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Abstract

Short text clustering poses substantial chal-
lenges due to the limited amount of informa-
tion provided by each sample. Previous efforts
based on dense representations are still inad-
equate since texts from different clusters are
not sufficiently segregated in the embedding
space prior to the clustering step. Even though
the state-of-the-art technique integrated con-
trastive learning with a soft clustering objective
to address this issue, the step in which all local
tokens are summarized to form a sequence rep-
resentation for the whole text may include noise
that obscures the key information. We propose
a framework called MIST: Mutual Information
Maximization for Short Text Clustering, which
overcomes the information limitation by max-
imizing the mutual information between text
samples on both sequence and token levels. We
assess the performance of our proposed method
on eight standard short text datasets. Experi-
mental results show that MIST outperforms
the state-of-the-art methods in terms of Accu-
racy or Normalized Mutual Information in most
cases.

1 Introduction

Text clustering is a vital task for a wide range of
downstream applications. It aims to partition texts
into groups of similar categories in an unsupervised
manner. The growth of social media, discussion
forums and news aggregator websites has led to a
large number of short-length texts being produced
daily. Hence, clustering these short texts is gain-
ing more attention and becoming a crucial step for
many real-world applications from recommenda-
tion to text retrieval (Yohannes and Assabie, 2021).

In short texts, words and phrases that are most
representative of the text content, usually appear
only once. This exacerbates the sparsity problem,
posing an additional hurdle for clustering short
texts. Traditional methods, such as Bag-of-Words
(BoW) and TF-IDF, provide relatively sparse rep-
resentation vectors with limited descriptive power.

Hence, they perform poorly when clustered with a
standard distance-based clustering method, such as
k-means, in this situation (Hadifar et al., 2019).

To address this problem, deep neural networks
have been employed to map high dimensional data
into meaningful dense representations in a lower di-
mensional space. Most recent techniques for deep
clustering follow a multi-phase style, in which the
clustering process is carried out after learning fea-
ture representations (Xu et al., 2017; Hadifar et al.,
2019; Yin et al., 2021). Unfortunately, the cluster-
ing performance of these methods remain unsatis-
factory. One probable explanation is that texts still
have a lot of overlap among categories in the latent
space before clustering (Zhang et al., 2021).

Another deep clustering strategy optimizes rep-
resentation learning and clustering objectives si-
multaneously (Zhang et al., 2021; Xie et al., 2016).
To achieve desirable outcomes, Zhang et al. (2021)
propose a method that adopts contrastive represen-
tation learning, which has been successful in self-
supervised learning and is able to assist in spread-
ing out the overlapped categories so that effective
representations can be acquired, by simultaneously
optimizing it along with a soft clustering target.

As shown in Zhang et al. (2021), improving rep-
resentation is crucial for enhancing the clustering
performance. Nevertheless, the contrastive learn-
ing method used in Zhang et al. (2021) only con-
siders whole text representations while optimizing
a contrasting objective. In particular, these repre-
sentations are formed by summarizing all token
representations in each text instance via mean pool-
ing, including uninformative noises. We conjecture
that this allows constructing a representation in
which important information used to describe the
text content may be obscured by noise, potentially
affecting the clustering performance. Therefore,
there is still a gap that needs to be explored in order
to derive an efficient representation for short text
clustering that does not omit informative terms.



In this paper, we introduce the Mutual
Information Maximization Framework for Short
Text Clustering (MIST), a multi-stage framework
that learns textual representations by incorporating
two contrastive representation learning objectives
together with soft clustering assignments. Our con-
trastive learning procedure is based on mutual infor-
mation (MI) maximization, which facilitates us to
compare the semantic similarity across different hi-
erarchical levels to achieve multiple purposes. First,
we perform contrastive learning at a sequence-level
by contrasting between entire text representations.
Additionally, we also attempt to enforce each text
representation to extract information that is shared
across all of its tokens. In particular, we maximize
the MI between a text representation and all of its
local-level token embeddings to extract the shared
information among all the individual words in the
text. As a consequence, the information essential
to describe texts is preserved in the representations.

MIST handles the substantial challenge of short
text clustering, and our contributions are as follows:

* We propose MIST, a multi-stage framework
for short text clustering, which integrates two
contrastive learning objectives: (1) sequence-
level and (2) token-level MI maximization to
learn effective short text representations and
also be useful for clustering.

To effectively balance sequence- and token-

level MI maximizations, we use a simple dy-

namic weighting function that adjust the ob-
jectives ratio in accordance with the length of
subword tokens in each minibatch.

* We conduct an extensive experiment to eval-
uate the performance of MIST over eight
standard benchmarks of short text clustering.
MIST improves the clustering performance in
terms of Accuracy and NMI for most cases
compared to the current state-of-the-art.

2 Related Work

Short Text Clustering. There are a number of
approaches to overcome the sparsity of short text
representations, such as (1) multi-stage approaches
which break down the clustering framework into
multiple stages, (2) clustering enhancement algo-
rithms that apply outlier removal, and (3) a joint
framework that simultaneously optimizes both rep-
resentation learning and clustering objectives.
Several multi-stage works perform clustering
after learning feature representations. Pretrained-

word embeddings (Mikolov et al., 2013a,b; Pen-
nington et al., 2014) and neural networks are
adopted to transform data into meaningful repre-
sentations. Xu et al. (2015, 2017) use a convo-
lutional neural network to learn non-biased deep
feature representations by fitting the output units
with pretrained-binary codes from a dimensional-
ity reduction method. Hadifar et al. (2019) uti-
lize Smooth Inverse Frequency (SIF) (Arora et al.,
2017) to obtain weighted word embeddings. Dur-
ing training, they enrich discriminative features by
tuning an autoencoder with soft clustering assign-
ments from a clustering objective. For the afore-
mentioned works, k-means clustering is then em-
ployed on trained representations to get the final
clusters.

Another direction is to enhance the performance
of the initial clustering with an iterative classifica-
tion algorithm. Rakib et al. (2020) proposed an
ECIC algorithm which detects and removes out-
liers in each iteration. Moreover, they make use
of word embeddings by averaging them to repre-
sent each text, and combine the ECIC algorithm
with hierarchical clustering. To boost the cluster-
ing quality further, (Pugachev and Burtsev, 2021)
exploit deep sentence representations (Cer et al.,
2018) and made modifications to the ECIC algo-
rithm.

The recent state-of-the-art, SCCL (Zhang et al.,
2021), leverages a contrastive method from self-
supervised learning to encourage greater separa-
tion between overlapped categories in the original
data space. By jointly optimizing a contrastive loss
and a clustering objective (Reimers and Gurevych,
2019a), SCCL outperforms prior works and yields
cutting-edge results. In addition, other constrastive
learning methods have also been experimented on
short-text clustering, such as using entities for con-
trastive learning to provide supervision signals for
their related sentences (Nishikawa et al., 2022), and
using virtual augmentation for contrastive learn-
ing to circumvent the discrete nature of language
(Zhang et al., 2022). However, these methods do
not outperform SCCL on short text clustering.

Self-supervised learning. Self-supervision has
gained popularity and become a common technique
in unsupervised representation learning for a vari-
ety of downstream purposes. Many recent accom-
plishments have been based on contrastive repre-
sentation learning (Chen et al., 2020; He et al.,
2020; Caron et al., 2020; Grill et al., 2020).



Overall Objective

Clustering w/ KL divergence

O Maximize MI O
B EE—

Clustering Loss
g(x:) £(xf)
cClusrzr

Representation Learning with Ml

Ly

(b) Sequence-level MI Maximization

Original Texis O mean
[ - =)= -0
@) &(xi)
)
L Jo(xi)
Augmented Texts O mean
[ 5= @
@) &(x7)
folx{)

(a) Training stage of MIST

Sequence-level Ml O I xﬂf’?fﬂm,e”f
Maximization (Zeq) O R
O«
Token-level Ml -
- i)
i O g( !
I
; So(xi)

(c) Token-level Ml Maximization

Figure 1: (a) The overview of the training stage of MIST. For each pair of original text x;, and its augmented
version x, MIST simultaneously optimizes the clustering objective Lcyysier, and the MI maximization objectives
Lyi. The Ly comprises (b) a sequence-level MI maximization objective Z.q, which attempts to maximize MI
between sequence representations of x; and z{', along with (c) a token-level MI maximization objectives Z;ox that
maximizes MI between a sequence representation (of both z; and ¢ ) and its tokens ( fp(z;) and fg(z%)).

Learning meaningful representations by estimat-
ing and maximizing MI is one of the prominent
contrastive learning strategies. Its effectiveness
has been demonstrated in both vision (Hjelm et al.,
2019; Bachman et al., 2019; Sordoni et al., 2021)
and text domains (Kong et al., 2020; Caron et al.,
2020; Giorgi et al., 2021). Deep Infomax (DIM)
(Hjelm et al., 2019) introduces global and local
MI maximization objectives for learning image
representations. Each objective is then used sepa-
rately according to the task. The authors also find
success in optimizing local MI maximization ob-
jective by maximizing MI between local features
and global features. Inspired by local Deep In-
foMax, Zhang et al. (2020) proposes a sentence
representation learning method that maximizes the
MI between the sentence-level representation and
its CNN-based n-gram contextual dependencies.

In this work, we leverage the MI maximization
strategies to learn text representations specifically
for short text clustering. We also investigate a
weighting method for appropriately balancing MI
objectives in order to improve clustering outcomes.

3 Proposed Method: MIST

In this section, we propose a short text clustering
framework consisting of two steps: we first train
a model using feature representation learning ob-
jectives as illustrated in Figure 1 and then apply
the k-means clustering algorithm at inference time.
The main idea of our solution lies in the proposed
objective function L that takes into account a MI

objective Ly that preserves a local invariance for
each sample and an unsupervised clustering objec-
tive Lcuster that captures categorical structure.

L= BL:MI + 77£Cluster7 (1)

where 3 and 7 represent the trade-off between Ly,
and Lcyster- We set S to 1, and 7 to 2 to give more
weight to Lcuster-

We describe our proposed method in the follow-
ing subsections. Section 3.1 provides a description
for the MI maximization learning procedure, which
includes (1) sequence-level and (2) token-level MI
maximization objectives, along with a weighting
function for balancing them. Section 3.2 presents
the auxiliary clustering objective that enforces the
encoder to create a suitable representation space
for clustering.

3.1 Representation Learning with M1
maximization

One strategy to improve clustering performance
is to create an embedding space that minimizes
local invariance for each individual sample via rep-
resentation learning. A prominent method for cre-
ating such embedding space is contrastive learning
which relies on contrasting representations through-
out the whole context (global feature). Short text
inputs are varied in terms of their lengths across
different datasets. Consequently, there are short-
text with smaller size (e.g., 6-8 words), as well as
longer texts (e.g., 22-28 words). The latter tends to
contain more words that may not be beneficial in
defining high-level semantics useful for clustering.



Optimizing merely the global-level objective, as
commonly done in contrastive learning, may not
be sufficient to train effective representations for
short text with weak signals problem.

To prevent local information from being ob-
scured, we adopt an additional learning objective
to constrain the representation of the entire text
to contain high MI with each of its token embed-
ding. In this investigation, we refer to the global
and local features as sequence and token representa-
tions, respectively. Therefore, we build our training
framework based on MI maximization strategy to
reduce discrepancy between sequence- and token-
level representations via their relative ability to
predict each other across the representation levels.

Computing the MI Objective. As shown in Fig-
ure 1, the objective Ly consists of two compo-
nents: (1) sequence-level MI maximization, Zeq,
and (2) token-level MI maximization, Zy.

ACMI = - (1 - )\)Iseq - /\Itoka (2)

where A corresponds to the balancing weight for
ZLseq and Lok objectives. We discovered that the
number of tokens is an important factor in deter-
mining the ratio between the two objectives. In
this study, we use a simple function to calculate the
weight A for each minibatch of size N depending
on the length of each text:

01 <
/\:max<0, {N;l—l-D (3)

and [; denotes the number of tokens in a text x;.
Further discussion can be found in section 4.3.1.

In the learning stage, we first randomly sample
a minibatch X° = z7,..., 2% of N original texts
with empirical probability distribution P. Then,
we generate an augmented version for each text
to obtain an augmented batch X* = z{,..., 2%,
where X° and X are of identical size. The en-
coder includes a pretrained transformer network
fo that encodes an input text z into a sequence
of contextualized token embeddings with length
I, fo(x) = {fe(l)(x) € RI}_, where i is the
token index and d is the number of dimension.
The sequence of token representations are then
subsequently averaged by mean pooling operation
m(fg(z)) to generate a sequence representation
denoted as g(x) = m(fs(x)) € R4

Computing the Sequence-level MI. The first
learning objective, Z,.4, aims to learn a representa-

tion that captures the entire context by contrasting
samples at the sequence-level. According to Tian
et al. (2020), contrastive learning is equivalent to
maximizing the lower bound of MI between the
representations of two texts. By treating each orig-
inal text g(z°) and its augmentation g(x®) as pos-
itive samples, we can define Z,., over the whole
minibatch as follows.

Toeq = 2 (Xuex I7P(9(2°); 9(2%)) @)

We adopt a Jensen-Shannon estimator (Nowozin
et al., 2016; Hj/g:lm et al., 2019) to estimate a lower
bound of MI, Z;J5P:

IJ5P (g(2°); g(a)) :=
Ep [~sp(—g(x?) - g(2%))] )
— Ep 5 [sp(g(2?) - g(29))]

where z“ is a negative augmented textual input
sampled from distribution P = P, and sp(z) =
log(1 + €*) is the softplus function.

Computing the Token-level MI. To further enrich
a text representation, we include a second learning
objective, Z;ok, to MIST. Inspired by Zhang et al.
(2020), this learning objective encourages a text
representation to incorporate and preserve local in-
formation shared across all contextualized tokens.
In particular, we attempt to maximize the average
MI between a sequence representation and all of its
token representations, while minimizing MI with
the tokens of other texts. Conceptually, this reflects
how much more precisely we can determine the
representation of a token given a sequence repre-
sentation compared to when we are unaware of
the sequence representation (Bachman et al., 2019).
We now define 7;,;. for each minibatch as

1
Tyop = —
tok = 57 (

lo )
ST ST (g0 £ () ©6)

reeXo i=1
lwa .
+ 3 ST (g(a%); £y (2))).
raeeXe =1

An estimated MI for each sequence g(z) and token
representations fe(z) (z) is as follows:

Z{P(g(a): £y (@) =
Es[—sp(—g(z) - £ (x))] %)
— By slsp(g(x) - 137(2))],

where Z is a different text on the minibatch.



3.2 Clustering with KL divergence

To encourage the coalescence of samples that are
most likely to belong to the same cluster, we also
employ a clustering objective Lcyyseer along with
the MI maximization objective. We follow the
clustering method proposed by Xie et al. (2016),
which are also used by Hadifar et al. (2019); Yin
et al. (2021) and Zhang et al. (2021). This method
involves computing soft cluster assignments, and
formulating the clustering objective using KL di-
vergence.

For the first step, we follow Xie et al. (2016)
using the Student’s t-distribution @) to compute
a soft cluster assignment for each text instance
x; € X and the centroid 5, where p, € {1,..., K}
for the dataset with K -clusters. In particular, we
compute the probability g;; of assigning a text x;
to a cluster py as follows.

a+1

(Ut lgay) = el /)=
Uk = =f 5o &)
D=1 (1 + llg(s) — iy /o)™
The « symbol represents the degree of freedom
of the distribution, and we set a to 1. Following
Zhang et al. (2021), each centroid py, is approxi-
mated by the linear clustering head cg.

The second step is calculating an auxiliary target
distribution P and utilizing it to assist in refining
clusters’ centroids. The main idea is to give more
importance towards text samples with high clus-
tering confidence. The probability p;; € P is
calculated as follows.

2
» qjk/ Zj/ 4qj'k
ik = 2
Zk’(qjk// Zj/ a5k
In order to match the soft cluster assigments to
the target distribution, the KL-divergence between

these two probability distributions, P and @), is
calculated as follows.

€)

K
Djk
(§ = KL[p;llg) = pji logq% (10)
k=1 ik

We then formulate it as a clustering loss for each
minibatch of size N as
N

ﬁCluster = Z EJC/N

j=1

Y

4 Experiments

4.1 Experimental Setup

Datasets. We conduct experiments and evaluate
the performance of MIST on the eight standard

short text clustering datasets, following previous
works (Rakib et al., 2020; Zhang et al., 2021; Pu-
gachev and Burtsev, 2021). Dataset descriptions
and statistics are shown in Appendix A.1

Implementation. We implement our model in
PyTorch (Paszke et al.,, 2017) and use the
paraphrase-mpnet-base-v2 in Sentence Transform-
ers library (Reimers and Gurevych, 2019b) as the
encoder, with a linear clustering head following
Zhang et al. (2021). The encoder is trained for
1,200 iterations for all datasets and we use Adam
optimizer with the batch size of 256. The learning
rate of the encoder and the clustering head are set to
6e—6 and 6e—5, respectively. We follow Xu et al.
(2017) and (Hadifar et al., 2019) by randomly se-
lect 10% of data as the validation set. Furthermore,
we follow Zhang et al. (2021) by not performing
any pre-processing operations on any of the eight
datasets. Although some of existing works prepro-
cessed the texts by removing symbols, stop words,
punctuation or converting them to lowercase.

For the contrastive loss functions in the training
stage, we consider original and augmented texts
as inputs since we discovered that they are more
effective than employing two augmented pairs in
our experiment. To generate augmented samples
for each text instance, we choose Contextual Aug-
menter (Kobayashi, 2018; Ma, 2019) using BERT
and a 20% word substitution ratio. We found that
this data augmentation setting can provide the best
results as shown in Appendix A.6. We use two
standard metrics, the clustering accuracy (ACC)
and the normalized mutual information (NMI) to
measure the clustering performance. The clustering
accuracy is calculated via the Hungarian algorithm
and the results are averaged over five trials.

4.2 Experimental Results

We compare the performance of our proposed
framework, MIST, with state-of-the-art methods
including STCC (Xu et al., 2017), Self-Train (Had-
ifar et al., 2019), HAC-SD (Rakib et al., 2020),
SCA-AE (Yin et al., 2021) and SCCL (Zhang
et al., 2021). As demonstrated in Table 1, MIST
achieves state-of-the-art results for most cases in
terms of Accuracy and NMI across eight bench-
mark datasets. In addition to the results reported
in the reference papers, we further compare our
method with SCCL, the state-of-the-art model that
also employs contrastive learning for short text
clustering, by reproducing SCCL in an end-to-end



AgNews SearchSnippets StackOverflow Biomedical
ACC NMI ACC NMI ACC NMI ACC NMI
Reported in the references
Bow' 27.6 2.6 24.3 9.3 18.5 14.0 14.3 9.2
TF-IDF' 345 11.9 31.5 19.2 58.4 58.7 28.3 232
Skip-Thought? - - 33.6 13.8 9.3 2.7 16.3 10.7
STCC - - 77.09 63.16 51.13 49.03 43.62 38.05
Self-Train* - - 77.1 56.7 59.8 54.8 54.8 47.1
SCA-AE 68.36 34.14 68.71 50.26 76.55 65.99 40.25 33.29
HAC-SD 81.84 54.57 82.69 63.76 64.80 59.48 40.13 33.51
SCCL? 88.2 68.2 85.2 71.1 75.5 74.5 46.2 41.5
Reimplement
SCCL w/ BERT 20% 87.10 67.18 84.78 70.02 49.48 47.50 44.90 39.73
SCCL-Multi w/ BERT 20% 86.95 67.06 83.88 69.50 53.56 46.99 44.70 39.65
Proposed Method
MIST 89.47 70.25 76.72 67.69 78.74 77.59 39.15 34.66
Tweet GoogleNews-TS GoogleNews-T GoogleNews-S
ACC NMI ACC NMI ACC NMI ACC NMI
Reported in the references
Bow' 49.7 73.6 57.5 81.9 49.8 73.2 49.0 73.5
TF-IDF' 57.0 80.7 68.0 88.9 58.9 79.3 61.9 83.0
Skip-Thought* - - - - - - - -
STCC - - - - - - - -
Self-Train* - - - - - - - -
SCA-AE 84.85 89.19 - - - - - -
HAC-SD 89.62 85.20 85.76 88.00 81.75 84.20 80.63 83.50
SCCLT 78.2 89.2 89.8 94.9 75.8 88.3 83.1 90.4
Reimplement
SCCL w/ BERT 20% 55.98 82.12 75.35 90.96 62.53 81.95 67.88 86.07
SCCL-Multi w/ BERT 20% 79.05 89.59 88.83 94.69 76.20 87.89 82.25 90.01
Proposed Method
MIST 91.75 95.12 89.93 95.47 75.97 88.97 81.91 90.79

Table 1: Experimental results on eight short text clustering datasets. T and 1 refer to results taken from Zhang et al.
(2021) and Hadifar et al. (2019), respectively; both originally present their results in one decimal place.

(original) as well as a multi-stage version analo-
gous to our architecture for fair comparison. The
reimplemented versions of SCCL employ the same
augmentation setting as our model. We refer to
these model as SCCL w/ BERT 20% and SCCL-
Multi w/ BERT 20%, respectively. The compara-
tive results in Table 1 show that MIST outperforms
SCCL, SCCL w/ BERT 20% and SCCL-Multi w/
BERT 20% in 11, 12 and 10 cases, respectively.

For datasets with small number of clusters,
Search Snippets and Biomedical, MIST does not
yield competitive results. We obtain a weaker re-
sult on Biomedical, since the dataset used to pre-
train our encoder is a general domain one. On
the other hand, Hadifar et al. (2019) produces the
best result using pretrained embeddings learned
from a large in-domain biomedical corpus. For the
SearchSnippets dataset, MIST also obtains a poorer
result. One probable explanation is that snippets
are typically composed of content words, as well
as the dataset has been automatically crawled and
preprocessed further by Phan et al. (2008), the pre-

processing steps include removing stop and rare
words. Due to the length and incoherency of each
text in this dataset, our algorithm becomes depen-
dent on keywords rather than contextual informa-
tion. Particularly, when it performs the token-level
MI maximization objective in the representation
learning stage, which enforces similarity between
each contextualized token representation and the
sequence representation of the incoherent text se-
quence. This can be problematic when the same
keywords also appear in different clusters.

For datasets with a large number of clusters,
such as GoogleNews, it is more likely that texts in
different clusters may share a similar content due
to fine-grained categorization, inducing ambiguity.
We conjecture that this ambiguity in textual data
and ground-truths is causing inaccurate predictions.
As GoogleNews-T only contains news headlines,
which are relatively short with few keywords. It
presents a challenge for clustering these texts into
a large number of categories. For example, "11am
adam sentenced abuse daughter" is a
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Figure 2: Accuracy for six different settings including four different weighting ratios between sequence- and
token-level MI maximization objectives. As well as, a setting where a clustering loss is absent (7 = 0), and a setting
where an MI loss is absent (5 = 0). Note that when we set /3 to 0, A has no effect.

news headline in a cluster of news related to Gerry
Adams, an IRA activist and the former president
of Sinn Féin. This sample contains same keywords
found in another cluster with news about domestic
violence. Another cause of inaccuracy is when the
content of texts in one cluster is a subtopic of the
content in another cluster.

We hypothesize that Rakib et al. (2020), which
employs hierarchical clustering and outlier removal
algorithms, can better deal with hierarchical nature
of data. Consequently, Rakib et al. (2020) out-
performs our method and SCCL on this scenario
in terms of Accuracy on this dataset. While our
method and SCCL both aim to improve representa-
tions through the use of contrastive representation
learning. As shown in Table 1, MIST also has lower
Accuracy on GoogleNews-T and GoogleNews-S
than the reported result of SCCL in the reference
paper and SCCL-Multi w/ BERT 20%, respectively.
Where we collected the experimental results of
SCCL w/ BERT 20% and SCCL-Multi w/ BERT
20% from the best iteration for each dataset in-
stead of using a stopping criterion, which is also
not mentioned in Zhang et al. (2021).

Although GoogleNews-S and GoogleNews-TS
share the same challenges as GoogleNews-T, clus-
tering texts in both datasets is more accurate due
to the benefit of additional context and infor-
mation in the texts themselves. MIST can de-
rive a very strong and comparable Accuracy to
SCCL on GoogleNews-S and outperforms SCCL
on GoogleNews-TS. This is because, GoogleNews-
S contains text snippets of Google News, and

GoogleNews-TS includes both the titles and snip-
pets.

Additional details and the comparison results
of SCCL in both reproduced versions with other
augmentation settings can be found in the A.5. Ac-
cording to the results in A.5, our method still out-
performs SCCL in both end-to-end and multi-phase
settings in 11 cases.

4.3 Ablation Study

To better understand the impact of each compo-
nent in our training procedure on the clustering
performance, we conduct additional experiments
by varying the ratio setting between sequence- and
token-level MI maximization objectives in the MI
loss L, as well as the clustering objective Lcyuster-

4.3.1 The effects of sequence- and token-MI
maximization objectives

Let us consider the effects of sequence- and token-
level MI maximization objectives on the clustering
performance. We report the performance of our
model in four different ratios by setting A in Eq.2
to 1, 0.5, 0, and also assigning the value to A using
Eq. 3. In this section, we refer to the MIST model
with a sequence-only MI maximization (A = 0)
and a token-only (A = 1) MI maximization objec-
tives as MIST-seq and MIST-tok, respectively. As
demonstrated in Figure 2, MIST with the ratio set
according to Eq.3 yields the best performance in
terms of Accuracy, except for Biomedical. NMI
tends to follow the same direction as Accuracy, as
demonstrated in Appendix A.2. This indicates that



the length of texts (the amount of token embed-
dings) is a major consideration in the selection of
appropriate ratios between both MI maximization
objectives. In addition, we also investigate the sce-
nario when both MI objectives are absent (3 = 0).
The ablation results reveal that when both MI max-
imization objectives are removed, the performance
suffers substantially on all datasets. This shows
that the MI loss is necessary for performance gain.

For datasets with long-length texts, such as
GoogleNews-TS, we discovered that MIST pro-
duces the best outcomes when token- and sequence-
level MI maximization objectives are weighted us-
ing A calculated by Eq. 3. Note that this setting
also outperforms the scenario when both objec-
tives are assigned the same weight (A = 0.5). We
can also see that MIST-tok always outperforms
MIST-seq. This shows that if the text is lengthy,
MIST-seq may not be sufficient. This is because in-
formative terms of the text are averaged with other
non-informative terms via mean pooling. Since
infrequent keywords in the text are more likely to
be overlooked, maximizing each local token em-
beddings with its sequence representation helps
alleviate this problem.

For datasets with very short-length texts, such
as StackOverflow and Tweet, the weighting ratio
based on Eq. 3 is equivalent to setting A to 0. In this
situation, MIST is identical to MIST-seq. MIST-
seq outperforms other settings, followed by MIST
with integrating the seq- and token-level MI maxi-
mization objectives which always performed better
than MIST-tok. For instance, texts in the Tweet
dataset are relatively short and contains solely con-
tent words rather than coherent texts. As a result,
our model with token-level MI maximization objec-
tive, MIST-tok and MIST with the combination of
token- and sequence-MI maximization objectives,
might emphasize on keywords that could also ap-
pear in multiple clusters, causing ambiguity.

4.3.2 The effects of soft cluster assigments

As shown in Figure 2, the clustering performance
drops significantly when we remove the cluster-
ing with KL divergence objective (n = 0). This
demonstrates that the categorical structure imposed
by simultaneously optimizing the clustering loss
with the representation learning objectives is a cru-
cial component that boosts performance. However,
this trend holds true for all datasets, except for
Biomedical. One possible explanation is that, since
the encoder was not pretrained with textual infor-

mation which was suitable for its specific domain,
the clustering loss does not benefit the efficiency
of our model than the representation objectives.

Furthermore, we observe that as the weight of
clustering increases, the performance continuously
improves until it reaches saturation as 7, the weight
for the clustering loss, approaches 2. As depicted
in Figure 3, the accuracy and NMI of AgNews both
improve as we gradually increase the clustering
weight until the appropriate value, which is 2 in
our experiment. The supplementary experimental
results can be found in Appendix A.4.
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Figure 3: The clustering performance on AgNews based
on the strength of the clustering loss. The strength
of both MI maximization objectives are kept constant
based on Eq. 3

5 Conclusion

We propose a novel multi-stage framework that
employs two contrastive learning objectives based
on MI maximization methods to produce effective
representations for short texts. To learn distinct
text representations, the first contrastive learning
objective maximizes MI between original texts and
their augmentations at the sequence level. And the
second objective maximizes MI between sequence
representations and their local tokens. Addition-
ally, we introduce a preliminary weighting function
for properly balancing the two MI maximization
objectives during training process.

We have conducted extensive experiments across
eight benchmark datasets for short text to study the
effectiveness of our method. Our model outper-
forms state-of-the-art methods in most cases on
Accuracy and NMI. This demonstrates that uti-
lizing the MI maximization strategy during the
contrastive learning process could potentially be
a promising tactic. Further study would be worth-
while since it might enhance the quality of textual
representations for other tasks



References

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017. A
simple but tough-to-beat baseline for sentence embed-
dings. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Philip Bachman, R. Devon Hjelm, and William Buch-
walter. 2019. Learning representations by maximiz-
ing mutual information across views. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 15509-15519.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya
Goyal, Piotr Bojanowski, and Armand Joulin. 2020.
Unsupervised learning of visual features by contrast-
ing cluster assignments. In Advances in Neural In-
formation Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurlPS 2020, December 6-12, 2020, virtual.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Con-
stant, Mario Guajardo-Cespedes, Steve Yuan, Chris
Tar, Yun-Hsuan Sung, Brian Strope, and Ray
Kurzweil. 2018. Universal sentence encoder. CoRR,
abs/1803.11175.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey E. Hinton. 2020. A simple framework for
contrastive learning of visual representations. In Pro-
ceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Vir-
tual Event, volume 119 of Proceedings of Machine
Learning Research, pages 1597-1607. PMLR.

John M. Giorgi, Osvald Nitski, Bo Wang, and Gary D.
Bader. 2021. Declutr: Deep contrastive learning for
unsupervised textual representations. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual
Event, August 1-6, 2021, pages 879-895. Association
for Computational Linguistics.

Jean-Bastien Grill, Florian Strub, Florent Altché,
Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires,
Zhaohan Guo, Mohammad Gheshlaghi Azar, Bilal
Piot, Koray Kavukcuoglu, Rémi Munos, and Michal
Valko. 2020. Bootstrap your own latent - A new
approach to self-supervised learning. In Advances
in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Amir Hadifar, Lucas Sterckx, Thomas Demeester, and
Chris Develder. 2019. A self-training approach
for short text clustering. In Proceedings of the

4th Workshop on Representation Learning for NLP
(RepL4NLP-2019). Association for Computational
Linguistics.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross B. Girshick. 2020. Momentum contrast for un-
supervised visual representation learning. In 2020
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR 2020, Seattle, WA, USA,
June 13-19, 2020, pages 9726-9735. Computer Vi-
sion Foundation / IEEE.

R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-
Marchildon, Karan Grewal, Philip Bachman, Adam
Trischler, and Yoshua Bengio. 2019. Learning deep
representations by mutual information estimation and
maximization. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net.

Sosuke Kobayashi. 2018. Contextual augmentation:
Data augmentation by words with paradigmatic rela-
tions. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, NAACL-HLT, New Orleans, Louisiana, USA,
June 1-6, 2018, Volume 2 (Short Papers), pages 452—
457. Association for Computational Linguistics.

Lingpeng Kong, Cyprien de Masson d’Autume, Lei
Yu, Wang Ling, Zihang Dai, and Dani Yogatama.
2020. A mutual information maximization perspec-
tive of language representation learning. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Edward Ma. 2019. Nlp augmentation.
https://github.com/makcedward/nlpaug.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. In Ist International Conference
on Learning Representations, ICLR 2013, Scottsdale,
Arizona, USA, May 2-4, 2013, Workshop Track Pro-
ceedings.

Toméas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013b. Distributed repre-
sentations of words and phrases and their composi-
tionality. In Advances in Neural Information Process-
ing Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States, pages 3111-3119.

Sosuke Nishikawa, Ryokan Ri, Ikuya Yamada, Yoshi-
masa Tsuruoka, and Isao Echizen. 2022. EASE:
Entity-aware contrastive learning of sentence em-
bedding. In Proceedings of the 2022 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 3870-3885, Seattle, United States.
Association for Computational Linguistics.


https://openreview.net/forum?id=SyK00v5xx
https://openreview.net/forum?id=SyK00v5xx
https://openreview.net/forum?id=SyK00v5xx
https://openreview.net/forum?id=SyK00v5xx
https://openreview.net/forum?id=SyK00v5xx
https://proceedings.neurips.cc/paper/2019/hash/ddf354219aac374f1d40b7e760ee5bb7-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/ddf354219aac374f1d40b7e760ee5bb7-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/ddf354219aac374f1d40b7e760ee5bb7-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/70feb62b69f16e0238f741fab228fec2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/70feb62b69f16e0238f741fab228fec2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/70feb62b69f16e0238f741fab228fec2-Abstract.html
http://arxiv.org/abs/1803.11175
http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
https://doi.org/10.18653/v1/2021.acl-long.72
https://doi.org/10.18653/v1/2021.acl-long.72
https://doi.org/10.18653/v1/2021.acl-long.72
https://proceedings.neurips.cc/paper/2020/hash/f3ada80d5c4ee70142b17b8192b2958e-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f3ada80d5c4ee70142b17b8192b2958e-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f3ada80d5c4ee70142b17b8192b2958e-Abstract.html
https://doi.org/10.18653/v1/w19-4322
https://doi.org/10.18653/v1/w19-4322
https://doi.org/10.18653/v1/w19-4322
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/CVPR42600.2020.00975
https://openreview.net/forum?id=Bklr3j0cKX
https://openreview.net/forum?id=Bklr3j0cKX
https://openreview.net/forum?id=Bklr3j0cKX
https://openreview.net/forum?id=Bklr3j0cKX
https://openreview.net/forum?id=Bklr3j0cKX
https://doi.org/10.18653/v1/n18-2072
https://doi.org/10.18653/v1/n18-2072
https://doi.org/10.18653/v1/n18-2072
https://doi.org/10.18653/v1/n18-2072
https://doi.org/10.18653/v1/n18-2072
https://openreview.net/forum?id=Syx79eBKwr
https://openreview.net/forum?id=Syx79eBKwr
https://openreview.net/forum?id=Syx79eBKwr
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://doi.org/10.18653/v1/2022.naacl-main.284
https://doi.org/10.18653/v1/2022.naacl-main.284
https://doi.org/10.18653/v1/2022.naacl-main.284
https://doi.org/10.18653/v1/2022.naacl-main.284
https://doi.org/10.18653/v1/2022.naacl-main.284

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka.
2016. f-gan: Training generative neural samplers
using variational divergence minimization. In Ad-
vances in Neural Information Processing Systems 29:
Annual Conference on Neural Information Process-
ing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pages 271-279.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch. In NIPS
2017 Workshop on Autodiff.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2014, October 25-29, 2014, Doha,
Qatar, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 1532—-1543. ACL.

Xuan Hieu Phan, Minh Le Nguyen, and Susumu
Horiguchi. 2008. Learning to classify short and
sparse text & web with hidden topics from large-
scale data collections. In Proceedings of the 17th
International Conference on World Wide Web, WWW
2008, Beijing, China, April 21-25, 2008, pages 91—
100. ACM.

Leonid Pugachev and Mikhail S. Burtsev. 2021.
Short text clustering with transformers. CoRR,
abs/2102.00541.

Md. Rashadul Hasan Rakib, Norbert Zeh, Magdalena
Jankowska, and Evangelos E. Milios. 2020. Enhance-
ment of short text clustering by iterative classification.
In Natural Language Processing and Information
Systems - 25th International Conference on Applica-
tions of Natural Language to Information Systems,
NLDB 2020, Saarbriicken, Germany, June 24-26,
2020, Proceedings, volume 12089 of Lecture Notes
in Computer Science, pages 105-117. Springer.

Nils Reimers and Iryna Gurevych. 2019a. Sentence-
bert: Sentence embeddings using siamese bert-
networks. CoRR, abs/1908.10084.

Nils Reimers and Iryna Gurevych. 2019b. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Nat-
ural Language Processing, EMNLP-IJCNLP 2019,
Hong Kong, China, November 3-7, 2019, pages 3980-
3990. Association for Computational Linguistics.

Alessandro Sordoni, Nouha Dziri, Hannes Schulz, Ge-
offrey J. Gordon, Philip Bachman, and Remi Tachet
des Combes. 2021. Decomposed mutual information
estimation for contrastive representation learning. In
Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Vir-
tual Event, volume 139 of Proceedings of Machine
Learning Research, pages 9859-9869. PMLR.

10

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan,
Cordelia Schmid, and Phillip Isola. 2020. What
makes for good views for contrastive learning? In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurlPS 2020, December 6-12,
2020, virtual.

Junyuan Xie, Ross B. Girshick, and Ali Farhadi. 2016.
Unsupervised deep embedding for clustering analysis.
In Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City,
NY, USA, June 19-24, 2016, volume 48 of JMLR
Workshop and Conference Proceedings, pages 478—
487. JMLR.org.

Jiaming Xu, Peng Wang, Guanhua Tian, Bo Xu, Jun
Zhao, Fangyuan Wang, and Hongwei Hao. 2015.
Short text clustering via convolutional neural net-
works. In Proceedings of the 1st Workshop on Vector
Space Modeling for Natural Language Processing,
VS@NAACL-HLT 2015, June 5, 2015, Denver, Col-
orado, USA, pages 62—-69. The Association for Com-
putational Linguistics.

Jiaming Xu, Bo Xu, Peng Wang, Suncong Zheng, Guan-
hua Tian, Jun Zhao, and Bo Xu. 2017. Self-taught
convolutional neural networks for short text cluster-
ing. Neural Networks, 88:22-31.

Hui Yin, Xiangyu Song, Shuigiao Yang, Guangyan
Huang, and Jianxin Li. 2021. Representation learn-
ing for short text clustering. In Web Information Sys-
tems Engineering - WISE 2021 - 22nd International
Conference on Web Information Systems Engineer-
ing, WISE 2021, Melbourne, VIC, Australia, October
26-29, 2021, Proceedings, Part II, volume 13081 of
Lecture Notes in Computer Science, pages 321-335.
Springer.

Jianhua Yin and Jianyong Wang. 2016. A model-based
approach for text clustering with outlier detection. In
32nd IEEE International Conference on Data Engi-
neering, ICDE 2016, Helsinki, Finland, May 16-20,
2016, pages 625-636. IEEE Computer Society.

Dessalew Yohannes and Yeregal Assabie. 2021.
Amharic text clustering using encyclopedic knowl-
edge with neural word embedding. CoRR,
abs/2105.00809.

Dejiao Zhang, Feng Nan, Xiaokai Wei, Shang-Wen Li,
Henghui Zhu, Kathleen R. McKeown, Ramesh Nalla-
pati, Andrew O. Arnold, and Bing Xiang. 2021. Sup-
porting clustering with contrastive learning. CoRR,
abs/2103.12953.

Dejiao Zhang, Wei Xiao, Henghui Zhu, Xiaofei Ma,
and Andrew Arnold. 2022. Virtual augmentation
supported contrastive learning of sentence represen-
tations. In Findings of the Association for Com-
putational Linguistics: ACL 2022, pages 864-876,
Dublin, Ireland. Association for Computational Lin-
guistics.


https://proceedings.neurips.cc/paper/2016/hash/cedebb6e872f539bef8c3f919874e9d7-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/cedebb6e872f539bef8c3f919874e9d7-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/cedebb6e872f539bef8c3f919874e9d7-Abstract.html
https://openreview.net/forum?id=BJJsrmfCZ
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.1145/1367497.1367510
https://doi.org/10.1145/1367497.1367510
https://doi.org/10.1145/1367497.1367510
https://doi.org/10.1145/1367497.1367510
https://doi.org/10.1145/1367497.1367510
http://arxiv.org/abs/2102.00541
https://doi.org/10.1007/978-3-030-51310-8_10
https://doi.org/10.1007/978-3-030-51310-8_10
https://doi.org/10.1007/978-3-030-51310-8_10
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
http://proceedings.mlr.press/v139/sordoni21a.html
http://proceedings.mlr.press/v139/sordoni21a.html
http://proceedings.mlr.press/v139/sordoni21a.html
https://proceedings.neurips.cc/paper/2020/hash/4c2e5eaae9152079b9e95845750bb9ab-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c2e5eaae9152079b9e95845750bb9ab-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c2e5eaae9152079b9e95845750bb9ab-Abstract.html
http://proceedings.mlr.press/v48/xieb16.html
https://doi.org/10.3115/v1/w15-1509
https://doi.org/10.3115/v1/w15-1509
https://doi.org/10.3115/v1/w15-1509
https://doi.org/10.1016/j.neunet.2016.12.008
https://doi.org/10.1016/j.neunet.2016.12.008
https://doi.org/10.1016/j.neunet.2016.12.008
https://doi.org/10.1016/j.neunet.2016.12.008
https://doi.org/10.1016/j.neunet.2016.12.008
https://doi.org/10.1007/978-3-030-91560-5_23
https://doi.org/10.1007/978-3-030-91560-5_23
https://doi.org/10.1007/978-3-030-91560-5_23
https://doi.org/10.1109/ICDE.2016.7498276
https://doi.org/10.1109/ICDE.2016.7498276
https://doi.org/10.1109/ICDE.2016.7498276
http://arxiv.org/abs/2105.00809
http://arxiv.org/abs/2105.00809
http://arxiv.org/abs/2105.00809
http://arxiv.org/abs/2103.12953
http://arxiv.org/abs/2103.12953
http://arxiv.org/abs/2103.12953
https://doi.org/10.18653/v1/2022.findings-acl.70
https://doi.org/10.18653/v1/2022.findings-acl.70
https://doi.org/10.18653/v1/2022.findings-acl.70
https://doi.org/10.18653/v1/2022.findings-acl.70
https://doi.org/10.18653/v1/2022.findings-acl.70

Xiang Zhang and Yann LeCun. 2015. Text understand-
ing from scratch. CoRR, abs/1502.01710.

Yan Zhang, Ruidan He, Zuozhu Liu, Kwan Hui Lim,
and Lidong Bing. 2020. An unsupervised sentence
embedding method by mutual information maximiza-
tion. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2020, Online, November 16-20, 2020,
pages 1601-1610. Association for Computational
Linguistics.

A Appendices
A.1 Datasets

Following previous works, we conduct experiments
and evaluate the performance of our model on the
eight short text clustering datasets. These datasets
only contain texts in English. All of them are pub-
licly available online. A summary of the statistics
of all datasets is listed in Table 2.

* AgNews: a subset of the dataset of English
news titles (Zhang and LeCun, 2015) across
4 different topics, where 2,000 samples from
each topic were randomly chosen by Rakib
et al. (2020).

SearchSnippets: a dataset comprising 12,340
web search snippets from 8 different cate-
gories (Phan et al., 2008).

Biomedical: 20,000 paper titles, from 20 dif-
ferent Medical Subject Headings (MeSH), ran-
domly selected by Xu et al. (2017) from the
PubMed data distributed by BioASQ3.

StackOverflow: challenge data published on
Kaggle and randomly chosen by Xu et al.
(2017), which consists of 20,000 question ti-
tles from Stack Overflow related to 20 distinct
tags.

Tweet: a dataset comprising 2,472 tweets with
89 groups (Yin and Wang, 2016).

GoogleNews: a collection of both titles and
text snippets from 11,109 news articles cover-
ing 152 events (Yin and Wang, 2016). Only
the titles and the text snippet of each news arti-
cle were extracted out of the GoogleNews-TS
to produce GoogleNews-T and GoogleNews-
S, respectively.

We spend up to 14 GPU hours on a Tesla V100
32G GPU to complete the training on all datasets
for each MIST model’s configuration.
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Dataset NCluster NDOC NWord
AgNews 4 8,000 23
SearchSnippets 8 12,340 18
Biomedical 20 20,000 13
StackOverflow 20 20,000 8
Tweet 89 2,472 8
Googlenews-TS 152 11,109 28
Googlenews-T 152 11,109 6
Googlenews-S 152 11,109 22

Table 2: Dataset statistics. NE'ste™: number of clus-
ters; NPo¢: number of short text documents; NWord :
average number of words in each document

A.2 The effects of sequence- and token-MI
maximization objectives on NMI

Figure 4 shows the effects of sequence- and token-
MI maximization objectives on NMI. It follows the
same trend as Accuracy as discussed in Section
4.3.1.

A.3 Positive Pairs in Constrastive Learning

It is a common practice in contrastive learning
frameworks to only consider augmented data as
inputs, excluding an original sample. However, we
adopt a different input scheme. We discovered that
feeding both original and augmented samples into
our contrastive learning framework (as shown in
Figure 1) yields better clustering results than ex-
clusively taking two augmented texts as an input
pair. One probable explanation is that when aug-
mented texts are created, the augmenter replaces
some keywords in original texts with new words.
Since short texts are typically short and include few
keywords, the absence of crucial words required
for text categorization has an impact on clustering
performance.

A.4 The impact of soft cluster assignments

As discussed in Section 4.3.2, the clustering per-
formance is substantially affected by varying the
weight of the clustering objective during training
representations process. Table 3 presents the per-
formance of MIST across eight datasets in three
situations, i.e., the coefficient of the clustering ob-
jective, n, in Eq.1 is assigned to 0, 1, and 2. The
optimal results for the majority in terms of ACC
and NMI are provided by MIST when 7 is set to 2.

A.5 SCCL Reimplementation

To thoroughly compare the performance of our con-
trastive learning strategy against SCCL, an existing
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Figure 4: NMI for six different settings including four different weighting ratios between sequence- and token-level
MI maximization objectives. As well as, a setting where a clustering loss is absent ( = 0), and a setting where an
MI loss is absent (8 = 0). Note that when we set 3 to 0, A has no effect.

AgNews SearchSnippets StackOverflow Biomedical
ACC NMI ACC NMI ACC NMI ACC NMI
MISTw/n =0 56.96 33.40 50.30 36.30 64.40 58.80 43.26 34.55
MISTw/np =1 81.40 57.39 70.99 56.90 76.41 71.92 47.66 40.34
MIST w/n =2 89.47 70.25 76.72 67.69 78.74 77.59 39.15 34.66
Tweet GoogleNewsTS GoogleNewsT GoogleNewsS
ACC NMI ACC NMI ACC NMI ACC NMI
MISTw/n =0 56.27 82.64 68.89 89.59 62.85 85.28 65.74 86.16
MISTw/n=1 64.46 86.27 74.86 91.89 66.91 87.04 71.98 88.58
MIST w/n =2 91.75 95.12 89.93 95.47 75.97 88.97 81.91 90.79

Table 3: The clustering results of MIST on three different weights of the clustering objective, 7.

contrastive learning method for short-text cluster-
ing, we reproduced SCCL in both original version
and a multiple-stage version (SCCL-Multi), by ap-
plying the k-means algorithm on top of SCCL rep-
resentations to make their pipeline identical to our
framework. We followed Zhang et al. (2021) and
used Contextual Augmenter, which was reported to
offer the best results, to generate augmented texts
for all training frameworks in this experiment. In
the reference paper, SCCL considers Contextual
Augmenter with three configurations by setting the
word substitution ratio of each text instance to 10%,
20%, and 30%. But their study does not identify
which configuration for Contextual Augmenter set-
ting produces the best outcomes. Therefore, we ex-
amine SCCL-Multi with three alternative masked
language models: BERT-base, RoBERTa and Dis-
tilBERT for augmented pairs generation to covers
all scenarios.

Table 4 reports the best clustering results for
SCCL and SCCL-Multi in all configurations ob-
tained during maximum iteration, as well as the
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best results for SCCL produced using the Contex-
tual Augmenter presented in Zhang et al. (2021).
The percentage of word replacement and masked
language models employed for augmented text gen-
eration have an impact on the clustering perfor-
mance of SCCL-Multi, since the best setting for
these two parameters varies across datasets. Our
contrastive learning approach outperforms both
SCCL-Multi and SCCL with the best augmenta-
tion parameters settings in 6 out of 8 datasets.

A.6 Exploration of Data Augmentations

According to Zhang et al. (2021), we investigate
the impact of the Contextual Augmenter configu-
rations in terms of masked language models and
substitution percentage, respectively. As shown
in Table 5, we found that MIST using augmented
texts generated from the BERT model with 20%
substitution rate during training step yields the best
overall performance. MIST with augmented texts
produced by other encoders with 20% substitution
rate also yield the outcomes close to those of BERT



with the same substitution rate.

A.7 Limitations

Despite the state-of-the-art performance, there are
several limitations, which we highlight in this sec-
tion. Firstly, the backbone of our model is pre-
trained using general domain data. Hence, when
our model encounters short texts in a specific do-
main, such as Biomedical, the performance drops
drastically. Furthermore, our representation learn-
ing procedure also performs poorly on short texts
with only content words or incoherent text se-
quences. Learning representations for incoherent
texts, by incorporating token-level MI maximiza-
tion objective, forces a sequence representation to
resemble each individual token embedding. For
short-texts with incoherent text, the token-level M1
maximization objective gives no further improve-
ment. This constraint should be taken into account
in future research.

Another limitation of our framework is that aug-
mented samples are crucial for the learning process
according to the general operation principle of con-
trastive learning. However, the best augmentation
strategy is still a subject of discussion and explo-
ration. A study in SCCL and comparison results
of our model with several augmentation settings
demonstrate that varied augmenter as well as dif-
ferent configuration factors have an on clustering
performance Additionally, even if the technique
and the parameters used to generate augmented
texts are exactly the same, there is a possibility that
the outcomes from the two trials may vary, adding
a variance to the performance results.

13



AgNews SearchSnippets StackOverflow Biomedical

ACC NMI ACC NMI ACC NMI ACC NMI

SCCL (in the reference paper) 88.20 68.20 85.20 71.10 75.50 74.50 46.20 41.50
SCCL w/ BERT 10% 87.20  66.94  83.70 70.05 71.40 71.28 46.00 40.06
SCCL-Multi w/ BERT 10% 87.2 66.94  83.40 69.88 77.30 73.76 46.00 40.13
SCCL w/ BERT 20% 87.10 6691 84.40 69.58 64.20 56.23 46.40 40.39
SCCL-Multi w/ BERT 20% 87.10 66.80  83.60 69.28 60.02 52.22 45.50 40.07
SCCL w/ BERT 30% 87.50  67.46 83.70 68.54 60.70 52.18 42.40 38.14
SCCL-Multi w/ BERT 30% 87.50 6745 82.60 66.45 60.90 52.29 42.30 37.95
SCCL w/ RoBERTa 10% 87.00  66.57 84.50 70.21 62.10 54.26 28.50 20.35
SCCL-Multi w/ RoBERTa 10% 87.00  66.55 84.10 70.14 61.40 53.05 28.50 20.34
SCCL w/ RoBERTa 20% 8520 6420  62.60 41.66 60.70 52.26 39.60 32.66
SCCL-Multi w/ RoBERTa 20% 85.10 6424  72.00 51.23 60.09 52.31 38.40 38.40
SCCL w/ RoBERTa 30% 84.00 6224  30.70 10.07 60.70 52.28 39.10 32.77
SCCL-Multi w/ RoBERTa 30% 84.00 62.26 30.70 10.05 60.90 52.44 39.50 32.63
SCCL w/ DistilBERT 10% 87.30  67.16 84.70 70.79 70.20 69.49 46.10 39.87
SCCL-Multi w/ DistilBERT 10% 8730 67.16 84.50 70.64 72.10 68.20 46.20 39.92
SCCL w/ DistilBERT 20% 86.80  65.87 84.70 70.62 71.40 69.38 46.30 39.94
SCCL-Multi w/ DistilBERT 20% 86.80  65.87 84.20 70.45 72.20 70.84 46.40 40.01
SCCL w/ DistilBERT 30% 87.20  66.77 85.00 71.63 70.80 70.04 46.30 40.49
SCCL-Multi w/ DistilBERT 30% 8720  66.75 84.60 71.35 76.50 72.57 46.40 40.58
Tweet GoogleNews-TS GoogleNews-T GoogleNews-S

ACC NMI ACC NMI ACC NMI ACC NMI

SCCL (in the reference paper) 78.20 89.20 89.80 94.90 75.80 88.30 83.10 90.40
SCCL w/ BERT 10% 56.80 81.91 70.10 89.49 62.50 81.53 69.00 86.29
SCCL-Multi w/ BERT 10% 7530  88.39 86.70 93.95 76.30 88.25 81.00 89.82
SCCL w/ BERT 20% 57.10 82.54  75.60 90.99 63.00 81.72 67.80 85.97
SCCL-Multi w/ BERT 20% 7820  89.41 88.70 94.70 76.20 87.97 81.10 89.60
SCCL w/ BERT 30% 56.6 82.23 74.2 90.83 61.30 81.20 64.9 89.78
SCCL-Multi w/ BERT 30% 78.80  89.58 89.90 94.91 75.60 87.88 82.10 89.77
SCCL w/ RoBERTa 10% 56.00  79.89  73.60 90.46 55.60 78.08 65.50 85.26
SCCL-Multi w/ RoBERTa 10% 71.10  85.86 86.60 93.94 56.90 78.52 80.50 89.50
SCCL w/ RoBERTa 20% 56.80  79.56  74.90 90.37 55.60 78.08 66.90 85.38
SCCL-Multi w/ RoBERTa 20% 7420  86.61 88.10 94.27 58.40 79.28 81.30 89.87
SCCL w/ RoBERTa 30% 53.80 7847  71.80 71.80 55.60 78.42 65.30 83.99
SCCL-Multi w/ RoBERTa 30% 63.60  76.98 85.20 93.53 56.60 78.42 78.00 88.14
SCCL w/ DistilBERT 10% 56.10 80.87  72.70 90.03 61.40 80.94 69.60 85.81
SCCL-Multi w/ DistilBERT 10% 78.80  88.91 87.70 94.25 74.30 87.78 79.70 89.20
SCCL w/ DistilBERT 20% 56.40 80.28 71.70 90.04 61.30 81.19 67.70 86.02
SCCL-Multi w/ DistilBERT 20% 77.10  88.61 86.50 94.03 75.10 87.51 79.50 89.70
SCCL w/ DistilBERT 30% 56.60 81.65 72.10 90.18 62.00 81.09 66.50 85.48
SCCL-Multi w/ DistilBERT 30% 76.00  88.39 88.50 94.18 75.80 87.60 79.10 89.01

Table 4: The clustering performances of the reimplemented SCCL and SCCL-Multi with nine different configurations
for Contextual Augmenter. These configurations are obtained by setting the word substitution ratio of each text
instance to 10% , 20%, and 30%, as well as using three alternative masked language models: BERT-base, ROBERTa,
and DistilBERT.
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ACC NMI ACC NMI ACC NMI ACC NMI
MIST w/ BERT 10% 87.74 66.99 75.98 67.71 77.78 76.42 37.51 33.97
MIST w/ BERT 20% 89.47 70.25 76.72 67.69 78.74 77.59 39.15 34.66
MIST w/ BERT 30% 86.33 66.09 81.46 67.71 73.60 71.55 39.79 34.61
MIST w/ RoBERTa 10% 87.51 66.81 75.64 67.11 77.84 76.50 38.61 35.11
MIST w/ RoBERTa 20% 88.85 69.12 76.21 68.52 77.74 76.41 37.17 31.62
MIST w/ RoBERTa 30% 86.43 66.4 73.77 65.72 77.76 77.03 29.48 27.38
MIST w/ DistilBERT 10% 87.22 66.44 74.96 65.89 77.67 76.30 38.29 34.29
MIST w/ DistilBERT 20% 89.42 70.26 75.74 67.85 77.72 77.05 38.29 32.31
MIST w/ DistilBERT 30% 87.96 67.66 74.23 64.11 77.67 76.34 38.83 34.63

Tweet GoogleNews-TS GoogleNews-T GoogleNews-S

ACC NMI ACC NMI ACC NMI ACC NMI
MIST w/ BERT 10% 88.76 93.04 86.65 94.76 72.41 87.99 76.56 89.3
MIST w/ BERT 20% 91.75 95.12 89.93 95.47 75.97 88.97 81.91 90.79
MIST w/ BERT 30% 90.07 94.14 89.28 94.98 75.63 88.55 80.74 89.99
MIST w/ RoBERTa 10% 88.18 92.64 85.85 94.48 73.68 88.00 77.89 89.52
MIST w/ RoBERTa 20% 90.97 94.67 90.10 95.35 74.61 88.27 77.62 90.00
MIST w/ RoBERTa 30% 83.40 95.15 88.29 96.20 70.27 88.24 78.43 89.82
MIST w/ DistillBERT 10% 85.48 92.24 85.15 94.42 75.89 88.51 77.55 89.69
MIST w/ DistillBERT 20% 91.24 94.99 90.16 95.43 74.14 88.53 82.54 90.69
MIST w/ DistillBERT 30% 86.56 92.50 85.85 94.46 75.57 88.50 77.18 89.52

Table 5: The clustering performance of MIST when feeding augmented texts generated by Contextual Augmenter
with nine different configurations as inputs.
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