
RoboTube: Learning Household Manipulation from
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Figure 1: RoboTube covers a wide range of household manipulation tasks. RoboTube constructs a human video
dataset and a suite of simulated twin environments for reproducible research. The first row shows the examples
of the real-world video frames; the second row shows the simulated twin environments.

Abstract: We aim to build a useful, reproducible, democratized benchmark for
learning household robotic manipulation from human videos. To realize this goal, a
diverse, high-quality human video dataset curated specifically for robots is desired.
To evaluate the learning progress, a simulated twin environment that resembles the
appearance and the dynamics of the physical world would help roboticists and AI
researchers validate their algorithms convincingly and efficiently before testing on
a real robot. Hence, we present RoboTube, a human video dataset, and its digital
twins for learning various robotic manipulation tasks. RoboTube video dataset
contains 5,000 video demonstrations recorded with multi-view RGB-D cameras
of human-performing everyday household tasks including manipulation of rigid
objects, articulated objects, granular objects, deformable objects, and bimanual
manipulation. RT-sim, as the simulated twin environments, consists of 3D scanned,
photo-realistic objects, minimizing the visual domain gap between the physical
world and the simulated environment. We hope RoboTube can lower the barrier
to robotics research for beginners while facilitating reproducible research in the
community.

Keywords: Learning from Videos, Video Demonstration Dataset, Real2Sim,
Self-supervised Reward Learning, Robotic Simulation Benchmark

1 Introduction
Robot learning from human videos unlocks the potential to enable everyday household manipulation
tasks [1–4]. Prior works have made fruitful progress on manipulation tasks such as pick-and-place by
learning from offline video datasets [5–9]. As these video datasets facilitate the pioneer exploration
of robotic manipulation learning, they have several deficiencies for further exploration:

(1) Task complexity. Many of the algorithms and frameworks [5–7] focus on the easy end of the
task spectrum, e.g., pick-and-place, push, relocating rigid objects, etc. While a practical robotic ma-
nipulation system should be able to handle complex tasks that involve articulated objects, deformable
objects, granular objects, or bimanual coordination. Empowering a robotic manipulation system with
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XIRL(real) [14] ✕ ✕ ✕ ✕ Diverse N.A 1X 100 videos
G-in-W [5] ✓ ✕ ✕ ✕ DemoAT gripper open/close 1X 12 hours
TCN-pour [4] ✓ ✕ ✕ ✓ Human hands N.A 1X 300 videos
RLV [3] ✕ ✕ ✕ ✕ Human hands N.A 2X 300 videos
DexMV [7] ✓ ✓ ✓ ✕ Human hands 6 object models 3X 700 videos
VIME [6] ✕ ✓ ✕ ✕ DemoAT gripper transition 2X 2000 videos

RoboTube ✓ ✓ ✓ ✓ Human hands 60 object models 5X 5000 videos

Table 1: Comparison of video demonstration datasets. We compare the features of RoboTube video dataset
with related video demonstration datasets. In this table, DemoAT means demonstration assistive tools. In the
number of tasks section, n X meams n groups of tasks.

human videos benefits many real-world applications and largely extends the research scopes. (2)
Data diversity & relevance. Learning a large range of diverse manipulation behaviors from Visual
demonstrations that are collected on a static lab table with limited object instances [7, 10–12] is
difficult, if not impossible. In contrast, the massive-scale open-world video datatsets [8, 9] contributes
to generalization in robotic manipulation [1, 2, 13]. However, as they are not originally designed
for robotics, they introduce unnecessary challenges with irrelevant content. For example, in Ego4D
dataset [9], the video frames may have content beyond human manipulation including a crowd in a
concert live, human walking, etc. (3) Baseline comparison. A standard benchmark that functions
on comparing different proposed methods still remains a missing part in the community. As the
exact copies of the objects in the videos are hard to be obtained, the roboticists may set up different
experimental settings with different objects to validate the learned models. For example, [1, 13] both
learned reward functions and induced policies from the same something-something dataset [8] but
applied the learned models to different robotic experiments, due to the lack of a standard benchmark,
which makes the meaningful, reproducible, democratized comparison among different baseline
methods extremely hard.

To address the deficiencies mentioned above, we introduce RoboTube (Fig. 2), a human video dataset
of around 5,000 RGB-D video clips.

1. To ensure the task complexity, RoboTube setups environments for 5 task families, namely
drawer-closing (articulated object with prismatic joint), mug-pouring (granular object), cabinet-
opening (articulated object with revolute joint), bimanual-pot-lifting (bimanual coordination), and
cloth-folding (deformable object).
2. To take the data diversity into consideration, for each task family, we ask 9 demonstrators to
conduct the task with diverse but natural hand poses upon different objects of the same category
which have variations in shapes, materials, and textures. We collect the videos in both clean and
cluttered scenes. To support the reproduction and comparisons of different algorithms and enable
wider applicability, the RoboTube video dataset contains multiple functionalities. We collect both
successful (expert video demonstrations) and failed (negative video demonstrations) episodes,
concerning 50 tasks and 60 objects. Two temporally synchronized video streams are recorded from
a first-person viewpoint (FPV) and a third-person viewpoint (TPV).
3. To benchmark the baseline methods, we construct a simulated twin environment, RT-sim, for
the tasks and objects. With RT-sim, researchers can make a fair comparison of their approaches
with the baseline methods and can validate their algorithms convincingly and efficiently before
conducting more complex experiments on real robots.

We summarize our contributions as follows: We identify the issues in existing human videos for robot
learning, and curate a benchmark, RoboTube, which is designed by jointly considering the human
video dataset and the evaluation platform. RoboTube not only introduces more complex tasks with
diverse object types, but also supports meaningful, reproducible, democratized comparisons among
different baseline methods.
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2 Related Work
2.1 Offline Datasets for Robotic Manipulation

Leveraging offline datasets to learn diverse manipulation behaviors has been studied by previous
researchers.

Video datasets for perception tasks. The computer vision community has curated many human-
object-interaction (HOI) video datasets for different perception tasks [8, 9, 15]. [1, 13] have proved
that it is effective to learn a generalizable reward function from the something-something dataset [8].
R3M [2] also exploited Ego4D [9] to improve efficiency in downstream motor control tasks. Despite
the rich prior knowledge that HOI videos have provided, such datasets are not originally designed for
robotics. For example, Ego4D dataset [9] contains content beyond human manipulation including
crowd in a concert live, human walking, etc.

Action-included demonstrations for robotic manipulation. An action-included demonstration usu-
ally contains both the visual observation and the corresponding actions of the robots, which provides
strong supervision for a robot to learn complex behaviors. Previous works collect demonstrations on
a static lab table [10–12]. Recently, several works [16, 17] take an effort to enrich the data diversity
and show better generalization ability in imitation learning of everyday household tasks. Despite the
tremendous progress in learning from action-included demonstrations has been made, such datasets
suffer a key problem: it is time-consuming and expensive to collect everyday household activities
by guiding and/or teleoperating a real robot entity. In contrast, one can record videos anywhere and
anytime with a portable camera.

Video-only demonstrations for robotic manipulation. Consider the issues of other two kinds of
datasets, roboticists have also constructed video-only datasets for robotic manipulation [3–7, 14].
These datasets can be divided into two mainstreams: robot-friendly video demonstrations [5, 6],
human-friendly video demonstrations (human videos) [3, 4, 7, 14]. Song et al. [5] propose a robot-
friendly interface for collecting video demonstrations anywhere using assistive tools (DemoAT).
Besides DemoAT, researchers also propose to collect videos with human hands for robotic manipula-
tion. DexMV [7] conducts a novel pipeline to bridge 3D vision and dexterous manipulation. A more
detailed comparison of RoboTube’s features to those of related datasets can be found in Table ??.

2.2 Algorithms for Robot Learning from Videos

Endowing robots with the ability to learn skills by simply observing humans has been an emblematic
north star problem in robotics [14, 18–24]. Several directions have been proposed to achieve this
goal:

Reward learning from videos. Recent works demonstrate impressive manipulation skills learned
from human videos by inverse reinforcement learning [4, 13, 14, 20, 21]. For example, previous
works [13, 20] train a goal classifier as a reward function on human videos for policy learning. Later,
Xie et al. propose DVD [1], a domain-agnostic video discriminator for generalizable reward learning.
More recently, XIRL [14] leverages temporal cycle-consistency constraints [25] to learn deep visual
embeddings that are aware of task progress.

Visual pre-training for motor control. Recent works also discussed how to connect computer
vision to policy learning by leveraging self-supervised pre-training. A line of works [2, 26, 27] has
shown that pre-trained vision models from diverse real-world data can be effective to improve policy
learning. For example, Nair et al. [2] prove that vision-language pre-training on diverse egocentric
datasets, e.g., Ego4D [9].

3 RoboTube Video Dataset
We construct the RoboTube video dataset, a collection of human video demonstrations for robots to
learn from. RoboTube contains multiple features, equipping it with the capability as a benchmark for
existing algorithms with different settings. We give an overview of our RoboTube dataset in Fig. 3.
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Figure 2: Overview of RoboTube. When building the video dataset, we ask demonstrators to collect manipula-
tion video demonstrations recorded by multi-view RGB-D cameras. Meanwhile, we scan the corresponding
objects into high-quality 3D models and construct a paired simulated scene. After learning from the video
dataset, we test the learned models in the simulated scene.

3.1 Task Definition

We define each task in RoboTube with its task family, task mode, and the corresponding object. With
the idea of task complexity in mind, we define 5 task families, with which we hope to go beyond
pick-and-place and cover common manipulation tasks for household objects with different levels of
complexity. Specifically, the task families deal with articulated object manipulation (drawer-closing,
cabinet-opening), granular object handling (mug-pouring), deformable object manipulation (cloth-
folding), and bimanual coordination (pot-lifting). To ensure task diversity, we set up two task modes
with different levels of difficulty for each task family, as shown in Fig. 3(a). We design 1) the
structured mode, where we place only the object on a clean table as the easy level, and 2) the cluttered
mode, the hard level, where we place the objects in diverse real-world scenes without intentional
clean-up, i.e., distractors exist along with the objects in the scenes. Based on the above definitions, a
distinct task is denoted by its task family, task mode, and the corresponding objects. For example, a
drawer-closing-structured-v1 task means that drawer #1 is placed into a clean scene, and the task is
to close the drawer.

3.2 Construction of Video Dataset

Object Selection As shown in Fig. 4, each task family contains multiple object instances of the same
category with variations in colors, shapes, and textures, but consistency in semantics and affordances.
There are 10 drawers, 20 mugs, 10 cabinets, 10 pots, and 10 cloths, in total, 60 objects.

Recording Setup During recording, two viewpoints are streamed: one is the first-person perspective
from the camera mounted on the human head, and the other is the third-person perspective from the
camera fixed on a tripod placed near the scene. These two streams are temporally synchronized. To
record the video, we use RealSense D435 with a resolution of 640× 480 and a frequency of 30Hz.
More details about the hardware setups can be found in the supplementary materials.

Statistics RoboTube video dataset contains around 5,000 RGB-D visual demonstrations. For details
of the train-test split and other analyses of the dataset, please refer to supplementary materials.

4 RT-sim: RoboTube Simulated Twin Environments
To provide an accessible test platform for reproducible research of robot learning from videos, we
design RT-sim, a suite of simulation environments paired with RoboTube video dataset, in which we
provide a configured scene for each demonstration.
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Figure 3: RoboTube videos dataset. (a): RoboTube designs the structured (stc) mode and the cluttered (clt)
mode for two levels of task difficulty. The first row shows the structured scenes of drawer-closing, mug-pouring,
pot-lifting, cabinet-opening, and cloth-folding tasks. The second row shows the cluttered scenes of the five
manipulation tasks. (b): each frame in the RoboTube video dataset contains an RGB stream and a depth
stream. (c): a first-person viewpoint (FPV) camera and a third-person viewpoint (TPV) camera are temporally
synchronized. (d): RoboTube video dataset provides both successful episodes and failed episodes for the same
task. (e) given the example of the drawer closing task, human demonstrators are required to make diverse poses
to complete the tasks.

4.1 Environment Setup

Visual Rendering and Physics Simulation To mitigate the gap between the simulated and real-
world, visual rendering and physics simulation play important roles. To prepare the objects, we
scan high-fidelity object mesh models from real-world objects for manipulation and use google
object scans [28] with realistic textures as the actionable distractors for cluttered mode. To create
visual-realistic everyday household scenes, We import the scenes from iGibson projects [29–31].
Following the object scanning and annotation procedures in [32], we annotate the physics properties
of the objects to align with the real world. Leveraging photo-realistic rendering and physics backends
of Unity3D, we are able to construct visual and physics realistic simulation environments which
have the potential to align with the real world and therefore serve as a benchmark for researchers to
validate their algorithms before deploying them to real robots.

Robot Assets RT-sim supports various robots (e.g. Franka, UR5, Kinova-gen3) and grippers (e.g.
Allegro Hand, Robotiq 85) for manipulation tasks.

Interface for Learning To enable robot learning algorithm training, RT-sim provides a standard
OpenAI Gym [33] API in Python language. The API can retrieve the scene states from the Unity side
through gRPC communication.

4.2 Task Specification

We provide a standard specification of the tasks in RT-sim as the following.

Drawer Closing: A robot moves its end-effector with a fixed gripper orientation and must close the
drawer. We fix the initial robot end-effector position and uniformly randomize drawer base position
within a range of 10cm × 10cm plane, drawer base rotation within [− π

12 ,
π
12 ] and initial drawer

opening length within [10cm, 15cm]. The robot is rewarded for making the drawer handle and drawer
base closer. The task is done when the drawer open distance is smaller than 2cm. The goal of this
task is whether the robot has finished the drawer closing task (0 or 1).

Mug Pouring: A robot holding a mug that is fixed on the robot gripper moves its end-effector and
rotates around the X-axis of the robot base to pour the 20 tiny balls inside the mug into another fixed
mug on the table. We lock the movement of the Z-axis of the robot base to lower the difficulty of this
task. The robot is rewarded for transferring the tiny balls from the initial mug to the mug on the table
through pouring. The task is done when more than 14 tiny balls are inside the mug on the table. The
goal of this task is the number of balls poured into the fixed mug on the table.

Bimanual Pot-Lifting: A dual-arm robot (e.g. Tobor [34]) uses grippers of both arms to lift a
binaural soup pot on the table. We randomize the initial position of the pot to increase diversity. The
robot is rewarded for grasping both handles of the pot and lifting it as well as promising the angle
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Figure 4: Models and cluttered RT-sim gallery. We render slected object models and the cluttered scenes of
RT-sim from the first viewpoint. Realistic household tasks are visualized in the gallery.

of inclination of the pot and table shall not exceed π
6 . The task is done when the robot lifts the pot

higher than 5cm under the constraints mentioned above. The goal is the elevation of the pot under
the constraint of inclination.

Cabinet Opening: A robot moves its end-effector and operates a gripper to grasp the door handle of
a fixed cabinet and open the door. We randomize the initial gripper position within the range of 5cm
of the door handle through all 3 axes. The robot is rewarded for grasping the door handle and pulling
it to make the door open. The task is done when the opened degree is more than 2

9π and the door is
opened by the robot pulling the handle. Other methods to open the door are seen as invalid. The goal
is the opened degree of the cabinet door.

Cloth Folding: A robot moves its end-effector and operates a gripper to pick the graspable point
on the left sleeve of a piece of clothing and place it in a target position near the lower-right corner
of the clothes. We randomize the initial configuration and position of the clothes within a range of
5cm× 5cm plane. The robot is rewarded for picking the graspable point and placing the left sleeve
near the target. The task is done when the distance between graspable point and target is less than
15cm. The goal is the negative distance between the graspable point and the target position.

5 Limitations
Though we have already extended the robot learning from video tasks to a larger scope with complex
task settings, diverse backgrounds, and object instances. And we also pay particular attention to
asking the demonstrators to operate in a natural way. Our dataset still has a gap towards the ultimate
“in-the-wild” setting where the videos from the internet can be much less structured or relevant.

6 Conclusion
We introduce RoboTube, a benchmark for robot learning from human videos. Our core contribution
lies in the joint design of the RoboTube video dataset and RT-sim. The models learned from RoboTube
videos can be tested, benchmarked, and reproduced in RT-sim.
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