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Abstract
Short text clustering poses substantial chal-001
lenges due to the limited amount of informa-002
tion provided by each sample. Previous efforts003
based on dense representations are still inad-004
equate since texts from different clusters are005
not sufficiently segregated in the embedding006
space prior to the clustering step. Even though007
the state-of-the-art technique integrated con-008
trastive learning with a soft clustering objective009
to address this issue, the step in which all local010
tokens are summarized to form a sequence rep-011
resentation for the whole text may include noise012
that obscures the key information. We propose013
a framework called MIST: Mutual Information014
Maximization for Short Text Clustering, which015
overcomes the information limitation by max-016
imizing the mutual information between text017
samples on both sequence and token levels. We018
assess the performance of our proposed method019
on eight standard short text datasets. Experi-020
mental results show that MIST outperforms021
the state-of-the-art methods in terms of Accu-022
racy or Normalized Mutual Information in most023
cases.024

1 Introduction025

Text clustering is a vital task for a wide range of026

downstream applications. It aims to partition texts027

into groups of similar categories in an unsupervised028

manner. The growth of social media, discussion029

forums and news aggregator websites has led to a030

large number of short-length texts being produced031

daily. Hence, clustering these short texts is gain-032

ing more attention and becoming a crucial step for033

many real-world applications from recommenda-034

tion to text retrieval (Yohannes and Assabie, 2021).035

In short texts, words and phrases that are most036

representative of the text content, usually appear037

only once. This exacerbates the sparsity problem,038

posing an additional hurdle for clustering short039

texts. Traditional methods, such as Bag-of-Words040

(BoW) and TF-IDF, provide relatively sparse rep-041

resentation vectors with limited descriptive power.042

Hence, they perform poorly when clustered with a 043

standard distance-based clustering method, such as 044

k-means, in this situation (Hadifar et al., 2019). 045

To address this problem, deep neural networks 046

have been employed to map high dimensional data 047

into meaningful dense representations in a lower di- 048

mensional space. Most recent techniques for deep 049

clustering follow a multi-phase style, in which the 050

clustering process is carried out after learning fea- 051

ture representations (Xu et al., 2017; Hadifar et al., 052

2019; Yin et al., 2021). Unfortunately, the cluster- 053

ing performance of these methods remain unsatis- 054

factory. One probable explanation is that texts still 055

have a lot of overlap among categories in the latent 056

space before clustering (Zhang et al., 2021). 057

Another deep clustering strategy optimizes rep- 058

resentation learning and clustering objectives si- 059

multaneously (Zhang et al., 2021; Xie et al., 2016). 060

To achieve desirable outcomes, Zhang et al. (2021) 061

propose a method that adopts contrastive represen- 062

tation learning, which has been successful in self- 063

supervised learning and is able to assist in spread- 064

ing out the overlapped categories so that effective 065

representations can be acquired, by simultaneously 066

optimizing it along with a soft clustering target. 067

As shown in Zhang et al. (2021), improving rep- 068

resentation is crucial for enhancing the clustering 069

performance. Nevertheless, the contrastive learn- 070

ing method used in Zhang et al. (2021) only con- 071

siders whole text representations while optimizing 072

a contrasting objective. In particular, these repre- 073

sentations are formed by summarizing all token 074

representations in each text instance via mean pool- 075

ing, including uninformative noises. We conjecture 076

that this allows constructing a representation in 077

which important information used to describe the 078

text content may be obscured by noise, potentially 079

affecting the clustering performance. Therefore, 080

there is still a gap that needs to be explored in order 081

to derive an efficient representation for short text 082

clustering that does not omit informative terms. 083
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In this paper, we introduce the Mutual084

Information Maximization Framework for Short085

Text Clustering (MIST), a multi-stage framework086

that learns textual representations by incorporating087

two contrastive representation learning objectives088

together with soft clustering assignments. Our con-089

trastive learning procedure is based on mutual infor-090

mation (MI) maximization, which facilitates us to091

compare the semantic similarity across different hi-092

erarchical levels to achieve multiple purposes. First,093

we perform contrastive learning at a sequence-level094

by contrasting between entire text representations.095

Additionally, we also attempt to enforce each text096

representation to extract information that is shared097

across all of its tokens. In particular, we maximize098

the MI between a text representation and all of its099

local-level token embeddings to extract the shared100

information among all the individual words in the101

text. As a consequence, the information essential102

to describe texts is preserved in the representations.103

MIST handles the substantial challenge of short104

text clustering, and our contributions are as follows:105

• We propose MIST, a multi-stage framework106

for short text clustering, which integrates two107

contrastive learning objectives: (1) sequence-108

level and (2) token-level MI maximization to109

learn effective short text representations and110

also be useful for clustering.111

• To effectively balance sequence- and token-112

level MI maximizations, we use a simple dy-113

namic weighting function that adjust the ob-114

jectives ratio in accordance with the length of115

subword tokens in each minibatch.116

• We conduct an extensive experiment to eval-117

uate the performance of MIST over eight118

standard benchmarks of short text clustering.119

MIST improves the clustering performance in120

terms of Accuracy and NMI for most cases121

compared to the current state-of-the-art.122

2 Related Work123

Short Text Clustering. There are a number of124

approaches to overcome the sparsity of short text125

representations, such as (1) multi-stage approaches126

which break down the clustering framework into127

multiple stages, (2) clustering enhancement algo-128

rithms that apply outlier removal, and (3) a joint129

framework that simultaneously optimizes both rep-130

resentation learning and clustering objectives.131

Several multi-stage works perform clustering132

after learning feature representations. Pretrained-133

word embeddings (Mikolov et al., 2013a,b; Pen- 134

nington et al., 2014) and neural networks are 135

adopted to transform data into meaningful repre- 136

sentations. Xu et al. (2015, 2017) use a convo- 137

lutional neural network to learn non-biased deep 138

feature representations by fitting the output units 139

with pretrained-binary codes from a dimensional- 140

ity reduction method. Hadifar et al. (2019) uti- 141

lize Smooth Inverse Frequency (SIF) (Arora et al., 142

2017) to obtain weighted word embeddings. Dur- 143

ing training, they enrich discriminative features by 144

tuning an autoencoder with soft clustering assign- 145

ments from a clustering objective. For the afore- 146

mentioned works, k-means clustering is then em- 147

ployed on trained representations to get the final 148

clusters. 149

Another direction is to enhance the performance 150

of the initial clustering with an iterative classifica- 151

tion algorithm. Rakib et al. (2020) proposed an 152

ECIC algorithm which detects and removes out- 153

liers in each iteration. Moreover, they make use 154

of word embeddings by averaging them to repre- 155

sent each text, and combine the ECIC algorithm 156

with hierarchical clustering. To boost the cluster- 157

ing quality further, (Pugachev and Burtsev, 2021) 158

exploit deep sentence representations (Cer et al., 159

2018) and made modifications to the ECIC algo- 160

rithm. 161

The recent state-of-the-art, SCCL (Zhang et al., 162

2021), leverages a contrastive method from self- 163

supervised learning to encourage greater separa- 164

tion between overlapped categories in the original 165

data space. By jointly optimizing a contrastive loss 166

and a clustering objective (Reimers and Gurevych, 167

2019a), SCCL outperforms prior works and yields 168

cutting-edge results. In addition, other constrastive 169

learning methods have also been experimented on 170

short-text clustering, such as using entities for con- 171

trastive learning to provide supervision signals for 172

their related sentences (Nishikawa et al., 2022), and 173

using virtual augmentation for contrastive learn- 174

ing to circumvent the discrete nature of language 175

(Zhang et al., 2022). However, these methods do 176

not outperform SCCL on short text clustering. 177

Self-supervised learning. Self-supervision has 178

gained popularity and become a common technique 179

in unsupervised representation learning for a vari- 180

ety of downstream purposes. Many recent accom- 181

plishments have been based on contrastive repre- 182

sentation learning (Chen et al., 2020; He et al., 183

2020; Caron et al., 2020; Grill et al., 2020). 184
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Figure 1: (a) The overview of the training stage of MIST. For each pair of original text xi, and its augmented
version xa

i , MIST simultaneously optimizes the clustering objective LCluster, and the MI maximization objectives
LMI. The LMI comprises (b) a sequence-level MI maximization objective Iseq, which attempts to maximize MI
between sequence representations of xi and xa

i , along with (c) a token-level MI maximization objectives Itok that
maximizes MI between a sequence representation (of both xi and xa

i ) and its tokens ( fθ(xi) and fθ(x
a
i )).

Learning meaningful representations by estimat-185

ing and maximizing MI is one of the prominent186

contrastive learning strategies. Its effectiveness187

has been demonstrated in both vision (Hjelm et al.,188

2019; Bachman et al., 2019; Sordoni et al., 2021)189

and text domains (Kong et al., 2020; Caron et al.,190

2020; Giorgi et al., 2021). Deep Infomax (DIM)191

(Hjelm et al., 2019) introduces global and local192

MI maximization objectives for learning image193

representations. Each objective is then used sepa-194

rately according to the task. The authors also find195

success in optimizing local MI maximization ob-196

jective by maximizing MI between local features197

and global features. Inspired by local Deep In-198

foMax, Zhang et al. (2020) proposes a sentence199

representation learning method that maximizes the200

MI between the sentence-level representation and201

its CNN-based n-gram contextual dependencies.202

In this work, we leverage the MI maximization203

strategies to learn text representations specifically204

for short text clustering. We also investigate a205

weighting method for appropriately balancing MI206

objectives in order to improve clustering outcomes.207

3 Proposed Method: MIST208

In this section, we propose a short text clustering209

framework consisting of two steps: we first train210

a model using feature representation learning ob-211

jectives as illustrated in Figure 1 and then apply212

the k-means clustering algorithm at inference time.213

The main idea of our solution lies in the proposed214

objective function L that takes into account a MI215

objective LMI that preserves a local invariance for 216

each sample and an unsupervised clustering objec- 217

tive LCluster that captures categorical structure. 218

L = βLMI + ηLCluster, (1) 219

where β and η represent the trade-off between LMI, 220

and LCluster. We set β to 1, and η to 2 to give more 221

weight to LCluster. 222

We describe our proposed method in the follow- 223

ing subsections. Section 3.1 provides a description 224

for the MI maximization learning procedure, which 225

includes (1) sequence-level and (2) token-level MI 226

maximization objectives, along with a weighting 227

function for balancing them. Section 3.2 presents 228

the auxiliary clustering objective that enforces the 229

encoder to create a suitable representation space 230

for clustering. 231

3.1 Representation Learning with MI 232

maximization 233

One strategy to improve clustering performance 234

is to create an embedding space that minimizes 235

local invariance for each individual sample via rep- 236

resentation learning. A prominent method for cre- 237

ating such embedding space is contrastive learning 238

which relies on contrasting representations through- 239

out the whole context (global feature). Short text 240

inputs are varied in terms of their lengths across 241

different datasets. Consequently, there are short- 242

text with smaller size (e.g., 6-8 words), as well as 243

longer texts (e.g., 22-28 words). The latter tends to 244

contain more words that may not be beneficial in 245

defining high-level semantics useful for clustering. 246
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Optimizing merely the global-level objective, as247

commonly done in contrastive learning, may not248

be sufficient to train effective representations for249

short text with weak signals problem.250

To prevent local information from being ob-251

scured, we adopt an additional learning objective252

to constrain the representation of the entire text253

to contain high MI with each of its token embed-254

ding. In this investigation, we refer to the global255

and local features as sequence and token representa-256

tions, respectively. Therefore, we build our training257

framework based on MI maximization strategy to258

reduce discrepancy between sequence- and token-259

level representations via their relative ability to260

predict each other across the representation levels.261

Computing the MI Objective. As shown in Fig-262

ure 1, the objective LMI consists of two compo-263

nents: (1) sequence-level MI maximization, Iseq,264

and (2) token-level MI maximization, Itok.265

LMI = − (1− λ)Iseq − λItok, (2)266

where λ corresponds to the balancing weight for267

Iseq and Itok objectives. We discovered that the268

number of tokens is an important factor in deter-269

mining the ratio between the two objectives. In270

this study, we use a simple function to calculate the271

weight λ for each minibatch of size N depending272

on the length of each text:273

λ = max

(
0,

⌊
0.1

N

N∑
i=1

li − 1

⌉)
, (3)274

and li denotes the number of tokens in a text xi.275

Further discussion can be found in section 4.3.1.276

In the learning stage, we first randomly sample277

a minibatch Xo = xo1, ..., x
o
N of N original texts278

with empirical probability distribution P. Then,279

we generate an augmented version for each text280

to obtain an augmented batch Xa = xa1, ..., x
a
N ,281

where Xo and Xa are of identical size. The en-282

coder includes a pretrained transformer network283

fθ that encodes an input text x into a sequence284

of contextualized token embeddings with length285

l, fθ(x) := {f (i)
θ (x) ∈ Rd}li=1, where i is the286

token index and d is the number of dimension.287

The sequence of token representations are then288

subsequently averaged by mean pooling operation289

m(fθ(x)) to generate a sequence representation290

denoted as g(x) = m(fθ(x)) ∈ Rd.291

Computing the Sequence-level MI. The first292

learning objective, Iseq, aims to learn a representa-293

tion that captures the entire context by contrasting 294

samples at the sequence-level. According to Tian 295

et al. (2020), contrastive learning is equivalent to 296

maximizing the lower bound of MI between the 297

representations of two texts. By treating each orig- 298

inal text g(xo) and its augmentation g(xa) as pos- 299

itive samples, we can define Iseq over the whole 300

minibatch as follows. 301

Iseq = 1
N (
∑

x∈X ÎJSD(g(xo); g(xa))) (4) 302

We adopt a Jensen-Shannon estimator (Nowozin 303

et al., 2016; Hjelm et al., 2019) to estimate a lower 304

bound of MI, ÎJSD
θ : 305

ÎJSD
θ (g(xo); g(xa)) :=

EP [−sp(−g(xo) · g(xa))]
− EP×P̃ [sp(g(x

o) · g(x̃a))] ,
(5) 306

where x̃a is a negative augmented textual input 307

sampled from distribution P̃ = P, and sp(z) = 308

log(1 + ez) is the softplus function. 309

Computing the Token-level MI. To further enrich 310

a text representation, we include a second learning 311

objective, Itok, to MIST. Inspired by Zhang et al. 312

(2020), this learning objective encourages a text 313

representation to incorporate and preserve local in- 314

formation shared across all contextualized tokens. 315

In particular, we attempt to maximize the average 316

MI between a sequence representation and all of its 317

token representations, while minimizing MI with 318

the tokens of other texts. Conceptually, this reflects 319

how much more precisely we can determine the 320

representation of a token given a sequence repre- 321

sentation compared to when we are unaware of 322

the sequence representation (Bachman et al., 2019). 323

We now define Itok for each minibatch as 324

Itok =
1

2N
(

∑
xo∈Xo

lxo∑
i=1

ÎJSD(g(xo); f
(i)
θ (xo)))

+
∑

xa∈Xa

lxa∑
i=1

ÎJSD(g(xa); f
(i)
θ (xa))).

(6) 325

An estimated MI for each sequence g(x) and token 326

representations f (i)
θ (x) is as follows: 327

ÎJSD
θ (g(x); f

(i)
θ (x)) :=

EP[−sp(−g(x) · f (i)
θ (x))]

− EP×P̃[sp(g(x) · f
(i)
θ (x̃))],

(7) 328

where x̃ is a different text on the minibatch. 329
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3.2 Clustering with KL divergence330

To encourage the coalescence of samples that are331

most likely to belong to the same cluster, we also332

employ a clustering objective LCluster along with333

the MI maximization objective. We follow the334

clustering method proposed by Xie et al. (2016),335

which are also used by Hadifar et al. (2019); Yin336

et al. (2021) and Zhang et al. (2021). This method337

involves computing soft cluster assignments, and338

formulating the clustering objective using KL di-339

vergence.340

For the first step, we follow Xie et al. (2016)341

using the Student’s t-distribution Q to compute342

a soft cluster assignment for each text instance343

xj ∈ X and the centroid µk where µk ∈ {1, ...,K}344

for the dataset with K-clusters. In particular, we345

compute the probability qjk of assigning a text xj346

to a cluster µk as follows.347

qjk =
(1 + ∥g(xj)− µk∥22 /α)

−α+1
2∑K

k′=1(1 + ∥g(xj)− µk′∥22 /α)
−α+1

2

(8)348

The α symbol represents the degree of freedom349

of the distribution, and we set α to 1. Following350

Zhang et al. (2021), each centroid µk is approxi-351

mated by the linear clustering head cθ.352

The second step is calculating an auxiliary target353

distribution P and utilizing it to assist in refining354

clusters’ centroids. The main idea is to give more355

importance towards text samples with high clus-356

tering confidence. The probability pjk ∈ P is357

calculated as follows.358

pjk =
q2jk/

∑
j′ qj′k∑

k′(q
2
jk′/

∑
j′ qj′k′)

(9)359

In order to match the soft cluster assigments to360

the target distribution, the KL-divergence between361

these two probability distributions, P and Q, is362

calculated as follows.363

ℓCj = KL [pj ||qj ] =
K∑
k=1

pjk log
pjk
qjk

(10)364

We then formulate it as a clustering loss for each365

minibatch of size N as366

LCluster =
N∑
j=1

ℓCj /N. (11)367

4 Experiments368

4.1 Experimental Setup369

Datasets. We conduct experiments and evaluate370

the performance of MIST on the eight standard371

short text clustering datasets, following previous 372

works (Rakib et al., 2020; Zhang et al., 2021; Pu- 373

gachev and Burtsev, 2021). Dataset descriptions 374

and statistics are shown in Appendix A.1 375

Implementation. We implement our model in 376

PyTorch (Paszke et al., 2017) and use the 377

paraphrase-mpnet-base-v2 in Sentence Transform- 378

ers library (Reimers and Gurevych, 2019b) as the 379

encoder, with a linear clustering head following 380

Zhang et al. (2021). The encoder is trained for 381

1,200 iterations for all datasets and we use Adam 382

optimizer with the batch size of 256. The learning 383

rate of the encoder and the clustering head are set to 384

6e−6 and 6e−5, respectively. We follow Xu et al. 385

(2017) and (Hadifar et al., 2019) by randomly se- 386

lect 10% of data as the validation set. Furthermore, 387

we follow Zhang et al. (2021) by not performing 388

any pre-processing operations on any of the eight 389

datasets. Although some of existing works prepro- 390

cessed the texts by removing symbols, stop words, 391

punctuation or converting them to lowercase. 392

For the contrastive loss functions in the training 393

stage, we consider original and augmented texts 394

as inputs since we discovered that they are more 395

effective than employing two augmented pairs in 396

our experiment. To generate augmented samples 397

for each text instance, we choose Contextual Aug- 398

menter (Kobayashi, 2018; Ma, 2019) using BERT 399

and a 20% word substitution ratio. We found that 400

this data augmentation setting can provide the best 401

results as shown in Appendix A.6. We use two 402

standard metrics, the clustering accuracy (ACC) 403

and the normalized mutual information (NMI) to 404

measure the clustering performance. The clustering 405

accuracy is calculated via the Hungarian algorithm 406

and the results are averaged over five trials. 407

4.2 Experimental Results 408

We compare the performance of our proposed 409

framework, MIST, with state-of-the-art methods 410

including STCC (Xu et al., 2017), Self-Train (Had- 411

ifar et al., 2019), HAC-SD (Rakib et al., 2020), 412

SCA-AE (Yin et al., 2021) and SCCL (Zhang 413

et al., 2021). As demonstrated in Table 1, MIST 414

achieves state-of-the-art results for most cases in 415

terms of Accuracy and NMI across eight bench- 416

mark datasets. In addition to the results reported 417

in the reference papers, we further compare our 418

method with SCCL, the state-of-the-art model that 419

also employs contrastive learning for short text 420

clustering, by reproducing SCCL in an end-to-end 421
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AgNews SearchSnippets StackOverflow Biomedical
ACC NMI ACC NMI ACC NMI ACC NMI

Reported in the references
BoW† 27.6 2.6 24.3 9.3 18.5 14.0 14.3 9.2
TF-IDF† 34.5 11.9 31.5 19.2 58.4 58.7 28.3 23.2
Skip-Thought‡ - - 33.6 13.8 9.3 2.7 16.3 10.7
STCC - - 77.09 63.16 51.13 49.03 43.62 38.05
Self-Train‡ - - 77.1 56.7 59.8 54.8 54.8 47.1
SCA-AE 68.36 34.14 68.71 50.26 76.55 65.99 40.25 33.29
HAC-SD 81.84 54.57 82.69 63.76 64.80 59.48 40.13 33.51
SCCL† 88.2 68.2 85.2 71.1 75.5 74.5 46.2 41.5
Reimplement
SCCL w/ BERT 20% 87.10 67.18 84.78 70.02 49.48 47.50 44.90 39.73
SCCL-Multi w/ BERT 20% 86.95 67.06 83.88 69.50 53.56 46.99 44.70 39.65
Proposed Method
MIST 89.47 70.25 76.72 67.69 78.74 77.59 39.15 34.66

Tweet GoogleNews-TS GoogleNews-T GoogleNews-S
ACC NMI ACC NMI ACC NMI ACC NMI

Reported in the references
BoW† 49.7 73.6 57.5 81.9 49.8 73.2 49.0 73.5
TF-IDF† 57.0 80.7 68.0 88.9 58.9 79.3 61.9 83.0
Skip-Thought‡ - - - - - - - -
STCC - - - - - - - -
Self-Train‡ - - - - - - - -
SCA-AE 84.85 89.19 - - - - - -
HAC-SD 89.62 85.20 85.76 88.00 81.75 84.20 80.63 83.50
SCCL† 78.2 89.2 89.8 94.9 75.8 88.3 83.1 90.4
Reimplement
SCCL w/ BERT 20% 55.98 82.12 75.35 90.96 62.53 81.95 67.88 86.07
SCCL-Multi w/ BERT 20% 79.05 89.59 88.83 94.69 76.20 87.89 82.25 90.01
Proposed Method
MIST 91.75 95.12 89.93 95.47 75.97 88.97 81.91 90.79

Table 1: Experimental results on eight short text clustering datasets. † and ‡ refer to results taken from Zhang et al.
(2021) and Hadifar et al. (2019), respectively; both originally present their results in one decimal place.

(original) as well as a multi-stage version analo-422

gous to our architecture for fair comparison. The423

reimplemented versions of SCCL employ the same424

augmentation setting as our model. We refer to425

these model as SCCL w/ BERT 20% and SCCL-426

Multi w/ BERT 20%, respectively. The compara-427

tive results in Table 1 show that MIST outperforms428

SCCL, SCCL w/ BERT 20% and SCCL-Multi w/429

BERT 20% in 11, 12 and 10 cases, respectively.430

For datasets with small number of clusters,431

Search Snippets and Biomedical, MIST does not432

yield competitive results. We obtain a weaker re-433

sult on Biomedical, since the dataset used to pre-434

train our encoder is a general domain one. On435

the other hand, Hadifar et al. (2019) produces the436

best result using pretrained embeddings learned437

from a large in-domain biomedical corpus. For the438

SearchSnippets dataset, MIST also obtains a poorer439

result. One probable explanation is that snippets440

are typically composed of content words, as well441

as the dataset has been automatically crawled and442

preprocessed further by Phan et al. (2008), the pre-443

processing steps include removing stop and rare 444

words. Due to the length and incoherency of each 445

text in this dataset, our algorithm becomes depen- 446

dent on keywords rather than contextual informa- 447

tion. Particularly, when it performs the token-level 448

MI maximization objective in the representation 449

learning stage, which enforces similarity between 450

each contextualized token representation and the 451

sequence representation of the incoherent text se- 452

quence. This can be problematic when the same 453

keywords also appear in different clusters. 454

For datasets with a large number of clusters, 455

such as GoogleNews, it is more likely that texts in 456

different clusters may share a similar content due 457

to fine-grained categorization, inducing ambiguity. 458

We conjecture that this ambiguity in textual data 459

and ground-truths is causing inaccurate predictions. 460

As GoogleNews-T only contains news headlines, 461

which are relatively short with few keywords. It 462

presents a challenge for clustering these texts into 463

a large number of categories. For example, "liam 464

adam sentenced abuse daughter" is a 465
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Figure 2: Accuracy for six different settings including four different weighting ratios between sequence- and
token-level MI maximization objectives. As well as, a setting where a clustering loss is absent (η = 0), and a setting

where an MI loss is absent (β = 0). Note that when we set β to 0, λ has no effect.

news headline in a cluster of news related to Gerry466

Adams, an IRA activist and the former president467

of Sinn Féin. This sample contains same keywords468

found in another cluster with news about domestic469

violence. Another cause of inaccuracy is when the470

content of texts in one cluster is a subtopic of the471

content in another cluster.472

We hypothesize that Rakib et al. (2020), which473

employs hierarchical clustering and outlier removal474

algorithms, can better deal with hierarchical nature475

of data. Consequently, Rakib et al. (2020) out-476

performs our method and SCCL on this scenario477

in terms of Accuracy on this dataset. While our478

method and SCCL both aim to improve representa-479

tions through the use of contrastive representation480

learning. As shown in Table 1, MIST also has lower481

Accuracy on GoogleNews-T and GoogleNews-S482

than the reported result of SCCL in the reference483

paper and SCCL-Multi w/ BERT 20%, respectively.484

Where we collected the experimental results of485

SCCL w/ BERT 20% and SCCL-Multi w/ BERT486

20% from the best iteration for each dataset in-487

stead of using a stopping criterion, which is also488

not mentioned in Zhang et al. (2021).489

Although GoogleNews-S and GoogleNews-TS490

share the same challenges as GoogleNews-T, clus-491

tering texts in both datasets is more accurate due492

to the benefit of additional context and infor-493

mation in the texts themselves. MIST can de-494

rive a very strong and comparable Accuracy to495

SCCL on GoogleNews-S and outperforms SCCL496

on GoogleNews-TS. This is because, GoogleNews-497

S contains text snippets of Google News, and498

GoogleNews-TS includes both the titles and snip- 499

pets. 500

Additional details and the comparison results 501

of SCCL in both reproduced versions with other 502

augmentation settings can be found in the A.5. Ac- 503

cording to the results in A.5, our method still out- 504

performs SCCL in both end-to-end and multi-phase 505

settings in 11 cases. 506

4.3 Ablation Study 507

To better understand the impact of each compo- 508

nent in our training procedure on the clustering 509

performance, we conduct additional experiments 510

by varying the ratio setting between sequence- and 511

token-level MI maximization objectives in the MI 512

loss LMI, as well as the clustering objective LCluster. 513

4.3.1 The effects of sequence- and token-MI 514

maximization objectives 515

Let us consider the effects of sequence- and token- 516

level MI maximization objectives on the clustering 517

performance. We report the performance of our 518

model in four different ratios by setting λ in Eq.2 519

to 1, 0.5, 0, and also assigning the value to λ using 520

Eq. 3. In this section, we refer to the MIST model 521

with a sequence-only MI maximization (λ = 0) 522

and a token-only (λ = 1) MI maximization objec- 523

tives as MIST-seq and MIST-tok, respectively. As 524

demonstrated in Figure 2, MIST with the ratio set 525

according to Eq.3 yields the best performance in 526

terms of Accuracy, except for Biomedical. NMI 527

tends to follow the same direction as Accuracy, as 528

demonstrated in Appendix A.2. This indicates that 529
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the length of texts (the amount of token embed-530

dings) is a major consideration in the selection of531

appropriate ratios between both MI maximization532

objectives. In addition, we also investigate the sce-533

nario when both MI objectives are absent (β = 0).534

The ablation results reveal that when both MI max-535

imization objectives are removed, the performance536

suffers substantially on all datasets. This shows537

that the MI loss is necessary for performance gain.538

For datasets with long-length texts, such as539

GoogleNews-TS, we discovered that MIST pro-540

duces the best outcomes when token- and sequence-541

level MI maximization objectives are weighted us-542

ing λ calculated by Eq. 3. Note that this setting543

also outperforms the scenario when both objec-544

tives are assigned the same weight (λ = 0.5). We545

can also see that MIST-tok always outperforms546

MIST-seq. This shows that if the text is lengthy,547

MIST-seq may not be sufficient. This is because in-548

formative terms of the text are averaged with other549

non-informative terms via mean pooling. Since550

infrequent keywords in the text are more likely to551

be overlooked, maximizing each local token em-552

beddings with its sequence representation helps553

alleviate this problem.554

For datasets with very short-length texts, such555

as StackOverflow and Tweet, the weighting ratio556

based on Eq. 3 is equivalent to setting λ to 0. In this557

situation, MIST is identical to MIST-seq. MIST-558

seq outperforms other settings, followed by MIST559

with integrating the seq- and token-level MI maxi-560

mization objectives which always performed better561

than MIST-tok. For instance, texts in the Tweet562

dataset are relatively short and contains solely con-563

tent words rather than coherent texts. As a result,564

our model with token-level MI maximization objec-565

tive, MIST-tok and MIST with the combination of566

token- and sequence-MI maximization objectives,567

might emphasize on keywords that could also ap-568

pear in multiple clusters, causing ambiguity.569

4.3.2 The effects of soft cluster assigments570

As shown in Figure 2, the clustering performance571

drops significantly when we remove the cluster-572

ing with KL divergence objective (η = 0). This573

demonstrates that the categorical structure imposed574

by simultaneously optimizing the clustering loss575

with the representation learning objectives is a cru-576

cial component that boosts performance. However,577

this trend holds true for all datasets, except for578

Biomedical. One possible explanation is that, since579

the encoder was not pretrained with textual infor-580

mation which was suitable for its specific domain, 581

the clustering loss does not benefit the efficiency 582

of our model than the representation objectives. 583

Furthermore, we observe that as the weight of 584

clustering increases, the performance continuously 585

improves until it reaches saturation as η, the weight 586

for the clustering loss, approaches 2. As depicted 587

in Figure 3, the accuracy and NMI of AgNews both 588

improve as we gradually increase the clustering 589

weight until the appropriate value, which is 2 in 590

our experiment. The supplementary experimental 591

results can be found in Appendix A.4.

Figure 3: The clustering performance on AgNews based
on the strength of the clustering loss. The strength
of both MI maximization objectives are kept constant
based on Eq. 3

592

5 Conclusion 593

We propose a novel multi-stage framework that 594

employs two contrastive learning objectives based 595

on MI maximization methods to produce effective 596

representations for short texts. To learn distinct 597

text representations, the first contrastive learning 598

objective maximizes MI between original texts and 599

their augmentations at the sequence level. And the 600

second objective maximizes MI between sequence 601

representations and their local tokens. Addition- 602

ally, we introduce a preliminary weighting function 603

for properly balancing the two MI maximization 604

objectives during training process. 605

We have conducted extensive experiments across 606

eight benchmark datasets for short text to study the 607

effectiveness of our method. Our model outper- 608

forms state-of-the-art methods in most cases on 609

Accuracy and NMI. This demonstrates that uti- 610

lizing the MI maximization strategy during the 611

contrastive learning process could potentially be 612

a promising tactic. Further study would be worth- 613

while since it might enhance the quality of textual 614

representations for other tasks 615
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A Appendices852

A.1 Datasets853

Following previous works, we conduct experiments854

and evaluate the performance of our model on the855

eight short text clustering datasets. These datasets856

only contain texts in English. All of them are pub-857

licly available online. A summary of the statistics858

of all datasets is listed in Table 2.859

• AgNews: a subset of the dataset of English860

news titles (Zhang and LeCun, 2015) across861

4 different topics, where 2,000 samples from862

each topic were randomly chosen by Rakib863

et al. (2020).864

• SearchSnippets: a dataset comprising 12,340865

web search snippets from 8 different cate-866

gories (Phan et al., 2008).867

• Biomedical: 20,000 paper titles, from 20 dif-868

ferent Medical Subject Headings (MeSH), ran-869

domly selected by Xu et al. (2017) from the870

PubMed data distributed by BioASQ3.871

• StackOverflow: challenge data published on872

Kaggle and randomly chosen by Xu et al.873

(2017), which consists of 20,000 question ti-874

tles from Stack Overflow related to 20 distinct875

tags.876

• Tweet: a dataset comprising 2,472 tweets with877

89 groups (Yin and Wang, 2016).878

• GoogleNews: a collection of both titles and879

text snippets from 11,109 news articles cover-880

ing 152 events (Yin and Wang, 2016). Only881

the titles and the text snippet of each news arti-882

cle were extracted out of the GoogleNews-TS883

to produce GoogleNews-T and GoogleNews-884

S, respectively.885

We spend up to 14 GPU hours on a Tesla V100886

32G GPU to complete the training on all datasets887

for each MIST model’s configuration.888

Dataset NCluster NDoc NWord

AgNews 4 8,000 23
SearchSnippets 8 12,340 18

Biomedical 20 20,000 13
StackOverflow 20 20,000 8

Tweet 89 2,472 8
Googlenews-TS 152 11,109 28
Googlenews-T 152 11,109 6
Googlenews-S 152 11,109 22

Table 2: Dataset statistics. NCluster: number of clus-
ters; NDoc: number of short text documents; NWord :
average number of words in each document

A.2 The effects of sequence- and token-MI 889

maximization objectives on NMI 890

Figure 4 shows the effects of sequence- and token- 891

MI maximization objectives on NMI. It follows the 892

same trend as Accuracy as discussed in Section 893

4.3.1. 894

A.3 Positive Pairs in Constrastive Learning 895

It is a common practice in contrastive learning 896

frameworks to only consider augmented data as 897

inputs, excluding an original sample. However, we 898

adopt a different input scheme. We discovered that 899

feeding both original and augmented samples into 900

our contrastive learning framework (as shown in 901

Figure 1) yields better clustering results than ex- 902

clusively taking two augmented texts as an input 903

pair. One probable explanation is that when aug- 904

mented texts are created, the augmenter replaces 905

some keywords in original texts with new words. 906

Since short texts are typically short and include few 907

keywords, the absence of crucial words required 908

for text categorization has an impact on clustering 909

performance. 910

A.4 The impact of soft cluster assignments 911

As discussed in Section 4.3.2, the clustering per- 912

formance is substantially affected by varying the 913

weight of the clustering objective during training 914

representations process. Table 3 presents the per- 915

formance of MIST across eight datasets in three 916

situations, i.e., the coefficient of the clustering ob- 917

jective, η, in Eq.1 is assigned to 0, 1, and 2. The 918

optimal results for the majority in terms of ACC 919

and NMI are provided by MIST when η is set to 2. 920

A.5 SCCL Reimplementation 921

To thoroughly compare the performance of our con- 922

trastive learning strategy against SCCL, an existing 923
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Figure 4: NMI for six different settings including four different weighting ratios between sequence- and token-level
MI maximization objectives. As well as, a setting where a clustering loss is absent (η = 0), and a setting where an

MI loss is absent (β = 0). Note that when we set β to 0, λ has no effect.

AgNews SearchSnippets StackOverflow Biomedical
ACC NMI ACC NMI ACC NMI ACC NMI

MIST w/ η = 0 56.96 33.40 50.30 36.30 64.40 58.80 43.26 34.55
MIST w/ η = 1 81.40 57.39 70.99 56.90 76.41 71.92 47.66 40.34
MIST w/ η = 2 89.47 70.25 76.72 67.69 78.74 77.59 39.15 34.66

Tweet GoogleNewsTS GoogleNewsT GoogleNewsS
ACC NMI ACC NMI ACC NMI ACC NMI

MIST w/ η = 0 56.27 82.64 68.89 89.59 62.85 85.28 65.74 86.16
MIST w/ η = 1 64.46 86.27 74.86 91.89 66.91 87.04 71.98 88.58
MIST w/ η = 2 91.75 95.12 89.93 95.47 75.97 88.97 81.91 90.79

Table 3: The clustering results of MIST on three different weights of the clustering objective, η.

contrastive learning method for short-text cluster-924

ing, we reproduced SCCL in both original version925

and a multiple-stage version (SCCL-Multi), by ap-926

plying the k-means algorithm on top of SCCL rep-927

resentations to make their pipeline identical to our928

framework. We followed Zhang et al. (2021) and929

used Contextual Augmenter, which was reported to930

offer the best results, to generate augmented texts931

for all training frameworks in this experiment. In932

the reference paper, SCCL considers Contextual933

Augmenter with three configurations by setting the934

word substitution ratio of each text instance to 10%,935

20%, and 30%. But their study does not identify936

which configuration for Contextual Augmenter set-937

ting produces the best outcomes. Therefore, we ex-938

amine SCCL-Multi with three alternative masked939

language models: BERT-base, RoBERTa and Dis-940

tilBERT for augmented pairs generation to covers941

all scenarios.942

Table 4 reports the best clustering results for943

SCCL and SCCL-Multi in all configurations ob-944

tained during maximum iteration, as well as the945

best results for SCCL produced using the Contex- 946

tual Augmenter presented in Zhang et al. (2021). 947

The percentage of word replacement and masked 948

language models employed for augmented text gen- 949

eration have an impact on the clustering perfor- 950

mance of SCCL-Multi, since the best setting for 951

these two parameters varies across datasets. Our 952

contrastive learning approach outperforms both 953

SCCL-Multi and SCCL with the best augmenta- 954

tion parameters settings in 6 out of 8 datasets. 955

A.6 Exploration of Data Augmentations 956

According to Zhang et al. (2021), we investigate 957

the impact of the Contextual Augmenter configu- 958

rations in terms of masked language models and 959

substitution percentage, respectively. As shown 960

in Table 5, we found that MIST using augmented 961

texts generated from the BERT model with 20% 962

substitution rate during training step yields the best 963

overall performance. MIST with augmented texts 964

produced by other encoders with 20% substitution 965

rate also yield the outcomes close to those of BERT 966

12



with the same substitution rate.967

A.7 Limitations968

Despite the state-of-the-art performance, there are969

several limitations, which we highlight in this sec-970

tion. Firstly, the backbone of our model is pre-971

trained using general domain data. Hence, when972

our model encounters short texts in a specific do-973

main, such as Biomedical, the performance drops974

drastically. Furthermore, our representation learn-975

ing procedure also performs poorly on short texts976

with only content words or incoherent text se-977

quences. Learning representations for incoherent978

texts, by incorporating token-level MI maximiza-979

tion objective, forces a sequence representation to980

resemble each individual token embedding. For981

short-texts with incoherent text, the token-level MI982

maximization objective gives no further improve-983

ment. This constraint should be taken into account984

in future research.985

Another limitation of our framework is that aug-986

mented samples are crucial for the learning process987

according to the general operation principle of con-988

trastive learning. However, the best augmentation989

strategy is still a subject of discussion and explo-990

ration. A study in SCCL and comparison results991

of our model with several augmentation settings992

demonstrate that varied augmenter as well as dif-993

ferent configuration factors have an on clustering994

performance Additionally, even if the technique995

and the parameters used to generate augmented996

texts are exactly the same, there is a possibility that997

the outcomes from the two trials may vary, adding998

a variance to the performance results.999
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AgNews SearchSnippets StackOverflow Biomedical
ACC NMI ACC NMI ACC NMI ACC NMI

SCCL (in the reference paper) 88.20 68.20 85.20 71.10 75.50 74.50 46.20 41.50
SCCL w/ BERT 10% 87.20 66.94 83.70 70.05 71.40 71.28 46.00 40.06
SCCL-Multi w/ BERT 10% 87.2 66.94 83.40 69.88 77.30 73.76 46.00 40.13
SCCL w/ BERT 20% 87.10 66.91 84.40 69.58 64.20 56.23 46.40 40.39
SCCL-Multi w/ BERT 20% 87.10 66.80 83.60 69.28 60.02 52.22 45.50 40.07
SCCL w/ BERT 30% 87.50 67.46 83.70 68.54 60.70 52.18 42.40 38.14
SCCL-Multi w/ BERT 30% 87.50 67.45 82.60 66.45 60.90 52.29 42.30 37.95
SCCL w/ RoBERTa 10% 87.00 66.57 84.50 70.21 62.10 54.26 28.50 20.35
SCCL-Multi w/ RoBERTa 10% 87.00 66.55 84.10 70.14 61.40 53.05 28.50 20.34
SCCL w/ RoBERTa 20% 85.20 64.20 62.60 41.66 60.70 52.26 39.60 32.66
SCCL-Multi w/ RoBERTa 20% 85.10 64.24 72.00 51.23 60.09 52.31 38.40 38.40
SCCL w/ RoBERTa 30% 84.00 62.24 30.70 10.07 60.70 52.28 39.10 32.77
SCCL-Multi w/ RoBERTa 30% 84.00 62.26 30.70 10.05 60.90 52.44 39.50 32.63
SCCL w/ DistilBERT 10% 87.30 67.16 84.70 70.79 70.20 69.49 46.10 39.87
SCCL-Multi w/ DistilBERT 10% 87.30 67.16 84.50 70.64 72.10 68.20 46.20 39.92
SCCL w/ DistilBERT 20% 86.80 65.87 84.70 70.62 71.40 69.38 46.30 39.94
SCCL-Multi w/ DistilBERT 20% 86.80 65.87 84.20 70.45 72.20 70.84 46.40 40.01
SCCL w/ DistilBERT 30% 87.20 66.77 85.00 71.63 70.80 70.04 46.30 40.49
SCCL-Multi w/ DistilBERT 30% 87.20 66.75 84.60 71.35 76.50 72.57 46.40 40.58

Tweet GoogleNews-TS GoogleNews-T GoogleNews-S
ACC NMI ACC NMI ACC NMI ACC NMI

SCCL (in the reference paper) 78.20 89.20 89.80 94.90 75.80 88.30 83.10 90.40
SCCL w/ BERT 10% 56.80 81.91 70.10 89.49 62.50 81.53 69.00 86.29
SCCL-Multi w/ BERT 10% 75.30 88.39 86.70 93.95 76.30 88.25 81.00 89.82
SCCL w/ BERT 20% 57.10 82.54 75.60 90.99 63.00 81.72 67.80 85.97
SCCL-Multi w/ BERT 20% 78.20 89.41 88.70 94.70 76.20 87.97 81.10 89.60
SCCL w/ BERT 30% 56.6 82.23 74.2 90.83 61.30 81.20 64.9 89.78
SCCL-Multi w/ BERT 30% 78.80 89.58 89.90 94.91 75.60 87.88 82.10 89.77
SCCL w/ RoBERTa 10% 56.00 79.89 73.60 90.46 55.60 78.08 65.50 85.26
SCCL-Multi w/ RoBERTa 10% 71.10 85.86 86.60 93.94 56.90 78.52 80.50 89.50
SCCL w/ RoBERTa 20% 56.80 79.56 74.90 90.37 55.60 78.08 66.90 85.38
SCCL-Multi w/ RoBERTa 20% 74.20 86.61 88.10 94.27 58.40 79.28 81.30 89.87
SCCL w/ RoBERTa 30% 53.80 78.47 71.80 71.80 55.60 78.42 65.30 83.99
SCCL-Multi w/ RoBERTa 30% 63.60 76.98 85.20 93.53 56.60 78.42 78.00 88.14
SCCL w/ DistilBERT 10% 56.10 80.87 72.70 90.03 61.40 80.94 69.60 85.81
SCCL-Multi w/ DistilBERT 10% 78.80 88.91 87.70 94.25 74.30 87.78 79.70 89.20
SCCL w/ DistilBERT 20% 56.40 80.28 71.70 90.04 61.30 81.19 67.70 86.02
SCCL-Multi w/ DistilBERT 20% 77.10 88.61 86.50 94.03 75.10 87.51 79.50 89.70
SCCL w/ DistilBERT 30% 56.60 81.65 72.10 90.18 62.00 81.09 66.50 85.48
SCCL-Multi w/ DistilBERT 30% 76.00 88.39 88.50 94.18 75.80 87.60 79.10 89.01

Table 4: The clustering performances of the reimplemented SCCL and SCCL-Multi with nine different configurations
for Contextual Augmenter. These configurations are obtained by setting the word substitution ratio of each text
instance to 10% , 20%, and 30%, as well as using three alternative masked language models: BERT-base, RoBERTa,
and DistilBERT.
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AgNews SearchSnippets StackOverflow Biomedical
ACC NMI ACC NMI ACC NMI ACC NMI

MIST w/ BERT 10% 87.74 66.99 75.98 67.71 77.78 76.42 37.51 33.97
MIST w/ BERT 20% 89.47 70.25 76.72 67.69 78.74 77.59 39.15 34.66
MIST w/ BERT 30% 86.33 66.09 81.46 67.71 73.60 71.55 39.79 34.61
MIST w/ RoBERTa 10% 87.51 66.81 75.64 67.11 77.84 76.50 38.61 35.11
MIST w/ RoBERTa 20% 88.85 69.12 76.21 68.52 77.74 76.41 37.17 31.62
MIST w/ RoBERTa 30% 86.43 66.4 73.77 65.72 77.76 77.03 29.48 27.38
MIST w/ DistilBERT 10% 87.22 66.44 74.96 65.89 77.67 76.30 38.29 34.29
MIST w/ DistilBERT 20% 89.42 70.26 75.74 67.85 77.72 77.05 38.29 32.31
MIST w/ DistilBERT 30% 87.96 67.66 74.23 64.11 77.67 76.34 38.83 34.63

Tweet GoogleNews-TS GoogleNews-T GoogleNews-S
ACC NMI ACC NMI ACC NMI ACC NMI

MIST w/ BERT 10% 88.76 93.04 86.65 94.76 72.41 87.99 76.56 89.3
MIST w/ BERT 20% 91.75 95.12 89.93 95.47 75.97 88.97 81.91 90.79
MIST w/ BERT 30% 90.07 94.14 89.28 94.98 75.63 88.55 80.74 89.99
MIST w/ RoBERTa 10% 88.18 92.64 85.85 94.48 73.68 88.00 77.89 89.52
MIST w/ RoBERTa 20% 90.97 94.67 90.10 95.35 74.61 88.27 77.62 90.00
MIST w/ RoBERTa 30% 83.40 95.15 88.29 96.20 70.27 88.24 78.43 89.82
MIST w/ DistillBERT 10% 85.48 92.24 85.15 94.42 75.89 88.51 77.55 89.69
MIST w/ DistillBERT 20% 91.24 94.99 90.16 95.43 74.14 88.53 82.54 90.69
MIST w/ DistillBERT 30% 86.56 92.50 85.85 94.46 75.57 88.50 77.18 89.52

Table 5: The clustering performance of MIST when feeding augmented texts generated by Contextual Augmenter
with nine different configurations as inputs.
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