
Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

CYCLE REPRESENTATION LEARNING FOR INDUCTIVE
RELATION PREDICTION

Zuoyu Yan
Wangxuan Institute of Computer Technology
Peking University
yanzuoyu3@pku.edu.cn

Tengfei Ma
T. J. Watson Research Center
IBM
Tengfei.Ma1@ibm.com

Liangcai Gao
Wangxuan Institute of Computer Technology
Peking University
glc@pku.edu.cn

Zhi Tang
Wangxuan Institute of Computer Technology
Peking University
tangzhi@pku.edu.cn

Chao Chen∗

Department of Biomedical Informatics
Stony Brook University
chao.chen.1@stonybrook.edu

ABSTRACT

Inductive relation prediction is an important learning task for knowledge graph
completion. To predict the relation between two entities, one can use the existence
of rules, namely a sequence of relations. Previous works primarily focus on
searching the rules between entities. The space of rules is huge, and one has to
sacrifice either efficiency or accuracy. In this paper, we consider rules as cycles
and show that the space of cycles has a unique structure based on the mathematics
of algebraic topology. By exploring the linear structure of the cycle space, we can
improve the searching efficiency of rules. We propose to collect cycle bases that
span the space of cycles. We build a novel GNN framework on the collected cycles
to learn the representations of cycles, and to predict the existence/non-existence of a
relation. Our method achieves state-of-the-art performance on popular benchmarks.

1 INTRODUCTION

Knowledge graphs (KGs) are graph-structured knowledge bases that integrate human knowledge
through relational triplets. In a KG, nodes represent entities and edges represent relational triplets
connecting them. A relational triplet is defined as (eh, r, et), where eh and et are the head and tail
entities respectively, and r is the relation between them. Due to the limitation of human knowledge
and data extraction algorithms, we cannot thoroughly excavate all the entities and relations in a
KG (Chen et al., 2020). The incomplete structures and contents of KGs can significantly benefit from
an automatic completion algorithm.

Some recent works (Yang et al., 2017; Sadeghian et al., 2019; Teru et al., 2020), called inductive
relation prediction methods, develop models that are agnostic of entity attributes. They can handle
new entities and dynamic KGs, which are quite common. These models predict missing triplets by
learning logical rules in KGs. For example, from the KG shown in Figure 1(a), we can learn the rule:

∃X, (X, part of , Y ) ∧ (X, lives in , Z) → (Y, located in , Z). (1)

Based on this rule, in Figure 1(b), we can induce the missing triplet
(ManchesterUnited, located in ,Manchester) due to the existence of the two-

∗Correspondence to Chao Chen and Liangcai Gao

1



Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

hop path consisting of the triplets (Cristiano, lives in ,Manchester) and
(Cristiano, part of ,ManchesterUnited).1

(a) (b)

(c)
(d)

(e) (f)
Figure 1: (a) and (b): examples of inductive relation prediction. (c)-(f): illustrations for cycle space
and cycle basis. (c): A sample graph with three nontrivial cycles, zr, zb and zg (highlighted with red,
blue and green colors). Any two of the three will form a cycle basis. (d): Mod-2 addition of cycles.
(e): the boundary matrix ∂ of the graph in (c). Any cycle z satisfies ∂z = 0. (f): the cycle incidence
matrix of the graph in (c). We show all three columns corresponding to all three nontrivial cycles (zr,
zb and zg). In our algorithm, we only pick the columns corresponding to a chosen cycle basis, e.g.,
the first two columns when the chosen basis is {zr, zb}.
However, the number of possible good rules is exponential to the size of the KG. In case of large
searching cost, previous inductive relation prediction methods (Galárraga et al., 2013; Meilicke et al.,
2018; Yang et al., 2017; Sadeghian et al., 2019) introduce artificial pruning or approximation methods.
However, these methods are rather coarse, leading to inferior performance in downstream tasks.

To avoid searching through the exponential-size space of rules, we tackle the problem from a new
algebraic topology perspective. We view logical rules as cycles, and then learn good rules in the
space of cycles. In fact, any rule can be considered a cycle by including both the relation path and the
target relation itself, e.g., the red cycle in Figure 1(a).

The benefit of using cycles is that there is an intrinsic algebraic structure in the space of cycles. In
particular, we focus on a basis of the cycle space, i.e., a set of linearly independent cycles that can be
combined to represent any cycle. Taking Figure 1(a) as an example, if we choose the red cycle and
the blue cycle as the cycle basis, the green cycle can be represented as their sum. Here “sum” means
modulo-2 sum (Figure 1(d)). In general, a cycle basis with n cycles can represent 2n − 1 possible
cycles; any cycle can be uniquely written as a linear sum of the basis cycles with 0/1 coefficients.
Here n is called the Betti number of dimension 1. By focusing on the cycle basis that spans the cycle
space, we decrease the parameter space from exponential to linear.

We propose Cycle Basis Graph Neural Network (CBGNN) to efficiently learn the good cycles (i.e.,
cycles representing good rules) through a given cycle basis. Our method searches through all possible
combinations of the cycles in the basis, that is, the whole space of cycles. We build a GNN on a
new graph whose nodes represent cycles in the chosen basis, and edges represent their interaction.
Through the message passing of the GNN, we are running implicit algebraic operations over the space
of cycles. Our method will efficiently find good cycles from the whole space of cycles. These good
cycles help predict triplets in a KG. Experiments on popular inductive relation prediction benchmarks
show the effectiveness and efficiency of our method.

For detailed reading, we refer the readers to a more complete version of the paper: https://
arxiv.org/pdf/2110.02510.pdf.

2 RELATED WORKS

Homology localization with Graphs. In topological data analysis, homology localization, including
computing short cycles representatives of a homology class and computing short cycle bases rep-

1Technically speaking, these methods only learn the “and” operation between relations. We are interested in
expanding to more sophisticated rules. But this is beyond the scope of this paper.
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resenting the whole homology group, is well studied theoretically (Chambers et al., 2009; Chen &
Freedman, 2011; Dey et al., 2011; Busaryev et al., 2012; Dey et al., 2010; Dey & Wang, 2022). In
recent years, new questions have been raised regarding finding short representative cycles for classes
in persistent homology (Wu et al., 2017; Dey et al., 2020). Inspired by these works, we exploit the
space of cycles and its underlying algebraic structure for better graph representation learning. We
believe the cycle-centric design of our graph neural network is generic and can extend to many other
tasks beyond relation prediction.

Inductive relation prediction methods. Inductive relation prediction methods can be divided into
two categories: path-based methods, and GNN-based methods. Path-based methods mainly view rules
as paths, i.e., sequences of relations connecting two entities of interest. These models either introduce
pruning methods (Galárraga et al., 2013; Meilicke et al., 2018) or approximation methods (Yang
et al., 2017; Sadeghian et al., 2019) in the rule searching process. However, the methods are rather
coarse and results in unsatisfying performance. GNN-based methods (Teru et al., 2020; Mai et al.,
2021) predict missing triplets with graph neural networks (GNNs). To predict whether a certain
triplet exists in the KG, these methods first extract the corresponding vicinity graph of the triplet and
then learn the rules through message passing and GNN scoring. Therefore, they can only predict the
triplets one by one, with a rather low computational efficiency.

Figure 2: Architecture of CBGNN. (a) the input KG with the selected red root nodes. (b) the SPT
cycle bases from (a). (c) the cycle graph where nodes represent cycles in (b) and edges indicate a
strong interaction between cycles. (d)-(e) the confidence values of cycles and target triplets. We use
the weighted sum of triplet confidence from different SPT cycle bases as the final triplet confidence.

3 CYCLE BASIS AND CYCLE BASIS GRAPH NEURAL NETWORK (CBGNN)

Preliminaries and the pursuit of cycle bases. In theory, any cycle basis can represent the whole
cycle space, and thus can serve our purpose. However, during learning, we look for a practically
suitable basis or a set of suitable bases that can easily represent any good cycle. We expect the
cycle bases to meet the following criteria: (1) cycles in the bases can be easily encoded for feature
representation; (2) any cycle in the KG can be easily represented by cycles in the bases. Motivated by
this, we represent good cycles using a family of shortest path tree (SPT) cycle bases with different
tree roots. These bases generally contain relatively short cycles, and can be computed efficiently (Dey
& Wang, 2022; Dey et al., 2010; Chen & Freedman, 2010). Using the whole vertex set as roots is
computationally prohibitive in practice. Instead we propose to use the spectral clustering algorithm
to sample roots as they are evenly spread out over the graph. These roots are centers of the clusters in
the spectual space, and ensure locality and coverage of the corresponding bases. Further details and
discussions are available in Section A.1 in the appendix.

CBGNN. We propose a novel GNN based on the SPT cycle bases, called CBGNN, to predict the
existence/non-existence of a triplet. The input of CBGNN is a KG and the target triplets. A target
triplet (eh, r, et) refers to a query of whether the relation r exists between entities eh and et. A
target triplet is labeled positive if it exists in the KG, and negative otherwise. Following the tradition
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(Teru et al., 2020; Mai et al., 2021), we temporarily add the negative triplets into the input graph.
CBGNN learns representations of cycles that best serve the goal of relation prediction and output the
confidence value of the target triplets.

The overview of our method is shown in Figure 2. Our method has two phases. In the first phase,
we construct the cycle bases and build a new graph for each cycle basis (called the cycle graph). In
the cycle graph, nodes represent cycles in the basis, and nodes are connected if their corresponding
cycles have a strong interaction. The information of the cycles can be converted into node features
in the new graph for the next phase. In phase two, we build a GNN on the cycle graph to learn the
confidence value for cycles. The confidence values for cycles are mapped to the confidence values
for target triplets. We construct GNNs for different cycle bases. These GNNs share weights and
their aggregation is used to predict the confidence value for the target triplets. Details are provided in
Section A.2 in the appendix.

4 EXPERIMENTS

Table 1: AUC-PR scores of inductive relation prediction, the baseline results are copied from (Teru
et al., 2020; Mai et al., 2021).

WN18RR FB15K-237 NELL-995

Method v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

NeuralLP 86.02 83.78 62.90 82.06 69.64 76.55 73.95 75.74 64.66 83.61 87.58 85.69
DRUM 86.02 84.05 63.20 82.06 69.71 76.44 74.03 76.20 59.86 83.99 87.71 85.94
RuleN 90.26 89.01 76.46 85.75 75.24 88.70 91.24 91.79 84.99 88.40 87.20 80.52
GraIL 94.32 94.18 85.80 92.72 84.69 90.57 91.68 94.46 86.05 92.62 93.34 87.50
CoMPILE 98.23 99.56 93.60 99.80 85.50 91.68 93.12 94.90 80.16 95.88 96.08 85.48

CBGNN 98.63 97.62 89.76 97.80 96.34 96.53 96.38 95.23 82.79 94.78 96.29 94.02

Table 2: Hit@10 scores of inductive relation prediction, the baseline results are copied from (Teru
et al., 2020; Mai et al., 2021).

WN18RR FB15K-237 NELL-995

Method v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

NeuralLP 74.37 68.93 46.18 67.13 52.92 58.94 52.90 55.88 40.78 78.73 82.71 80.58
DRUM 74.37 68.93 46.18 67.13 52.92 58.73 52.90 55.88 19.42 78.55 82.71 80.58
RuleN 80.85 78.23 53.39 71.59 49.76 77.82 87.69 85.60 53.50 81.75 77.26 61.35
GraIL 82.45 78.68 58.43 73.41 64.15 81.80 82.83 89.29 59.50 93.25 91.41 73.19
CoMPILE 83.60 79.82 60.69 75.49 67.64 82.98 84.67 87.44 58.38 93.87 92.77 75.19

CBGNN 98.40 96.14 62.28 96.50 97.56 96.03 94.91 94.73 84.00 94.96 95.34 92.34

We compare our methods with state-of-the-art (SOTA) inductive relation prediction models on popular
benchmark datasets. Further experiments on algorithm efficiency and ablation study can be found in
the appendix.

Datasets. We use SOTA benchmark datasets proposed in (Teru et al., 2020; Mai et al., 2021). For
inductive relation prediction, the entities in the training set and the test set should not be overlapped.
Therefore the training and test sets are totally disjoint graphs. Details are provided in the appendix.
Among these datasets, FB15k-237 has > 200 relation types, NELL-995 contains an average of 50
relation types, and WN18RR contains ≈ 10 relation types.

Baseline. We compare with SOTA inductive relation prediction methods including (1) path-based
methods: NeuralLP (Yang et al., 2017), RuleN (Meilicke et al., 2018), DRUM (Sadeghian et al.,
2019) and (2) GNN-based methods: GraIL (Teru et al., 2020), CoMPILE (Mai et al., 2021).

Evaluation. Similar to (Teru et al., 2020; Mai et al., 2021), we use area under the precision-recall
curve (AUC-PR) and Hits@10 scores as the evaluation metrics. To calculate AUC-PR, we sample an
equal number of non-existent triplets as the negative samples. To evaluate the Hits@10 score, we
rank each positive triplet among 50 randomly sampled negative triplets. We run each experiment five
times with different negative samples and report the mean results.

Negative sampling. Following (Teru et al., 2020; Mai et al., 2021), we sample negative triplets by
replacing the head (or tail) of a true triplet with a randomly sampled entity.
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Results and discussion. Table 1 and Table 2 show the AUC-PR scores and Hits@10 scores respec-
tively. Our method outperforms all SOTA baselines in terms of Hits@10 (Table 2). As for AUC-PR
(Table 1), our method outperforms nearly all SOTA baselines on FB15K-237 and NELL-995. On
WN18RR, CBGNN is a close second, trailing marginally behind CoMPILE, but outperforming the
remaining methods significantly. Note that in terms of the number of relationship types, FB15k-237
(>200) and NELL-995 (≈50) are significantly larger than WN18RR (≈10). They are considered
much more semantically complex. This demonstrates that our novel cycle-based approach has
stronger modeling power for KGs with complex semantics.

5 CONCLUSION

We provide a novel GNN-based method for inductive relation prediction in knowledge graphs, and
propose a cycle-centric approach that treats rule learning as a cycle learning problem for the first
time. We exploit the intrinsic linear structure of the space of cycles and learn suitable cycle bases
to represent the rules. The learning of cycle representation is carried out via a GNN that passes
messages between cycles instead of nodes. Our approach achieves SOTA performance on various
inductive relation prediction benchmarks, and provides a novel perspective in incorporating advanced
topological information into graph representation learning. Also, our method can naturally be
extended to tasks beyond relation prediction.
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A APPENDIX

A.1 CYCLE SPACE, CYCLE BASIS, AND THE PURSUIT OF SUITABLE BASES

In this section, we explain how to find suitable cycle bases that can facilitate the learning of good
cycles/rules. We first introduce the background of the cycle space and cycle basis. Next, we explain
our choice of suitable cycle bases, which will be the foundation of our model.

By no means our exposition is comprehensive. For more details, we refer the readers to textbooks on
algebraic topology and computational topology (Munkres, 2018; Edelsbrunner & Harer, 2010; Dey
& Wang, 2022). We focus on cycles in undirected graphs, while the definitions generalize to higher
dimensions, e.g., simplicial complexes. Furthermore, we focus on the algebraic structures over Z2

field, which has two elements, 0 and 1, under modulo-2 addition and multiplication. Over Z2 field,
the structure of the space of cycles is simpler and more friendly to computation.

For the rest of the paper, regarding the input KG, we will use node, vertex, and entity interchangeably.
We will also use edge and triplet interchangeably. Within this section, we temporarily ignore the
relation associated with each triplet. We treat the input KG as an undirected graph G = (V,E),
where V and E denote the sets of vertices and edges.
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A.1.1 BACKGROUND: CYCLE SPACE AND CYCLE BASIS

For ease of exposition, we assume the input graph G is connected. The definitions can easily extend
to a graph with multiple connected components. An elementary cycle is a closed loop, i.e., a sequence
of edges, {(v0, v1), (v1, v2), . . . , (vn−1, vn), (vn, v0)}, going through distinct vertices except for the
first and the last. A cycle z is the union of a set of elementary cycles.

The set of all cycles constitute a vector space under modulo-2 additions and multiplications. Figure
1(d) illustrates the mod-2 addition of cycles. There is a nice linear algebra interpretation of the space
of cycles. Assume a fixed indexing of all edges and all vertices. The |V | × |E| incidence matrix,
∂, also called the boundary matrix, encodes the adjacency relationship between edges and vertices.
Any set of edges, called a chain, corresponds to an |E|-dimensional binary vector, c. The i-th entry
of c, ci, is 1 if and only if the chain contains the i-th edge, ei. The set of all chains form a vector
space called the chain group. All chains one-to-one correspond to all possible |E|-dimensional binary
vectors. Multiplying the boundary matrix to a given chain is equivalent to taking the boundary of the
chain. Figure 1(c) and (e) show a sample graph and its boundary matrix. A cycle is a chain with zero
boundary. Formally, the set of all cycles of G, denoted as ZG, is the kernel space of the boundary
matrix, ZG = ker ∂ = {c | ∂c = 0}. In the example graph in Figure 1(c), there are 3 different
nontrivial cycles, highlighted in red, blue, and green2.

Cycle basis. A cycle basis is a basis spanning the cycle space ZG. Formally, a basis, Z, is a maximal
set of cycles {z1, z2, . . .} such that (1) any cycle in ZG can be written as the formal sum of cycles in
the basis, ∀z ∈ ZG,∃αi ∈ {0, 1}, s.t. z =

∑
zi∈Z αizi and (2) cycles in Z are linearly independent,∑

zi∈Z αizi = 0 ⇐⇒ ∀zi ∈ Z,αi = 0. In Figure 1(c), the red and the blue cycles form a cycle
basis. We note that the basis is not unique. The red cycle and the green cycle form another cycle
basis of the same graph. However, the number of elements in the basis, |Z|, is the same. We call it
the Betti number, denoted as β. We have β = |E| − |V |+ 1, and the cycle space has size 2β .

A.1.2 THE PURSUIT OF SUITABLE CYCLE BASES

The central idea of our approach is to find practical and efficient cycle bases to represent the cycle
space, so that we can efficiently learn any ”good cycle” in the graph which possibly corresponds to a
good rule. In this section, we explain how such cycle bases are constructed. In theory, any basis can
represent the whole cycle space, and thus can serve the purpose. However, during learning, we look
for a practically suitable basis or a set of suitable bases that can easily represent any good cycle. We
expect the cycle bases to meet the following criteria: (1) cycles in the bases can be easily encoded for
feature representation; (2) any cycle in the KG can be easily represented by cycles in the bases.

Cycle bases that can be easily encoded. To have a better learning performance, we need to encode
cycles into feature representations. To ensure an effective encoding, we prefer bases with short cycles.
Note that this does not exclude long good cycles from being found. Our method essentially finds
combinations of cycles from the chosen bases to form (potentially long) good cycles. And the feature
representations of the good cycles are derived from the features of its relevant cycles in the bases.

Motivated by this, we represent good cycles using shortest path tree (SPT) cycle bases, i.e., cycle
bases constructed based on shortest path trees. They generally contain relatively short cycles, and can
be computed efficiently (Dey & Wang, 2022; Dey et al., 2010; Chen & Freedman, 2010).

Formally, a shortest path tree (SPT) is a spanning tree Tp ⊆ G with root p, such that for any vertex
q ̸= p, its path to p within Tp is also its shortest distance path to p within G. In other words, Tp is
a union of shortest paths from all vertices to the root p. A shortest path tree defines a unique cycle
basis, which we call the SPT cycle basis. As shown in Figure 2(a) and (b), given a shortest path tree,
Tp, each non-tree edge e ∈ E\Tp forms an elementary cycle with the tree Tp. We construct the basis
by enumerating through all non-tree edges and collect all the corresponding elementary cycles. We
denote this cycle basis Z(Tp). An SPT cycle basis naturally contains short cycles; each cycle is a
composition of an edge (u, v) and two shortest paths - the shortest path from u to p′ and the shortest
path from v to p′. Here p′ is the lowest common ancestors of u and v within the rooted tree, Tp.

Cycle bases that can efficiently represent good cycles. Given a single SPT cycle basis, a cycle that
is away from the root are hard to be represented; it potentially requires many cycles from the given

2Technically, an empty chain (contains no edges) is also a cycle.
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basis to represent. To efficiently represent all possible good cycles, we collect a family of SPT cycle
bases with different tree roots to ensure locality and sufficient coverage. These bases complement
each other and achieve the best learning efficiency in representing good cycles. The hope is that any
good cycle can be easily represented by at least one of the bases.

Ideally, we can use the whole vertex set V as roots and build the collection of cycle basis {Z(Tp) |
p ∈ V }. This family of bases has been shown to have theoretical benefit (Dey et al., 2010; Chen
& Freedman, 2010). In practice, we cannot afford to construct the bases using all vertices as the
SPT roots. We propose to sample vertices that are generally far away from each other. We perform
spectral clustering on the graph and use centers of the clusters as the sample vertices, S. We
hypothesize that these SPT cycle bases will cover the whole graph, and their corresponding cycle
bases, {Z(Tp) | p ∈ S}, will satisfy our needs. We call these bases the SPT cycle bases family. As
validated in the appendix, these SPT cycle bases provide sufficient locality and coverage of the target
edges/triplets, with short cycle representations, compared with random cycle bases.

A.2 CYCLE BASIS GRAPH NEURAL NETWORK (CBGNN)

In this section, we describe how to use the SPT cycle bases family to learn a good cycle representation,
to find good rules, and to predict the existence/non-existence of a triplet. We propose a novel GNN
based on the cycle bases, called CBGNN. The input of CBGNN is a KG and the target triplets. A
target triplet (eh, r, et) refers to a query of whether the relation r exists between entities eh and et. A
target triplet is labeled positive if it exists in the KG, and negative otherwise. Following the tradition
(Teru et al., 2020; Mai et al., 2021), we temporarily add the negative triplets into the input graph.
CBGNN learns representations of cycles that best serve the goal of relation prediction and output the
confidence value of the target triplets.

The overview of our method is shown in Figure 2. Our method has two phases. In the first phase,
we construct the cycle bases and build a new graph for each cycle basis (called the cycle graph). In
the cycle graph, nodes represent cycles in the basis, and nodes are connected if their corresponding
cycles have a strong interaction. The information of the cycles can be converted into node features in
the new graph for the next phase. Details are provided in Section A.2.1.

In phase two (Section A.2.2), we build a GNN on the cycle graph to learn the confidence value for
cycles. The confidence values for cycles are mapped to the confidence values for target triplets. We
construct GNNs for different cycle bases. These GNNs share weights and their aggregation is used to
predict the confidence value for the target triplets.

A.2.1 GENERATING THE CYCLE GRAPHS

Recall that in Section A.1, we sample vertices at different parts of the input KG and construct SPT
cycle bases accordingly. In order to achieve good locality and coverage, these vertices should be
selected sufficiently apart from each other. In this way, the family of cycle bases can effectively
represent all cycles at different parts of the input KG. In particular, we run spectral clustering on the
input graph and partition the nodes into k clusters. Then we take the node closest to the cluster center
as the set of sample vertices, S.

Using vertices in S as roots, we use the breadth-first-search algorithm to construct k SPTs. The
complexity for building each SPT is O(|V |+ |E|). 3 For each SPT, Tp, p ∈ S, we construct its cycle
basis by going through all non-tree edges. For each non-tree edge, (u, v) ∈ E\Tp, we find the least
common ancestor of u and v in Tp in O(|V |) time. In total the complexity for building one cycle
basis is O(|E||V |) All the cycles form the desired SPT cycle basis Z(Tp). We now have k cycle
bases, each of which has β many cycles. The total running time for building k bases is O(k|V ||E|).
For input graphs which consist of several connected components, the cycle bases of different compo-
nent graphs are independent of each other. We treat the component graphs as separate input graphs,
and generate k SPT cycle bases for each of them. We essentially construct a CBGNN for each
component graph, although their weights are all shared.

Cycle incidence matrix. We explicitly construct a cycle incidence matrix for each SPT cycle basis.
This matrix encodes the incidence relationship between cycles and edges in the input KG. It will be

3Note the breadth-first-search algorithm works only because we assume all edges are weighed one.
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used at different stages of our learning because it can provide a convenient way to map confidence
values between cycles and triplets.

For each of the k constructed cycle bases, we construct the cycle incidence matrix CT as an |E| × β
binary matrix. Each column corresponds to one cycle in the basis. Each row corresponds to an
edge/triplet in the input graph. The (i, j)-th entry of the matrix is 1 if the j-th cycle contains the i-th
edge, and 0 otherwise. An edge may not be associated with any of the basis cycles and thus has all
zeros in the corresponding row. See Figure 1(f) for an illustration. After generating k shortest path
trees and their SPT cycle bases, we acquire k cycle incidence matrices: {C1

T , C
2
T , ..., C

k
T }.

Cycle feature. To use these cycles in learning, we need to extract their attributes/features. We need
a feature representation for a cycle based on the relations associated with its triplets. Inspired by
existing methods on rule learning (Marcheggiani & Titov, 2017; Vashishth et al., 2019), we propose
a recurrent model, Bi-Relational LSTM (BR-LSTM), as the feature generator. It converts a cycle of
triplets into a fixed-length feature vector for the CBGNN to use.

We assume that information in an edge/triplet flows along both directions, and encode the cycle in a
relation-aware manner. We denote by (u, r, v) ∈ E a triplet connecting nodes u and v with relation
r. Here E is the set of all the triplets, we assume that an inverse triplet (v, r−1, u) is also included
in the KG. r−1 is defined as the inverse relation of r. Formally, we extend the triplet set of the
KG as: E′ = E ∪ {(v, r−1, u)|(u, r, v) ∈ E}. An illustration of the construction can be found in
Section A.3.

For each cycle, we can use LSTM to encode the cycle from both directions using triplets in E′.
Take Figure 1(a) as an example, for simplicity we substitute the relations part of, lives in, and
located in with r1, r2 and r3, respectively. The rule can be represented by (Lebron, r1, Lakers) ∧
(Lebron, r2, L.A) → (Lakers, r3, L.A). In practice, we use the non-tree edge (target triplet)
in the cycle as the first triplet of the sequence. Therefore we convert the rule into two se-
quences with the opposite direction: (Lakers, r3, L.A), (L.A, r−1

2 , Lebron), (Lebron, r1, Lakers)
and (L.A, r−1

3 , Lakers), (Lakers, r−1
1 , LeBron), (Lebron, r2, L.A). We denote the two sequence

as s1 and s2. To encode the two sequences, we adopt a LSTM for each sequence, to capture the
contextual information between relations:

wnext1 , (hs1 , cs1) = LSTM(ws1 , (h1, c1));

wnext2 , (hs2 , cs2) = LSTM(ws2 , (h2, c2)).

Here, for any i = 1, 2, wsi denotes the input embedding vector for sequence si. hi and ci are the
initial hidden state and cell state for sequence si, they are initialized as zero. wnexti is the output
features from the last layer of the LSTM. It is not needed in our setting. hsi and csi are output hidden
state and cell state for the whole sequence si. We use them as the feature vector for each sequence.
The final feature vector for the rule and its corresponding cycle, z, is xz = (hs1 +hs2)

⊕
(cs1 + cs2),

where
⊕

represents the concatenation of vectors.

A.2.2 GNN LEARNING WITH CYCLE GRAPHS

We propose a GNN to exploit the SPT cycle bases to learn representations of good rules and use the
learned rules to predict the confidence value of certain triplets. We first build the cycle graphs for the
SPT cycle bases, and then learn the confidence value for cycles and triplets.

Building cycle graphs. Recall that in Section A.2.1, we obtain k cycle bases and k corresponding
CT matrices. For each cycle basis, we construct a new graph in which nodes represent cycles in the
cycle basis and edges indicate that the two corresponding cycles have a strong interaction. To measure
the interaction between any two cycles in the basis, we compute their overlapping, i.e., the number of
triplets they share. In the new graph, each cycle is connected with its top m overlapping neighbors,
i.e., the top m other cycles with the most number of shared triplets. To compute the number of shared
triplets between all pairs of cycles in the basis, we simply multiply the cycle incidence matrix and its
transpose, CT

T · CT , and read the entries of the resulting β × β matrix.

Learning cycle representation and confidence. To learn the representation and confidence values
of the desired rules, we apply a classic L-layer graph convolutional network (GCN) (Kipf & Welling,
2016) to the constructed cycle graph. The input is the feature vector of cycles generated by BR-LSTM,
and the output is the representation of cycles. The message passing by GCN drives the information

9



Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

flow between different cycles. After an L-layer GCN, the embedding of a certain node can be viewed
as a combination of node representation from its L-hop neighborhood. Take Figure 1 as an example,
if we take {zr, zg} as the cycle basis, then zr and zg will be the nodes in the new graph. Because
they share triplets e1 and e4, there is an edge between the two nodes in the new graph. Then cycle zb
can be learned by the message passing between zr and zg .

In the ℓ-th layer of GCN, we can obtain the embedding matrix Xℓ = [xℓ
1, x

ℓ
2, ..., x

ℓ
β ] where xℓ

i ∈ Rdℓ

is the representation of node i in the ℓ-th layer, ℓ = 0, 1, ..., L. Here, X0 is the initial cycle
features from BR-LSTM, and XL is the node embedding matrix of the final layer. After the L-
layer GCN, we adopt a two-layer Multi-Layer Perceptron (MLP) followed by a sigmoid function
to learn the confidence value for each cycle in the basis: P = sigmoid(MLP (HL)), where
P = [p1, p2, ..., pβ ] ∈ Rβ , 0 ≤ pi ≤ 1. See Figure 2(c) and (d) as an illustration.

Learning triplet confidence. Finally, we compute the confidence values for the triplets of KG
based on the confidence values of cycles learned through GNN. We take the max confidence value
of cycles/rules that pass a triplet as the confidence value for the triplet. Recall that for each cycle
basis, the cycle incidence matrix CT stores the incidence relationship between cycles and triplets.
The i-th row of matrix CT has 1’s corresponding to cycles in the basis that pass triplet ei. For triplet
ei, its confidence value is computed as yi = max(CT (i, ∗) ⊙ P ), where CT (i, ∗) is the i-th row
of CT , and ⊙ denotes the element-wise product between two vectors. We obtain the confidence
values for all target triplets: Y = [y1, y2, ..., yn] ∈ Rn, where n is the total number of target triplets,
0 ≤ yi ≤ 1, i = 1, 2, ..., n. We aggregate the output of the k GCNs to obtain the final triplet
confidence. Each GCN is built on one SPT cycle basis and its corresponding cycle graph. We
compute the final confidence value of each triplet using a weighted sum of the triplet confidence from
different GCNs. Formally, Yfinal =

∑k
i=1 wiYi/

∑k
i=1 wi. We train CBGNN by minimizing the

cross-entropy loss on target triplets.

A.3 BR-LSTM ENCODING

Figure 3: An example of BR-LSTM construction for Figure 1 (b).

An example of BR-LSTM construction. In this section, we provide an example of the construction
of BR-LSTM proposed in Section A.2.1. Recall that in the generation of cycle feature, we tackle the
input KG as a directed graph with different edges/triplets associated with different relations. We
assume that information in an edge/triplet flows along both directions, and encode the cycle in a
relation-aware manner. We denote by (u, r, v) ∈ E a triplet connecting nodes u and v with relation
r. Here E is the set of all the triplets, we assume that an inverse triplet (v, r−1, u) is also included
in the KG. Here r−1 is defined as the inverse relation of r. Formally, we extend the triplet set of
the KG as: E′ = E ∪ {(v, r−1, u)|(u, r, v) ∈ E}. An illustration is shown in Figure 3. Through
the triplets in E′, we can convert the rule shown in Figure 1 (b) into two opposite sequences:
(Cristiano, part of,ManchesterUnited), (ManchesterUnited, located in,Manchester),
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Table 3: Statistics of inductive benchmarks.

WN18RR FB15K-237 NELL-995

RELATIONS NODES LINKS RELATIONS NODES LINKS RELATIONS NODSE LINKS

V1 TRAIN 9 2746 6678 183 2000 5226 14 10915 5540
TEST 9 922 1991 146 1500 2404 14 225 1034

V2 TRAIN 10 6954 18968 203 3000 12085 88 2564 10109
TEST 10 2923 4863 176 2000 5092 79 4937 5521

V3 TRAIN 11 12078 32150 218 4000 22394 142 4647 20117
TEST 11 5084 7470 187 3000 9137 122 4921 9668

V4 TRAIN 9 3861 9842 222 5000 33916 77 2092 9289
TEST 9 7208 15157 204 3500 14554 61 3294 8520

(Manchester, lives in−1, Cristiano) and (ManchesterUnited, part of−1, Cristiano),
(Cristiano, lives in,Manchester), (Manchester, located in−1,ManchesterUnited).

The sequence of relations in the cycles. In the encoding of cycles, there can be several
different sequences of rules. In our setting, we choose the target triplet (the non-tree edge
in the cycle) as the start token of BR-LSTM. Our aim is to preserve the sequence of the
rule, and let the model focus on predicting the target triplet. An examples is shown in Fig-
ure 3: the rule ∃X, (X, part of , Y ) ∧ (X, lives in , Z) → (Y, located in , Z) and the other rule
∃Z, (X, lives in , Z) ∧ (Y, located in , Z) → (X, part of , Y ) should have different confidence
values. The former one is a good rule because if a player X is a part of team Y and X also lives in
the city Z, then the team Y should be also located in city Z. While in the later rule, if a player X
lives in city Z, and a team Y also located in city Z, X does not necessarily need to play for team Y .

A.4 EXPERIMENTAL DETAILS.

Datasets. The datasets used in our settings are subsets of KG WN18RR (Toutanova & Chen, 2015),
FB15k-237 (Dettmers et al., 2018), and NELL-995 (Xiong et al., 2017). Teru et al. (2020) generate
these datasets by sampling disjoint subgraphs from the original datasets. For inductive relation
prediction, the entities in the training set and the test set should not be overlapped. To evaluate the
robustness of models, Teru et al. (2020) sample four different pairs of training sets and test sets
with the increasing number of nodes and edges. The details of the benchmark datasets are shown in
Table 3.

Experimental details. We adopt a 2-layer BR-LSTM to generate feature vectors for all the cycles
in a cycle basis. Its output feature vector dimension is set to 20. A 2-layer GCN (Kipf & Welling,
2016) is adopted for the message passing of cycle basis, where ReLU serves as the activation function
between GCN layers. We combine 20 different shortest path trees to learn the good rules in the
given dataset4. In the cycle graph, we select the top 2 most related cycles for each cycle. For all the
modules, Adam is used as the optimizer, the dropout is set to 0.2, the epoch is set to 100 with an
early-stopping of 20, the learning rate is 0.005 and the weight decay is 5e-5. We follow the settings in
(Teru et al., 2020; Mai et al., 2021), that is, to view all the existing triplets in KG as positive triplets
and sample negative triplets by replacing the head (or tail) of the triplet with a uniformly sampled
random entity. We use binary cross-entropy loss as the loss function with the negative sampling
method. Considering that some inductive test sets contain few cycles, which leads to the inconsistent
performance between the inductive test sets and original training sets, we use the inductive training
set as the validation set (while the training set and the test set are the same with (Teru et al., 2020; Mai
et al., 2021)). We run all the baseline methods with a cluster of two Intel Xeon Gold 5128 processors,
192GB RAM, and one GeForce RTX 2080 Ti graphics card.

A.5 ADDITIONAL EXPERIMENTS

4In seldom cases such as NELL-995 v2, considering that we can significantly benefit from more shortest
path trees, we combine 50 cycle bases for relation prediction.
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Table 4: Evaluation of computational efficiency (second).
Dataset WN18RR v1 FB15K-237 v1 NELL-995 v1
Phase Preparation Training Inference Preparation Training Inference Preparation Training Inference

GraIL 452.36 2230.55 1.07 704.42 9026.21 1.67 402.86 3718.22 1.79
CoMPILE 434.45 2388.28 1.46 706.19 3809.56 2.41 479.21 2868.38 1.23
CBGNN 601.96 952.55 0.52 437.13 901.27 0.75 379.29 175.19 0.14

Table 5: AUC-PR scores of ablation study.
WN18RR FB15K-237 NELL-995

Method v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

CBGNN-MLP 96.33 97.49 86.86 95.22 90.90 94.07 87.01 87.78 72.29 93.35 94.63 91.29

CBGNN-Random 97.13 76.64 87.30 93.47 96.23 96.07 93.27 94.49 83.69 93.73 96.20 92.94
CBGNN-Single 58.96 58.05 55.67 61.61 81.67 84.28 81.75 79.44 72.29 83.79 90.70 80.97
CBGNN-BOW 97.54 96.45 86.83 97.46 96.04 97.61 96.85 97.00 75.31 90.25 91.00 87.53
CBGNN-LSTM 98.26 97.04 89.69 97.75 95.86 91.46 94.56 92.47 71.85 93.33 93.74 85.78
CBGNN 98.63 97.62 89.76 97.80 96.34 96.53 96.38 95.23 82.79 94.78 96.29 94.02

Table 6: AUC-PR scores of inductive relation prediction, we keep the validation datasets of baseline
methods as the same as ours and run these methods five times for the average scores.

WN18RR FB15K-237 NELL-995

Method v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

GraIL 96.09 95.92 85.86 94.02 83.98 90.66 90.17 84.74 82.34 92.35 91.45 82.88
CoMPILE 98.56 99.98 94.04 99.85 83.45 92.17 90.91 91.39 78.07 94.07 95.69 83.40

CBGNN 98.63 97.62 89.76 97.80 96.34 96.53 96.38 95.23 82.79 94.78 96.29 94.02

Table 7: Hit@10 scores of inductive relation prediction, we keep the validation datasets of baseline
methods as the same as ours and run these methods five times for the average scores.

WN18RR FB15K-237 NELL-995

Method v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

GraIL 84.04 81.63 60.65 75.34 64.63 82.00 82.54 78.16 55.00 93.27 89.74 73.94
CoMPILE 82.71 80.82 62.56 75.92 69.75 82.52 82.95 85.46 62.00 91.18 93.75 74.29

CBGNN 98.40 96.14 62.28 96.50 97.56 96.03 94.91 94.73 84.00 94.96 95.34 92.34
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Computational efficiency. For all methods, we set the training epochs to 100 and run 5 times to
report the average time. In Table 4, “Preparation” denotes the time to extract subgraphs for GraIL
and CoMPILE, and the time to generate 20 SPT cycle bases for CBGNN. “Training” and “Inference”
denote the time of training 100 epochs and inference once respectively. As shown in the table, our
method is significantly faster than existing GNN-based methods. For each training/testing triplet,
existing GNN-based methods extract a subgraph within the vicinity and then apply graph convolution.
Repeating over all target triplets is rather expensive in practice. On the contrary, our method construct
one unified GNN for all target triplets and learn/predict their confidence values simultaneously.

Ablation studies. We perform ablation studies to validate the efficacy of different proposed modules
in CBGNN. We focus on three perspectives, the necessity of learning the needed cycles, the choice of
cycle basis generation and the cycle feature generation. To show the necessity of learning the needed
cycles with the SPT cycle bases, we compare with a baseline without GNN based on the cycle graph,
called CBGNN-MLP. CBGNN -MLP does not use a GNN model to perform the operation between
cycles in the cycle bases, but directly uses the BRLSTM followed by a two-layer MLP to get the
confidence of cycles. In this way, we are directly choosing the cycles from the SPT cycle bases rather
than learning the needed rules as CBGNN does. To justify the usage of SPT cycle bases, we compare
with a baseline using randomly generated SPTs to build cycle bases, called CBGNN-Random. Both
CBGNN and CBGNN-Random generate the same number of trees/cycle bases, k = 20. To show
that sampling multiple trees/cycle bases is necessary, we also add a baseline with a single SPT cycle
basis, called CBGNN-Single.

For the generation of feature vectors for cycles in the cycle bases, we compare with two baselines
which replace BR-LSTM with a bag-of-words-like (BOW) feature vector and a classic LSTM. These
method are named CBGNN-BOW and CBGNN-LSTM, respectively. The BOW feature generates a
histogram of different relation types within a given cycle. The classic LSTM takes a single direction
to traverse through the loop instead of two.

Results of the baselines are compared with the proposed CBGNN in Table 5. In terms of the necessity
of learning the needed cycles, CBGNN-MLP consistently performs worse than our method. This
shows that the needed rules are not always in the SPT cycle bases, therefore we need to learn the
right rules with the cycle bases rather than directly choosing from the SPT cycle bases. In addition,
the result of CBGNN-MLP is comparable with state-of-the-art inductive relation prediction methods,
showing that the SPT cycle bases contain a number of right rules. This provides empirical observation
that SPT cycle bases are generally “suitable cycle bases”. In terms of cycle bases generation, our
method generally outperforms CBGNN-Random. This demonstrates that in most cases, the center
nodes of clusters are spread out and are capable of covering the whole graph. Thus for node
selection, a clustering algorithm performs much better than random selection. In addition, our method
also outperforms CBGNN-Single, showing the necessity to utilize multiple bases to provide better
coverage. In the appendix, we will provide more experiments on the influence of the number of SPT
cycle bases k on learning cycle representations.

In terms of cycle feature generation, our method outperforms CBGNN-BOW and CBGNN-LSTM on
the majority of datasets. The results elucidate the efficacy of our relation-aware feature generation
method, BR-LSTM. We were a bit surprised to find that BOW performs well on FB15k-237 and
is slightly better than the proposed BR-LSTM. This may be due to the high semantic complexity
of this dataset (>200 relationship types). The high number of relationship types makes LSTM and
BR-LSTM hard to train, whereas BOW may perform robustly under such circumstances.

Experiments with the same settings. In Section 4, we have compared the performance of our
model with the baseline results copied from (Teru et al., 2020; Mai et al., 2021), as shown in Table 1
and Table 2. For a fair comparison, we set Grail and CoMPILE as the same experimental settings
(the same validation dataset) as ours, and record the result in Table 6 and Table 7. Similar to the
observation in Section 4, CBGNN consistently achieves the state-of-the-art results in the evaluation
of Hit@10 scores and outperforms the majority of benchmark datasets when it comes to AUC-PR
scores. The results further show the effectiveness of our proposed method.

The influence of k. In this paragraph, we do experiments on the influence of the number of the
shortest path trees k which are used to learn the suitable cycle basis. As is shown in Figure 4, CBGNN
performs badly with a single cycle basis. However, its performance grows quickly as k increases
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(a) (b)

(c) (d)

Figure 4: The influence of k on WN18RR v1, v2, and FB15k-237 v1, v2.

from 1, and gradually converges after k is large enough (10 for smaller graphs like WN18RR v1 and
FB15k-237 v1, and 20 for larger graphs like WN18RR v2 and FB15k-237 v2). The experiments
show that it is crucial to utilize multiple bases to guarantee better coverage. However, after k grows
to a certain extent, the root nodes will be spread out, and contain enough information to cover the
whole graph. Therefore, the model hardly benefits from the increase of k after it is larger than a
certain threshold. One important factor that may influence the threshold is the size of the input graph.
For smaller graphs, we only need a small number of SPT cycle bases to cover of the graph. While
for larger graphs, we may need more SPT cycle bases. But as shown in Table 1 and 2, 20 SPT cycle
bases are enough to gain a state-of-the-art results in most situations.

Evaluation of shortness. Recall that in Section A.1.2, we hypothesize that the desired cycle bases
should generally contain short cycles. In this paragraph, we evaluate the shortness of the SPT cycle
bases on various datasets and analyze the correlation between the shortness and performance of
different choices of cycle bases. To be specific, we draw histograms to evaluate the minimum length
of cycles that pass a triplet. We compare different choices of cycle bases, including a single cycle
basis, 10 randomly chosen cycle bases, and 10 cycle bases chosen by the clustering algorithm, which
are denoted by ”Single”, ”Random-10”, and ”Cluster-10” respectively. The histograms are shown in
Figure 5. In the histogram, the x-axis denotes the minimum length of cycles that pass a certain triplet,
and the y-axis represents the proportion of triplets with a certain minimum length of cycles among all
triplets.

As shown in Figure 5, the cycle bases selected by the clustering algorithm generally contain small
cycles compared with the randomly selected cycle bases or the single cycle basis. We can find that in
Table 5, CBGNN outperforms CBGNN-Random on most datasets. Another interesting observation
is that in Figure 5 (d), the randomly selected cycle bases perform comparably with the cycle bases
generated using the clustering algorithm in terms of shortness on NELL-995 v1. Recall that in
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(a) (b)

(c) (d)

Figure 5: Histogram of shortness on different datasets

Table 5, the performance of CBGNN-Random slightly beat CBGNN on NELL-995 v1. The above
observations show the correlation between the shortness of cycle bases and their performance. The
correlation may result from the fact that if a triplet is near to a tree root, then the cycles in the
corresponding cycle basis that pass the triplet should be generally short. Most of the triplets are close
to at least one tree root among the clustered cycle bases, and thus are easy to learn.
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