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ABSTRACT

The cross-pollination of deep learning and causal discovery has catalyzed a burgeon-1

ing field of research, seeking to elucidate causal relationships within non-statistical2

data forms like images, videos, and text. Such data, often being named ‘indefinite3

data’, exhibit unique challenges—inconsistency between causal structure and rep-4

resentation, which are not common in conventional data forms. To tackle this issue,5

we theoretically develop intervention strategies suitable for indefinite data and6

derive causal consistency condition (CCC). Moreover, we design a self-supervised7

learning (SSL) framework that considers interventions as ‘views’ and CCC as a8

‘philosophy’ with two implement examples on Supervised Specialized Models9

(SSMs) and Large Language Models (LLMs), respectively. To evaluate pure in-10

consistency manifestations, we have prepared the first high-quality causal dialogue11

dataset- Causalogue. Evaluations are also performed on three other downstream12

tasks. Extensive experimentation has substantiated the efficacy of our methodology,13

illuminating how CCC could potentially play an influential role in various fields.14

Our code is available in url of anonymous code and data.15

1 INTRODUCTION16

With the integration of deep learning and causal inference (Sauter et al., 2023; Balashankar et al.,17

2023; Lu et al., 2023), increasingly extensive non-statistical data forms, involving images (Jerzak18

et al., 2022; Ribeiro et al., 2023), text (Zhang et al., 2023b), and videos (Bagi et al., 2023), have19

been drawn into the field of causal discovery. Numerous causality-related studies (Chen et al.,20

2023c;a) suggested that these non-statistical data present two fundamental differences with traditional21

statistical data: the representation and the structure differences. Specifically, 1) non-statistical data22

(such as images, text, videos), which requires deep representations (such as matrices, embeddings,23

optical flow), to participate in causal inference (Schölkopf et al., 2021); but statistical data (like body24

temperature, blood pressure, age) inherently exists in a numerical format. 2) unlike statistical data25

originating from a fixed causal structure, non-statistical data is drawn from various underlying causal26

structures (Löwe et al., 2022). These studies further categorize the data requiring deep representations27

and accommodating multiple causal structures to “indefinite data”.28

We observe that indefinite data introduces an inconsistency between structure and representation,29

which has not been encountered in other data forms yet. The process of learning causal representations30

creates divergence from the process of learning causal structures due to incorporating additional31

non-linear parameters. This causal inconsistency manifests in conflicting causal conclusions being32

drawn from the structures and representations, which can lead to poor outcomes in high-level causal33

models including identifying shortcuts (Wu et al., 2022; Fan et al., 2022; Feng et al., 2023), predicting34

incorrect spans (Zhao et al., 2023; Chen et al., 2020; Zhao et al., 2022b), and domain generalization35

(Magliacane et al., 2018; Yue et al., 2021; Chen & Bühlmann, 2021).36

Nevertheless, exsiting research has overlooked causal inconsistency on indefinite data. In conventional37

data forms, multiple methods pivoting on interventions (Ahuja et al., 2023; Lyle et al., 2023), transfer38

entropy (Zhou et al., 2022; Silini & Masoller, 2021) and covariance matrix (Kong et al., 2023; Peña,39

2023) have naturally satisfied the causal consistency. However, these methods are impeded by other40

representational or structural conflicts when extended to indefinite data. Particular methods available41

for indefinite data, such as Yu et al. (2019), Chen et al. (2023b), and Löwe et al. (2022), only focus42

on how to achieve causal identifiability with various hypotheses.43
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Therefore, to step-by-step achieve causal consistency between the structure and representation of44

indefinite data, the main contributions of this paper are as follows:45

In Section 2, we review the background of indefinite data, covering the involved definitions, exam-46

ples, assumptions, and related works. Following that, we delve into an in-depth analysis of what47

distinguishes indefinite data, and why causal inconsistency arises in this data form.48

In Section 3, we introduce a general definition of interventions that enables computing the relationship49

strength of two target variables without backdoor paths and known distributions. This allows a50

range of consistency theories, such as exact transformation (Rubenstein et al., 2017) and causal51

abstraction (Beckers & Halpern, 2019), to be expanded to indefinite data potentially. Inspired by these52

theories, we further propose a causal consistency condition (CCC). It describes that if the strength53

sets of two causal models are equivalent given an equivalent intervention set, then the two causal54

models are consistent.55

In Section 4, we design a self-supervised learning (SSL) framework that utilizes the CCC as a56

philosophy, where the causal structure and representation are allocated to separate causal models,57

whose consistency needs to be verified. Different interventions can be regarded as different “views”,58

and the measures to gauge causal strength are treated as “augments”. The strength sets are label-59

agnostic, making the assurance of equivalent strength sets the learning goal of this SSL framework.60

Additionally, we offer two implement examples — one embodies a trainable module for supervised61

specialized models (SSMs) and the other executes a prompt instruction for unsupervised large62

language models (LLMs).63

In Section 5, we introduce an innovatively constructed dataset— “Causalogue” for testing causal64

consistency, along with the description of its generation process. The dataset comprises 163865

dialogues generated by GPT-4 (OpenAI, 2023), with a strategic design that explicates which previous66

utterances were known when generating each utterance.67

In Section 6 and Section 7, we conduct experiments on both the Causalogue and real-world datasets,68

validating the accuracy of identifying causal models, the improvements of our proposed SSL frame-69

work to causal consistency, and effectiveness in three downstream tasks. Additionally, we discuss the70

potentially crucial role of the CCC within broader research fields.71

In summary, this paper contributes: insights into general intervention, the causal consistency condition,72

an SSL framework for testing causal consistency, two corresponding implementation examples, a73

new causal dataset, and extensive experimentation.74

2 BACKGROUNDS AND RELATED WORKS75

2.1 CAUSAL DATA AND INDEFINITE DATA76

Definition 1 (Causal Data). 1 The causal relationships exist in a dataset D = {Xs}Ss=1 which has S77

samples and M (M ⩾ 1) causal structures (G = {Em,Vm}Mm=1). Each structure Gm corresponds78

to several samples separately. Hence, each sample Xs,m ∈ RN×D belongs to a causal structure79

Gm = {Em,Vm} and consists of Nm variables: Xs = {xs,m,n}Nm
nm=1. x̂s,m,n ∈ R1×D(D ⩾ 1)80

represents the causal representation of a varaible xs,m,n where D denotes the dimension of the81

causal representation. We assume that the number of causal skeletons is equal to the number of82

causal structures. Based on the above datasets, we define three data paradigms:83

• Definite Data: The causal structure is single-skeleton (M = 1) and the causal variable is84

single-value (D = 1).85

• Semi-Definite Data: The causal structure is single-skeleton (M = 1) and the causal86

variable is multi-value (D > 1), or the causal structure is multi-skeleton (M > 1) and the87

causal variable is single-value (D = 1).88

1The skeleton M and variable dimension D serve to broaden perspectives on causal data, hence introducing
certain conflicts with traditional cognition of causal model. This caused previous reviewers to struggle with
conceiving what indefinite data looks like, and why we distinguish indefinite data from other 2 paradigms via
skeleton and dimension. Therefore, we dedicatedly established Appendix A, which elucidates these questions
through abundant data examples and details the preliminaries including SCMs.
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• Indefinite Data: The causal structure is multi-skeleton (M > 1) and the causal variable is89

multi-value (D > 1).90

Definition 1 redefines 3 types of data paradigms from the 2 perspectives of structure and representation.91

The latter two paradigms often carry incomplete or ambiguous causal labels. Therefore, we adopt the92

concept of “skeleton” to stand for the causal structure due to the unclear structure labels. Moreover,93

given the prevalent indefinite datasets mostly include modals like textual conversations and video94

sources, we propose two hypotheses compatible with these modals:95

Hypothesis 1 (Causal Identifiability). The natural order (e.g., time-order) w.r.t. {xs,m,n}Nm
nm=1 is96

defined as a linear order ≺Xs,m
. Given that causal order w.r.t. {xs,m,n}Nm

nm=1 is defined as a parital97

order ≼Xs,m , ∀ < x1, x2 >∈≺Xs,m (i.e., x1 ≺Xs,m x2), there must be < x1, x2 >∈≼Xs,m .98

Hypothesis 2 (Causal Emergence). The causal generative process of multi-value representation99

is composed of non-autonomous modules that inform or influence each other, meaning that the100

representation is causally entangled over all dimensions, that is, E(x̂s,m,n)
.
= xs,m,n.101

Hypothesis 1 illustrates the natural linear order of indefinite data (e.g., {U1, U2, U3, U4}, where U1102

to U4 respectively represent 4 utterances appearing in time-series, and Ui ≺ Uj indicates that Ui103

precedes Uj in time) belongs to the causal partial order. Consequently, the adjacency matrix of the104

natural linear order is a triangular matrix, which naturally corresponds to a DAG. Thus, there is no105

need for measures such as acyclic constraints (Zheng et al., 2018) to ensure causal identifiability.106

Hypothesis 2 can provide insights into causal representation from the perspective of the law of large107

numbers. For statistical data, such as temperature, we need enough samples to grasp its characteristics108

(or distributions) in a particular environment. However, for non-statistical data, this is unnecessary.109

For instance, any sentence is enough to express its semantics, a single image can be read for its110

content. This hypothesis releases the limitation of insufficient samples, allowing us to achieve the111

causal consistency condition through strength sets.112

2.2 WHY CAUSAL INCONSISTENCY ARISES?113

D>1D=1

M=1

M>1
:PC

:DAG-GNN

:CAE

:biCD

:ACD

:PC

:DAG-GNN

:CAE

:biCD

:ACD

MSE=1

Figure 1: We compared the consistency of differ-
ent methods in 3 data paradigms (if available). The
consistency was represented by the MSE of the
similarity matrices for structure and representation.
The filled markers represent methods being in their
default data forms, while the hollow markers sig-
nify that they are in extendable but non-default
data forms.

Figure 1 visualizes evaluation results of causal114

consistency via tested 5 methods: PC (Kalisch115

& Bühlman, 2007), ACD (Löwe et al., 2022),116

DAG-GNN (Yu et al., 2019), CAE (Chen et al.,117

2023b), and biCD (Chen et al., 2023c). They118

represent prevalent methods in specific data119

forms, respectively. Two conclusions can be120

obtained from Figure 1: 1) The strongest causal121

inconsistency is found in indefinite data forms122

(M > 1, D > 1), while definite data (M = 1,123

D = 1) performs the weakest causal inconsis-124

tency. 2) When existing methods are applied to125

non-default data forms (hollow markers), their126

consistency performance is always inferior to127

the native methods for that data form.128

Either M > 1 or D > 1 contributes to a rise129

in inconsistency. In general, when M > 1, the130

optimization for causal strength changes from131

f to
∑

αmfm, which leads to a lower accuracy132

of causal structure than the ones of M = 1, due133

to the existence of Pareto Optimality (Censor,134

1977). Meanwhile, D > 1 introduces deep rep-135

resentations, resulting in an inexact transforma-136

tion. When both M > 1 and D > 1 are present, we assume fm can be decoupled from p̃φ. The causal137

structure learning reads Gm = h(X,φ), and the causal representation learning is X̂m = h(X,φ, θ).138

The different learning processes with additional parameter θ intrinsically increase more inconsistency139

than other data paradigms. Details are elaborated on in Appendix A.3.140
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2.3 RELATED WORKS: CAUSAL METHODS ON DIFFERENT DATA PARADIGMS141

M=1 and D=1: Methods applied to definite data (Janzing et al., 2012; Ramsey et al., 2017; Cai et al.,142

2020) can ensure consistency due to their effective utilization of statistical advantages.143

M>1 and D=1: To address the challenge of multi skeletons, some methods try to learn an invariance,144

such as ACD (Löwe et al., 2022). This range of approaches (Huang et al., 2020a; Dhir & Lee,145

2020; Huang et al., 2020b; 2019) uses neural networks to automate the learning the distribution of146

causal structure
∑M

m=1 log(P (Xm)). Despite the promising performance of the whole structures,147

the accuracy of individual structures decreases thereby increasing inconsistency.148

M=1 and D>1: Similarly, for the more favorable causal representation, assumption of the stationary149

structure becomes the most prevailing choice involved interpretability (Fan et al., 2022; Wu et al.,150

2022), relationship analysis (Chen et al., 2023b; Zhao et al., 2022a), and domain generalization (Lv151

et al., 2022; Jiang & Veitch, 2022). Among these methods, the critical cause of inconsistency stems152

from inaccuracies in recovering relations. Specifically, the complexity of the data makes it challenging153

to identify exact causal relationships so that none can achieve the same perfect level as that in definite154

data.155

M>1 and D>1: The inconsistency is more a result of additional parameter in the learning processes156

of structures and representations. Especially, indefinite data is in its infancy, and current methods focus157

more on enhancing causal accuracy, with explorations into causal consistency yet to be conducted.158

For example, while DAG-GNN (Yu et al., 2019) can be applied to indefinite data, it does not yield159

satisfactory results compared to its default data form (M=1 and D=1). Methods such as CAE (Chen160

et al., 2023b) and biCD (Chen et al., 2023c), although they have improved causal accuracy, display161

significant causal inconsistency, particularly in advanced tasks with incomplete labels.162

3 HOW TO CHECK CAUSAL CONSISTENCY163

An observed variable xt of indefinite data does not satisfy P (y|xt = t1), P (y|xt = t2), . . . without164

adequate samples t = t1, t = t2, . . . so that the distribution is not clear for intervention. Hence, we165

define a general intervention, intending to bypass distribution assumptions to obtain interventions.166

Definition 2 (General Intervention). General intervention is represented by the dog operator with167

the objective of setting the parent set of the observed variable to ∅.168

dog(xt) := Pa(xt) = ∅ (1)
where Pa(x) represents a parent set of x.169

Benefitted from Hypothesis 2, effects of dog(xt) are equivalent to effects of the set of perfect170

interventions: {do(xt = t1), do(xt = t2), . . . }. (For simplicity, unless specially stated, the term do171

in the rest of this paper represent either do or dog.) Definition 2 introduces feasible intervention for172

indefinite data to allow us to draw inspiration from Definition 6 in Appendix A.1: the consistency of173

two causal model can be verified under any reasonable intervention. To ensure this idea, the causal174

models need to include intervention sets and strength sets.175

Definition 3 (Causal Model). Let causal model MX = ⟨SX , IX , F IX
X ⟩, where SX represents an SCM176

for the model with the variable set X = (xi : i ∈ ♮x), ♮x is the index of causal partial order over X ,177

IX := (do(i, j) : i, j ∈ ♮x,≼do) represents a set of all reasonable bi-variable perfect interventions178

satisfying partial order, F IX
X := (f

do(i,j)
X : i, j ∈ ♮x,≼do) represents the causal strength of set X179

under corresponding interventions.180

Considering the presence of front-door paths, it is complicated to directly calculate the causal181

relationship between any two variables by intervention on just one variable. Consequently, we form182

the intervention set using bi-variable interventions. For example, in a binary definite data set, the183

intervention set could be IX = {∅, do(x1 = 0, x2 = 0), do(x2 = 0, x3 = 1), . . . }. In the indefinite184

data, the intervention set could be IX = {∅, dog(x1, x2), dog(x2, x3), . . . }. ≼do represents that for185

any pair < xi, xj > in IX , where xI signifies the xi in the pair < xi, xj > and all pairs previous to186

< xi, xj >, it is always in the causal partial order that xi does not follow xj . The strength set F IX
X187

would have the same partial order ≼do, representing any causal strength of model MX corresponding188
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to the perfect intervention of IX . In definite data, according to the causal factorization mentioned in189

Appendix A.1, the strength set can be equated to the distribution set PIX
X . Finally, we would like to190

introduce the causal consistency condition:191

Theorem 1 (Causal Consistency Condition (CCC)). Let UX = (SX , I∗, F
I∗
X ) and VY =192

(SY , I∗, F
I∗
Y ) be two causal models. The intervention set I∗ denotes that there is an identity mapping193

between X and Y . If any term f
do(i,j)
y1,y2 in F I∗

Y satisfies:194

fdo(i,j)
y1,y2

= fdo(i,j)
x1,x2

(2)

the UX is consistent with VY (Proof is given in Appendix B).195

Example 1. In indefinite data, we assume that the causal structure belongs to a definite causal model196

U , and the causal representation belongs to an indefinite causal model V . Since U and V have the197

same causal variables, there exists an order-preserving bijection ω := IX ⇔ IY . If U and V satisfy198

the CCC, let F⊘ = (fa,b : a, b ∈ ♮x, (a ≼X i, b = i)or(a ≼X j, b = j),≼do) w.r.t. do(i, j). Any199

term f
dog(i,j)
y1,y2 in F IY

Y satisfies fω(do(i,j))
y1,y2 = f

do(i,j)
x1,x2 and if the factorization of fω(do(i,j))

y1,y2 includes200

fa,b ∈ F⊘, it satisfies fω(do(i,j))
y1,y2 = f

do(i,j)
x1,x2 = 0. The conclusion is also satisfied on IY .201

The SMS hypothesis proposed in Schölkopf et al. (2021) elucidated Example 1. Simply put, if202

the causal structure is robust, the interventionally-affected conditional probability can not influence203

the interventionally-unaffected conditional probability in causal factorization P (x1, x2, . . . , xs) =204 ∏S
s=1 P (xs|XPaxs

). On the contrary, the interventionally-unaffected conditional probability could205

not maintain stability if causal model is unrobust. Therefore, we not only require the strengths of the206

intervention nodes to be consistent (fω(do(i,j))
y1,y2 = f

do(i,j)
x1,x2 = 0), but also that the strengths of nodes207

without induced paths to the intervention nodes stay consistent (fω(do(i,j))
y1,y2 = f

do(i,j)
x1,x2 ! = 0).208

4 SSL FRAMEWORK209

4.1 FORMULATION ARCHITECTURE210

The causal structure and causal representation of each sample in the indefinite data can be viewed211

as belonging to two individual models. Specifically, the causal structure Gs,m = h(Xs,m, φ)212

can be seen as part of a definite data causal model U = (SXs,m
, I∗, F

I∗
Xs,m

), while the causal213

representation X̂s,m = h(Xs,m, φ, θ) can be considered part of an indefinite data causal model214

V = (SX̂s,m
, I∗, F

I∗
X̂s,m

) (♮x̂ = ♮x, ≼X̂s,m
=≼Xs,m). Therefore, there are two causal models (U215

and V) correspondingly with two causal structures (Gs,m and Ĝs,m) and two causal representation216

(Xs,m and X̂s,m). The aim of SSL framework is to establish equivalent strength set F I∗
Xs,m

= F I∗
X̂s,m

,217

thereby achieving causal consistency U = V . We elucidate the roles of “view”, “augment”, and218

“philosophy” within our framework as follows.219

View:We define an intervention (do(i, j) ∈ I∗) as a view. For example, do(x1, x2), do(x2, x3), and220

do(x1, x3) could be 3 individual views of U ; dog(x1, x2), dog(x2, x3), and dog(x1, x3) could be221

ones of V .222

Augment:We define the specific measures for obtaining the F I∗
X̂s,m

under intervention as the augments.223

e.g., fdog(i,j)

X̂
= augmentdog(i,j)(X̂). F I∗

Xs,m
can be directly obtained via checking Gs,m or SXs,m

224

because it belongs to the definite-data causal model.225

Philosophy:We define the causal consistency between U and V as the philosophy. e.g., U and V226

should satisfy the CCC (Theorem 1): for any view, fdog(i,j)

X̂
= f

do(i,j)
X .227

Overall, as illustrated in Figure 2. The views of causal structure and causal representation correspond228

with each other. The ”augment” process derives strength sets separately under these views, which are229

then evaluated for consistency according to the philosophy of causal consistency. Within this, both230

the “Augment” and “Consistency check” modules in Figure 2 depend on specific implementation.231

The “Augment” should not introduce any new parameters, otherwise the optimization would be:232
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View 1

View n

View 2

View n-1

𝒢s,m 𝒢 s,m 

View 1

View 2

View n-1

View n

dog (x1, x2) Augment 𝑓
𝑋 

𝑑𝑜𝑔 1,2 
 do (x1, x2)𝑓x

𝑑𝑜 1,2  

dog (x1, x3) Augment 𝑓
𝑋 

𝑑𝑜𝑔 1,3 
 do (x1, x3)𝑓x

𝑑𝑜 1,3  

Consistency 
check

dog (xn-2, xn-1) Augment 𝑓
𝑋 

𝑑𝑜𝑔 𝑛−2,𝑛−1 
 do (xn-2, xn-1)𝑓x

𝑑𝑜 𝑛−2,𝑛−1  

dog(xn-1, xn) Augment 𝑓
𝑋 

𝑑𝑜𝑔 𝑛−1,𝑛 
 do(xn-1, xn)𝑓x

𝑑𝑜 𝑛−1,𝑛 
 

……

Figure 2: The SSL framework for causal consistency. The grey rectangular boxes represent modules
that require specific implementation. From left to center, the process describes how causal representa-
tions are transformed into causal strengths. From right to center, the process illustrates how causal
structures are converted into strengths.

Table 1: Number of the samples in Causalogue Dataset

Versions Structure Types
Chain I Chain II Chain III Chain IV Fork I Fork II Fork III Fork IV Hybrid I Hybrid II Total

Small 276 84 141 44 257 237 251 67 185 77 1638
Large 0 524 508 513 1215 645 501 372 499 635 5412

minθ,δ1,...,δK
∑S

s=1

∑M
m=1

∑K
k=1 Lk(Ĝs,m, δk, θ). The “consistency check” module shares parame-233

ters and does not introduce intervention-unique parameters. Therefore, the optimization of our entire234

SSL process is written as:235

min
θ

S∑
s=1

M∑
m=1

Lk(Ĝs,m, θ) (3)

4.2 TWO EXAMPLES FOR IMPLEMENTATION236

We provide two implementation examples. The first one is on a supervised specialized model237

(SSM) generating high-level causal representations and structures. The second is implemented on an238

unsupervised large language model (LLM), which can be used to directly infer causal relationships239

between utterances (as dialogues are typically indefinite data). The consistency check modules in240

both examples are accomplished through similarity matrices, yet the augment modules are completely241

different: the first example computes strength by modifying adjacency matrices, while the second242

example offers two approaches: prompts and pre-trained models. Detailed implementation specifics243

are thoroughly described in Appendix C.244

5 NEW SIMULATION DATASET-Causalogue245

Existing indefinite datasets suffer from issues including incomplete labeling and insufficient sam-246

ples. These numerous entangled problems make it challenging to achieve pure evaluation for the247

inconsistency. Additionally, the challenge of manual annotation is considerable, as the presence248

of numerous ambiguous samples could make classification boundaries unstable. Fortunately, the249

powerful human-computer conversation abilities of LLMs, such as GPT-4, have made automated250

annotation possible. Thus, to provide a high-quantity dataset for checking consistency, we have251

made an endeavor to generate controlled, causal dialogues via GPT-4 ending up with a new dataset,252

causalogue. This is the first dialogue dataset that includes comprehensive causal relationship labels253

for indefinite data. Besides causality-related tasks, the dataset is available for all tasks related to254

dialogue relationships (e.g., dialogue generation, relation extraction, and text classification).255

The dataset incorporates 10 types of causal structures (M = 10), each with several samples (Detailed256

number are presented in Table 1, “Small” signifies samples that have been manually checked as257

correctly labeled, while “large” refers to all samples generated by GPT-4 without manual verification).258
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Table 2: Summarization of datasets and baselines
Ours Tasks Datasets Baselines Metrics

OursSSM

CD Causalogue ACD, DAG-GNN, ACCD, biCD, DisC, DIR AUROC, HD, F1, MSE
ECPE RECCON ACCD, biCD, EDKA-GM, seF F1
ERC MELD, EmoryNLP, DD, IEM ACCD, biCD, DAG-ERC, DualGAT, MultiEMO F1
TAS GTEA, 50salads, Breakfast MS-TCN++, ASRF, CETNet, C2F acc, Edit, F1@k,C-Dis

OursLLM CD Causalogue, RECCON Zero-shot, Zero-shot-Cot, Auto-Cot F1

All samples consist of 4 causal variables. In each sample, binary causal relationships have been259

labeled between any two utterances. A detailed exposition of the dataset’s attributes and creation260

process can be found in Appendix D.261

6 EXPERIMENTS262

6.1 DATASETS, BASELINES, AND METRICS263

Including the Causal Discovery (CD) task on Causalogue dataset, we also evaluate our method on264

real-world datasets (RECCON (Poria et al., 2021), MELD (Poria et al., 2019), EmoryNLP (Zahiri &265

Choi, 2018), DD (Li et al., 2017), IEM (Busso et al., 2008), GTEA (Fathi et al., 2011), 50salads (Stein266

& McKenna, 2013), and Breakfast (Kuehne et al., 2014).) spanning three downstream tasks (Emotion-267

cause Pair Extraction (ECPE) task, Emotion Recognition in Conversation (ERC) task, and Temporal268

Action Segmentation (TAS) task) involving both text and video.269

The experiments also incorporate a variety of baselines. For the supervised specialized models270

(SSMs), it encompasses causal deep models such as ACD (Löwe et al., 2022), DAG-GNN (Yu et al.,271

2019), ACCD (Chen et al., 2023b), biCD (Chen et al., 2023c), and intervention deep models like272

DisC (Fan et al., 2022), DIR (Wu et al., 2022), and our example (OursSSM in Appendix C.1).273

Moreover, we evaluate the downstream tasks with additional SOTA work pertinent to each task,274

such as EDKA-GM (Li et al., 2023a), seF (Li et al., 2023b) for ECPE task, DAG-ERC (Shen275

et al., 2021), DualGAT (Zhang et al., 2023a), MultiEMO (Shi & Huang, 2023) for ERC task, and276

MS-TCN++ (Li et al., 2020), ASRF (Ishikawa et al., 2021), CETNet (Wang et al., 2023), and277

C2F (Singhania et al., 2021) for TAS task. In terms of LLMs, we compared prompt-based baselines:278

Zero-Shot (Kojima et al., 2022), Zero-Shot-Cot (Kojima et al., 2022), Auto-Cot (Zhang et al., 2022),279

and our example(OursLLM in Appendix C.2). on public GPT-4 of the gpt-4-32k-0314 version.280

For the CD task, we employed an array of metrics: Area Under the Receiver Operating Characteristic281

curve (AUROC), F1 score, Hamming Distance (HD), and Mean Squared Error (MSE) to comprehen-282

sively evaluate both the precision and consistency of causality. For different downstream tasks, we283

utilized their prevalent metrics for evaluations.284

The criss-cross relationships between these datasets, tasks, metrics, and baselines have been summa-285

rized in Table 2 and the details of them are shown in Appendix E).286

6.2 IMPLEMENTATION DETAILS287

For the SSM, different pre-training models and implementation parameters were adopted for different288

downstream tasks. Detailed descriptions of these variants are provided in Appendix E.4. As for LLM,289

we solely implemented a prompt instruction method without adjusting the model parameters. The290

models include gpt-4-32k-0314.291

6.3 SIMULATED DATASET292

6.3.1 RESULTS OF THE SSMS293

We conducted experiments for causal accuracy and consistency of the SSMs on the Causalogue dataset.294

Causal accuracy was evaluated through the performance of causal graphs and causal representations.295

Causal consistency, was assessed by measuring the distance within the similarity matrix between the296

graphs and representations. As demonstrated by Table 3, our method significantly improved causal297

consistency, which correspondingly led to an enhancement of causal accuracy. This also elaborates298
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Table 3: Results of SSMs on Causalogue Dataset. 95% confidence interval shown. All evaluation
metrics (except HD) were normalized to the range [0, 1]. A value closer to 1 indicates better
performance. HD (Hamming Distance) measure the corrected edges from results to labels.

Methods Causal Structure Causal Representation Causal Consistency
AUROC HD AUROC F1 AUROC 1-MSE

ACD 0.84±0.02 0.89±0.21 0.85±0.02 0.88±0.01 0.51±0.01 0.49±0.01

DAG-GNN 0.56±0.04 1.51±0.34 0.90±0.01 0.88±0.02 0.50±0.01 0.49±0.02

DAG-DisC 0.68±0.27 1.40±0.42 0.88±0.02 0.87±0.02 0.52±0.00 0.50±0.01

DAG-DIR 0.67±0.38 1.36±0.36 0.89±0.03 0.86±0.03 0.51±0.01 0.50±0.01

ACCD 0.79±0.11 1.02±0.15 0.93±0.01 0.92±0.03 0.60±0.05 0.59±0.11

biCD 0.91±0.04 0.56±0.10 0.86±0.03 0.89±0.02 0.64±0.04 0.59±0.07

OursSSM 0.94±0.01 0.29±0.05 0.94±0.01 0.95±0.01 0.95±0.01 0.92±0.01

the fact that, until now, the causal consistency in indefinite data has been often overlooked though it299

is a crucial problem.300

0 20 40 60 80 100

intervention (%)

50

60

70

80

90

A
U

R
O

C
causal graph
causal strength
causal insistency

Figure 3: Performance of the OursSSM under
different sizes of intervention. “Intervention
20%” refers to an intervention set composed
by randomly selecting 20% do operators from
the maximum intervention set.

Our findings also indicates some additional conclu-301

sions. As shown between three ‘DAG’-related base-302

lines, the intervention methods proposed by DisC and303

DIR could enhance the causal graph identification ca-304

pability. This improvement is attributed to that inter-305

ventions can underlyingly adapt models to cross i.i.d.306

environment. However, their interventions introduced307

bias that lies in forming negative samples by com-308

bining the causal pattern with the background from309

other samples in the batch, when CCC sets it as ∅.310

Their intervention concepts do enhance the model’s311

discriminative capacity for causal patterns and short-312

cuts, but the sparsity of indefinite data samples has313

been introduced as bias into contrastive learning. In314

addition, ACD and biCD are methods specifically315

targeted at multi-value and multi-skeleton data, re-316

spectively. Therefore, they have been particularly317

emphasized in our experimental results.318

To evaluate the volume of the interventions to results,319

we tested the performance under conditions ranging from an empty intervention set (no interventions320

carried out) to the maximum intervention set (all interventions carried out). Figure 3 demonstrates321

that interventions can significantly enhance causal consistency, thereby improving causal accuracy.322

Moreover, the size of the complete intervention set is close to 70% of the maximum intervention set,323

which is also reflected in the Figure 3 as a notable stability after 70%.324

Table 4: Ablation Results of AUROC on three
measures. ‘-cos sim’: replacing cosine similarity
with MSE, ‘-adj’ Removing matrix A, ‘-mask’:
replacing Hypothesis 1 with no acyclic constraints.

Model Structure Representation Consistency
-cos sim ↓ 0.02 ↓ 0.01 ↓ 0.00

-adj ↓ 0.34 ↓ 0.12 ↓ 0.43
-mask ↓ 0.46 ↓ 0.11 ↓ 0.47

Lastly, we conducted an ablation study to de-325

termine the contributions of each mechanism.326

Table 4 demonstrates that the specific implemen-327

tation of the module contributes little, but the328

causal mechanism (-adj) and causal identifiabil-329

ity (-mask) are the primary contributors to the330

causal discovery in indefinite data. However, the331

causal representation benefits more from fitting332

capacity, hence the decreasing induced by the333

causal mechanism is not as evident as the other334

two measures.335

6.3.2 RESULTS OF THE LLMS336

OurLLM , was tested on the Causalogue and RECCON datasets, with a simple set of experiments337

detailed in Appendix F. Specifically, we assessed the the upper bound of accuracy of varying methods338

to calculate Simr, and recorded the performance of our model as it approaches this bound. Finally,339

we illustrated specific question-answer content through a case analysis.340
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(b) Transformations in sequence

Figure 4: Two potential insights of general causal consistency condition. Black elliptical frames
represents the clustering of similar nodes, and red one represents marginalization of irrelevant nodes.

6.4 REAL-WORLD DATASETS341

We analyzed performance on three total downstream tasks, of which two are text modal: ECPE and342

ERC, and one is video modal: TAS. Comparative results against corresponding SOTA baselines,343

along with visualization cases, can be found in Appendix G. The results collectively suggest that344

OursSSM performs well not only under experiment-environment causal models, but also enables345

more appropriate inference under high-level causal models.346

7 DISCUSSION:MORE INSIGHTS AND CONTRIBUTIONS347

Focusing on addressing the SSL framework for causal consistency of indefinite data, this paper348

contributes to general intervention measures for distribution-unknown data, novel dataset, and349

reasoning on LLMs. However, considering the evolving progression of causal abstraction, our study350

only represents a beginning. The causal consistency condition (CCC) can only be applied to causal351

models with identical variable sets, whereas causal abstraction in definite data can already process352

models featuring two distinct variable sets— marking a significant discrepancy in contribution.353

Expanding causal abstraction to indefinite data (turning CCC into general CCC) could accurately354

search simplified models for intractable and complex models, thereby providing insights for many355

fields of deep learning.356

Figure 4 describes two applications of general CCC-in domains and sequences, illustrating a new func-357

tion of transformations from complex to simple models which are not confined to mere consistency358

checks. Specifically, transformations in domains primarily include clustering and marginalization359

in Figure 4 a: τ : (x1, x2) → (y1), (x3) → (y2), (x7) → (y3), (x8, x9) → (y4). This could solid-360

ify theoretical backing for established methods within various fields if a ω mapping exists on the361

intervention sets to make the strength sets equal. One notable application is interpretability of graph362

neural networks (Fan et al., 2022; Wu et al., 2022), where the goal is distinguishing between causal363

and other patterns amidst numerous nodes. Actually, we have explored the mapping from micro364

to macro model in the TAS task: a frame corresponding to a variable in the micro model U , while365

a segment being a variable in the macro model V , striving to construct equivalent mappings from366

frame to segment. The concept that the simplified model V can be viewed as the emergence of macro367

relationships in complex system U , holding potential in researching areas such as meta-learning368

and domain generalization. Transformations in sequence, as shown in Figure 4 b are closely tied to369

temporal causal discovery, expressing dynamic processes through stable behaviors—a crucial aspect370

of sequence-to-sequence models and time-series forecasting.371

However, there are significant challenges in implementing general CCC both theoretically and372

practically. To accomplish the case of “identity mapping” in causal abstraction on indefinite data,373

we introduced innovative intervention measures, frameworks, and validation methods. The general374

solution mentioned above requires much more theoretical research and experimental evaluation375

than this paper offers, and we eagerly anticipate sharing these findings in the future. In summary,376

preserving causal consistency in indefinite data marks an inventive and promising initiation in aligning377

causal theory with the deep learning.378
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A SUPPLEMENTARY EXPLANATIONS FOR CAUSAL DATA564

A.1 PRELIMINARIES565

The joint distribution of samples within the same structure can be represented by any factorization:566

P (x1, x2, . . . , xs) =

S∏
s=1

P (xs|Xothers) (4)

and it can always be consistent with the probability distribution of a certain graph. For instance, in567

statistical models, for any variable xj ∈ Xothers, there exists an undirected edge between xj and568

xi, representing the correlation between xj and xi. Despite the Markov property, the direction can’t569

be directly identified by the conditional probability for an undirected edge. However, the causal570

model can identify the causal direction between two related variables xj and xi by intervention (for571

example, xj → xi, xi → xj , xj → L→ xi, xj ← L→ xi and so on).572

Definition 4 (Intervention). Interventions are typically represented by the do operator, with the573

objective of setting the probability of an observed variable equaling a particular state to 1.574

do(xt = t) := P (xt = t) = 1 (5)
where t is one of the state which probably exist in the original distribution of variable xt.575

When the interventions are integrated with factorization (Equation 4), the factorization satisfies causal576

factorization, i.e., the factorization can be converted into its corresponding Structural Causal Model577

(SCM).578

Definition 5 (Structural Causal Model). An SCM is a 4-tuple ⟨X,F , U,P⟩, where X is the entire set579

of observed variables X = {xi}Si=1. Structural equations F = {fi}Si=1 are functions that determine580

causal representation X̂ with x̂i = fi(Pa(xi), ui), where Pa(xi) ⊆ X represents the parent set of581

X , ui ∈ U represents the i.i.d. noise term. P(X) is a distribution set over X .582

Exact transformation (Rubenstein et al., 2017) or causal abstraction (Beckers & Halpern, 2019) is583

a method of judging causal consistency based on interventions and SCMs. The τ transformation584

becomes vital for making two causal models equivalent.585

Definition 6 (τ -transformation). Let IL to be a set of interventions on micro model SCMM =586

⟨XM ,FM , UM ,PM ⟩. Similarly, let IN be interventions on macro model SCMN =587

⟨XN ,FN , UN ,PN ⟩. Let τ be a partial transformation function τ : PM (XM ) → PN (XN ). Let588

ω : IM → IN be589

τ(PM (XM ))→ PN (XN ) = ω(IM )→ IN (6)
590

A.2 EXAMPLES AND CHARACTERISTICS OF CAUSAL DATA591

Example 2 (Definite Data). Arrhythmia Dataset (Guvenir et al., 1997) is a case record dataset from592

patients with arrhythmias, including 452 samples, and each sample consists of 279 single-value593

variables (e.g., age, weight, heart rate, etc.). All samples contribute a common causal graph with594

279 nodes, where the edge value indicates some causal relationship, such as the causal strength of595

how age affects heart rate.596

Example 3 (Semi-definite Data (Multi-skeleton and Single-value)). The Netsim dataset (Smith et al.,597

2011) is a simulated fMRI dataset. Because different activities in brain regions over time imply598

different categories, a set of records of one patient corresponds to one causal sturcture. This dataset599

includes 50 sturctures and each sturcture consists of 15 single-value variables that measure the signal600

strength of 15 brain regions.601

Example 4 (Semi-definite Data (Single-skeleton and Multi-value)). CMNIST-75sp (Fan et al., 2022)602

is a graph classification dataset with controllable bias degrees. In this dataset, all researchers603

concentrate on one causal graph including 4 variables: causal variable C, background variable B,604

observed graph G and label Y . C is a part of the MNIST image including multi value of a group of605

pixels.606
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Figure 5: Differences between definite datasets (where M = 1 and D = 1) and indefinite datasets
(where M > 1 and D > 1). In definite datasets, each sample corresponds to an identical causal
structure, implying a single-skeleton trait as the entire dataset involves only a single causal structure.
In contrast, indefinite datasets do not possess one causal structure for all samples. For instance, there
might be varying numbers of causal variables in samples a, b, and c; the relationship v2 → v4 may
be absent in sample b but present in sample c. Furthermore, the causal variables in definite and
indefinite datasets also differ. For example, in definite datasets, the causal variable v1 might represent
body temperature, with a causal representation of 37.3 in sample a, 37.1 in sample b and 36.8 in
sample c, while v2 might symbolize blood pressure, with a causal representation of 118, 127, and
135 separately; they are both single-value data. However, in indefinite data, within a dialogue dataset,
the causal variable v1 might be an utterance (“Can I help you, Sir?” in sample a, “Nice to meet you !”
in sample b, and “What’s the matter with you” in sample c) with its causal representation being a
768-dimension word embedding in deep model, and v2 might be a responsing utterance to v1. In a
video dataset, v1 might denote a segment representing a particular action or event, with its causal
representation as the corresponding optical flow, and v2 might be another segment triggered by v1.

Example 5 (Indefinite Data). IEM Dataset (Busso et al., 2008) is a conversation record dataset607

with each sample including a dialogue between two speakers. All 100 samples are assigned into 26608

graphs (i.e., 26 skeletons) based on the speaker identifies and turns and each sample consists of 5-24609

variables where each variable is an utterance represented by embeddings ∈ R1×768 or R1×1024 in610

prevalent pretrained language models.611

We aim to illustrate the relationships among three data paradigms through Examples 2,3,4,5 and612

Figure 5, focusing particularly on the number of skeletons (single or multi-skeleton) and the dimension613

of causal representations (single or multi-value).614

single or multi-skeleton: Compared to single-skeleton data (M = 1), multi-skeleton data (M > 1)615

lacks discrimination about which samples belong to the same causal structure. Therefore, it requires616

algorithms capable of distinguishing between different causal structures or clustering similar samples.617

Simultaneously, multi-skeleton data often have trouble in low sample utilization since samples from618

other skeletons contribute nothing when identifying a specific causal structure. Consequently, the619

pathways focusing on single-skeleton and multi-skeleton data are different.620

single or multi-value: multi-value data (D > 1) often facilitate the quantification by deep repre-621

sentation, such as text→ embeddings, image→ matrices, audio→ spectrum map, and video→622

optical flow, as exemplified in our Figure 5. Compared to single-value data (D = 1), it involves623

more complex environments. The statistical advantages of single-value data are more significant,624

such as computing independence between two single-value variables. On the contrary, determining625

such “independence” among multi-value representations is challenging, often approximated through626

algorithms like cosine similarity. In Structural Causal Models (SCMs), one can assume that the627

noise of single-value data follows a specific distribution, but in multi-value data, the noise items628
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are multi-value and interdependent among dimensions, causing many traditional causal discovery629

methods to make no efforts with multi-value data.630

A.3 THE DISTINCTIONS AMONG THREE DATA PARADIGMS631

Specifically, we employ the theory illustrated in Schölkopf et al. (2021) to explicate why the skeleton632

(M) and variable dimension (D) are pivotal in capturing differences in causal discovery algorithms.633

Accroding to the assumption in Schölkopf et al. (2021), the domain of causal variables X is projected634

onto the domain of causal representations X̂ via the encoder pφ and decoder qθ, showcasing the635

causal mechanism in structural equations:636

x̂i = fi(Pai, Ui) (7)

where Pai represent the parent node set of xi. For instance, pφ : U = (1 − A)X and qθ : X̂ =637

(1 − A)−1U . Without prior knowledge, there exist two pathways to recover the causal model: 1)638

Given a fixed causal structure and known causal representation, the causal strength can be estimated639

by the statistical strength observable in the samples. 2) If encoder and decoder are feasible, optimal640

solutions of the causal model can be achieved by minimizing the reconstruction loss pφ ◦ f ◦ qθ. Here641

we would like to delimit the solvability of this process for different combinations via M=1, M>1,642

D=1, and D>1.643

For a single-skeleton model (M=1): When the causal structure is fixed, causal strengths f can be644

calculated. If the causal representation is single-value (D=1), the causal structure can be determined645

without the encoder pφ or decoder qθ. The reconstruction loss in this case is f . However, for646

multi-value data (D> 1), in the reconstruction loss function pφ ◦ f ◦ qθ, f represents the being647

determined part.648

For a multi-skeleton model (M> 1): The multi-skeleton data induce uncertainty in causal structures,649

unclear of which samples correspond to the same causal structure and therefore making causal650

strengths f unsolvable directly. However, under single-value (D=1) condition without generated651

representation, the precision of clustering is guaranteed. We can approach by first clustering the652

samples, and then separate the problem to several tasks of definite data problem-solving (M=1,653

D=1). In this regard, reconstruction loss amounts to {fm}Mm=1, representing the set containing654

each sub-task’s fm. Reconstruction loss can be regarded as a multi-task optimization problem,655

α1f1 + α2f2 + · · · + αMfM , where αm is the weights of the sample quantity per structure. The656

worst-case scenario arises with multi-value data (D>1), only able to attain an approximate encoder657

p̃φ = pφ ◦ fm, which results in a final reconstruction loss of p̃φ ◦ qθ. Causal strength fm comprises658

an unassigned part.659

In summary, for definite data (M = 1, D = 1), it suffices to identify the causal strength between660

any two causal variables under a certain causal structure. Semi-definite data addresses the problem661

of discriminating multi-skeleton structures and encoding multi-value variables separately. As for662

indefinite data, in the absence of additional assumptions, causal discovery in such datasets presents663

an ill-posed problem, given it requires both variable encoding and resolving structure discernibility.664

B PROOF OF THEOREM 1665

Existing work (Hu & Tian, 2022) proposed that two causal models satisfying causal abstraction are666

consistent. Accordingly, we employ causal abstraction as a mediator to prove Theorem 1. In other667

words, it suffices to verify that the concepts of equivalent distribution sets and equivalent strength668

sets are conditionally transformable.669

First, we would like to prove that equivalent distribution sets→ equivalent strength sets.670

According to the causal factorization, P (xs|Xothers) satisifies xs = fs(Pa(xs, us)). When we671

assume two causal model within two variables: U : xi → xj and V : yi → yj , we would like to672

adopt SCM to represent the equivalent distribution Pxj
(do(xi)) = Pyj

(ω(do(xi))):673

fi,j(uxi) + uxj = gi,j(uyi) + uyj (8)
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Because of Pxj
(do(xj)) = Pyj

(ω(do(xj))) and Pxi
(do(xi)) = Pyi

(ω(do(xi))), Equation 8 can be674

writen as:675

fi,j = gi,j (9)

According to the causal partial order, Pxj (do(xj)) ≼ Pxj (do(xj , xk)), (xj ≼ xk), hence:676

fj,k = gj,k (10)

When we convert any causal factorization into a chain of ancestral relationships through additive677

noise formulas, it is possible to find a corresponding gi,j that equals fi,j for any step in the causal678

chain. Finally, we can infer that if the distribution sets PX = PY , then the strength sets FX = FY .679

Conversely, it can also be proven that if the strength sets FX = FY , then the distribution sets680

PX = PY .681

C DETAILS OF TWO EXAMPLES FOR IMPLEMENTATION682

C.1 EXAMPLES IN SUPERVISED SPECIALIZED MODEL (SSM)683

C.1.1 PREVALENT PROBABILISTIC MODEL684

Many variational models for causal discovery, including linear SEM variational model (Yu et al.,685

2019), autoregressive (Wang et al., 2020) and recently substitude of noise (Chen et al., 2023b), can686

be encapsulated by a probabilistic framework:687

1. Construct a Linear Structural Equation Model (SEM) to displace SCM. Specifically, let A688

∈ RN×N be the adjacency matrix, and N stands for the number of variables. X ∈ RN×D689

is a sample of N variables.690

X = AX + E (11)

where E ∈ RN×D is the matrix of independent noise ϵxn
,A represents the causal strength691

from all variables to one observed variable.692

2. Build a pair of Autoregression SEMs:693

E = (I −A)X (12)
694

X = (I −A)−1E (13)

Equation 13 describes a general form as a decoder of a generation model that takes noise E695

as input and returns X as results and Equation 12 describes the corresponding encoder.696

3. Considering a specification of noise (E) distribution sampling {Xs}Ss=1 in definite data,697

Equation 13 can be written by a maximization of log-evidence:698

1

S

S∑
s=1

log p(Xs) =
1

S

S∑
s=1

log

∫
p(Xs|E)p(E)dE (14)

Continuing the theory of variational Bayes, we regard E as the latent variable in variational699

autoencoder (VAE) (Kingma & Welling, 2022) and use variational posterior q(E|X) to700

approximate the intractable posterior p(E|X), thus the evidence lower bound (ELBO) reads:701

Ls
ELBO = −KL(q(E|Xs)||p(E)) + Eq(E|Xs)[log p(Xs|E)] (15)

C.1.2 OUR SUPERVISED IMPLEMENTATION702

Taking an example from the variational probabilistic framework mentioned in Appendix C.1.1, which703

has become a popular choice, we simplify consider Equation 12 as the encoder pφ and Equation 13704

as the decoder qθ. The model U is generated by encoder: Gs,m = h(Xs,m, φ) and the model V705

is generated by encoder and decoder: X̂s,m = h(Xs,m, φ, θ). The adjacency matrix A represents706

the influence between the observed variables. For example, Ai,j ∈ [0, 1] describes the strength of707
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how the variable xj influences the variable xi. The ‘augment’ measure corresponding to dog(i, j) is708

defined as follows:709

Am,n =

{
0, (m = i or m = j)
Am,n, else

(16)

The i-th and j-th row represent the influence of all parent nodes on variables i and j, respectively. After710

the ‘augment’ measures, the corresponding i-th and j-th rows in the adjacency matrix W = (1−A)−1711

of the decoder only contain the two non-zero terms, ui and uj . For the consistency check, we adopt an712

easily computable similarity matrix Sim ∈ RN×N , where Simi,j represents the similarity between713

variables xi and xj . The similarity matrices of models U and V are respectively generated from714

distinct resources: model U and its similarity matrix are computed from causal representation, while715

model V and its similarity matrix are derived from the causal structure.716

The similarity matrix of U is computed via cosine similarity:717

Simr
m,n = cossim(x̂dog(i,j)

m , x̂dog(i,j)
n ) ∗Mask (17)

where x̂
dog(i,j)
m and x̂

dog(i,j)
n are the causal representation under the view dog(i, j), Mask stands for718

a lower triangular matrix. Maski,j = 0 when j > i and Maski,j = 1 when j ⩽ i.719

The similarity matrix of V , its can be obtained directly from the causal strength matrix:720

Sims
m,n =

{
0, (n ⩽ i,m = i or n ⩽ j,m = j)

P (x
dog(i,j)
m |xdog(i,j)

n ), else
(18)

Finally, the Consistency check module needs to measure these two similarity matrix within specifically721

MSE loss function we adopted:722

Loss = MSE(Simr
m,n, Sim

s
m,n) (19)

C.2 EXAMPLES FOR LARGE LANGUAGE MODEL (LLM)723

Large language models (LLMs) demonstrate superior performance across a variety of text tasks, par-724

ticularly showing “natural” level in human-machine conversations based on instrcutions. Considering725

dialogue as a typical data type of indefinite data, we have implemented an example where LLMs can726

identify causal relationships between utterances through prompt instructions.727

Specifically, we treat each dialogue as a sample, where an utterance is regarded as a causal variable.728

That is, for a dialogue D = {Utt1, Utt2, . . . , UttN}, where Utti represents i-th utterance, N is the729

number of causal variables. We adopt an iterative prompt instruction wherein the LLM’s predictions730

are gradually corrected through feedback instructions. The causal structure predicted by the LLMs731

falls under model V , while the causal representation computed through utterrance representation732

belongs ti model U . Our iterative prompt instruction is as follows: firstly, the LLM is instructed to733

answer the complete the causal structure (model V); secondly, the utterances’ causal representation734

(model U) is obtained either via pre-trained models or LLMs; finally, the differences in similarity735

matrices of model V and model U are fed back, and the LLM is instructed to execute the prior steps736

under the acknowledgement of this difference until no difference exists between the two similarity737

matrices. What distinguishes our LLM implementation to the SSM implementation is that model U738

is unlearnable and fixed in LLM, whereas the SSM permits both V and model U to be learnable.739

Eventually, this leads to the discovery of the correct causal relationship. The steps are as follows:740

Step 1 (Prediction Causal Relationship): Calculating the causal relationship between any two741

utterances within a given dialogue, the prompt instruction employs input accompanied by an example.742

The specific text is as follows:743
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“You are assuming the role of a researcher capable of distinguishing between causation and
correlation, charged with the task of recognizing the causal relationships among individual
utterances within a given dialogue. We prescribe that the judgment of causation between two
utterances is based on whether the former is the intended target of the latter’s response. Whereas,
correlation is gauged on whether the two share similar topics or vocabulary. The following is
an example:

Example:

Dialogue:

‘1. Hazel drank too much champagne at the party.

2. Oh my goodness! That sounds like quite an eventful party.

3. Well, drinking too much alcohol can have many negative effects on the body.

4. Oh no, I can imagine Hazel waking up with a massive headache tomorrow.’

Question 1: Is there a causal relationship from utterance 1 to utterance 2?

Answer 1: Yes.

Question 2: Is there a causal relationship from utterance 1 to utterance 3?

Answer 2: Yes.

Question 3: Is there a causal relationship from utterance 1 to utterance 4?

Answer 3: Yes.

Question 4: Is there a causal relationship from utterance 2 to utterance 3?

Answer 4: No.

Question 5: Is there a causal relationship from utterance 2 to utterance 4?

Answer 5: No.

Question 6: Is there a causal relationship from utterance 3 to utterance 4?

Answer 6: Yes.

Given the above example, with its associated questions and answers, consider the following
dialogue:

Dialogue:

‘1. Charlotte has no idea how to avoid massive estate taxes.

2. Estate taxes are a topic of concern for many people in various countries.

3. So, does anyone else have any knowledge or ideas on how to reduce estate taxes?

4. Oh, that reminds me of a story about my uncle.’

Question 1: Is there a causal relationship from utterance 1 to utterance 2?

Question 2: Is there a causal relationship from utterance 1 to utterance 3?

Question 3: Is there a causal relationship from utterance 1 to utterance 4?

Question 4: Is there a causal relationship from utterance 2 to utterance 3?

Question 5: Is there a causal relationship from utterance 2 to utterance 4?

Question 6: Is there a causal relationship from utterance 3 to utterance 4?”

Step 2 (Calculating Sims): Based on the results from the Step 1, the similarity matrix Sims of the744

causal structures under different views is computed according to Equation 18. This similarity matrix745

includes only two binary values: 0 and 1. Note that intervention here, according to Definition 2,746

involves the direct elimination of intervened utterances. Taking dog(1, 2) as an example, neither the747
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first nor the second utterance is included in the input. Consequently, the resulting similarity matrix,748

Sim ∈ R(N−2)∗(N−2). This applies to both Simr and Sims.749

Step 3 (Calculating Simr): In calculating the similarity matrix Simr for causal representations,750

we explored two distinct computational methods. 1), computation is conducted through LLMs. The751

prompt text used is similar to that in Step 1, but substitutes the question “Is there a causal relationship752

from utterance A to utterance B?” with “Is there a correlation relationship between utterance A and753

utterance B?”. 2), using a pre-trained model such as RoBERTa, we calculate the deep representations754

of two utterances and then compute their similarity using cosine similarity via Equation 17.755

Step 4 (Inconsistency Feedback): We compare the each pair of similarity matrices Simr and Sims756

obtained from differing views. If a condition occurs where Simr
i,j = 1 while Sims

i,j = 0, it can be757

inferred that “there is no common cause between the i-th utterance and the j-th utterance, and the i-th758

utterance should not have a causal relationship to the j-th utterance.” On the contrary, if a situation759

arises where Simr
i,j = 0 and Sims

i,j = 1, we can assert that “there is a common cause between the760

i-th utterance and the j-th utterance, and the i-th utterance should have a causal relationship to the761

j-th utterance.” If ’i’ refers to the first utterance, no response will be given to the clause relevant to762

the ‘common cause.’ An example of this prompt instruction is as follows:763

“After verification, there is no common cause between the second utterance and the third
utterance, and the second utterance should not have a causal relationship with the third
utterance, and there is no common cause between the third utterance and the fourth utterance,
and the third utterance should not have a causal relationship with the fourth utterance. Please
re-answer based on these circumstances.”

Recursive Process: The iterative algorithm is summarized in Algorithm 1. Steps 2 to 4 will764

continuously loop. The end condition is reached once all instances of Simr and Sims across all765

views are identical. The causal relationship output by the LLM during the final loop represents the766

final results. Step 3 represents the ‘Augment’ module mentioned in Section 4.1 while Step 4 embodies767

the ‘Consistency check’. The overall objective of the instruction is to enable the LLM to identify768

causal relationships between utterances without causal labels.769

Compared to the SSM example in Appendix C.1, the LLM-based example relies significantly on the770

accuracy of Simr. Therefore, it often leads to a failure in achievement of desired causal relationships.771

(We show the experiment results in Figure 7)772

Algorithm 1 Iterative Prompt Instruction
Require:A dialogue text D = {Utt1, Utt2, . . . , UttN}, a set of matrices Sims Set =
{Sims

i,j , i, j ∈ N and i ⩽ j} = ∅, a set of matrices Simr Set = {Simr
i,j , i, j ∈ N and i ⩽

j} = ∅, and input prompt as shown in Step 1.
Ensure:Causal relation adjacency matrix C ∈ RN∗N in where Sims Set is consistent with
Simr Set (Both ̸= ∅).

procedure INTERVENTION (I∗ = {doi,j}) (i, j ∈ N and i ⩽ j)
while Sims Set = Simr Set ̸= ∅ do

Predict C via LLM according to input prompt.
for each view doi,j in I∗ do

Calculate Sims
i,j via Step 2.

Sims Set = Sims Set ∪ Sims
i,j

Calculate Simr
i,j via Step 3.

Simr Set = Simr Set ∪ Simr
i,j

end for
Replace the input prompt with the results about inconsistent pairs between Sims Set and
Simr Set via Step 4.

end while
return C
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Figure 6: 10 skeletons (structures) in Causalogue Dataset.

D DETAILS ABOUT Causalogue DATASET773

D.1 ATTRIBUTES774

Causal Variables: We treat each dialogue as a sample, comprised of 4 utterances, which we define775

as 4 causal variables. Further, the first and third utterances originate from the same speaker, defined776

as speaker1. Similarly, the second and fourth utterances are from another individual, defined as777

speaker2.778

Skeletons: We have designed 10 types of causal skeletons (structures) in the dataset as shown in779

Figure 6, listed as follows:780

Chain I: This is the most basic chain structure, serving as the prototype for Chain II-IV models. It781

contains three causal relationships: Utt1 → Utt2, Utt2 → Utt3, and Utt3 → Utt4, representing782

dialogues where two speakers interact sequentially.783

Chain II: Building upon Chain I, this model includes an additional causal relationship from Utt1 →784

Utt3, indicating that Utt3 considers not just the effect from Utt2 but also from Utt1.785

Chain III: Building upon Chain I, this model introduces a causal link Utt2 → Utt4, suggesting Utt4786

takes into account the effect of both Utt3 and Utt2.787

Chain IV: Building upon Chain I, this model creates an additional causal connection Utt1 → Utt4,788

indicating Utt4 considers the effects from both Utt3 and Utt1—the two utterances by the one789

speaker.790

Fork I: This is the most basic fork structure, serving as the prototype for Fork II-IV models. It791

includes three causal relationships: Utt1 → Utt2, Utt1 → Utt3, and Utt1 → Utt4, representing792

situations where two speakers alternately respond to Utt1 with different independent replies.793

Fork II: Building upon Fork I, this model adds a causal relationship Utt2 → Utt3, representing794

Utt3’s response to not only Utt1 but also Utt2.795

Fork III: Building upon Fork I, this model introduces a causal link Utt3 → Utt4, signifying that796

Utt4 is not merely an independent response to Utt1 but a combined reply to both Utt1 and Utt3.797

Fork IV: Building upon Fork I, this model incorporates a new causal relationship Utt2 → Utt4,798

indicating that Utt4 responds to both Utt2 and Utt1.799
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Hybrid I: A combination of the chain and fork structures, where the chain structure runs Utt1 →800

Utt3 → Utt4, and the fork structure is Utt2 ← Utt1 → Utt3.801

Hybrid II: On the basis of Hybrid I, this introduces an additional chain structure, Utt1 → Utt2 →802

Utt4. This model also results in a collider structure with Utt2 → Utt4 ← Utt3.803

Sample: We consider a dialogue as a sample, with each sample comprising 4 utterances representing804

4 causal variables. Each sample corresponds to one of the 10 causal skeletons outlined above,805

annotating whether a causal relationship exists between any two utterances. Due to Hypothesis 1, our806

labels only consider forward-causal relationships. An example of a Chain III sample is shown as807

follows:808

“causal type”: “Chain III”,

“clause”: {“1”: “Your bill is 19.”, “2”: “Before I pay the bill, I have to express my dissatis-
faction with the service I received tonight.”, “3”: “I’m so sorry to hear that but I don’t know
what happened.”, “4”: “Specifically, It’s understandable to feel frustrated when something
unexpected happens like spilling red wine on your clothes.”},

“dia id”: 1,

“label”: {“1”: “0,0,0,0”, “2”: “1,0,0,0”, “3”: “0,1,0,0”, “4”: “0,1,1,0”}

In the given example, the Utt4 serves as a response to the Utt3, while simultaneously attach to the809

speaker’s Utt2—thereby rendering both the Utt2 and Utt3 as causes to the Utt4. Indeed, during the810

generation process of the Utt4, we made sure to inform GPT-4 of the existence of Utt2 and Utt3.811

D.2 CREATION PROCESS812

We utilized the API interface of GPT-4 2 to defined the following variables: “role”, which has813

three types - “system”, “user”, and “assistant”. Here, “system” represents the background or a814

prior settings, while “user” and “assistant” are defined as speakers with two different identities.815

Additionally, the first utterance is pre-set. Hence, creating a dialogue requires a given combination:816

a fixed first utterance, a specified system information, and a setting which previous utterances817

are considered. We have a total of 149 first utterance options, and there are as many as 278,867818

combinations of first utterance and system settings (our final samples only number in the 1638, to819

preserve the diversity and distinctiveness of our dialogues). What follows is an example of generating820

the third utterance in the skeleton of ChainII:821

{“role”: “system”, “content”: “You are Peter, you have promised to go to a Chinese Opera
with your daughter, so you want to have dinner with your friends in next Sunday.” }
{“role”: “assistant”, “content”: “Yes. Sunday sounds fine. What time?” (pre-set Utt 1)}
{“role”: “user”, “content”: Utt 2}

Upon creation, the samples are initially auto-annotated based on their designed labels, and then822

manually verified to ensure their validity. Our manual verification employed two annotators, who823

demonstrated proficient English understanding and communication skills, possessing sufficient824

knowledge about causality. The annotation consistency between these two annotators was tested825

through 833 samples, achieving a kappa coefficient of 0.92.826

During the annotation process, if a sample was labelled differently by the two annotators, that sample827

was considered to possess an ambiguous causal relationship and thus was excluded from the final828

dataset. Only samples that were consistently labelled by both annotators were ultimately accepted.829

Furthermore, to guarantee the freedom of manual annotation, we allowed the annotators to label830

structures that fell outside the predefined 10 causal structures. Specifically, we only requested831

annotators to judge whether any two utterances (satisfying Hypothesis 1) have a causal relationship,832

allowing them some discretion, which inevitably produced samples not belonging to the 10 causal833

structures. We classified these as the “Other” category.834

2https://platform.openai.com/docs/models/gpt-4
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The accuracy of labels was significantly improved after the manual annotation process. However,835

considering that the unverified samples might be utilized for other research areas, such as the ability836

of LLMs to focus on context, we have released two versions of the datasets, as demonstrated in837

Table 1. “Small” signifies samples that have been manually checked as correctly labeled, while838

“large”refers to all samples generated by GPT-4 without manual verification. We do not recommend839

considering the “large” version when undertaking causality-relarted work. Likewise, we have not840

taken it into our experiments.841

E DETAILS ABOUT DATASETS, METRICS, BASELINES, AND IMPLEMENTATION842

E.1 DATASETS843

Table 5: Statistics on Datasets
Dataset Train Valid Test Folds

Causalogue 1338 100 200 10
RECCON 833 47 225 10

DD 11118 1000 1000 5
MELD 1038 114 280 5

EmoryNLP 713 99 85 5
IEM 100 20 31 5

GTEA 19 2 7 10
50salads 36 4 10 10
Breakfast 1314 146 252 10

The Causalogue dataset has already been discussed in844

Appendix D. Hence, this section primarily focuses on845

the remaining real-world datasets. Their data splits846

and specific N -folds validation setups for SSM are847

exhibited in Table 5. Among them, RECCON, DD,848

MELD, EmoryNLP and IEM are text datasets, and849

GTEA, 50salads, and Breakfast are video datasets.850

As for LLM, we only randomly select 400 samples851

from Causalogue and RECCON datasets, respec-852

tively. Their overviews and prevalent metrics are853

detailed below.854

E.1.1 EMOTION-CAUSE855

PAIR EXTRACTION (ECPE) TASK856

RECCON (Poria et al., 2021): The first dataset for emotion cause recognition of conversation857

including RECCON-DD and RECCON-IE (emulating an out-of-distribution generalization test).858

RECCON-DD includes 5380 labeled ECPs and 5 cause spans (no-context, inter-personal, self-859

contagion, hybrid, and latent).860

E.1.2 EMOTION RECOGNITION IN CONVERSATION (ERC) TASK861

DD (Li et al., 2017): A Human-written dialogs dataset with 7 emotion labels (neutral, happiness,862

surprise, sadness, anger, disgust, and fear). We follow Chen et al. (2023b) to regard utterance turns863

as the speaker turns.864

MELD (Poria et al., 2019): A multimodel ERC dataset with 7 emotion labels as the same as DD.865

EmoryNLP (Zahiri & Choi, 2018): A TV show scripts dataset with 7 emotion labels (neutral, sad,866

mad, scared, powerful, peaceful, joyful).867

IEM (Busso et al., 2008): A multimodel ERC dataset with 9 emotion labels (neutral, happy, sad,868

angry, frustrated, excited, surprised, disappointed, and fear). However, models in ERC field are869

often evaluated on samples with the first six emotions due to the too few samples of the latter three870

emotions. 20 dialogues for validation set is following (Chen et al., 2023b).871

E.1.3 TEMPORAL ACTION SEGMENTATION (TAS) TASK872

GTEA (Fathi et al., 2011) Georgia Tech Egocentric Activities is comprised of 28 videos captured873

from a first-person perspective. It documents 7 different daily activities performed by 4 test actors,874

therefore, the dataset is partitioned into four 4 based on the actors. Each video contains approximately875

20 fine-grained instances, with each video divided by action segments as labels.876

50salads (Stein & McKenna, 2013) A cooking dataset includes 50 videos highlighting the complete877

process of salad preparation undertaken by 25 people, with each video housing between 9,000 to878

18,000 RGB frames and containing 17 action class labels. Each video, named after the complete879

process of salad making by an individual, is segregated into 5 groups.880
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Breakfast A cooking action dataset consists of 10 cooking activities performed by 52 different actors881

at various kitchen locations. It encompasses 1,989 videos and offers over 77 hours of content. Each882

video is characterized by a sub-cooking activity accomplished by an actor; the complete preparation883

process comprises 20-30 such action segments. As the largest among the mentioned datasets, it is884

divided into 4 groups.885

E.2 EVALUATION METRICS886

E.2.1 CAUSAL DISCOVERY (CD) TASK887

The CD task was evaluated on the Causalogue dataset, a brand new dataset released by us. In our888

experiments, we endeavored to assess three outcomes: the accuracy of causal graphs, the accuracy of889

causal representations, and the consistency between causal graphs and representations. Consequently,890

we employed AUROC and Hamming Distance (HD) to measure causal graphs, AUROC and F1891

scores for causal representation evaluation, and MSE and 1−AUROC for measuring the distance of892

inconsistencies. These metrics are common and well-accepted. Simultaneously, for each outcome,893

we ensured two different metrics to comprehensively evaluate the performance.894

E.2.2 EMOTION-CAUSE PAIR EXTRACTION (ECPE) TASK895

We continue to empoly the F1 score as the evaluation metric, as initially proposed in Poria et al.896

(2021). This metric is broadly accepted and utilized in current research works (Li et al., 2023a;b).897

E.2.3 EMOTION RECOGNITION IN CONVERSATION (ERC) TASK898

Similarly to ECPE task, We continue to empoly the F1 score as the evaluation metric, as initially899

proposed in Shen et al. (2021). This metric is broadly accepted and utilized in current research900

works (Chen et al., 2023b; Zhang et al., 2023a; Shi & Huang, 2023).901

E.2.4 TEMPORAL ACTION SEGMENTATION (TAS) TASK902

Commonly used metrics include frame-level accuracy (Acc), segmental edit distance (Edit), and903

segmental F1 scores with different overlapping threshold k (F1@k) (k = {10, 25, 50}). Moreover, to904

evaluate the causal consistency of the segmentation results, we proposed an additional causal edit905

distance (C-Dis) to measure the dissimilarity between the adjacency matrix and the ground truth. For906

the final segmentation results, we constructed causal adjacency matrices Ĉ ∈ RT∗T and ground truth907

matrices C ∈ RT∗T , based on the constraints in consistent mapping condition and calculated the908

dissimilarity between them.909

C −Dis := num(Ĉi,j ̸= Ci,j)for i, j = 1, 2, . . . , T (20)

A lower causal edit distance indicates that the causal relationship at the frame-level has less dissimi-910

larity with the ground truth, demonstrating stronger learning ability with causal representation in the911

model, and hence a higher level of causal consistency in the segmentation results.912

E.3 BASELINES913

E.3.1 BASELINES ON CD TASK914

SSM915

ACD: leverages shared dynamics to learn to infer causal relationships from multi-skeleton time-series916

data via a single, amortized model.917

DAG-GNN: leverages SCM to construct a gnn-based variational model adopting independent noise918

E as latent viariable.919

ACCD: discover causal relationships in multi-value data via designing a common skeleton and920

generating a substitute for independent noise.921

biCD:proposes a dynamic variational inference model leveraging the causal strength instead of922

independent noise as the latent variable to construct ELBO for indefinite data.923
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DisC: designs a new method for intervention in deep models, combining causal patterns with different924

shortcuts to achieve the goal of intervention in causal nodes.925

DIR:distinguishes between positive and negative samples after intervention by designing a dynamic926

loss function, Similar to the DisC thereby effectively intervening in the causal pattern.927

Since DisC and DIR do not have complete causal discovery models, we incorporate their intervention928

modules into DAG-GNN (namely, DAG-DisC and DAG-DIR) to demonstrate their intervention929

strategies for indefinite data.930

LLM931

Zero-shot and Zero-shot-CoT: proposes a new prompt paradigm like “Let’s think step by step”932

which is task-agnostic and does not need input-output demonstrations.933

Auto-CoT: proposes an auto prompt method which could cluster the samples first and then select an934

example for prompt text.935

E.3.2 BASELINES ON ECPE TASK936

EDKA-GM:introduces an experiencer identification task and present a document-level heterogeneous937

graph network for capturing global experiencer information to enrich experiencer-based cross-clause938

association.939

seF:includes two main components: core clause selector and emotion-cause pairs extractor to jointly940

extract emotion-cause pairs.941

E.3.3 BASELINES ON ERC TASK942

DAG-ERC: proposes a gnn&rnn-based model to learn the relationship of different speakers and943

sequential information.944

DualGAT:introduces Dual Graph Attention networks to concurrently consider the complementary945

aspects of discourse structure and speaker-aware context.946

MultiEMO:proposes a novel attention-based correlation-aware multimodal fusion framework effec-947

tively integrating multimodal cues by capturing cross-modal mapping relationships across textual,948

audio and visual modalities.949

E.3.4 BASELINES ON TAS TASK950

MS-TCN: This is the first method to introduce a multi-stage action segmentation framework based951

on Temporal Convolutional Networks (TCN). Each stage inputs the initial prediction output from the952

preceding one for further modification and adjustment.953

MS-TCN++: On the foundation of MS-TCN, this method introduces a dual dilated layer, implement-954

ing parameter sharing and optimizing segmentation performance.955

ASRF: This method proposes an improved technique based on MS-TCN, composed of a long-term956

feature extractor and two branches: the Action Segmentation Branch (ASB) and the Boundary957

Regression Branch (BRB).958

CETNet: Leveraging Transformer, this method connects every layer of convolutional feature mapping959

in the encoder with a group of features generated through self-attention in the decoder.960

C2F: Utilizing TCN, this method puts forward a novel temporal encoder-decoder to tackle the961

sequence fragment issue. Its decoder conforms to a coarse-to-fine structure with multi-timescale962

implicit integration.963
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E.4 IMPLEMENTATION DETAILS964

E.4.1 THE MODEL ON CD TASK965

In our Experiments, we utilized RoBERTa-base (768) as our pre-trained model for generating word966

embeddings in the SSMs. Throughout the training process, a learning rate of 1e-5 was set, with the967

batch size and epochs set to 16 and 50, respectively. The dimension of the hidden layers within the968

network was also set to 768. The entire training procedure was conducted on a NVIDIA GEFORCE969

RTX 3090 graphics processing unit.970

E.4.2 THE MODEL ON ECPE TASK AND ERC TASK971

In the word embedding, we adopt the affect-based pre-trained features3 proposed by Shen et al. (2021)972

for all baselines and models.973

In the hyper-parameters, we follow the setting of Chen et al. (2023b) in the ERC task. Moreover, in974

the ECPE, the learning rate is set to 3e-5, batch size is set to 32, and epoch is set to 60. Further in our975

approach, hidden size of GNN is set to 300, and dropout rate is 0.3. All experiments were conducted976

on a NVIDIA GEFORCE RTX 3090 for both training and testing.977

E.4.3 THE MODEL ON TAS TASK978

We employed the features extracted from I3D (Carreira & Zisserman, 2017) as the input for our979

model. To avoid random bias, we applied our augmented approach across different backbones while980

retaining the seed setup from their original studies, ensuring that the specific training epochs are981

consistent with the backbones. All experiments were conducted on a NVIDIA GEFORCE RTX 3090982

for both training and testing. We set the learning rate to 0.0005, established a weight decay of 0.001,983

and utilized Adam as the optimizer. To enhance the training efficiency and avert degenerate matrices984

during whitening, we set the batch size of the frame images for a video segment to 512. We followed985

the recommendation in Ermolov et al. (2021) to further subdivide the batches during the whitening986

process, setting the sub-batch size to 128.987

F RESULTS ON LLMS988

Table 6: The F1 score of causal relationship
recognition of prompt Models. Ours1LLM
represents that calculating Simr via LLM
while Ours1LLM represents it via RoBERTa
pre-trained model.

Model Causalogue RECCON
Zero-Shot 0.61 0.52

Zero-Shot-CoT 0.58 0.51
Auto-CoT 0.62 0.51
Ours1LLM 0.74 0.66
Ours2LLM 0.72 0.69

In our LLMs experiments, we devised a simple task:989

predicting the existence of a causal relationship be-990

tween any two utterances (yes or no) to gauge the991

LLM’s capability for causal reasoning. Table 6 illumi-992

nates some interesting conclusions - existing prompt-993

ing methods is difficult to yield effective outcomes994

for this task. For instance, the “step by step” thinking995

guided by the CoT approach tends to make LLMs996

involve many correlation-based responses. The clus-997

ter approach of Auto-CoT also contributes meaning-998

lessly when the samples are too similar. Conversely,999

our iterative prompts instruction enable LLMs to1000

uncover causal inconsistencies in its previous an-1001

swers, thereby allowing for self-correction. This self-1002

supervised idea appears to impose the LLMs with a capability of “reasoning”.1003

However, the accuracy of our proposed iterative propmt is substantially dependent on the precision of1004

Simr. An incorrect Simr can lead the correct results to be modified. Furthermore, different from the1005

SSMs that could make Simr and Sims be trained together, the LLM does not provide a learnable1006

module to refine Simr, only leading to the Sims close to the fixed Simr. Figure 7 (a, b, c) represents1007

the Simr calculations obtained through three different measures, where ‘c’ derives from labels,1008

providing 100% accurate. The red dashed line in the lineplot denotes the F1 of Simr. Our method1009

3https://drive.google.com/file/d/1R5K_2PlZ3p3RFQ1Ycgmo3TgxvYBzptQG/
view?usp=sharing
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Figure 7: The upper bound of Simr and F1 scores of 5 cases in different Simr calculating measures

was applied across 5 cases, using each of 3 measures respectively. The results consistently converge1010

around the Simr which indicates that Simr is the upper bound of identifying causal relationships.1011

Finally, in order to demonstrate the specific question and answer process of our iterative prompt, we1012

provide a complete case as follows.1013

**user**: You are assuming the role of a researcher capable of distinguishing between causality
and correlation, charged with the task of assessing the causal relationships among individual
utterances within a given dialogue. We prescribe that the judgment of causality between two
sentences is based on whether the former is the intended target of the latter’s response. Whereas,
correlation is gauged on whether the two share similar topics or vocabulary. The following is
an example:

Example:

Dialogue:

Hazel drank too much champagne at the party. Oh my goodness! That sounds like quite an
eventful party. Well, drinking too much alcohol can have many negative effects on the body. Oh
no, I can imagine Hazel waking up with a massive headache tomorrow.

Question 1: Is there a causal relationship from utterance 1 to utterance 2? Answer 1: Yes.

Question 2: Is there a causal relationship from utterance 1 to utterance 3? Answer 2: Yes.

Question 3: Is there a causal relationship from utterance 1 to utterance 4? Answer 3: Yes.

Question 4: Is there a causal relationship from utterance 2 to utterance 3? Answer 4: No.

Question 5: Is there a causal relationship from utterance 2 to utterance 4? Answer 5: No.

Question 6: Is there a causal relationship from utterance 3 to utterance 4? Answer 6: Yes.

Given the above example, with its associated questions and answers, consider the following
dialogue:

Dialogue:

Charlotte has no idea how to avoid massive estate taxes. Estate taxes are a topic of concern for
many people in various countries. So, does anyone else have any knowledge or ideas on how to
reduce estate taxes? Oh, that reminds me of a story about my uncle.

Question 1: Is there a causal relationship from utterance 1 to utterance 2?

Question 2: Is there a causal relationship from utterance 1 to utterance 3?

Question 3: Is there a causal relationship from utterance 1 to utterance 4?

Question 4: Is there a causal relationship from utterance 2 to utterance 3?

Question 5: Is there a causal relationship from utterance 2 to utterance 4?

Question 6: Is there a causal relationship from utterance 3 to utterance 4?
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**chatgpt**: Answer 1: Yes. Utterance 2 is a response to the topic brought up in utterance 1,
specifically the issue of estate taxes.

Answer 2: Yes. Utterance 3 directly follows up on the issue presented in utterance 1, asking if
others have knowledge about the same topic.

Answer 3: No. While utterance 4 may be about a related issue, there is no explicit causal
relationship based on the given information.

Answer 4: Yes. Utterance 3 is a continuation of the discussion about estate taxes, which was the
topic of utterance 2.

Answer 5: No. Utterance 4 does not indicate a response or direct continuation of the topic
presented in utterance 2.

Answer 6: Yes. The story mentioned in utterance 4 could be a response to the question asked in
utterance 3.

**user**: After verification, the first utterance should have a causal relationship with the fourth
utterance, and there is no common cause between the third utterance and the fourth utterance,
and the third utterance should not have a causal relationship with the fourth utterance, and
there is no common cause between the second utterance and the third utterance, and the second
utterance should not have a causal relationship with the third utterance. Please re-answer based
on these circumstances.

**chatgpt**: With these new circumstances:

Answer 1: Yes. Utterance 2 is a response to the topic brought up in utterance 1, specifically the
issue of estate taxes.

Answer 2: No. Even though utterance 3 follows utterance 1, we are told that there’s no causal
relationship between them.

Answer 3: Yes. Based on your new information, utterance 4 now has a causal relationship with
utterance 1.

Answer 4: No. Taking into account the revised situation, there’s no causal link between utterance
2 and utterance 3.

Answer 5: No. Utterance 4 does not indicate a response or direct continuation of the topic
presented in utterance 2.

Answer 6: No. According to the new context, there’s no causal relationship between utterance 3
and utterance 4.

**user**: After verification, the first utterance should have a causal relationship with the fourth
utterance. Please re-answer based on these circumstances.

**chatgpt**: Given the new specification:1014
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Answer 1: Yes. Utterance 2 is a response to the topic brought up in utterance 1, specifically the
issue of estate taxes.

Answer 2: Yes. Utterance 3 directly follows up on the issue presented in utterance 1, asking if
others have knowledge about the same topic.

Answer 3: Yes. Based on your new information, utterance 4 now has a causal relationship with
utterance 1 (Charlotte’s lack of knowledge about estate taxes somehow triggers the story about
the speaker’s uncle).

Answer 4: Yes. Utterance 3 is a continuation of the discussion about estate taxes, which was the
topic of utterance 2.

Answer 5: No. Utterance 4 does not indicate a response or direct continuation of the topic
presented in utterance 2.

Answer 6: Yes. Under normal circumstances, the story mentioned in utterance 4 can be perceived
as a response to the question asked in utterance 3. However, if we strictly adhere to the new
context provided(”no common cause between the third utterance and the fourth utterance”), then
the answer would be: No. There is no causal relationship between utterance 3 and utterance 4.1015

**user**: After verification, there is no common cause between the second utterance and the
third utterance, and the second utterance should not have a causal relationship with the third
utterance, and there is no common cause between the third utterance and the fourth utterance,
and the third utterance should not have a causal relationship with the fourth utterance. Please
re-answer based on these circumstances.

**chatgpt**: Given the additional constraints:

Answer 1: Yes. Utterance 2 is a response to the topic brought up in utterance 1, specifically the
issue of estate taxes.

Answer 2: Yes. Despite the absence of causal links to utterances 2 and 4, utterance 3 directly
follows up on the issue presented in utterance 1, asking if others have knowledge about the same
topic.

Answer 3: Yes. Based on your new information, utterance 4 now has a causal relationship with
utterance 1 (Charlotte’s lack of knowledge about estate taxes reminded the speaker of a story
about their uncle).

Answer 4: No. Based on your new information, there is no causal relationship between utterance
2 and utterance 3.

Answer 5: No. Utterance 4 does not indicate a response or direct continuation of the topic
presented in utterance 2.

Answer 6: No. Based on your updated context, there is no causal relationship between utterance
3 and utterance 4.

G RESULTS ON ECPE, ERC, AND TAS TASKS1016

We assessed the performance of OursSSM on three downstream tasks: ECPE, ERC, and TAS. These1017

tasks not only represent typical instances of indefinite data (text and video), but they also embody1018

causally related tasks. For instance, in ECPE and ERC tasks, mastering the causal relationships1019

between utterances is vital, while in the TAS task, recognizing and effectuating transformation from1020

intra-frame relations to intra-segment relations is crucial.1021

From the outcomes presented in Tables 7 and 8, OursSSM exhibits a remarkable improvement when1022

dealing with these high-level causal models. The underlying reason for this enhancement is that,1023

under the conditions of ensured causal consistency, an increase in the accuracy of the causal model1024

promotes enhancements in both the causal structure (C-Dis in Table 8) and causal representation1025

(Edit in Table 8), surpassing other methods, hence improving the final results.1026
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Table 7: Results of SSMs on ECPE and ERC tasks. 95% confidence interval shown. All evaluation
metrics used in the Table were F1 scores (Appendix E.2). The backbone of OursSSM are biCD and
DualGAT, respectively.

ECPE ERC
Model RECCON Model MELD EmoryNLP DD IEM
ACCD 73.17±1.1 ACCD 63.81±0.11 39.54±0.12 59.53±0.01 69.17±0.15

biCD 74.14±0.74 biCD 63.22±0.17 38.21±0.11 59.64±0.07 67.15±0.09

EDKA-GM 72.14±0.93 DAG-ERC 63.65±0.05 39.02±0.13 59.33±0.01 68.03±0.15

seF 74.55±0.98 DualGAT 66.72±0.12 40.88±0.15 61.80±0.02 67.74±0.21

- - MultiEMO 61.23±1.26 37.14±0.11 57.46±0.01 64.41±0.16

OursSSM 76.89±1.21 OursSSM 67.79±0.18 40.95±0.08 62.57±0.01 69.81±0.26

Table 8: Results of SSMs on TAS task. All evaluation metrics used in the Table were introduced in
Appendix E.2.4. The backbone of OursSSM is CETnet.

Model GTEA 50salads Breakfast
F1@{10, 25, 50} Edit Acc C-Dis F1@{10, 25, 50} Edit Acc C-Dis F1@{10, 25, 50} Edit Acc C-Dis

MSTCN++ 82.3 83.6 71.9 79.8 77.6 8.4 79.4 77.3 69.3 71.6 82.8 3.3 - - - - - -
ASRF 85.5 83.8 73.6 76.9 74.7 9.0 80.3 77.4 67.4 74.2 77.6 4.9 69.1 63.4 50.8 66.6 63.0 55.8

CETnet 90.5 89.6 78.9 85.7 79.4 7.1 87.6 87.3 80.9 82.8 87.3 2.6 72.5 68.7 57 72.8 74.2 38.1
C2F 88 86.6 78.3 81.6 80.6 7.4 83.5 81.5 71.8 75.7 86.9 2.8 71.6 68.0 57.1 68.1 74.6 49.8

OursSSM 91.4 90.2 80.5 87.2 79.7 6.9 88.9 87.6 81.4 83.1 88.9 2.5 78.7 74.9 63.4 78.3 75.6 35.4

To better illustrate the role of the causal model in these downstream tasks, we demonstrate two1027

visualizations in Figures 8 and 9. Figure 8 displays a visualization of the adjacency matrix for the1028

ECPE task, which can be equated with a causal graph, showing how the model assigns weights to1029

the context when learning utterance relationships. Figure 8 demonstrates that the superiority of the1030

causal method over non-causal ones lies in turning the adjacency matrix into a DAG, thus avoiding1031

the factual error of treating earlier utterances as outcomes of latter ones. However, due to unknown1032

causal labels, there is not a sufficiently strong constraint for causal graph, which often leaves the1033

model uncertain about which edges in the DAG should exist. Our model mitigates this issue by using1034

causal consistency constraints, enabling the model to identify the correct edges through contrastive1035

learning of the causal representation and structure.1036

Figure 9 shows the TAS task’s visualization results, illustrating that causal consistency between1037

frames and segments can significantly reduce the exsitings of trivial segments. This harmonizes1038

with our intuition on indefinite data: all frames within a segment share a similar causal relationship.1039

Such a causal model goes beyond the scope of this paper, and we thoroughly discuss these extended1040

contributions in the discussion section.1041
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Non-causal model causal model Ours

(a) Case1

Non-causal model causal model Ours

(b) Case2

Non-causal model causal model Ours

(c) Case3

Figure 8: Visualization of adjacent matrices of 3 cases on ECPE task. Non-causal model is EDKA-
GM, and we choose ACCD as causal model. The adjacent matrix is N*N representing the relationship
between any two utterances.
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GT

Backbone

Ours

: SIL          :  add vinegar           : mix dressing         : mix ingredients          :add dressing

MSTCN++  50salads  split1-rgb-05-2

(a) Case1

GT

Backbone

Ours

50salads  split3-rgb-14-2

:  add pepper        : mix dressing         : peel cucumber         :add dressing         :cut cucumber

(b) Case2

GT

Backbone

Ours

50salads  split4-rgb-20-1

:  add oil           : mix dressing           : peel cucumber          :add dressing         :cut cucumber

(c) Case3

GT

Backbone

Ours

:  add oil           : mix dressing           : peel cucumber          :add dressing        :cut cucumber

50salads  split4-rgb-21-1

(d) Case4

Figure 9: Visualization of results of 4 cases on 50salads dataset. GT represents the Ground Truth,
Backbone we choose is the MSTCN++.
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