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ABSTRACT
Many Artificial Intelligence (AI) applications are composed of mul-
tiple machine learning (ML) and deep learning (DL) models. Intelli-
gent process automation (IPA) requires a combination (sequential or
parallel) of models to complete an inference task. Thesemodels have
unique resource requirements and hence exploring cost-efficient
high performance deployment architecture especially on multiple
clouds, is a challenge. We propose a high performance framework
MAPLE, to support the building of applications using composable
models. The MAPLE framework is an innovative system for AI ap-
plications to (1) recommend various model compositions (2) recom-
mend appropriate system configuration based on the application’s
non-functional requirements (3) estimate the performance and cost
of deployment on cloud for the chosen design.
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1 INTRODUCTION
Complex AI applications are composed of numerous models linked
to each other as a directed acyclic graph (DAG). The output and
input from each of these models are processed using transformation
functions. An inference request flows in such workflows through
multiple models and transformation functions. One example of
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such workflows is an information extraction application which is
composed of models for extracting data from documents available
in different formats such as tables, hand-written text,logos, etc.
Each of these models has unique resource requirements. Finding
optimal architecture for deploying such workflows on cloud is a
tedious and challenging process as it involves experimenting with
numerous cloud services and instance configurations. InferLine [4]
is one such system for the provisioning and management of an ML
inference pipeline. Although InferLine recommends optimal hard-
ware configurations, it does not consider characteristics of cloud
services and their unique cost models. We propose a tool called
MAPLE for estimating the performance and cost of deployment of
complex AI workflows on cloud. Some of the salient features and
our contributions through this tool are as follows:

• Estimating the performance and cost of deployment of these
workflows on multiple clouds without deploying application

• Designing optimal architectures for deploying AI workflows
that honor Service Level Agreements (SLAs)

• It allows users to build and visualize complex AI workflows.
Also, what-if and if-what analysis is possible by varying the
configuration of instances used for deploying workflows

Figure 1: MAPLE Architecture

2 OVERVIEW OF MAPLE
Major components of MAPLE architecture (Figure 1) are as follows:
Use specification: This component allows users to specify the bud-
get and expected performance in terms of latency and throughput.
Model meta-data: The tool maintains the repository of perfor-
mance data (latency and throughput) of well-known models for
different application domains such as computer vision, image clas-
sification, speech-to-text, etc. The performance database is built by
crowdsourcing and also by conducting experiments in the lab.
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(a) (b) (c)

Figure 2: Some screenshots from MAPLE (a) Adding a new model to the data store (b) Cloud deployment cost display (c) Cost
and execution time for processing documents in Deep Reader with different serverless configurations

Figure 3: MAPLE Tool Screen

Performance and cost model:Maple has in-built performance and
cost extrapolation models. These models are used to estimate the
performance and cost of inference when performance data is not
available in the data store.
Deployment orchestrator: The deployment orchestrator usesmodel
data store as well as performance and cost models to evaluate the
cost of deployment on heterogeneous architectures (CPU, GPU) and
services (VMs instances, serverless etc.) over multiple clouds such
as AWS, Azure, and Google Cloud Platform. The cost is evaluated by
fetching the cost specifications available on the cloud vendor’s web-
site. In case user specifications are provided, appropriate hardware
configuration and architecture are suggested for the deployment.
The MAPLE GUI has the following features:
SLA specification: Using a toggle button, a user can specify whether
there are specific SLAs to meet or not.
Deployment option selection: MAPLE supports local (data center),
cloud (includes AWS, GCP, Azure), and Hybrid (includes a mix of
supporting clouds and local servers) deployment options. Users can
select any one option and instance to get the end-to-end cost and
latency of designed workflows on the provided configurations.
Server Configuration: This palette gets enabled once user selects
"local" or "hybrid" as a deployment resource. Users can add any
number of server configurations and use them to design a logic.
Application Domain selection:MAPLE has a few predefined domains
listed in this palette. User is allowed to choose or add one or more
domains that suit the application.
Applicable Model Selection: As per the selection of appropriate appli-
cable domains in the palette mentioned above, the ML/DL models
which fall under respective domains are populated in this palette.

Users can select any number of models and pull on the canvas for
design application logic. Users can add to this list (figure 2(a))
Transformer Function Selection: The end-to-end latency of an appli-
cation consisting of ML/DL models is affected by the pre-processing
of input data and post-processing of output data. MAPLE provides
the creation and application of such data transformers.

3 USECASE
We demonstrate the use of MAPLE for estimating the performance
of an information extraction application called Deep Reader [2, 3]
on the AWS serverless platform Lambda. The application consists
of multiple models for text detection (e.g. CTPN [5] or CRAFT [1]),
text recognition (e.g. Tesseract citetes), and text labeling along with
transformation functions for data processing. Users can choose
the models of their choice using the information extraction ap-
plication in the tool. A complete workflow is designed using the
required models as shown in figure 3. Using the characterization
data available in the data store for the models, the end-to-end cost
and performance are evaluated for various configurations of the
serverless instances chosen as shown in figure 2(b) and 2(c).

4 CONCLUSION
We proposed a tool for visualizing AI workflows and estimating
the performance and cost of deploying these workflows on multi-
ple clouds. Additionally, tools features are demonstrated using an
information extraction application called Deep Reader.
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