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Abstract

While Large language models (LLMs) have
proved able to address some complex reasoning
tasks, we also know that they are highly sensi-
tive to input variation, which can lead to differ-
ent solution paths and final answers. Answer
consistency across input variations can thus be
taken as a sign of stronger confidence. Leverag-
ing this insight, we introduce a framework, Mul-
tidimensional Reasoning Consistency where,
focusing on math problems, models are sys-
tematically pushed to diversify solution paths
towards a final answer, thereby testing them for
answer consistency across multiple input varia-
tions. We induce variations in order of shots in
prompt, problem phrasing, and languages used.
Experiments on a wide range of open-source
state-of-the-art LLMs of various sizes show
that reasoning consistency differs by variation
dimension, and that by aggregating consistency
across dimensions, our framework enhances
mathematical reasoning performance on mono-
lingual datasets GSM8K and MATHS500, and
the multilingual dataset MGSM.

1 Introduction

Large Language Models (LLMs) have shown im-
pressive abilities in addressing a variety of complex
reasoning tasks, such as math reasoning (Brown
et al., 2020) and commonsense reasoning (Bom-
masani et al., 2022). The use of Chain-of-Thought
(CoT), i.e., breaking down a problem and taking
multiple intermediate steps to gradually arrive at
the final answer, endows LLMs with even better
performances (Wei et al., 2022).

At the same time, LLMs have also proved to be
sensitive and somewhat brittle with respect to vari-
ations in the way they are prompted (Zhao et al.,
2021; Lu et al., 2022). For instance, in a few-shot
setting for solving mathematical problems, just al-
tering the order in which the example shots are
provided might lead to different reasoning paths
and possibly different answers (Wang et al., 2022);

Math Problem

Original Formulation

Roger has 5 tennis balls. He buys 2
more cans of tennis balls. Each can

Solutions

Roger started with 5 balls. 2 cans of 3
tennis balls each is 6 tennis balls. 5 +

has 3 tennis balls. How many tennis 6 =11. The answer is 11.
balls does he have now?
Rephrased Problem CoT Solution

Roger owns five tennis balls. He
buys two cans, each containing three
tennis balls. What is the total number
of tennis balls he has now?

Problem in German

Rogerhat 5 Tennisbille. Erkauft noch 2
Dosen Tennisbille.In jeder Dose sind 3
Tennisbille. Wie viele Tennisbiille hat

Roger starts with 5 balls. He buys
two cans, each can contains 3 balls,
two cans have 3 + 2 = 5 balls. Roger
now has 5+ 5= 10 tennis balls.

CoT Solution

Roger beginnt mit 5 Tennisbillen. Er
kauft 2 Dosen Tennisbille, jede
enthilt 3 Biille, fiir 6 Tennisbille. Er

er jetzt? hat jetzt insgesamt 5 + 6 = 11 Biille.

Figure 1: Example of variations: A math problem is
presented in different forms or languages, resulting in
different reasoning paths to solve it.

the same can happen if different formulations of the
same problem are used (Zhou et al., 2024). Also,
an identical mathematical problem presented once
in one language, and once in a different one, may
be solved following different strategies and also
lead to different answers (Lai and Nissim, 2024).
Figure 1 visualises examples of such variations
across different dimensions.

Some of these variations, such as using even
slight alterations in the prompt (Wang et al., 2022;
Li et al., 2023), have been exploited in recent
work to enhance reasoning performance. How-
ever, the experimental setup and the assessment
of (in)consistent answers due to variations is still
scattered. In this paper, we argue for a systematic
treatment of variations and answer consistency and
introduce a Multidimensional Reasoning Consis-
tency (MRC) framework, focusing on maths prob-
lems. MRC, shown in Figure 2, allows for a sys-
tematic and comprehensive testing and evaluation
of model consistency against variations in the way
the problem is presented to the model. Our frame-
work also makes it possible to best leverage such
variations and answer consistency for improving



overall accuracy in mathematical reasoning tasks.

The rationale behind this framework is that by
explicitly and systematically pushing the model
to likely diversify its solution paths, and possibly
yield a different final answer, we can take across-
variation consistency of the answer as stronger evi-
dence for its correctness.

We consider three dimensions of variation to
test consistency: (i) context (order of shots); (ii)
problem (re)phrasing; and (iii) language. For the
context aspect, we follow Wang et al. (2022) in
changing the order of the exemplars (i.e., the shots),
which results in different prompts based on a set
of example problems. For problem rephrasing, we
prompt the LLMs to rewrite the question before
solving it. Lastly, we use the same math problems
written in 11 different languages. For each dimen-
sion, the LLM generates multiple solution paths to
a question, which could differ in various ways, but
should in principle lead to the same answer. An-
swer consistency is eventually used to determine
the final answer to the given problem.

We evaluate our framework on three mathemat-
ics reasoning benchmarks: GSM8K (Cobbe et al.,
2021), MATH500 (Hendrycks et al., 2021), and
MGSM (Shi et al., 2023a), covering a range of
open-source state-of-the-art LLMs with varying
scales: 7-8B, 14-32B, and 70-72B.

Contributions First, we introduce a method to
systematically study LLMs’ reasoning consistency
along multiple dimensions of input variation. Sec-
ond, we improve model performance on both mono-
lingual and multilingual benchmarks for a vari-
ety of models by leveraging reasoning consistency
across variations; this is obtained thanks to the
induced substantial diversification of the reason-
ing paths, offering valuable insights into LLMs
reasoning beyond the commonly used sampling-
based strategy. Third, extensive experimental re-
sults show that model consistency differs by varia-
tion dimensions, but exploiting consistency always
enhances math reasoning performance, and aggre-
gating consistency across dimensions yields an ad-
ditional boost; this paves the way for using a similar
framework for other (reasoning) tasks, providing
a strategy to make models more robust reasoners.
All data and code are available (upon acceptance.)

2 Related Work

Math Reasoning in LLMs Mathematical rea-
soning has garnered great interest in recent times

since LLMs have shown what look like complex
problem-solving capabilities (Brown et al., 2020;
Lu et al., 2023). With LLMs and few-shot prompt-
ing, only a few task examples (e.g., question-
answer pair) are required at inference time to en-
able the LLM to perform the intended task without
updating the model parameters (Brown et al., 2020).
To further elicit LLMs’ reasoning capability, Wei
et al. (2022) proposed a Chain-of-Thought prompt-
ing, which involves an explicit step-by-step reason-
ing from the question to the answer, rendered in
natural language. Given its success, a series of CoT-
related methods have been proposed to improve
reasoning performance in LLMs, such as com-
plex CoT (Fu et al., 2023), auto-CoT (Zhang et al.,
2023), multilingual CoT (Shi et al., 2023b), least-
to-most prompting (Zhou et al., 2023), progressive-
hint prompting (Chuanyang et al., 2023), and
residual connection prompting (Jiang et al., 2024).
Rather than developing a new specific CoT method,
we introduce variations in the prompt and exploit
the diversity of CoT outputs.

Consistency in LLMs In principle, language
models could be expected to yield consistent an-
swers in semantically equivalent contexts, espe-
cially regarding factual information; this is con-
sidered a crucial aspect in assessing model gener-
alization abilities (Fierro and Sggaard, 2022; Lai
and Nissim, 2024). In practice, this is often not
the case. Some works have thus focused on im-
proving consistency on, e.g., natural language in-
ference (Mitchell et al., 2022), explanation genera-
tion (Camburu et al., 2020), cloze test (Ravichan-
der et al., 2020), and factual knowledge extrac-
tion (Fierro and Sggaard, 2022). For improving
CoT reasoning, Wang et al. (2023) suggested to
use self-consistency, sampling diverse solution
paths and then selecting the most consistent an-
swer. Zhou et al. (2024) proposed self-consistency-
over-paraphrases (SCoP), which diversifies solu-
tion paths by generating different paraphrases for a
given problem. To check consistency, Wang et al.
(2022) use different exemplar orders to possibly
trigger diverse solutions. Lai and Nissim (2024)
look at consistency of answers given to the same
problem written in two different languages, and use
multilingual instruction tuning to improve LLMs’
performance across languages.

Here, we propose a novel method to study and
leverage reasoning consistency along different di-
mensions to improve performance.
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Figure 2: Overview of our Multidimensional Reasoning
Consistency (MRC) framework: (i) COC changes the
exemplars order; (ii) CPC rewrites the given questions
in the same language; and (iii) CLC rewrites the given
questions in different languages.

3 Methodology

Figure 2 shows our framework. Using systematic
variations, MRC pushes the model to generate mul-
tiple solutions for a given question, then measures
consistency across variations, and leverages it to
improve performance.

3.1 Reasoning Consistency

Formally, given a set of math problems M, each
consisting of a two-tuple (question:g, answer:a).
We define the reasoning consistency of an LLM
as the extent to which it yields the same answer
for a given question under a dimension of variation
(e.g., language). Specifically, for each question,
assume that the LLM generates n candidate solu-
tions {s1, ..., sy} which can arrive at a set of final
answers {aj, ..., an}, reasoning consistency (RC)
is the ratio of the maximum number of these solu-
tions that can lead to the same answer over the total
number of candidates n.

M|

1 max;|S;|
RC(LLM) = bt 1
( )MQQ . (1)
Sj={sie{s1,....,sn}f(s5) =a;} (2)

Where f(s;) maps solution s; to the final answer.

3.2 Multidimensional Consistency

In the context of reasoning consistency in math-
ematical problems, a language model can gener-
ate multiple plausible responses to the same math
question, where correct reasoning solutions, even
if they are diverse, tend to be more consistent in the
final answer than incorrect solutions (Wang et al.,
2023). Instead of simply sampling a diverse set

of candidate outputs from LLMs, our MRC frame-
work, aims to assess model consistency along three
dimensions we control for and exploit: example
order, problem (re)phrasing, and language.

Cross-order Consistency (COC) Some prior
works have shown that LLMs are sensitive to or-
der, such as the order of options in multiple-choice
questions (Pezeshkpour and Hruschka, 2024; Zotos
et al., 2025), or the order of shots in math reason-
ing (Wang et al., 2022). Here we assess how much
the order of the shots affects consistency of lan-
guage models. Specifically, we focus on few-shot
prompting, which consists of a set of exemplars
(question:g, step-by-step solution:s), whose
presentation order can be changed arbitrarily. For
instance, given a 4-shot prompt with 4 exemplars,
we could change their order to get 24 different
prompts, each of which can be used to prompt
the model to generate a corresponding answer to a
given question (see Appendix A.1 for examples).
This allows us to assess the robustness of the model
with respect to the order of exemplars in few-shot
prompting and then leverage its consistency to im-
prove the model’s performance.

Cross-phrasing Consistency (CPC) In addition
to the order of the exemplars in the prompt, the
surface form of the question itself can also have
an impact on the performance of the model (Zhou
et al., 2024). Differently from Zhou et al. (2024),
who prompt LLMs to generate ‘good’ paraphrases
for math questions, we directly prompt an LLM
to rewrite the question with the goal of making
it easier for itself to solve (see Appendix A.1 for
examples). We use two different main settings,
including rewrite-without-solve and rewrite-then-
solve, which yield the following four settings when
combined with the original question:

¢ Rewrite-without-solve (RwS): We ask the LLM
to rewrite the question, but not to include the
solution. Afterwards, we prompt the LLM to
generate the solution for the rewritten question.

* Original Question + RwS (RwS+): We concate-
nate the original question and the rewritten one
above prompting the LLM for the solution.

¢ Rewrite-then-solve (RtS): We ask an LLM to
rewrite the question making it easier to solve and
then to give the corresponding solution.

* RtS Question (RtS-): We prompt the LLM to
generate the solution for the rewritten question
in the “rewrite-then-solve” setting.



Cross-lingual Consistency (CLC) One rather
outstanding way to vary formulations is to write
the same problem in different languages. Abili-
ties of LLMs in different languages vary substan-
tially, depending on the amount of training data in
a given language, and on the similarity of lesser
represented languages to more resource-rich ones,
as this impacts how well models can deal with less
seen languages (de Vries et al., 2022; Muennighoff
et al., 2023; Ustiin et al., 2024). With cross-lingual
consistency, we leverage language diversity to eval-
uate the LLMs’ robustness to input in different lan-
guages, and exploit output diversity to further im-
prove the LLMs’ reasoning performance. Given the
same math question in different languages, LLMs
are expected to produce reasoning solutions in the
corresponding languages. On the one hand, those
solutions are expected to arrive at the same final
answer if the language model is multilingual; on
the other hand, due to the differences in language
structures, those solutions can increase diversity
compared to using a single language.

3.3 MRC for Reasoning

Eventually, answer consistency across the three
dimensions can also be leveraged to improve rea-
soning performance. For each question, the so-
lution set {s1, ..., s, } generated by the language
model, which can arrive at the final answer set
{a1,...,am}. We select the most consistent an-
swer in n solution paths as the final answer a,
which is obtained through majority voting:

G = arg max I(a=a) 3)

Where A denotes the set of candidate answers and
I(+) is the indicator function.

4 Experimental Setup

Datasets To comprehensively assess our frame-
work across dimensions, we include three well-
established math reasoning benchmarks: (1) mono-
lingual datasets GSM8K (Cobbe et al., 2021) and
MATHS00 (Hendrycks et al., 2021); and (2) mul-
tilingual dataset MGSM (Shi et al., 2023a). Addi-
tionally, to test our CLC method on the more chal-
lenging dataset, we machine-translate questions
from MATHS500 into 10 languages in MGSM.!

"https://translate.google.com/.

1.0
20.8
=1
Q
iz
2 0.6
o
O
=y
EO4
(=}
v
<
(9]
~ 0.2
0.0
Y=o B N~ W= ' N = S - B~ W= ="
S - > 0 XV 0 F N A OS A AN
B A L N L
o E @ £ EDE 220 g
£ t=> & L2z 58793
:w E s &S g E 87
coc &5 5 %S cEE0
m CPC 5 z 52 9%
CLC & < =
&

Figure 3: Reasoning consistency on three dimensions
of variation. Note that COC and CPC are evaluated
on the monolingual benchmark GSM8K, while CLC is
evaluated on the multilingual benchmark MGSM.

Models We select a range of open-source state-
of-the-art LLMs in varying scales: (i) 7-8B; (ii)
14-32B; and (iii) 70-72B.2 For all models, we only
consider instruction-tuned versions.

Implementation We use 4-shot for all languages
except TE which only uses 2-shot, since a 4-shot
prompt would exceed the default maximum length,
due to tokenization issues unfavourable to this lan-
guage (Ahia et al., 2023).3 All prompt exemplars
we use are released by Shi et al. (2023a) and An
et al. (2024). We report the final answer accuracy
for all experiments except the consistency score.

5 Results and Analysis

We report results for all variation dimensions, and
then zoom in on CLC for a more detailed analysis.

5.1 Reasoning Consistency

Figure 3 shows reasoning consistency results on the
three different dimensions. The first observation
is that COC achieves the highest scores, followed
by CPC, with CLC having the lowest scores across
the board. This suggests that all models are more
sensitive to language variations while results are
more consistent across different exemplar orders in
few-shot prompting. Indeed, when looking at COC
only, all models achieve consistency scores above

“More details are in Appedix A.5
SExamples are in Appendix A.1.
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Figure 4: Reasoning accuracy of 4-shot for 8 different exemplars orders. The x-axis numbers correspond to the
following models: 1 —Phi-3-7B; 2 — Qwen-2.5-7B; 3 — Qwen-2.5-Math-7B; 4 — Llama-3-1-8B; 5 — Aya-expanse-8B;
6 — Mistral-8B; 7 — Phi-3-14B; 8 — Mistral-22B; 9 — Aya-expanse-32B; 10 — Llama-3-1-70B; 11 — Qwen-2.5-72B;
12 — Qwen-2.5-Math-72B. Notes: (i) minimum score (MIN); (ii) mean score (MEAN); (iii) maximum score (MAX).

GSMSK MATHS500

Models CoT RwS RwS+ RtS- RtS CPC | CoT RwS RwS+ RtS- RtS CPC
7-8B

Phi-3-7B 88.2 84.5 87.0 84.8 88.1 90.0 40.4 36.2 41.8 396 434 46.6
Qwen-2.5-7B 88.3 86.0 89.8 86.3 90.1 92.0 63.6 57.2 63.6 59.0 620 72.4
Qwen-2.5-Math-7B 90.0 87.6 91.1 89.1 923 941 | 752 72.8 73.2 724 732 714
Llama-3.1-8B 79.7 73.9 78.2 77.9 81.2 83.8 42.6 36.6 45.6 39.0 46.6 50.2
Aya-expanse-8B 76.7 73.5 77.9 73.5 78.2 82.4 28.0 26.0 294 266 270 324
Ministral-8B 812 787 83.0 789 84.0 847 | 428 418 48.0 392 50.6 51.0
14-32B

Phi-3-14B 89.2 86.4 89.2 86.9 89.8 90.2 442 44.0 47.6 432 472 51.2
Mistral-22B 85.8 83.1 85.7 84.8  88.1 88.1 42.6 44 4 51.4 432 48.6 51.6
Aya-expanse-32B 83.8 82.3 83.8 824 88.4 88.1 38.6 37.6 38.2 41.2 408 43.4
70-72B

Llama-3.1-70B 94.0 89.8 93.9 919 936 94.8 58.6 49.0 60.2 55.8 63.4 65.2
Qwen-2.5-72B 94.6 88.9 94 .4 88.6 955 95.8 63.2 23.8 22.0 63.8 74.0 67.0
Qwen-2.5-Math-72B  94.0 92.9 94.7 93.5 94.8 95.9 66.6 54.6 58.0 67.6 74.6 74.8

Table 1: Reasoning accuracy of CPC on the benchmarks GSM8K and MATHS500, obtained via aggregating vanilla
CoT prompting and 4 different question rewriting settings. The best result for each model across settings is bolded.

0.9. Notably, the Llama-3.1 family achieves the
highest score with the 70B model and the lowest
score with the 8B model.

For CPC and CLC, Aya-expanswe-8B has the
lowest consistency scores in both dimensions,
while larger Qwen2.5 and Llama-3.1 models per-
form best. Compared to COC and CPC, there is a
bigger gap in CLC for different models, even within
the same scale, e.g., Phi3-7B vs Qwen2.5-7B. Over-
all, larger models show higher consistency.

5.2 Consistency Improves Reasoning

For each dimension, we compare the performance
obtained exploiting cross-variation consistency to
yield a final answer with the performance obtained
via the variations on their own.

COC Figure 4 reports the results augmented with
COC on GSM8K and MATH500, where we use 8
different exemplar orders for the 4-shot prompt.*
Compared to vanilla CoT prompting, COC im-
proves the reasoning performance for all models.
On dataset GSM8K, COC scores are higher than
the average scores of 8 different order prompts
on all models, and highest on most models, ex-
cept for Phi-3-7B, Llama-3.1-8B, and Aya-expanse-
8B, where it is on par with the highest scores
among the eight ordering configurations we con-
sider in this analysis. On the more challenging
dataset MATHS500, we see COC achieves the high-
est scores among all models.

CPC Table 1 shows CPC’s on GSM8K and
MATHS500. Accuracy drops when models are fed

*Complete results are in Appendix A.3.



Models BN DE EN ES FR JA RU SW TE TH ZH CLC
7-8B

Phi-3-7B 148 776 892 8.2 804 648 744 140 52 188 76.0 91.2
Qwen-2.5-7B 672 724 916 828 720 648 708 164 292 756 740 92.8
Qwen-2.5-Math-7B 16.8 768 928 820 768 61.6 788 4.0 56 512 856 93.6
Llama-3.1-8B 576 644 808 73.6 63.6 524 680 556 496 588 63.6 78.8
Aya-expanse-8B 292 704 772 748 668 604 720 11.6 64 228 672 82.0
Ministral-8B 504 680 856 764 69.6 540 70.8 276 364 532 644 84.0
14-32B

Phi-3-14B 148 760 880 876 768 728 80.8 184 56 128 776 90.0
Mistral-22B 520 764 876 824 752 620 784 356 172 576 80.0 89.2
Aya-expanse-32B 584 740 8.0 844 800 736 812 292 172 528 772 90.8
70-72B

Llama-3.1-70B 836 820 936 876 776 768 844 832 792 804 84.0 93.6
Qwen-2.5-72B 88.0 844 932 884 804 844 872 660 688 91.6 86.8 95.6
Qwen-2.5-Math-72B 864 83.6 944 856 784 812 704 572 68.0 856 884 95.2

Table 2: Reasoning accuracy of CLC compared to vanilla CoT prompting on the MGSM benchmark. Note that

bold numbers indicate the best result for each model among different languages and CLC.

Models BN DE EN ES FR JA RU SW TE TH ZH CLC
7-8B

Phi-3-7B 10.8 348 404 398 54 208 300 9.4 56 100 332 44.0
Qwen-2.5-7B 334 516 636 500 330 502 558 176 17.0 422 49.0 67.4
Qwen-2.5-Math-7B 292 612 752 620 534 50.8 658 38 162 236 70.6 79.4
Llama-3.1-8B 222 310 426 354 72 294 386 248 94 268 328 47.2
Aya-expanse-8B 106 258 280 266 256 240 252 8.6 56 11.0 242 31.2
Ministral-8B 170 310 428 424 36.8 26.6 388 8.4 76 182 298 44.4
14-32B

Phi-3-14B 30 422 442 418 92 336 372 138 4.6 1.8  38.6 49.6
Mistral-22B 16.0 432 426 430 236 344 432 152 358 236 352 53.8
Aya-expanse-32B 20.8 402 386 382 30 350 388 150 102 160 38.0 45.0
70-72B

Llama-3.1-70B 326 412 586 518 9.6 334 472 440 224 454 428 64.4
Qwen-2.5-72B 514 548 632 484 516 276 384 356 374 562 632 75.2
Qwen-2.5-Math-72B  58.0 50.0 66.6 60.0 224 566 606 306 344 58.0 644 75.4

Table 3: Reasoning accuracy of CLC compared to vanilla CoT prompting on the machine-translated MATHS00.
Note that bold numbers indicate the best result for each model among different languages and CLC.

only the rewritten question (RwS), as they might
lose some information from the original question
(manual inspection). When combining the rewrit-
ten question with the original one (RwS+), most
models score comparably to the original prompting
and tend to achieve higher scores in the rewrite-
then-solve setting (RtS). The latter observation sug-
gests that asking the model to rewrite the question
in a simple way and then solve it, can effectively
help the model. Lastly, we see that CPC can further
improve the reasoning performance: (i) when com-
paring to vanilla CoT prompting this is true for all
models; and (ii) when comparing to RtS, all models
achieve higher accuracy except Aya-expanse-32B
on GSMSK and Qwen-2.5-72B on MATHS500.

CLC Table 2 and Table 3 present the result
of CLC compared to vanilla CoT prompting on
MGSM and machine-translated MATHS00, respec-
tively. All models perform best on English, with a

serious performance gap between underrepresented
(e.g., SW) and high-resource languages, especially
for smaller models. Similar to COC and CPC, com-
pared to vanilla CoT, CLC yields improvement for
most models, with Aya-expanse-32B on GSM8K,
for example, showing a significant gain of 4.8%
absolute accuracy compared to that of English. For
Llama-3.1-8B and Ministral-8B, the accuracy of
CLC is slightly lower than that of English, but bet-
ter than that of all other languages. On the more
challenging dataset MATHS500, CLC leads to con-
sistent improvements across all models, with the
most substantial gain observed on the larger model
(e.g, a 12.0% percentage point relative improve-
ment in accuracy over that of English on Qwen-
2.5-72B), highlighting its effectiveness in handling
more complex tasks and scaling with model size.

MRC Table 4 shows the results of MRC and of
the three separate consistency methods on MGSM
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Figure 5: Reasoning accuracy of using varying numbers of reasoning paths on GSMS8K.

Datasets GSMSK MATHS500
Models COC CPC CLC MRC|COC CPC CLC MRC
7-8B

Phi-3-7B 924 92.0 912 944 |43.2 46.6 44.0 49.2
Qwen-2.5-7B 92.0 93.2 92.8 93.6 |68.8 724 67.4 73.6
Qwen-2.5-Math-7B  94.4 94.8 93.6 96.0 | 77.0 77.4 794 79.2
Llama-3.1-8B 80.8 85.6 78.8 84.4 |48.0 50.2 47.2 52.2
Aya-expanse-8B 78.4 85.2 82.0 83.6 314 324 312 344
Ministral-8B 844 86.8 84.0 87.2 |450 51.0 444 492
14-32B

Phi-3-14B 92.0 92.0 90.0 93.2|49.0 51.2 49.6 52.8
Mistral-22B 87.2 89.6 89.2 92.0 482 51.6 53.8 53.6
Aya-expanse-32B 86.0 89.2 90.8 91.2 |43.4 434 45.0 464
70-72B

Llama-3.1-70B 95.6 96.8 93.6 964|650 652 644 68.2
Qwen-2.5-72B 96.0 97.6 95.6 96.8 |75.2 67.0 752 77.6
Qwen-2.5-Math-72B 94.4 952 952 95.2 |76.0 74.8 754 80.0

Table 4: Accuracy on MGSM and MATH500. Notes:
(i) CPC uses 5 solution paths, COC and CLC use 8 each,
and CLC uses 8 languages (excl. BN, SW, TE), so MRC
contains a total of 19 paths (excluding the two identical
English paths); (ii) best result for each model is bolded.

and machine-translated MATHS500. Of the three
variation dimensions, CPC performs best overall,
followed by COC and CLC. This suggests that
CPC can push the model to better diversify its so-
Iution paths, while for CLC, this might be due
to the large performance gap between English and
other languages. By aggregating consistency across
multiple dimensions, MRC can further improve
the reasoning accuracy for most models, while
showing different scaling behaviors on datasets of
varying difficulty. On the easier dataset MGSM,
smaller models benefit more significantly from our
approach, indicating its effectiveness in enhancing
the capabilities of lightweight models. In contrast,
on the more challenging dataset MATHS00, larger
models show greater relative improvement, sug-
gesting that our method scales well with model
capacity when addressing more complex tasks.

5.3 Analysis

Comparison to Self-consistency One can con-
ceive CLC as a multilingual extension of monolin-

gual self-consistency, as it goes beyond the com-
monly used sampling-based strategy. In Figure 5,
we plot accuracy with respect to varying numbers
of reasoning paths for two model families (Llama-
3.1 and Qwen-2.5). For self-consistency, we use
English following (Wang et al., 2023), whereas
for CLC, we use 8 languages excluding BN, SW,
and TE which have very low results (see Table 2).
We sample N/8 reasoning paths for each language,
thus creating N solutions for CLC. For all mod-
els, we use temperature sampling with T = 0.6 and
truncated at the top-k (k = 40) tokens with the
highest probability. We see some different trends
between the two model families: (i) for Llama-3.1,
the accuracy of CLC is generally lower than self-
consistency but higher than greedy decode, possi-
bly due to the large performance gap between En-
glish and other languages; (ii) for Qwen-2.5, CLC
dramatically improves reasoning accuracy when
the number of paths goes from 8 to 16, and achieves
better performance than self-consistency. Overall,
as with self-consistency, CLC yields higher accu-
racy with a greater number of paths, suggesting
that the language dimension can indeed introduce
valuable diversity in the reasoning paths.

Case Study Table 5 shows examples of solutions
generated by Qwen2.5-72B for the same MSGM
question in different languages. For the EN ques-
tion, the model incorrectly reasons in the first step:
On Mondays, Wednesdays, and Fridays, Kimo has
3 x I = 3 hours of classes, which results in the
wrong reasoning and final answer. It is interesting
to see that the model reasons correctly in the other
languages except BN, while the solution paths
might be logically different. For DE, the model
first calculates the total hours for Monday, Wednes-
day, and Friday, then calculates the total hours for
Tuesday and Thursday, and then adds them together
to get the total hours for the week; while for ZH,



Language

CoT Reasoning

Question

On Mondays, Wednesdays, and Fridays, college student Kimohas three 1-hour classes each day. On Tuesdaysand Thursdays,
he has two 2-hour classes each day. In one semester,there are 16 weeks of school. In onesemester, how many hours does
Kimo spend attending classes?

BN

oS ST, FWIT FIOW S 3 * 1 =3 T (AT, TRG TPAQ) +2 * 2= 4 T (W, FeIfoaq) =7 T8 93fB GiR2T 16 g, o2
1B 16 *7 =112 T fIOME FIOT IT FI© | B3 3T 1121

DE

Montags, mittwochs und freitags verbringt Kimo 3 x 1 =3 Stunden pro Tag mit Kursen. In einer Woche verbringt er an diesen Tagen
insgesamt 3 x 3 =9 Stunden mitKursen. Dienstags und Donnerstags verbringt er2 x 2 =4 Stunden pro Tag mit Kursen. Ineiner
Woche verbringt eran diesen Tagen insgesamt 2 x 4 =8 Stunden mit Kursen. Insgesamt verbringt er ineiner Woche 9 +8=17
Stunden mit Kursen. In einem 16-wochen-Semester verbringt er 16 x 17=272 Stunden mitKursen. Die Antwortlautet 272.

EN

On Mondays, Wednesdays, and Fridays, Kimo has 3 * 1 =3 hours of classes. On Tuesdays and Thursdays, hehas2 * 2 =4
hours of classes. In one week, he has3 + 4 + 3 =10 hours of classes. In one semester, Kimo spends 10 * 16 =160 hours
attending classes. The answer is 160.

ES

Loslunes, miércolesy viernes, Kimo pasa 3 * 1 =3 horasen clases. Como hay 3 diasala semana, pasa3 * 3 =9 horasen
clases. Los martesy jueves, Kimo pasa 2 * 2 = 4 horas en clases. Como hay 2 diasala semana, pasa2 * 4 = 8 horasen clases.
En total, Kimo pasa9 + 8 = 17 horas a la semana en clases. En un semestre, Kimo pasa 17 * 16 =272 horas en clases. La
respuestaes272.

FR

Kimo a3 coursd'une heure les lundis, mercredis et vendredis, ce qui fait 3 x 1 =3 heures par jour. Comme il y a 3 jours dansla
semaine ot ila 3 heures de cours, cela fait 3 x 3 = 9 heures par semaine. Les mardis et jeudis, il a 2 cours de 2 heures, ce qui fait
2 x 2 =4 heures par jour. Comme il y a 2 jours dans la semaine ou il a 4 heures de cours, cela fait 2 x 4 = 8 heures par semaine.
Au total, Kimo a 9 + 8 = 17 heures de cours par semaine. Comme il y a 16 semaines d'école par semestre, Kimo consacre 17x
16 =272 heures a ses cours durantun semestre. La réponse est272.

JA
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RU

B [OHEIENbHUK, cpeay u msrHuiy Kumo mpoBojaur 3 * 1 =3 yaca Ha 3aHsTHAX. B Helemmo Takux JAHei 3, 3HAYUT, 32 HeJleJI0 OH MPOBOAUT 3 * 3 =9 yacos
Ha 3aHATHAX B 3TH AHHU. BropHuk n uerBepr Kumo npoBoaut2 * 2 =4 yaca Ha 3aHATHAX. B Henemo Takux JHeH 2, 3HAYMT, 32 HEJICIO OH MPOBOANT 4% 2 =
8 yacoB Ha 3aHATUAX B 3TH JAHU. Beero 3a nenemo Kumo npoBonut9 + 8 =17 wacos Ha 3aHaTHsAX. B cemectpe 16 Henens, 3Ha4wr, 3a cemectp Kumo
npoBoauT 17 * 16=272 vaca na 3anstusx. Orser — 272.

SW

Kimo ana masomo matatu ya saa 1 kilasiku kwa siku tatu, hivyo kwa jumla ana masomo 3 * 1 * 3 =9 saa. Kimo piaana masomo mawili ya
saa 2 kilasiku kwa siku mbili, hivyo kwa jumla ana masomo 2 * 2 * 2 =8 saa. Kwa jumla, Kimo ana masomo 9 + 8 =17 saa kwa wiki.
Kimo ana shulekwa wiki 16, hivyo kwa jumla ana masomo 17 * 16 =272 saa kwa muhula. Jibuni 272.
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Table 5: Case study in the test set of MSGM, where the solutions are generated by Qwen2.5-72B for a question
written in different languages. Note that here we only show an EN question, the questions corresponding to each
output are written in their respective languages, which can be seen in the Appendix A.4.

it calculates the hours per day and then calculates
the total hours for the week. Reasoning appears
correct in some low-resource languages (SW, TE,
and TH), suggesting that our approach can leverage
the model’s capabilities in low-resource languages
to assist reasoning in high-resource languages, in
addition of course to the usual reverse benefit.

6 Conclusion

MRC is a multidimensional reasoning framework,
which comprehensively studies reasoning consis-
tency when the same math problems are presented
to the model with systematic variations along three
different dimensions. By leveraging such varia-
tions and answer consistency, MRC improves over-

all accuracy on both monolingual and multilingual
benchmarks, demonstrating its effectiveness in en-
hancing lightweight models and its strong scalabil-
ity for more complex tasks. Our experiments seem
to suggest that the largest the diversity of solu-
tion paths, the stronger the benefit from exploiting
consistency. As we do not yet have concrete evi-
dence for this hypothesis, a natural future direction
would be to study path diversity in a quantifiable
way. Another valid extension would be integrating
the different dimensions (e.g., COC per language).
While combining multiple dimensions of variations
presents an explosion of possibilities, strategic se-
lection based on empirical results, especially cross-
all accuracy, might mitigate this challenge.



7 Limitations

While we investigated model consistency in mathe-
matical reasoning and successfully leveraged it to
improve reasoning accuracy, several promising di-
rections remain for future exploration. We mainly
focus on the variations in model inputs and consis-
tency in final answers, while both the variation and
consistency of the reasoning paths are interesting
directions. Specifically, variations in the input will
lead to variations in the output, which includes log-
ical consistency and inconsistency, thus affecting
the final result. Also, it is not yet clear how vari-
ations in input affect the model’s reasoning logic
(variations in reasoning paths), which requires a
much bigger unpacking. Lastly, similar to self-
consistency, our method incurs more computational
cost as it requires the model to generate multiple
solutions in different dimensional variations.
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A Appendix
A.1 Prompt Examples

Prompt 1

Question: Roger has 5 tennis balls. He buys 2 more cans of tennis
balls. Each can has 3 tennis balls. How many tennis balls does he
have now?

Solution: Roger started with 5 balls. 2 cans of 3 tennis balls each
is 6 tennis balls. 5 + 6 = 11. The answeris 11.

Question: There were nine computers in the server room. Five
more computers were installed each day, from monday to
thursday. How many computers are now in the server room?
Solution: There are 4 days from monday to thursday.5 computers
were added each day. That means in total 4 * 5 =20 computers
were added. There were 9 computers in the beginning, so now
there are 9 + 20 = 29 computers. The answer is 29.

[Two more exemplars]

Question: {}
Solution:

Prompt x

Question: There were nine computers in the server room. Five
more computers were installed each day, from monday to
thursday. How many computers are now in the server room?
Solution: There are 4 days from monday to thursday.S5 computers
were added each day. That means in total 4 * 5 =20 computers
were added. There were 9 computers in the beginning, so now
there are 9 + 20 = 29 computers. The answer is 29.

Question: Roger has 5 tennis balls. He buys 2 more cans of tennis
balls. Each can has 3 tennis balls. How many tennis balls does he
have now?

Solution: Roger started with 5 balls. 2 cans of 3 tennis balls each

is 6 tennis balls. 5+ 6 = 11. The answeris 11.

[Two more exemplars]

Question: {}
Solution:

Figure 6: Examples of prompts for COC.

Rewrite-without-solve Prompt

Rewrite the following math problems to make them easier for
LLMs to solve, then solve them step by step.

Question: Roger has 5 tennis balls. He buys 2 more cans of tennis
balls. Each can has 3 tennis balls. How many tennis balls does he
have now?

Rewritten Question: Roger starts with 5 tennis balls. He buys 2
cans of tennis balls, with each can containing 3 tennis balls. How
many tennis balls does Roger have in total?

[Three more exemplars]

Question: {}
Rewritten Question:

Rewrite-then-solve Prompt

Rewrite the following math problems to make them easier for
LLMs to solve, then solve them step by step.

Question: Roger has 5 tennis balls. He buys 2 more cans of tennis
balls. Each can has 3 tennis balls. How many tennis balls does he
have now?

Rewritten Question: Roger starts with 5 tennis balls. He buys 2
cans of tennis balls, with each can containing 3 tennis balls. How
many tennis balls does Roger have in total?

Solution: Roger started with 5 balls. 2 cans of 3 tennis balls each
is 6 tennis balls. 5+ 6 =11. The answeris 11.

[Three more exemplars]

Question: {}
Rewritten Question:

Figure 7: Examples of prompts for CPC.

EN Prompt

Question: Roger has 5 tennis balls. He buys 2 more cans of tennis
balls. Each can has 3 tennis balls. How many tennis balls does he
have now?

Solution: Roger started with 5 balls. 2 cans of 3 tennis balls each
is 6 tennis balls. 5+ 6 = 11. The answeris 11.

[Three more exemplars]

Question: {}
Step-by-Step Answer:

TE Prompt

%) B0 55 20 odFBen eryow. wd B $ §J) oddben
TN BRI BoS 3¢ 12 oDrden emryow. 20y BD A
03)%'&» macb?u"g)b"owv?)&’.i)wer&) Dew

BT DTTPS0: B0S 20 oBFDOE Jedomd, 5D Wy
OB B 12 SRFD0 &Y 0w, Worhdy D a8 20-12=8
FOJHen &) 0. RITTR0 8.

&%) POofi 5 3 T o, 2B 2 S SDNVKoB, ) 0h
oSS Iy TP ey ow?

BT RATTPI0: @Pozsed’ 3 S esryow, BB 2 S IFyow,
@ochide) WYND 3+225 S &)ow. WATTPI0 5.

oy {F
SBOTOT A0TPS0:

Figure 8: Examples of prompts for CLC.



A.2 Datasets

We evaluate our framework on three math reasoning datasets: (i) GSM8K (Cobbe et al., 2021), an
English dataset of grade school math word problems (about 7,500 for training and 1,319 for testing); (ii)
MGSM (Shi et al., 2023a), consisting of 250 questions selected from GSM8K and manually translated
into ten languages: Bengali (BN), Chinese (ZH), French (FR), German (DE), Japanese (JA), Russian
(RU), Spanish (ES), Swahili (SW), Telugu (TE) and Thai (TH). Thus, it contains a total of 11 languages
including English; (iii) MATHS00 is a benchmark of competition, which contains 500 math problems of
varying difficulty.

A.3 COC Results

Orders (4-shot) 1 2 3 4 5 6 7 8 CcocC
7-8B

Phi-3-7B 88.5 88.8 886 889 873 898 884 882 89.8
Qwen2.5-7B 883 870 876 880 8.0 878 885 882 905
Qwen2.5-Math-7B 90.0 89.7 913 923 915 905 90.8 91.0 92.6
Llama-3.1-8B 797 788 79.0 79.0 80.1 79.1 778 787 80.1
Aya-expanse-8B 76.7 773 782 76.6 769 716 713 T14 78.2
Ministral-8B 812 814 809 814 809 813 814 8l1.6 82.3
14-32B

Phi-3-14B 89.2 889 886 883 889 8.0 89.1 889 89.9
Mistral-22B 858 858 859 853 86.1 861 86.1 86.2 86.7
Aya-expanse-32B 83.8 834 846 836 849 843 835 839 85.3
70-72B

Llama-3.1-70B 940 94.0 943 941 939 939 934 938 94.4
Qwen2.5-72B 946 939 939 93,6 941 941 942 942 948

Qwen2.5-Math-72B  94.0 93.6 93.6 937 938 936 932 934 942

Table 6: Reasoning accuracy of prompts in different orders on GSM8K compared to COC.

Orders (4-shot) 1 2 3 4 5 6 7 8§ COC
7-8B

Phi-3-7B 404 41.0 400 408 390 422 400 38.6 432
Qwen2.5-7B 63.6 646 648 644 636 652 618 624 688
Qwen2.5-Math-7B 752 744 752 756 732 754 746 742 71.0
Llama-3.1-8B 426 440 418 414 424 416 450 426 480
Aya-expanse-8B 280 288 29.0 274 286 288 270 290 314
Ministral-8B 428 422 400 414 420 412 418 412 450
14-32B

Phi-3-14B 442 43.0 442 458 444 466 440 444 490
Mistral-22B 42,6 472 430 440 440 446 416 456 482
Aya-expanse-32B 38.6 40.0 394 384 404 400 404 40.6 434
70-72B

Llama-3.1-70B 58.6 578 600 596 590 602 602 614 650
Qwen2.5-72B 632 652 622 596 672 614 698 68.6 75.2

Qwen2.5-Math-72B  66.6 64.6 702 722 688 69.6 72.6 69.8 76.0

Table 7: Reasoning accuracy of prompts in different orders on MATH500 compared to COC.

A.4 Examples of questions written in different languages
Figure 9 provides examples of questions written in different languages.

A.5 Models

We select a range of open-source state-of-the-art LLMs in varying scales. For all models, we only consider
instruction-tuned versions.

7-8B: Phi-3-7B (128k) (Abdin et al., 2024); Qwen2.5-7B (Yang et al., 2024a); Qwen2.5-7B-Math (Yang
et al., 2024b); Llama-3.1-8B (Grattafiori et al., 2024); Aya-expanse-8B (Ustiin et al., 2024); Ministral-8B>.

Shttps://huggingface.co/mistralai/Ministral-8B-Instruct-2410
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Language Math Question

On Mondays, Wednesdays, and Fridays, college student Kimo has three 1-hour classes each day. On Tuesdays and Thursdays,
EN he has two 2-hour classes each day. In one semester,there are 16 weeksofschool. In onesemester, how many hours does
Kimo spend attending classes?

IS 2lg R AfS G, FRR 3 BSAR 5 190 FiST 2AME | AfS Toieri 3 =ifodng, o 7o 2B P NS | 93(6 G816
BN TR FA S| 9F0 N IS FIOT FS T I FI© ?

Montags, mittwochs und freitags hat College-Student Kimo drei 1-st\u0Ofcndige Kurse pro Tag. Dienstags und Donnerstags hat er

DE zwei 2-st\wu00fcndige Kurse pro Tag. Ein Semesterhat 16 Schulwochen. Wie viele Stunden verbringt Kimo in einem Semester mit
Kursbesuchen?
ES Los lunes, miércolesy viernes, el estudiante universitario Kimo tiene tres clases de 1 hora por dia. Los martesy jueves, tiene dos

clases de 2 horas por dia. En un semestre, hay 16 semanas de clases. En un semestre, jcuantas horas pasa Kimo en clases?

Les lundis, mercredis et vendredis, I'é¢tudiant Kimo a trois cours d'une heure par jour. Les mardis et jeudis, il a deux coursde 2

FR heures chaque jour. S'ily a 16 semaines d'école par semestre, combien d'heures Kimo consacre-t-il a ses cours durant un
semestre ?
AT KR SR RFED * 2 IR 03D O & FHZG 3. KRR WS OMRE2OFHZT 3. 1€ A XA X—T, ¥RIL16EMD 2.
JA 1 AR R—T, UL MR L Bz 32

RU Kaxblii noHe1ebHUK, CPEly U MATHUILY Y CTyIeHTa Kojuleaxka Kumo Tpu 1-yacoBbix 3aHaTHs. Kaxiblii BTOPHUK M YETBEPT y HET0 /1Ba 2-4acOBBIX
3anATHs. B oiHOM cemecTpe 16 yueOHbIX Hesemb. Ckobko yacoB KMMO MpOBOIUT Ha 3aHATHAX 3a OIMH cemecTp?

Siku za Jumatatu, Jumatano, na [jumaa, Kimo mwanafunzi wa chuo huwa na masomo matatu ya saa 1 kila siku. Siku za Jumanne na
SW Alhamisi, huwa ana masomo mawili ya saa 2 kila siku. Katika muhula moja, kuna wiki 16 za shule. Katika muhula moja, Kimo huwa
anatumia saa ngapi kuhudhuria masomo?

LT, LNCEFTED, S0DOSD BETTR D, &S :)chg SRR Q:’Sa;:' 0070 1-rfoty TPReD &) 0. QooriFardo  Sdasw
TE OIS, wis HFer Tod 2-otr) TRRIT) 0w, 28 WK, wed 16 TTen eTyow. o8 WG, dar grRvn D
TR ) tfokrd (AGCD?

Tuiund o werhuged aldadhiinfouaindouswmudoiu Teeeanldom 1§l dnduhsmsuagiungiond  aidoureawdein Jumemldom 2 $alm il

TH awmaAnng nnBounmaon 16 et lalulFnai 2wl funm dng ou
7H J— FEME T, KA RA 370 LR A ZREN, MaRA 2795 2 /MR, — AR 16 A1 B R E
TE—AT, RS 2 /bR A RER?

Figure 9: Examples of questions written in different languages.

14-32B: Phi-3-14B (Abdin et al., 2024); Mistral-22B®; Aya-expanse-32B (Ustiin et al., 2024).

70-72B: Qwen2.5-72B (Yang et al., 2024a); Qwen2.5-72B-Math (Yang et al., 2024b); Llama-3.1-
70B (Grattafiori et al., 2024).

A.6 Implementation

We perform inference experiments on 4 x NVIDIA H100 94GB GPUs using the library vLLM (Kwon
et al., 2023), without training or fine-tuning language models. During inference, we use few-shot prompts
covering the 11 languages released by Shi et al. (2023a). In the multilingual scenario, we use 4-shot
for all languages except TE which only uses 2-shot, since a 4-shot prompt would exceed the default
maximum length, due to tokenization issues unfavourable to this language (Ahia et al., 2023). We use
greedy decoding unless otherwise specified. For all experiments we report the final answer accuracy
except the reasoning consistency score.

A.7 Correlation

Figure 10 shows the correlations of models’ accuracy with the three consistency scores. COC and CPC
have high correlations with reasoning accuracy, while CLC has a weak and non-significant one. This
suggests that we can use COC and CPC to assess the model’s uncertainty in its generated solutions without
using gold answers. While CLC does not seem to be a reasonable metric to assess models’ accuracy, it
can still be used to evaluate models from a multilingual perspective.

®https://huggingface.co/mistralai/Mistral-Small-Instruct-2409
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Figure 10: Pearson correlation between models’ accuracy and different consistency scores.
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