.

omit-omit set-omit omit-set set-set

same identifier
different identifier

Legend. ( ) - SAE should success, ( ) - SAE should fail.

cases where it should, it violates the security property of
correctness. One such case is when both PL and PR require
the usage of a specific password through a valid but different
password identifier. In such a case, the password element PE
will be different between the two peers, and they will not be
able to verify the peer confirmation messages. The situation
can be remarkably relevant in meshes, where the possibility
of two peers initiating simultaneously can be frequent, and
about which WPA3-SAE is particularly focussed:

§12.4.1

SAE shall be implemented on all mesh STAs to
facilitate and promote interoperability.

In practice, meshes treat all peers uniformly in the
network, yet certain peers might possess multiple passwords
tied to distinct profiles that they can seamlessly switch
between. Again, we notice a deviation of the state ma-
chine to the protocol specification, as two peers starting
the protocol with two different password identifiers would
fail the authentication. Even if this seems just a patch in
the wrong place, it is not and that is why: first of all it is
coincidental, as there is no justification for such a deviation,
but more importantly both peers would act legitimate and
simply see the authentication failing, so they would just try
again. In other words, there is no mechanism to prevent both
peers from attempting the (failed) authentication repeatedly.
Additionally, as the map of password identifiers is not
bijective, they could have mapped to the same password with
a different index for some reason, allowing the protocol to
end correctly.

We can patch correctness requesting that, upon reception
of the password identifier, a peer would not reply with
a different one. In the case when both peers initiate and
request for a different password identifier that is valid, then
they will consider this a violation and fail. With this patch,
the problematic case can be formally verified for correctness.
Importantly, the aspects related to the semantics of multiple
passwords go much beyond fixing correctness at the design
level and requires further analysis that is not captured by
our formalisation.

Finally, we stress that our model derives from an intu-
itive interpretation of missing specifications on how to han-
dle password identifiers at the design level. In Section 6.3,
we will examine how the outlined specifications, supported
by formal verification, address the missing specifications.

6.2.2. Stall on bad password identifiers. In the docu-
mentation of the standard, the description of the multiple



branches of the state machine capturing the WPA3-SAE
protocol behaviour is given in natural language and leaves
out important details. This can result in ambiguity and
interpretation, leading to serious vulnerabilities or attacks
during implementation. For instance, when we modelled the
PI state machine with ASMETA, we discovered an attack
that was caused by unclear instructions on how the principal
PI should handle an error message. The vulnerability lurks
in the protocol requirement describing a case of failure:

§12.4.8.6.3

If so and there is no password associated with
that identifier, BadID will be set and the proto-
col instance will construct and transmit an au-
thentication frame with StatusCode set to UN-
KNOWN PASSWORD IDENTIFIER

However, this requirement infers the following safety
property:

AG(¬(state(pi) = Nothing ∧ event(pi) ̸= Del))

indeed, in case of a failure, PIs (pi) (in the state Nothing)
should always request to be deallocated by the PP by send-
ing the termination event Del. Failing, the property returns
a trace where the PI remains stuck in the Nothing state. As
shown by the requirement, the Del event is missing, and
this leads the PI to become unresponsive and the PP can no
longer remove it.

This attack, in turn, leads to the violation of additional
safety properties in the PP model. More precisely, the stan-
dard in a note states:

§12.4.8.6.3

NOTE—A protocol instance in Nothing state will
never receive an SAE Confirm message due to the
state machine behaviour of the parent process

However, by analysing the behaviour of the PI state
machine when it is stalled, we discovered that the PP can
send the CON event to the PI that is waiting in the Nothing
state (this is because the PP only checks the presence of a PI
with the correct MAC but does not check the PI state). The
PI does not handle the CON in the Nothing state, and this
could further aggravate the situation as unhandled severe
exceptions could be triggered.

To ensure that the standard is safeguarded against pos-
sible future regressions, it would be best to include two
patches: one for PP and one for PI. The first patch should
require PP to not only check if the MAC associated with the
one in the confirm message is present in its database but also
verify the PI’s state. The second patch (which, at the cur-
rent state of the specification, patches both) would involve
sending the Del event to PP, in addition to the frame with
StatusCode set to UNKNOWN_PASSWORD_IDENTIFIER
when the PI receives a message containing a password
identifier not present in the table.

6.3. Unified results: Secure specification for pass-
word identifiers

At the Communication level, two peers are not forbid-
den to choose different password identifiers, but when the
two password identifiers are different, the protocol will fail
without exchanging a common key (correctness violation).
Surprisingly, the analysis of the state machine highlighted
that two peers are not allowed to choose different password
identifiers (failure), contradicting the protocol specification.
We discovered that the only states where a renewal of the
commit message could have happened was the Commited.
The main case of interest turned out to be the agreement on
groups, as, if two peers initiated the protocol with different
but supported groups, then one group would be selected
by both on the basis of the natural ordering of their MAC
address: in detail, the one with the lowest MAC has to re-
commit and confirm, and the other has to ignore and wait
for another commit message.

We leveraged this result back to our model at the
Communication level to include group agreement accord-
ing to the specification, as well as our patch to handle
password identifiers, see Sec. 6.2. From the Communication
perspective, we end up finding a false attack that seems to
downgrade password identifiers.

Figure 7. Attack on password identifier WPA3-SAE protocol in IEEE
802.11:2020 at the Communication level, that reveals to be a false attack
when we analyse the Device level.
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The Communication level model confirms the existence
of this attack, allowing two peers to start with different
groups and password identifiers. However, the state machine
actually implements a check on this, disallowing the start of
the third message in Fig. 7.

This demonstrates that the flaw handled at the Device
level (without a justification) is covering for a vulnerabil-
ity affecting the Communication level, supporting the high
number of misalignments in our Errata. This is to exemplify
that our unified approach allowed our formal verification
to enjoy a deeper security analysis than traditional single-
model verification. We argue that the correct design of the
protocol (which is what our patch accounts for) should
supersede the patching of the incorrect design at a different
level. Additionally, to the patch we proposed for handing
password identifiers; the deeper analysis here sketched also
suggests that two other important points have to be added
to the Communication level specifications: i) despite both
peers being allowed to start the protocol, when one receives
before having sent its first message, it should consider itself
a Receiver and act accordingly; and ii) a Receiver should



always accept a supported group, never offer a different
group, and terminate the protocol in a failure state, if an
unsupported group is offered according to the expected
rejection list of groups. Our verification shows that with
such specifications, the above attack will not occur.

7. Implementing a Secure WPA3-SAE Protocol

Using the latest version of hostapd (https://w1.fi/ -
hostapd 2.10), a widely used open source network driver for
linux, as reference, we investigate it’s security and adherance
to the standard.

First begin with the independent findings from Sec-
tion 6.1. Immediately we see that the code actually disallows
for the sL and El to be the same through a check.

1 if (sae−>state == SAE ACCEPTED &&
2 sae−>peer commit scalar accepted &&
3 crypto bignum cmp(sae−>
4 peer commit scalar accepted,peer scalar) == 0) {
5 ...
6 crypto bignum deinit(peer scalar, 0);
7 return

WLAN STATUS UNSPECIFIED FAILURE;
8 }

Interestingly, this is noted as a fix introduced in IEEE
Std 802.11-2012, however this is removed from the standard
for the 2020 version. Perhaps as an outcome of previous
vulnerabilities which only focused on implementations and
not the standard.

Likewise as per our suggested changes, indeed hostapd
has error handling in the committed phase of PI, thus not
leading to the deadlock described in 6.1, we note our pro-
posed fix would allow for more informative failures, whilst
this equates to a hard reset no matter which error (as the
procedure for handling this was not previously specified in
the standard this is understandable).

1 case SAE COMMITTED:
2 sae clear retransmit timer(hapd, sta);
3 if (auth transaction == 1) {
4 if (sae process commit(sta−>sae) < 0)
5 return WLAN STATUS UNSPECIFIED FAILURE;
6 ...

In the joint findings, there is indeed once
again a deviation from the specification, and an
ambiguous decision. We see that in the case of
WPA_EVENT_SAE_UNKNOWN_PASSWORD_IDENTIFIER,
there is further actions than those specified in the standard.

1 if (resp ==
WLAN STATUS UNKNOWN PASSWORD IDENTIFIER) {

2 wpa msg(hapd−>msg ctx, MSG INFO,
WPA EVENT SAE UNKNOWN PASSWORD IDENTIFIER
, MACSTR, MAC2STR(sta−>addr));

3 sae clear retransmit timer(hapd, sta);
4 sae set state(sta, SAE NOTHING,
5 ”Unknown Password Identifier”);
6 goto remove sta;
7 }

We see here a goto call to remove_sta, which is
highlighted below.

1 remove sta:
2 if (auth transaction == 1)
3 success status = sae status success(hapd,

status code);
4 else
5 success status = status code ==

WLAN STATUS SUCCESS;
6 if (!sta removed && sta−>added unassoc &&
7 (resp != WLAN STATUS SUCCESS || !success status)

) {
8 hostapd drv sta remove(hapd, sta−>addr);
9 sta−>added unassoc = 0;

10 }
11 wpabuf free(data);
12 }

The remove_sta section checks the status of
an authentication attempt. If unsuccessful (based on
status_code or other conditions), it removes the unas-
sociated STA from the driver and frees allocated resources.
This is in theory a somewhat correct step, however it brute
forces the problem once again (and it is not compliant
with how the separation of agents should work), rather than
the more precise solution proposed in our patches from
Section. 6.2. Finally, the joint finding that the check is done
at a different layer is confirmed in this implementation as
well, and suffers from the same downsides.

What we see from this analysis is that not only are
there several deviations from the standard in the largest
open-source implementation of WPA3, but furthermore the
ambiguity of the specification led to suboptimal fixes, which
could introduce future errors (or even be removed by incau-
tious maintainers as they are deviations from the standard
rather than being required by it).

8. Conclusions

We introduced a unified methodology based on the
integrated use of two different verification formalisms and
techniques to address a critical analysis of WPA3’s security
framework. Our analysis approach combines the traditional
modelling technique for protocol analysis, mechanized in
ProVerif, and state machine formalism, mechanized in AS-
META. This integration leverages the strengths of each
approach to achieve the verification goals of each technique
and allows for discovering vulnerabilities that might go
undetected by classical single-level verification processes.
Vulnerabilities detected by the two formalisms sometimes
overlap, in some cases offer disjointed results, and in other
cases, the outcomes from one of the two formalisms refined
our analysis of the other, with deeper security insights and
further attacks detected. This unified approach allowed us to
discover security issues, and strongly support patches that
we proposed, in the form of over 20 errata, to the IEEE
802.11 Working Group. Most of our patches have been
accepted and will appear in the next revision of the Wi-Fi
Standard.

https://w1.fi/
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