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Abstract

On-policy Reinforcement Learning (RL) offers several desirable properties, includ-
ing more stable learning, less frequent policy changes, and the capacity to evaluate
a policy’s return during the learning process. Despite the considerable success of
recent off-policy methods, their on-policy counterparts continue to lag in terms
of asymptotic performance and sample efficiency. Proximal Policy Optimization
(PPO) remains the de facto standard, despite its complexity and demonstrated
sensitivity to hyperparameters. In this work, we introduce On-Policy Soft Actor-
Critic (ON-SAC), a methodical adaptation of the Soft Actor-Critic (SAC) algorithm
tailored for the on-policy setting. Our approach begins with the observation that the
current on-policy algorithms do not use true on-policy gradients. We build on this
observation to offer founded remedies for this problem. Our algorithm establishes
a new state-of-the-art for deep on-policy RL, while simplifying the process by
eliminating the need for trust-region methods and intricate critic learning schemes.

1 Introduction

A well-known dichotomy in Reinforcement Learning (RL) is the categorization in on-policy and
off-policy methods [Sutton and Barto, 2018]. The former, including Proximal Policy Optimization
(PPO) [Schulman et al., 2017] and Trust-Region Policy Optimization (TRPO) [Schulman et al., 2015],
update the policy based on data retrieved from the current policy. In contrast, off-policy methods
utilize all available data for actor updates. On-policy RL offers advantages, such as stable learning,
less frequent policy changes, and the ability to assess a policy’s return during the learning process.

Despite the significant achievements of recent off-policy methods like Soft Actor-Critic (SAC)
[Haarnoja et al., 2018] and Twin Delayed Deep Deterministic Policy Gradients (TD3) [Fujimoto
et al., 2018], their on-policy counterparts have not kept pace in terms of asymptotic performance
and sample efficiency. PPO is the prevailing standard for on-policy RL and has yielded remarkable
results across various domains. However, its complexity due to intricate mechanisms like trust-region
optimization, multiple loss functions, and code-level optimizations, makes it highly sensitive to
hyperparameter tuning [Andrychowicz et al., 2020, Huang et al., 2022].

Conversely, recent research indicates that maximum entropy RL enhances the convergence of policy
gradient methods [Mei et al., 2020, Cen et al., 2024]. Despite theoretical backing, its practical
implementation in on-policy deep RL algorithms remains largely unexplored. This research gap,
coupled with the complexity of existing on-policy deep RL algorithms, motivates our exploration of
simpler, more sample-efficient alternatives.

In this paper, we present ON-SAC, a methodical adaptation of the Soft Actor-Critic (SAC) algorithm
[Haarnoja et al., 2018] to on-policy RL. Starting from the observation that existing on-policy algo-
rithms employ biased estimates of the policy gradient, we propose to mitigate this bias by discounting
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the policy gradient and dropping the use of momentum for the actor update. Moreover, we leverage
the off-policy data for training the critic. The resulting algorithm achieves state-of-the-art perfor-
mance for on-policy methods while maintaining a simple, trick-free implementation that adheres
more closely to the theoretical grounding of on-policy RL.

2 Background

Reinforcement Learning deals with the problem of an agent interacting with an environment to learn
a policy that maximizes its long-term reward. Mathematically, an RL problem can be formulated as a
Markov Decision Process (MDP), which is a tuple (S,A, P,R, γ), where S ∈ Rm is a continuous
set of states and A ∈ Rd is a continuous set of actions. P : S × A × S → [0, 1] is the transition
probability function, where P (s′|s, a) denotes the probability of transitioning to state s′ after taking
action a in state s. R : S × A→ R is the reward function, where R(s, a) is the immediate reward
received by the agent for taking action a in state s. γ ∈ [0, 1) is the discount factor, which determines
the importance of future rewards compared to immediate rewards.

The agent’s goal in an RL problem is to learn a policy π : S → ∆A, that maximizes its expected
discounted return Gπ(s) = Es∼dπ

γ ,a∼π [R(s, a)]. Where we denote dπγ (s) ≜
∑∞

t=0 γ
tP (st = s) the

improper discounted state visitation density of the state s under the policy π.

2.1 Maximum Entropy Reinforcement Learning

Traditional RL algorithms often focus solely on maximizing the expected reward. However, this can
lead to overly deterministic policies that may not be robust to unforeseen changes in the environment.
Maximum entropy RL [Ziebart, 2010, Haarnoja et al., 2018] addresses this issue by incorporating
an entropy bonus into the objective function. The entropy of a policy π is a measure of its diversity
or randomness and is defined as H(π) = −

∑
s∈S π(s) log π(s). By maximizing the entropy along

with the expected reward, the agent is encouraged to explore different actions and states, leading to
more robust and adaptable policies. This is achieved by introducing a Lagrange multiplier α and
reformulating the objective function as:

J(π) = Eπ

[ ∞∑
t=0

γt (R(st, at) + αH(π(st)))

]
(1)

The Lagrange multiplier α controls the trade-off between maximizing reward and maximizing entropy.
A larger α leads to a greater emphasis on exploration and diversity in the policy.

2.2 Actor-Critic Methods

Actor-critic methods are a class of RL algorithms that combine two components: an actor and a critic.
The critic estimates the value function, which could be the long-term expected rewards or state-value
function V π(s), or the action-value function Qπ(s, a). Its role is to evaluate the current policy by
computing the value function of the current state. The actor updates the policy in the direction
suggested by the critic by computing the policy gradient, which adjusts the policy parameters to
maximize the expected return.

In essence, the critic informs the actor about the quality of its actions, allowing the actor to adjust
its policy accordingly. This dual mechanism enables actor-critic methods to learn more efficiently
than methods that rely solely on Monte Carlo estimates of the value function. Actor-critic algorithms
improve an explicit parametric model of the critic and policy, typically implemented using neural
networks, via gradient ascent. Temporal Difference (TD) learning, as described by Sutton and Barto
[2018], provides an iterative method to estimate the action-value function Qπ of a policy π. The TD
error is given by:

δt = Rt+1 + γQπ(St+1, At+1)−Qπ(St, At) (2)

Here, Rt+1 is the reward after transition, γ is the discount factor, and St, At and St+1, At+1 are the
current and next state-action pairs, respectively. The action-value function Qπ is updated to minimize
the TD error, allowing the action-value estimates to be updated based on the difference between the
estimated value of the next state-action pair and the current state-action pair.
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The TD error δt serves as a learning signal that guides the update of the action-value function, a key
component of many RL algorithms, including Q-learning and SARSA. The policy gradient theorem
[Sutton and Barto, 2018] provides an analytical solution to the gradient of the policy return as a
function of the actor’s parameters:

∇ϕJ
π(ϕ) =

1

1− γ
Es∼dπ

γ ,a∼π [Q
πϕ(s, a)∇ϕ log πϕ(a|s)] (3)

Here, dπγ is the discounted state distribution induced by the policy π, and Qπ is the true Q-function.
In the current state of affairs, most practical algorithms propose estimators that introduce some bias
in the policy improvement [Schulman et al., 2017, Haarnoja et al., 2018, Fujimoto et al., 2018]. In
this work, we propose a policy gradient estimator that mitigates these bias sources.

3 On-Policy Soft Actor-critic

The current state of deep on-policy RL methods motivates us to revisit their fundamental issues and
investigate the extent to which current practices align with their theoretical counterparts. In this
section, we introduce and discuss three methodological changes for deep on-policy RL, which leads
us to the introduction of our novel algorithm for deep on-policy RL, which we call On-Policy Soft
Actor-Critic (ON-SAC) (Algorithm 1). With the introduction of this new algorithm, our goal is to
construct an approach that closely adheres to the theoretical foundations of on-policy RL.

3.1 Off-Policy Critic Learning

Temporal Difference (TD) learning, as outlined by Sutton and Barto [2018], offers a methodology
for learning the value function using only system transitions, as expressed in Equation equation 2.
This algorithm is a cornerstone in the field of RL, with extensive research dedicated to understanding
its properties. It is well known that when TD is applied to a tabular value function representation,
it converges to the true value function [Dayan, 1992, Jaakkola et al., 1993]. On the other hand,
on-policy TD learning approaches using linear function approximation have been proven to converge
to a fixed point in the vicinity of the projection of the true value function [Tsitsiklis and Van Roy,
1996]. However, divergence may occur with standard TD learning when states are sampled off-policy
and linear function approximation is used [Baird, 1995]. This issue has prompted the creation of
several alternative algorithms specifically engineered to guarantee convergence under off-policy
sampling [Kolter, 2011, Diddigi et al., 2019]. In light of the lack of convergence guarantees for
simple off-policy TD learning, the desirable properties of on-policy TD learning have inspired the
development of deep RL on-policy methods that learn using exclusively freshly generated data,
forgoing the use of a replay buffer to store previous transitions [Schulman et al., 2015, 2017].

Algorithm 1 One step of ON-SAC

Require: ϕ, θ1,.., θK , B, γt = 1 ▷ Initial parameters
D ← ∅ ▷ Reset the actor replay buffer
for Ne episodes do

for each environment step do
at ∼ πϕ(at|st) ▷ Sample action from the policy
st+1 ∼ p(st+1|st, at) ▷ Sample transition from the environment
D ← D ∪ {st, at, rt, st+1, γt} ▷ Update the actor replay buffer
B ← B ∪ {st, at, rt, st+1} ▷ Update the critic replay buffer
γt ← γt × γ ▷ Update the discount factor

end for
γt ← 1

end for
for Nu update steps do

θi ← θi − λQ∇̂θiJQ(θi) for i ∈ {1, ..,K} ▷ Update the Q-function parameters
end for
ϕ← ϕ− λπ∇̂ϕJπ(ϕ) ▷ Update policy weights
α← α− λ∇̂αJ(α) ▷ Adjust temperature

Ensure: ϕ, θ1,.., θK ▷ Optimized parameters
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When looking closer, one of the primary factor contributing to this non-convergence is state aliasing,
a phenomenon that occurs in off-policy approximation [Sutton et al., 2016] when the function ap-
proximator perceives different states as identical, leading to information loss and potential divergence
in learning. Theoretically, the bias introduced by off-policy approximation diminishes with larger
regressors [Sutton et al., 2016]. This is attributed to the ability of larger regressors to capture more
nuances in the state representation, thereby reducing the likelihood of state aliasing. However, it
is crucial to note that while larger regressors can mitigate bias, they may concurrently increase the
variance of the estimates. By using this insight, we chose to integrate off-policy data into our critic
learning scheme by keeping track of past transitions via a replay buffer.

3.2 Properly Discounting The Policy Gradient

The policy gradient theorem, as defined in Equation equation 3, describes the gradient of the
anticipated discounted return in relation to an agent’s policy parameters. Despite this, the majority
of policy gradient methods bypass the use of the discounted state distribution, denoted as dπγ , when
calculating the policy gradient, opting to average the gradients across states instead. However, this
practice results in a biased gradient estimator as it fails to optimize the discounted objective.

Research has shown that this averaged gradient does not embody the gradient of any function [Nota
and Thomas, 2019]. As a result, there is no guarantee that algorithms following this direction will
converge to a ’reasonable’ optimum. In fact, it is possible to construct a counterexample where
the fixed point is globally pessimal for both the discounted and undiscounted objectives [Nota
and Thomas, 2019]. Despite these shortcomings, this estimator remains the most widely used for
estimating the policy gradient, primarily due to its proven effectiveness in practical applications
[Schulman et al., 2017, Haarnoja et al., 2018, Fujimoto et al., 2018]. Hence, to stay true to the theory
of reinforcement learning, and to make sure that we are optimizing for a valid objective, we use the
discounted state distribution dπγ for our policy gradient.

3.3 Using Pure Gradient Ascent

RMSProp (Root Mean Square Prop) is an adaptive learning rate optimization algorithm designed
to address the shortcomings of vanilla stochastic gradient descent (SGD) in neural network training
[Hinton and Swersky, 2012]. SGD can struggle with diminishing or exploding gradients, hindering
convergence. RMSProp tackles this issue by maintaining a moving average of the squared gradients
for each parameter. This average is used to normalize the gradients, leading to larger updates for
infrequently changing parameters and smaller updates for those with high gradient variance. This
moving average of squared gradients is an approximation of the diagonal elements of the Hessian that
does not capture the full curvature information. However, compared to second-order optimization
methods, RMSProp avoids the computational cost of calculating the Hessian matrix, making it more
efficient for large-scale problems.

Adam (Adaptive Moment Estimation) builds upon RMSProp by incorporating an additional moving
average of the gradients themselves[Kingma and Ba, 2014]. A standard in all deep learning algorithms,
Adam has imposed itself as the defacto optimizer for deep reinforcement learning methods [Schulman
et al., 2017, Haarnoja et al., 2018, Fujimoto et al., 2018]. This momentum makes our current policy
gradient take into account the previously accumulated policy gradients. For an order of magnitude,
with the default momentum of b1 = 0.9, our current gradient at timestep t is contributing only

1
1−b1

= 10% to the current gradient estimate. This makes us question the true "on-policyness" of
such gradients. With this insight in mind, we use RMSProp as our optimizer to capitalize on the
faster convergence properties while avoiding bias in the gradient.

4 Results

By taking into account the remarks made above, we empirically evaluate our algorithm ON-SAC
against PPO. We highlight the main differences between our algorithm and PPO in Table 1. For our
implementation, we use an ensemble of 5 critics trained independently and we rollout the policy for 5
episodes for each policy update step. We also use a discount factor of 0.995 and we halve the survival
reward to avoid local optima. Indeed, when using discounted gradients the undiscounted performance
becomes more sensitive to the discount factor as we are truly optimizing for the discounted objective.
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Figure 1: Evolution of the undiscounted policy return on the MuJoCo-v5 tasks. We use 10 random
seeds for every algorithm.

In Figure 1, we see that our algorithm ON-SAC outperforms PPO on 4 out of 6 MuJoCo tasks with a
considerable performance gap for higher dimensional problems. We also demonstrate that removing
just one code-level optimization, in our case, the reward normalization step makes our algorithm
outperform PPO by a large margin on all tasks. This is in contrast to our algorithm which uses no
code-level optimizations. In Figure 2, we report the results the standard discount factor of γ = 0.99.

In Figure 3, we conduct an ablation study on our algorithm, focusing on three primary design choices:
the use of off-policy Temporal Difference (TD) learning, the application of the true discounted policy
gradient, and the absence of momentum during optimization.

Our findings indicate that using momentum, for example Adam with b1 = 0.99, deteriorates
performance across all tasks, with the sole exception being the InvertedDoublePendulum task. We
believe this is because Adam, and hence momentum, relies on loss functions and neural networks that
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Figure 2: Evolution of the policy return on the MuJoCo-v5 tasks for various design choices. We use
10 random seeds for every algorithm.
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Figure 3: Evolution of the policy return on the MuJoCo-v5 tasks for various design choices. We use
10 random seeds for every algorithm.

are analytically differentiables, as common in supervised and unsupervised learning. However, in RL,
the gradient of the objective∇Jπ relies on the critic’s estimate, which introduces an additional bias in
the gradient approximation. While in supervised and unsupervised learning, the gradient is unbiased,
in RL, the use of function approximation for the critic induces bias in the gradient estimate. We
hypothesize that adding momentum to the optimizer may reinforce this bias, leading to detrimental
effects on policy improvement.

Similarly, our experimental results indicate that restricting the training of the critic to on-policy data
significantly affects performance and can even hinder learning as in the case of the Humanoid-v5
task. The only exception is the InvertedPendulum-v5 task which we believe did not suffer as it
requires less data to learn a critic for a small dimensional space. In general, we observe that training
the critic on larger datasets, even when off-policy, proves to be beneficial compared to limiting the
training to the small pool of freshly generated data. As for the discounted policy gradient, we observe
that employing a discount on the policy gradient has minimal impact on the policy performance,
benefiting the HalfCheetah task where it leads to a significant improvement. We believe this task
resembles the synthetic task formulated in [Nota and Thomas, 2019], where the averaged policy
gradient results in a degenerate local optimum.

Our study presents a contrasting perspective on the impact of using momentum in PG, diverging
from the conclusions drawn by Andrychowicz et al. [2020], who found that alterations in optimizers
have minimal influence on the performance. We attribute this discrepancy to the superior quality of
the gradient employed in our approach. Unlike PPO, which utilizes mini-batches of on-policy data
for actor updates, our method implements a single gradient descent step using the full batch. This
modification, in conjunction with the aforementioned enhancements, improves our policy gradient
estimate, aligning it more closely with the true policy gradient. In such a scenario, we theorize that
momentum could be counterproductive due to the inherently non-stationary characteristics of RL.

Attribute PPO ON-SAC
Trust region ✓ -

Complicated critic ✓ -
Code level optimization ✓ -

Discounted policy gradient - ✓
Is truly on-policy - ✓

Uses off-policy data - ✓
Table 1: Comparison of PPO and Supersac
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In summary, our results suggest that off-policy TD learning consistently enhances performance.
Conversely, the use of momentum appears to introduce significant bias, undermining the quality of
the policy gradient. Lastly, the discounting of the gradient contributes to a more robust algorithm.

5 Related works

Entropy regularization plays a pivotal role in numerous practical deep reinforcement learning (RL)
algorithms. The entropy of the policy, in fact, acts as a regularizer, shaping the objective landscape
[Ahmed et al., 2019]. One prevalent strategy for incorporating entropy regularization into Policy
Gradient (PG) methods involves the addition of an entropy cost term to the sample-based policy
gradient estimator. This approach aims to maximize the policy entropy at each sampled state, thereby
preserving the policy’s stochasticity throughout the optimization process [Mnih et al., 2016, Schulman
et al., 2017]. An alternative strategy regularizes the policy evaluation phase by supplementing the
standard RL task objective with an entropy term. This method guides policies towards regions of
higher expected trajectory entropy, a scheme often referred to as Maximum Entropy RL (MaxEnt
RL) [Ziebart, 2010, Haarnoja et al., 2018]. The MaxEnt RL formulation is recognized for enhancing
the exploration capabilities and robustness of policies by fostering stochasticity. In practical terms,
MaxEnt RL can be implemented simply by appending an entropy reward to the original task reward.
While the entropy bonus term strives to maximize policy entropy at visited states, MaxEnt RL steers a
policy towards regions of higher expected trajectory entropy. However, this comes with the trade-off
of introducing bias into the objective [Schulman et al., 2017]. Recent studies on PG methods have
underscored the efficacy of MaxEnt RL in expediting the convergence of Policy Gradient methods
[Mei et al., 2020, Ahmed et al., 2019, Cen et al., 2024].

In a study by Ilyas et al. [2018], it was observed that the behavior of deep policy gradient algorithms
differs greatly from its motivating frameworks. Specifically, learned value estimators frequently
fail to fit the true value function, and there is a poor correlation between gradient estimates and the
‘true’ gradient. In Nota and Thomas [2019], the authors demonstrated that the undiscounted policy
gradient does not correspond to the gradient of any objective function. They also identified instances
where this empirical gradient can be suboptimal for both discounted and undiscounted policy return.
Moreover, numerous studies have underscored the sensitivity of current deep on-policy methods to
hyperparameters and implementation details [Huang et al., 2022, Andrychowicz et al., 2020].

In their study, Henderson et al. [2018] demonstrate that, when applied to RL tasks, the effectiveness
of adding momentum to adaptive optimizers varies with every environment. This variation is linked
to the fact that in online stochastic settings, which is the case of RL, adaptive optimizers like Adam
and RMSProp can fail to converge to an optimal solution [Reddi et al., 2019, Wilson et al., 2017].

Temporal Difference (TD) learning Sutton and Barto [2018], is a key RL algorithm for learning value
functions using system transitions. It is known to converge to the true value function when applied to
a tabular value function representation [Dayan, 1992, Jaakkola et al., 1993]. On-policy TD learning
with linear function approximation converges to a fixed point near the true value function’s projection
[Tsitsiklis and Van Roy, 1996]. However, divergence can occur with off-policy state sampling and
linear function approximation Baird [1995], leading to the development of alternative algorithms
ensuring convergence under off-policy sampling [Kolter, 2011, Diddigi et al., 2019].

6 Conclusion

In this work, we proposed ON-SAC, an adaptation of the Soft Actor-Critic algorithm specifically
tailored for on-policy Reinforcement Learning (RL). ON-SAC stands as a fundamental benchmark
for on-policy methodologies, faithfully adhering to the theoretical foundations of on-policy RL while
maintaining a clean, trick-free implementation. Our algorithm focuses on the quality of the policy
gradient. This allows it to circumvent the necessity for trust regions and intricate critic learning
schemes. Moreover, ON-SAC delivers state-of-the-art performance for deep on-policy and defines
a robust and uncomplicated baseline for future deep on-policy methods. We believe that ON-SAC
paves the way for further exploration in the realm of on-policy RL, providing a simple and solid
foundation upon which future research can build upon.
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A Hyperparameters

Table 2 lists of the hyperparameters used for ON-SAC.

Table 2: ON-SAC Hyperparameters

Parameter Value

optimizer RMSProp [Hinton and Swersky, 2012]
learning rate 3 · 10−4

discount (γ) 0.995
replay buffer size 105

number of critics 5
number of hidden layers (all networks) 2
number of hidden units per layer 256
number of samples per minibatch 256
entropy target −dim (A)
nonlinearity TanH
actor update interval 5 episodes
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