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Abstract

While Large language models (LLMs) have001
proved able to address some complex reasoning002
tasks, we also know that they are highly sensi-003
tive to input variation, which can lead to differ-004
ent solution paths and final answers. Answer005
consistency across input variations can thus be006
taken as a sign of stronger confidence. Leverag-007
ing this insight, we introduce a framework, Mul-008
tidimensional Reasoning Consistency where,009
focusing on math problems, models are sys-010
tematically pushed to diversify solution paths011
towards a final answer, thereby testing them for012
answer consistency across multiple input varia-013
tions. We induce variations in order of shots in014
prompt, problem phrasing, and languages used.015
Experiments on a wide range of open-source016
state-of-the-art LLMs of various sizes show017
that reasoning consistency differs by variation018
dimension, and that by aggregating consistency019
across dimensions, our framework enhances020
mathematical reasoning performance on mono-021
lingual datasets GSM8K and MATH500, and022
the multilingual dataset MGSM.023

1 Introduction024

Large Language Models (LLMs) have shown im-025

pressive abilities in addressing a variety of complex026

reasoning tasks, such as math reasoning (Brown027

et al., 2020) and commonsense reasoning (Bom-028

masani et al., 2022). The use of Chain-of-Thought029

(CoT), i.e., breaking down a problem and taking030

multiple intermediate steps to gradually arrive at031

the final answer, endows LLMs with even better032

performances (Wei et al., 2022).033

At the same time, LLMs have also proved to be034

sensitive and somewhat brittle with respect to vari-035

ations in the way they are prompted (Zhao et al.,036

2021; Lu et al., 2022). For instance, in a few-shot037

setting for solving mathematical problems, just al-038

tering the order in which the example shots are039

provided might lead to different reasoning paths040

and possibly different answers (Wang et al., 2022);041

Original Formulation

Rephrased Problem

Problem in German

Roger owns five tennis balls. He 
buys two cans, each containing three 
tennis balls. What is the total number 
of tennis balls he has now?

CoT Solution
Roger started with 5 balls. 2 cans of 3 
tennis balls each is 6 tennis balls. 5 + 
6 = 11. The answer is 11.

CoT Solution

CoT Solution

Math Problem Solutions

Roger has 5 tennis balls. He buys 2 
more cans of tennis balls. Each can 
has 3 tennis balls. How many tennis 
balls does he have now?

Roger starts with 5 balls. He buys 
two cans, each can contains 3 balls, 
two cans have 3 + 2 = 5 balls. Roger 
now has 5 + 5 = 10 tennis balls.

Roger hat 5 Tennisbälle. Er kauft noch 2 
Dosen Tennisbälle. In jeder Dose sind 3 
Tennisbälle. Wie viele Tennisbälle hat 
er jetzt?

Roger beginnt mit 5 Tennisbällen. Er
kauft 2 Dosen Tennisbälle, jede
enthält 3 Bälle, für 6 Tennisbälle. Er
hat jetzt insgesamt 5 + 6 = 11 Bälle.

Figure 1: Example of variations: A math problem is
presented in different forms or languages, resulting in
different reasoning paths to solve it.

the same can happen if different formulations of the 042

same problem are used (Zhou et al., 2024). Also, 043

an identical mathematical problem presented once 044

in one language, and once in a different one, may 045

be solved following different strategies and also 046

lead to different answers (Lai and Nissim, 2024). 047

Figure 1 visualises examples of such variations 048

across different dimensions. 049

Some of these variations, such as using even 050

slight alterations in the prompt (Wang et al., 2022; 051

Li et al., 2023), have been exploited in recent 052

work to enhance reasoning performance. How- 053

ever, the experimental setup and the assessment 054

of (in)consistent answers due to variations is still 055

scattered. In this paper, we argue for a systematic 056

treatment of variations and answer consistency and 057

introduce a Multidimensional Reasoning Consis- 058

tency (MRC) framework, focusing on maths prob- 059

lems. MRC, shown in Figure 2, allows for a sys- 060

tematic and comprehensive testing and evaluation 061

of model consistency against variations in the way 062

the problem is presented to the model. Our frame- 063

work also makes it possible to best leverage such 064

variations and answer consistency for improving 065
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overall accuracy in mathematical reasoning tasks.066

The rationale behind this framework is that by067

explicitly and systematically pushing the model068

to likely diversify its solution paths, and possibly069

yield a different final answer, we can take across-070

variation consistency of the answer as stronger evi-071

dence for its correctness.072

We consider three dimensions of variation to073

test consistency: (i) context (order of shots); (ii)074

problem (re)phrasing; and (iii) language. For the075

context aspect, we follow Wang et al. (2022) in076

changing the order of the exemplars (i.e., the shots),077

which results in different prompts based on a set078

of example problems. For problem rephrasing, we079

prompt the LLMs to rewrite the question before080

solving it. Lastly, we use the same math problems081

written in 11 different languages. For each dimen-082

sion, the LLM generates multiple solution paths to083

a question, which could differ in various ways, but084

should in principle lead to the same answer. An-085

swer consistency is eventually used to determine086

the final answer to the given problem.087

We evaluate our framework on three mathemat-088

ics reasoning benchmarks: GSM8K (Cobbe et al.,089

2021), MATH500 (Hendrycks et al., 2021), and090

MGSM (Shi et al., 2023a), covering a range of091

open-source state-of-the-art LLMs with varying092

scales: 7-8B, 14-32B, and 70-72B.093

Contributions First, we introduce a method to094

systematically study LLMs’ reasoning consistency095

along multiple dimensions of input variation. Sec-096

ond, we improve model performance on both mono-097

lingual and multilingual benchmarks for a vari-098

ety of models by leveraging reasoning consistency099

across variations; this is obtained thanks to the100

induced substantial diversification of the reason-101

ing paths, offering valuable insights into LLMs102

reasoning beyond the commonly used sampling-103

based strategy. Third, extensive experimental re-104

sults show that model consistency differs by varia-105

tion dimensions, but exploiting consistency always106

enhances math reasoning performance, and aggre-107

gating consistency across dimensions yields an ad-108

ditional boost; this paves the way for using a similar109

framework for other (reasoning) tasks, providing110

a strategy to make models more robust reasoners.111

All data and code are available (upon acceptance.)112

2 Related Work113

Math Reasoning in LLMs Mathematical rea-114

soning has garnered great interest in recent times115

since LLMs have shown what look like complex 116

problem-solving capabilities (Brown et al., 2020; 117

Lu et al., 2023). With LLMs and few-shot prompt- 118

ing, only a few task examples (e.g., question- 119

answer pair) are required at inference time to en- 120

able the LLM to perform the intended task without 121

updating the model parameters (Brown et al., 2020). 122

To further elicit LLMs’ reasoning capability, Wei 123

et al. (2022) proposed a Chain-of-Thought prompt- 124

ing, which involves an explicit step-by-step reason- 125

ing from the question to the answer, rendered in 126

natural language. Given its success, a series of CoT- 127

related methods have been proposed to improve 128

reasoning performance in LLMs, such as com- 129

plex CoT (Fu et al., 2023), auto-CoT (Zhang et al., 130

2023), multilingual CoT (Shi et al., 2023b), least- 131

to-most prompting (Zhou et al., 2023), progressive- 132

hint prompting (Chuanyang et al., 2023), and 133

residual connection prompting (Jiang et al., 2024). 134

Rather than developing a new specific CoT method, 135

we introduce variations in the prompt and exploit 136

the diversity of CoT outputs. 137

Consistency in LLMs In principle, language 138

models could be expected to yield consistent an- 139

swers in semantically equivalent contexts, espe- 140

cially regarding factual information; this is con- 141

sidered a crucial aspect in assessing model gener- 142

alization abilities (Fierro and Søgaard, 2022; Lai 143

and Nissim, 2024). In practice, this is often not 144

the case. Some works have thus focused on im- 145

proving consistency on, e.g., natural language in- 146

ference (Mitchell et al., 2022), explanation genera- 147

tion (Camburu et al., 2020), cloze test (Ravichan- 148

der et al., 2020), and factual knowledge extrac- 149

tion (Fierro and Søgaard, 2022). For improving 150

CoT reasoning, Wang et al. (2023) suggested to 151

use self-consistency, sampling diverse solution 152

paths and then selecting the most consistent an- 153

swer. Zhou et al. (2024) proposed self-consistency- 154

over-paraphrases (SCoP), which diversifies solu- 155

tion paths by generating different paraphrases for a 156

given problem. To check consistency, Wang et al. 157

(2022) use different exemplar orders to possibly 158

trigger diverse solutions. Lai and Nissim (2024) 159

look at consistency of answers given to the same 160

problem written in two different languages, and use 161

multilingual instruction tuning to improve LLMs’ 162

performance across languages. 163

Here, we propose a novel method to study and 164

leverage reasoning consistency along different di- 165

mensions to improve performance. 166
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Roger has 5 tennis
balls. He buys 2
more cans of tennis
balls. Each can has
3 tennis balls. How
many tennis balls
does he have now?
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Figure 2: Overview of our Multidimensional Reasoning
Consistency (MRC) framework: (i) COC changes the
exemplars order; (ii) CPC rewrites the given questions
in the same language; and (iii) CLC rewrites the given
questions in different languages.

3 Methodology167

Figure 2 shows our framework. Using systematic168

variations, MRC pushes the model to generate mul-169

tiple solutions for a given question, then measures170

consistency across variations, and leverages it to171

improve performance.172

3.1 Reasoning Consistency173

Formally, given a set of math problems M, each174

consisting of a two-tuple (question:q, answer:a).175

We define the reasoning consistency of an LLM176

as the extent to which it yields the same answer177

for a given question under a dimension of variation178

(e.g., language). Specifically, for each question,179

assume that the LLM generates n candidate solu-180

tions {s1, . . . , sn} which can arrive at a set of final181

answers {a1, . . . , am}, reasoning consistency (RC)182

is the ratio of the maximum number of these solu-183

tions that can lead to the same answer over the total184

number of candidates n.185

RC(LLM) =
1

|M|

|M|∑
i=1

maxj |Sj |
n

(1)186

Sj = {si ∈ {s1, . . . , sn}|f(si) = aj} (2)187

Where f(si) maps solution si to the final answer.188

3.2 Multidimensional Consistency189

In the context of reasoning consistency in math-190

ematical problems, a language model can gener-191

ate multiple plausible responses to the same math192

question, where correct reasoning solutions, even193

if they are diverse, tend to be more consistent in the194

final answer than incorrect solutions (Wang et al.,195

2023). Instead of simply sampling a diverse set196

of candidate outputs from LLMs, our MRC frame- 197

work, aims to assess model consistency along three 198

dimensions we control for and exploit: example 199

order, problem (re)phrasing, and language. 200

Cross-order Consistency (COC) Some prior 201

works have shown that LLMs are sensitive to or- 202

der, such as the order of options in multiple-choice 203

questions (Pezeshkpour and Hruschka, 2024; Zotos 204

et al., 2025), or the order of shots in math reason- 205

ing (Wang et al., 2022). Here we assess how much 206

the order of the shots affects consistency of lan- 207

guage models. Specifically, we focus on few-shot 208

prompting, which consists of a set of exemplars 209

(question:q, step-by-step solution:s), whose 210

presentation order can be changed arbitrarily. For 211

instance, given a 4-shot prompt with 4 exemplars, 212

we could change their order to get 24 different 213

prompts, each of which can be used to prompt 214

the model to generate a corresponding answer to a 215

given question (see Appendix A.1 for examples). 216

This allows us to assess the robustness of the model 217

with respect to the order of exemplars in few-shot 218

prompting and then leverage its consistency to im- 219

prove the model’s performance. 220

Cross-phrasing Consistency (CPC) In addition 221

to the order of the exemplars in the prompt, the 222

surface form of the question itself can also have 223

an impact on the performance of the model (Zhou 224

et al., 2024). Differently from Zhou et al. (2024), 225

who prompt LLMs to generate ‘good’ paraphrases 226

for math questions, we directly prompt an LLM 227

to rewrite the question with the goal of making 228

it easier for itself to solve (see Appendix A.1 for 229

examples). We use two different main settings, 230

including rewrite-without-solve and rewrite-then- 231

solve, which yield the following four settings when 232

combined with the original question: 233

• Rewrite-without-solve (RwS): We ask the LLM 234

to rewrite the question, but not to include the 235

solution. Afterwards, we prompt the LLM to 236

generate the solution for the rewritten question. 237

• Original Question + RwS (RwS+): We concate- 238

nate the original question and the rewritten one 239

above prompting the LLM for the solution. 240

• Rewrite-then-solve (RtS): We ask an LLM to 241

rewrite the question making it easier to solve and 242

then to give the corresponding solution. 243

• RtS Question (RtS-): We prompt the LLM to 244

generate the solution for the rewritten question 245

in the “rewrite-then-solve” setting. 246
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Cross-lingual Consistency (CLC) One rather247

outstanding way to vary formulations is to write248

the same problem in different languages. Abili-249

ties of LLMs in different languages vary substan-250

tially, depending on the amount of training data in251

a given language, and on the similarity of lesser252

represented languages to more resource-rich ones,253

as this impacts how well models can deal with less254

seen languages (de Vries et al., 2022; Muennighoff255

et al., 2023; Üstün et al., 2024). With cross-lingual256

consistency, we leverage language diversity to eval-257

uate the LLMs’ robustness to input in different lan-258

guages, and exploit output diversity to further im-259

prove the LLMs’ reasoning performance. Given the260

same math question in different languages, LLMs261

are expected to produce reasoning solutions in the262

corresponding languages. On the one hand, those263

solutions are expected to arrive at the same final264

answer if the language model is multilingual; on265

the other hand, due to the differences in language266

structures, those solutions can increase diversity267

compared to using a single language.268

3.3 MRC for Reasoning269

Eventually, answer consistency across the three270

dimensions can also be leveraged to improve rea-271

soning performance. For each question, the so-272

lution set {s1, . . . , sn} generated by the language273

model, which can arrive at the final answer set274

{a1, . . . , am}. We select the most consistent an-275

swer in n solution paths as the final answer â,276

which is obtained through majority voting:277

â = argmax
a∈A

∑
a′∈A

I(a = a′) (3)278

Where A denotes the set of candidate answers and279

I(·) is the indicator function.280

4 Experimental Setup281

Datasets To comprehensively assess our frame-282

work across dimensions, we include three well-283

established math reasoning benchmarks: (1) mono-284

lingual datasets GSM8K (Cobbe et al., 2021) and285

MATH500 (Hendrycks et al., 2021); and (2) mul-286

tilingual dataset MGSM (Shi et al., 2023a). Addi-287

tionally, to test our CLC method on the more chal-288

lenging dataset, we machine-translate questions289

from MATH500 into 10 languages in MGSM.1290

1https://translate.google.com/.

Figure 3: Reasoning consistency on three dimensions
of variation. Note that COC and CPC are evaluated
on the monolingual benchmark GSM8K, while CLC is
evaluated on the multilingual benchmark MGSM.

Models We select a range of open-source state- 291

of-the-art LLMs in varying scales: (i) 7-8B; (ii) 292

14-32B; and (iii) 70-72B.2 For all models, we only 293

consider instruction-tuned versions. 294

Implementation We use 4-shot for all languages 295

except TE which only uses 2-shot, since a 4-shot 296

prompt would exceed the default maximum length, 297

due to tokenization issues unfavourable to this lan- 298

guage (Ahia et al., 2023).3 All prompt exemplars 299

we use are released by Shi et al. (2023a) and An 300

et al. (2024). We report the final answer accuracy 301

for all experiments except the consistency score. 302

5 Results and Analysis 303

We report results for all variation dimensions, and 304

then zoom in on CLC for a more detailed analysis. 305

5.1 Reasoning Consistency 306

Figure 3 shows reasoning consistency results on the 307

three different dimensions. The first observation 308

is that COC achieves the highest scores, followed 309

by CPC, with CLC having the lowest scores across 310

the board. This suggests that all models are more 311

sensitive to language variations while results are 312

more consistent across different exemplar orders in 313

few-shot prompting. Indeed, when looking at COC 314

only, all models achieve consistency scores above 315

2More details are in Appedix A.5
3Examples are in Appendix A.1.
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1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

(a) Model performance on GSM8K. (b) Model performance on MATH500.

Figure 4: Reasoning accuracy of 4-shot for 8 different exemplars orders. The x-axis numbers correspond to the
following models: 1 – Phi-3-7B; 2 – Qwen-2.5-7B; 3 – Qwen-2.5-Math-7B; 4 – Llama-3-1-8B; 5 – Aya-expanse-8B;
6 – Mistral-8B; 7 – Phi-3-14B; 8 – Mistral-22B; 9 – Aya-expanse-32B; 10 – Llama-3-1-70B; 11 – Qwen-2.5-72B;
12 – Qwen-2.5-Math-72B. Notes: (i) minimum score (MIN); (ii) mean score (MEAN); (iii) maximum score (MAX).

GSM8K MATH500
Models CoT RwS RwS+ RtS- RtS CPC CoT RwS RwS+ RtS- RtS CPC

7-8B
Phi-3-7B 88.2 84.5 87.0 84.8 88.1 90.0 40.4 36.2 41.8 39.6 43.4 46.6
Qwen-2.5-7B 88.3 86.0 89.8 86.3 90.1 92.0 63.6 57.2 63.6 59.0 62.0 72.4
Qwen-2.5-Math-7B 90.0 87.6 91.1 89.1 92.3 94.1 75.2 72.8 73.2 72.4 73.2 77.4
Llama-3.1-8B 79.7 73.9 78.2 77.9 81.2 83.8 42.6 36.6 45.6 39.0 46.6 50.2
Aya-expanse-8B 76.7 73.5 77.9 73.5 78.2 82.4 28.0 26.0 29.4 26.6 27.0 32.4
Ministral-8B 81.2 78.7 83.0 78.9 84.0 84.7 42.8 41.8 48.0 39.2 50.6 51.0

14-32B
Phi-3-14B 89.2 86.4 89.2 86.9 89.8 90.2 44.2 44.0 47.6 43.2 47.2 51.2
Mistral-22B 85.8 83.1 85.7 84.8 88.1 88.1 42.6 44.4 51.4 43.2 48.6 51.6
Aya-expanse-32B 83.8 82.3 83.8 82.4 88.4 88.1 38.6 37.6 38.2 41.2 40.8 43.4

70-72B
Llama-3.1-70B 94.0 89.8 93.9 91.9 93.6 94.8 58.6 49.0 60.2 55.8 63.4 65.2
Qwen-2.5-72B 94.6 88.9 94.4 88.6 95.5 95.8 63.2 23.8 22.0 63.8 74.0 67.0
Qwen-2.5-Math-72B 94.0 92.9 94.7 93.5 94.8 95.9 66.6 54.6 58.0 67.6 74.6 74.8

Table 1: Reasoning accuracy of CPC on the benchmarks GSM8K and MATH500, obtained via aggregating vanilla
CoT prompting and 4 different question rewriting settings. The best result for each model across settings is bolded.

0.9. Notably, the Llama-3.1 family achieves the316

highest score with the 70B model and the lowest317

score with the 8B model.318

For CPC and CLC, Aya-expanswe-8B has the319

lowest consistency scores in both dimensions,320

while larger Qwen2.5 and Llama-3.1 models per-321

form best. Compared to COC and CPC, there is a322

bigger gap in CLC for different models, even within323

the same scale, e.g., Phi3-7B vs Qwen2.5-7B. Over-324

all, larger models show higher consistency.325

5.2 Consistency Improves Reasoning326

For each dimension, we compare the performance327

obtained exploiting cross-variation consistency to328

yield a final answer with the performance obtained329

via the variations on their own.330

COC Figure 4 reports the results augmented with 331

COC on GSM8K and MATH500, where we use 8 332

different exemplar orders for the 4-shot prompt.4 333

Compared to vanilla CoT prompting, COC im- 334

proves the reasoning performance for all models. 335

On dataset GSM8K, COC scores are higher than 336

the average scores of 8 different order prompts 337

on all models, and highest on most models, ex- 338

cept for Phi-3-7B, Llama-3.1-8B, and Aya-expanse- 339

8B, where it is on par with the highest scores 340

among the eight ordering configurations we con- 341

sider in this analysis. On the more challenging 342

dataset MATH500, we see COC achieves the high- 343

est scores among all models. 344

CPC Table 1 shows CPC’s on GSM8K and 345

MATH500. Accuracy drops when models are fed 346

4Complete results are in Appendix A.3.
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Models BN DE EN ES FR JA RU SW TE TH ZH CLC
7-8B
Phi-3-7B 14.8 77.6 89.2 85.2 80.4 64.8 74.4 14.0 5.2 18.8 76.0 91.2
Qwen-2.5-7B 67.2 72.4 91.6 82.8 72.0 64.8 70.8 16.4 29.2 75.6 74.0 92.8
Qwen-2.5-Math-7B 16.8 76.8 92.8 82.0 76.8 61.6 78.8 4.0 5.6 51.2 85.6 93.6
Llama-3.1-8B 57.6 64.4 80.8 73.6 63.6 52.4 68.0 55.6 49.6 58.8 63.6 78.8
Aya-expanse-8B 29.2 70.4 77.2 74.8 66.8 60.4 72.0 11.6 6.4 22.8 67.2 82.0
Ministral-8B 50.4 68.0 85.6 76.4 69.6 54.0 70.8 27.6 36.4 53.2 64.4 84.0
14-32B
Phi-3-14B 14.8 76.0 88.0 87.6 76.8 72.8 80.8 18.4 5.6 12.8 77.6 90.0
Mistral-22B 52.0 76.4 87.6 82.4 75.2 62.0 78.4 35.6 17.2 57.6 80.0 89.2
Aya-expanse-32B 58.4 74.0 86.0 84.4 80.0 73.6 81.2 29.2 17.2 52.8 77.2 90.8
70-72B
Llama-3.1-70B 83.6 82.0 93.6 87.6 77.6 76.8 84.4 83.2 79.2 80.4 84.0 93.6
Qwen-2.5-72B 88.0 84.4 93.2 88.4 80.4 84.4 87.2 66.0 68.8 91.6 86.8 95.6
Qwen-2.5-Math-72B 86.4 83.6 94.4 85.6 78.4 81.2 70.4 57.2 68.0 85.6 88.4 95.2

Table 2: Reasoning accuracy of CLC compared to vanilla CoT prompting on the MGSM benchmark. Note that
bold numbers indicate the best result for each model among different languages and CLC.

Models BN DE EN ES FR JA RU SW TE TH ZH CLC
7-8B
Phi-3-7B 10.8 34.8 40.4 39.8 5.4 20.8 30.0 9.4 5.6 10.0 33.2 44.0
Qwen-2.5-7B 33.4 51.6 63.6 50.0 33.0 50.2 55.8 17.6 17.0 42.2 49.0 67.4
Qwen-2.5-Math-7B 29.2 61.2 75.2 62.0 53.4 50.8 65.8 3.8 16.2 23.6 70.6 79.4
Llama-3.1-8B 22.2 31.0 42.6 35.4 7.2 29.4 38.6 24.8 9.4 26.8 32.8 47.2
Aya-expanse-8B 10.6 25.8 28.0 26.6 25.6 24.0 25.2 8.6 5.6 11.0 24.2 31.2
Ministral-8B 17.0 31.0 42.8 42.4 36.8 26.6 38.8 8.4 7.6 18.2 29.8 44.4
14-32B
Phi-3-14B 3.0 42.2 44.2 41.8 9.2 33.6 37.2 13.8 4.6 1.8 38.6 49.6
Mistral-22B 16.0 43.2 42.6 43.0 23.6 34.4 43.2 15.2 35.8 23.6 35.2 53.8
Aya-expanse-32B 20.8 40.2 38.6 38.2 3.0 35.0 38.8 15.0 10.2 16.0 38.0 45.0
70-72B
Llama-3.1-70B 32.6 41.2 58.6 51.8 9.6 33.4 47.2 44.0 22.4 45.4 42.8 64.4
Qwen-2.5-72B 51.4 54.8 63.2 48.4 51.6 27.6 38.4 35.6 37.4 56.2 63.2 75.2
Qwen-2.5-Math-72B 58.0 50.0 66.6 60.0 22.4 56.6 60.6 30.6 34.4 58.0 64.4 75.4

Table 3: Reasoning accuracy of CLC compared to vanilla CoT prompting on the machine-translated MATH500.
Note that bold numbers indicate the best result for each model among different languages and CLC.

only the rewritten question (RwS), as they might347

lose some information from the original question348

(manual inspection). When combining the rewrit-349

ten question with the original one (RwS+), most350

models score comparably to the original prompting351

and tend to achieve higher scores in the rewrite-352

then-solve setting (RtS). The latter observation sug-353

gests that asking the model to rewrite the question354

in a simple way and then solve it, can effectively355

help the model. Lastly, we see that CPC can further356

improve the reasoning performance: (i) when com-357

paring to vanilla CoT prompting this is true for all358

models; and (ii) when comparing to RtS, all models359

achieve higher accuracy except Aya-expanse-32B360

on GSM8K and Qwen-2.5-72B on MATH500.361

CLC Table 2 and Table 3 present the result362

of CLC compared to vanilla CoT prompting on363

MGSM and machine-translated MATH500, respec-364

tively. All models perform best on English, with a365

serious performance gap between underrepresented 366

(e.g., SW) and high-resource languages, especially 367

for smaller models. Similar to COC and CPC, com- 368

pared to vanilla CoT, CLC yields improvement for 369

most models, with Aya-expanse-32B on GSM8K, 370

for example, showing a significant gain of 4.8% 371

absolute accuracy compared to that of English. For 372

Llama-3.1-8B and Ministral-8B, the accuracy of 373

CLC is slightly lower than that of English, but bet- 374

ter than that of all other languages. On the more 375

challenging dataset MATH500, CLC leads to con- 376

sistent improvements across all models, with the 377

most substantial gain observed on the larger model 378

(e.g, a 12.0% percentage point relative improve- 379

ment in accuracy over that of English on Qwen- 380

2.5-72B), highlighting its effectiveness in handling 381

more complex tasks and scaling with model size. 382

MRC Table 4 shows the results of MRC and of 383

the three separate consistency methods on MGSM 384
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Llama-3.1-8B Llama-3.1-70B Qwen-2.5-7B Qwen-2.5-72B

Figure 5: Reasoning accuracy of using varying numbers of reasoning paths on GSM8K.

Datasets GSM8K MATH500
Models COC CPC CLC MRC COC CPC CLC MRC
7-8B
Phi-3-7B 92.4 92.0 91.2 94.4 43.2 46.6 44.0 49.2
Qwen-2.5-7B 92.0 93.2 92.8 93.6 68.8 72.4 67.4 73.6
Qwen-2.5-Math-7B 94.4 94.8 93.6 96.0 77.0 77.4 79.4 79.2
Llama-3.1-8B 80.8 85.6 78.8 84.4 48.0 50.2 47.2 52.2
Aya-expanse-8B 78.4 85.2 82.0 83.6 31.4 32.4 31.2 34.4
Ministral-8B 84.4 86.8 84.0 87.2 45.0 51.0 44.4 49.2
14-32B
Phi-3-14B 92.0 92.0 90.0 93.2 49.0 51.2 49.6 52.8
Mistral-22B 87.2 89.6 89.2 92.0 48.2 51.6 53.8 53.6
Aya-expanse-32B 86.0 89.2 90.8 91.2 43.4 43.4 45.0 46.4
70-72B
Llama-3.1-70B 95.6 96.8 93.6 96.4 65.0 65.2 64.4 68.2
Qwen-2.5-72B 96.0 97.6 95.6 96.8 75.2 67.0 75.2 77.6
Qwen-2.5-Math-72B 94.4 95.2 95.2 95.2 76.0 74.8 75.4 80.0

Table 4: Accuracy on MGSM and MATH500. Notes:
(i) CPC uses 5 solution paths, COC and CLC use 8 each,
and CLC uses 8 languages (excl. BN, SW, TE), so MRC
contains a total of 19 paths (excluding the two identical
English paths); (ii) best result for each model is bolded.

and machine-translated MATH500. Of the three385

variation dimensions, CPC performs best overall,386

followed by COC and CLC. This suggests that387

CPC can push the model to better diversify its so-388

lution paths, while for CLC, this might be due389

to the large performance gap between English and390

other languages. By aggregating consistency across391

multiple dimensions, MRC can further improve392

the reasoning accuracy for most models, while393

showing different scaling behaviors on datasets of394

varying difficulty. On the easier dataset MGSM,395

smaller models benefit more significantly from our396

approach, indicating its effectiveness in enhancing397

the capabilities of lightweight models. In contrast,398

on the more challenging dataset MATH500, larger399

models show greater relative improvement, sug-400

gesting that our method scales well with model401

capacity when addressing more complex tasks.402

5.3 Analysis403

Comparison to Self-consistency One can con-404

ceive CLC as a multilingual extension of monolin-405

gual self-consistency, as it goes beyond the com- 406

monly used sampling-based strategy. In Figure 5, 407

we plot accuracy with respect to varying numbers 408

of reasoning paths for two model families (Llama- 409

3.1 and Qwen-2.5). For self-consistency, we use 410

English following (Wang et al., 2023), whereas 411

for CLC, we use 8 languages excluding BN, SW, 412

and TE which have very low results (see Table 2). 413

We sample N/8 reasoning paths for each language, 414

thus creating N solutions for CLC. For all mod- 415

els, we use temperature sampling with T = 0.6 and 416

truncated at the top-k (k = 40) tokens with the 417

highest probability. We see some different trends 418

between the two model families: (i) for Llama-3.1, 419

the accuracy of CLC is generally lower than self- 420

consistency but higher than greedy decode, possi- 421

bly due to the large performance gap between En- 422

glish and other languages; (ii) for Qwen-2.5, CLC 423

dramatically improves reasoning accuracy when 424

the number of paths goes from 8 to 16, and achieves 425

better performance than self-consistency. Overall, 426

as with self-consistency, CLC yields higher accu- 427

racy with a greater number of paths, suggesting 428

that the language dimension can indeed introduce 429

valuable diversity in the reasoning paths. 430

Case Study Table 5 shows examples of solutions 431

generated by Qwen2.5-72B for the same MSGM 432

question in different languages. For the EN ques- 433

tion, the model incorrectly reasons in the first step: 434

On Mondays, Wednesdays, and Fridays, Kimo has 435

3 ∗ 1 = 3 hours of classes, which results in the 436

wrong reasoning and final answer. It is interesting 437

to see that the model reasons correctly in the other 438

languages except BN, while the solution paths 439

might be logically different. For DE, the model 440

first calculates the total hours for Monday, Wednes- 441

day, and Friday, then calculates the total hours for 442

Tuesday and Thursday, and then adds them together 443

to get the total hours for the week; while for ZH, 444
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Language CoT Reasoning

Question

BN

DE

EN

ES

FR

JA

RU

SW

TE

TH

ZH

!িত স%ােহ, িকেমার ,ােসর সময় 3 * 1 = 3 ঘ/া (0সামবার, ব2ধবার, 45বার) + 2 * 2 = 4 ঘ/া (ম6লবার, ব8হ9িতবার) = 7 ঘ/া। এক; 0সিম<ার 16 স%ােহর, তাই 
0মাট 16 * 7 = 112 ঘ/া িকেমােক ,ােস ব?য় করেত হয়। উAর হল 112। 

Montags, mittwochs und freitags verbringt Kimo 3 x 1 = 3 Stunden pro Tag mit Kursen. In einerWocheverbringt er an diesen Tagen
insgesamt 3 x 3 = 9 Stunden mitKursen. Dienstags und Donnerstags verbringt er2 x 2 = 4 Stunden pro Tag mit Kursen. In einer
Woche verbringt eran diesen Tagen insgesamt 2 x 4 = 8 Stunden mit Kursen. Insgesamt verbringt er in einer Woche 9 + 8 = 17 
Stunden mit Kursen. In einem 16-wochen-Semester verbringt er 16 x 17 = 272 Stunden mitKursen. Die Antwortlautet 272.

On Mondays, Wednesdays, and Fridays, Kimo has 3 * 1 = 3 hours of classes. On Tuesdays and Thursdays, he has 2 * 2 = 4 
hours of classes. In one week, he has 3 + 4 + 3 = 10 hours of classes. In one semester, Kimo spends 10 * 16 = 160 hours 
attending classes. The answer is 160.

Los lunes, miércoles y viernes, Kimo pasa 3 * 1 = 3 horas en clases. Como hay 3 días a la semana, pasa 3 * 3 = 9 horas en
clases. Los martes y jueves, Kimo pasa 2 * 2 = 4 horas en clases. Como hay 2 días a la semana, pasa 2 * 4 = 8 horas en clases. 
En total, Kimo pasa 9 + 8 = 17 horas a la semana en clases. En un semestre, Kimo pasa 17 * 16 = 272 horas en clases. La 
respuesta es 272.

Kimo a 3 cours d'une heure les lundis, mercredis et vendredis, ce qui fait 3 x 1 = 3 heures par jour. Comme il y a 3 jours dans la 
semaine où il a 3 heures de cours, cela fait 3 x 3 = 9 heures par semaine. Les mardis et jeudis, il a 2 cours de 2 heures, ce qui fait 
2 x 2 = 4 heures par jour. Comme il y a 2 jours dans la semaine où il a 4 heures de cours, cela fait 2 x 4 = 8 heures par semaine. 
Au total, Kimo a 9 + 8 = 17 heures de cours par semaine. Comme il y a 16 semaines d'école par semestre, Kimo consacre 17 x 
16 = 272 heures à ses cours durant un semestre. La réponse est 272.

月曜、水曜、金曜は、キモは1時間の講義を3つ受けるので、1日あたり3時間、3日間で9時間です。火曜と木曜は、2時間の講義を2つ受けるので、1日あたり4
時間、2日間で8時間です。1週間で、キモは9+8=17時間講義に出席します。1セメスターは16週間あるので、キモは1セメスターで17*16=272時間講義に出席し
ます。答えは272時間です。

в понедельник, среду и пятницу Кимо проводит 3 * 1 = 3 часа на занятиях. В неделю таких дней 3, значит, за неделю он проводит3 * 3 = 9 часов 
на занятиях в эти дни. Вторник и четверг Кимо проводит 2 * 2 = 4 часа на занятиях. В неделю таких дней 2, значит, за неделю он проводит 4 * 2 = 
8 часов на занятиях в эти дни. Всего за неделю Кимо проводит 9 + 8 = 17 часов на занятиях. В семестре 16 недель, значит, за семестр Кимо 
проводит 17 * 16 = 272 часа на занятиях. Ответ — 272.

Kimo ana masomo matatu ya saa 1 kila siku kwa siku tatu, hivyo kwa jumla ana masomo 3 * 1 * 3 = 9 saa. Kimo pia ana masomo mawili ya
saa 2 kila siku kwa siku mbili, hivyo kwa jumla ana masomo 2 * 2 * 2 = 8 saa. Kwa jumla, Kimo ana masomo 9 + 8 = 17 saa kwa wiki. 
Kimo ana shule kwa wiki 16, hivyo kwa jumla ana masomo 17 * 16 = 272 saa kwa muhula. Jibu ni 272.

On Mondays, Wednesdays, and Fridays, college student Kimo has three 1-hour  classes each day.  On Tuesdays and Thursdays, 
he has two 2-hour classes each day.  In one semester, there are 16 weeks of school.  In one semester, how many hours does 
Kimo spend attending classes?

!" మ$ా&ాల(, బ*ధ$ా&ాల(, మ&,య* .క0$ా&ాల 12డ4 567క( మ8డ4 1-గంట 5ా< సుల( ఉ12@A, అందువల<  పFG $ా&ాలH 3 &IJలH<  3 గంటల( 5ా< సుల( 
ఉ12@A, అంటK 3*3=9 గంటల(. మంగళ$ారం మ&,య* గ*రN$ా&ాలH<  అతPQ56 పFG&IR &Sండ4 2-గంటల 5ా< సుల(12@A, అందువల<  పFG $ా&ాలH 2 &IJలH<  4 
గంటల( 5ా< సుల( ఉ12@A, అంటK 2*4=8 గంటల(. అందువల<  పFG $ా&ాలH 567క( TతUం 9+8=17 గంటల( 5ా< సుల( ఉ12@A. ఒక WXYసZ[ లH 16 $ా&ాల( 
ఉ12@A, అందువల<  ఒక WXYసZ[ లH 567క( TతUం 16*17=272 గంటల( 5ా< సుల( ఉ12@A. సమ]̂ 2నం 272.", 

ในวันจันทร์ วันพุธ และวันศุกร์ ไคโมเข้าเรียน 3 คาบต่อวัน ซึAงแต่ละคาบใช้ เวลา 1 ชัAวโมง แสดงว่าใน 3 วันนีFเขาใช้เวลา 3 * 1 * 3 = 9 ชัAวโมง ในวันอังคารและวันพฤหัสบดี เขาเข้าเรียน 2 คาบต่อวัน ซึAง
แต่ละคาบใช้เวลา 2 ชัAวโมง แสดงว่าใน 2 วันนีFเขาใช้เวลา 2 * 2 * 2 = 8 ชัAวโมง ดังนัFน ในหนึAงสัปดาห์ ไคโมใช้เวลา 9 + 8 = 17 ชัAวโมง ในหนึAงภาคการศึกษามีการเรียนการสอน 16 สัปดาห์ ดังนัFน 
ไคโมใช้เวลา 17 * 16 = 272 ชัAวโมง คําตอบคือ 272" 

周一、周三和周五，基莫每天有 3 节 1 小时的课，即 3 * 1 = 3 小时。周二和周四，他每天有 2 节 2 小时的课，即 2 * 2 = 4 小时。
一周内，他上课的时间为 3 * 3 + 2 * 4 = 9 + 8 = 17 小时。一个学期有 16 周，所以基莫一个学期上课的时间为 17 * 16 = 272 小时。
答案是 272。答案是 272 小时。 

Table 5: Case study in the test set of MSGM, where the solutions are generated by Qwen2.5-72B for a question
written in different languages. Note that here we only show an EN question, the questions corresponding to each
output are written in their respective languages, which can be seen in the Appendix A.4.

it calculates the hours per day and then calculates445

the total hours for the week. Reasoning appears446

correct in some low-resource languages (SW, TE,447

and TH), suggesting that our approach can leverage448

the model’s capabilities in low-resource languages449

to assist reasoning in high-resource languages, in450

addition of course to the usual reverse benefit.451

6 Conclusion452

MRC is a multidimensional reasoning framework,453

which comprehensively studies reasoning consis-454

tency when the same math problems are presented455

to the model with systematic variations along three456

different dimensions. By leveraging such varia-457

tions and answer consistency, MRC improves over-458

all accuracy on both monolingual and multilingual 459

benchmarks, demonstrating its effectiveness in en- 460

hancing lightweight models and its strong scalabil- 461

ity for more complex tasks. Our experiments seem 462

to suggest that the largest the diversity of solu- 463

tion paths, the stronger the benefit from exploiting 464

consistency. As we do not yet have concrete evi- 465

dence for this hypothesis, a natural future direction 466

would be to study path diversity in a quantifiable 467

way. Another valid extension would be integrating 468

the different dimensions (e.g., COC per language). 469

While combining multiple dimensions of variations 470

presents an explosion of possibilities, strategic se- 471

lection based on empirical results, especially cross- 472

all accuracy, might mitigate this challenge. 473
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7 Limitations474

While we investigated model consistency in mathe-475

matical reasoning and successfully leveraged it to476

improve reasoning accuracy, several promising di-477

rections remain for future exploration. We mainly478

focus on the variations in model inputs and consis-479

tency in final answers, while both the variation and480

consistency of the reasoning paths are interesting481

directions. Specifically, variations in the input will482

lead to variations in the output, which includes log-483

ical consistency and inconsistency, thus affecting484

the final result. Also, it is not yet clear how vari-485

ations in input affect the model’s reasoning logic486

(variations in reasoning paths), which requires a487

much bigger unpacking. Lastly, similar to self-488

consistency, our method incurs more computational489

cost as it requires the model to generate multiple490

solutions in different dimensional variations.491
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A Appendix722

A.1 Prompt Examples723

Question: Roger has 5 tennis balls. He buys 2 more cans of tennis 
balls. Each can has 3 tennis balls. How many tennis balls does he 
have now?
Solution: Roger started with 5 balls. 2 cans of 3 tennis balls each 
is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Question: There were nine computers in the server room. Five 
more computers were installed each day, from monday to 
thursday. How many computers are now in the server room?
Solution: There are 4 days from monday to thursday. 5 computers 
were added each day. That means in total 4 * 5 = 20 computers 
were added. There were 9 computers in the beginning, so now 
there are 9 + 20 = 29 computers. The answer is 29.

[Two more exemplars]

Question: {}
Solution:

Question: There were nine computers in the server room. Five 
more computers were installed each day, from monday to 
thursday. How many computers are now in the server room?
Solution: There are 4 days from monday to thursday. 5 computers 
were added each day. That means in total 4 * 5 = 20 computers 
were added. There were 9 computers in the beginning, so now 
there are 9 + 20 = 29 computers. The answer is 29.

Question: Roger has 5 tennis balls. He buys 2 more cans of tennis 
balls. Each can has 3 tennis balls. How many tennis balls does he 
have now?
Solution: Roger started with 5 balls. 2 cans of 3 tennis balls each 
is 6 tennis balls. 5 + 6 = 11. The answer is 11.

[Two more exemplars]

Question: {}
Solution:

…

Prompt 1 Prompt x

Figure 6: Examples of prompts for COC.

Rewrite the following math problems to make them easier for 
LLMs to solve, then solve them step by step.

Question: Roger has 5 tennis balls. He buys 2 more cans of tennis 
balls. Each can has 3 tennis balls. How many tennis balls does he 
have now?
Rewritten Question: Roger starts with 5 tennis balls. He buys 2 
cans of tennis balls, with each can containing 3 tennis balls. How 
many tennis balls does Roger have in total?

[Three more exemplars]

Question: {}
Rewritten Question:

Rewrite the following math problems to make them easier for 
LLMs to solve, then solve them step by step.

Question: Roger has 5 tennis balls. He buys 2 more cans of tennis 
balls. Each can has 3 tennis balls. How many tennis balls does he 
have now?
Rewritten Question: Roger starts with 5 tennis balls. He buys 2 
cans of tennis balls, with each can containing 3 tennis balls. How 
many tennis balls does Roger have in total?
Solution: Roger started with 5 balls. 2 cans of 3 tennis balls each 
is 6 tennis balls. 5 + 6 = 11. The answer is 11.

[Three more exemplars]

Question: {}
Rewritten Question:

Rewrite-without-solve Prompt Rewrite-then-solve Prompt

Figure 7: Examples of prompts for CPC.

Question: Roger has 5 tennis balls. He buys 2 more cans of tennis 
balls. Each can has 3 tennis balls. How many tennis balls does he 
have now?
Solution: Roger started with 5 balls. 2 cans of 3 tennis balls each 
is 6 tennis balls. 5 + 6 = 11. The answer is 11.

[Three more exemplars]

Question: {}
Step-by-Step Answer:

ప"శ$: జ(స* వద- 20 ల123ా5 ల6 ఉ89$:. అతడ? @ెB$CD CEF$ ల123ా5 ల6 
ఇH9Iడ?. ఇపJKడ? జ(స* వద- 12 ల123ా5 ల6 ఉ89$:. @ెB$CD జ(స* ఎF$ 
ల123ా5 ల6 ఇH9Iడ??ల123ా5 ల6ల123ా5 ల6ల123ా5 ల6 
దశలOాPQR  ా సమ1T9నం: జ(స* 20 ల123ా5 లWX 3ా" రంZంH9డ?, CాB ఇపJKడ? 
అత@\ వద- 12 మ1త"]̂ ఉ89$:, అందువల̀ అతడ? @ెB$CD 20-12=8 
ల123ా5 ల6 ఉ89$:. సమ1T9నం 8. 
 
ప"శ$: 3ాPdeంf ల1g లh 3 Cారj`  ఉం@\, మPk 2 Cారj`  వlIనట̀:Wే, 3ాPdeంf 
ల1g లh ఎF$ Cారj`  ఉ89$:? 
దశలOాPQR  ా సమ1T9నం: 3ా" రంభంలh 3 Cారj`  ఉ89$:, మPk 2 Cారj`  వH9I:, 
అందువల̀ ఇపJKడ? 3+2=5 Cారj`  ఉ89$:. సమ1T9నం 5. 
 
ప"శ$: {} 
దశలOాPQR  ా సమ1T9నం: 

EN Prompt TE Prompt

Figure 8: Examples of prompts for CLC.
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A.2 Datasets 724

We evaluate our framework on three math reasoning datasets: (i) GSM8K (Cobbe et al., 2021), an 725

English dataset of grade school math word problems (about 7,500 for training and 1,319 for testing); (ii) 726

MGSM (Shi et al., 2023a), consisting of 250 questions selected from GSM8K and manually translated 727

into ten languages: Bengali (BN), Chinese (ZH), French (FR), German (DE), Japanese (JA), Russian 728

(RU), Spanish (ES), Swahili (SW), Telugu (TE) and Thai (TH). Thus, it contains a total of 11 languages 729

including English; (iii) MATH500 is a benchmark of competition, which contains 500 math problems of 730

varying difficulty. 731

A.3 COC Results 732

Orders (4-shot) 1 2 3 4 5 6 7 8 COC
7-8B
Phi-3-7B 88.5 88.8 88.6 88.9 87.3 89.8 88.4 88.2 89.8
Qwen2.5-7B 88.3 87.0 87.6 88.0 88.0 87.8 88.5 88.2 90.5
Qwen2.5-Math-7B 90.0 89.7 91.3 92.3 91.5 90.5 90.8 91.0 92.6
Llama-3.1-8B 79.7 78.8 79.0 79.0 80.1 79.1 77.8 78.7 80.1
Aya-expanse-8B 76.7 77.3 78.2 76.6 76.9 77.6 77.3 77.4 78.2
Ministral-8B 81.2 81.4 80.9 81.4 80.9 81.3 81.4 81.6 82.3
14-32B
Phi-3-14B 89.2 88.9 88.6 88.3 88.9 89.0 89.1 88.9 89.9
Mistral-22B 85.8 85.8 85.9 85.3 86.1 86.1 86.1 86.2 86.7
Aya-expanse-32B 83.8 83.4 84.6 83.6 84.9 84.3 83.5 83.9 85.3
70-72B
Llama-3.1-70B 94.0 94.0 94.3 94.1 93.9 93.9 93.4 93.8 94.4
Qwen2.5-72B 94.6 93.9 93.9 93.6 94.1 94.1 94.2 94.2 94.8
Qwen2.5-Math-72B 94.0 93.6 93.6 93.7 93.8 93.6 93.2 93.4 94.2

Table 6: Reasoning accuracy of prompts in different orders on GSM8K compared to COC.

Orders (4-shot) 1 2 3 4 5 6 7 8 COC
7-8B
Phi-3-7B 40.4 41.0 40.0 40.8 39.0 42.2 40.0 38.6 43.2
Qwen2.5-7B 63.6 64.6 64.8 64.4 63.6 65.2 61.8 62.4 68.8
Qwen2.5-Math-7B 75.2 74.4 75.2 75.6 73.2 75.4 74.6 74.2 77.0
Llama-3.1-8B 42.6 44.0 41.8 41.4 42.4 41.6 45.0 42.6 48.0
Aya-expanse-8B 28.0 28.8 29.0 27.4 28.6 28.8 27.0 29.0 31.4
Ministral-8B 42.8 42.2 40.0 41.4 42.0 41.2 41.8 41.2 45.0
14-32B
Phi-3-14B 44.2 43.0 44.2 45.8 44.4 46.6 44.0 44.4 49.0
Mistral-22B 42.6 47.2 43.0 44.0 44.0 44.6 41.6 45.6 48.2
Aya-expanse-32B 38.6 40.0 39.4 38.4 40.4 40.0 40.4 40.6 43.4
70-72B
Llama-3.1-70B 58.6 57.8 60.0 59.6 59.0 60.2 60.2 61.4 65.0
Qwen2.5-72B 63.2 65.2 62.2 59.6 67.2 61.4 69.8 68.6 75.2
Qwen2.5-Math-72B 66.6 64.6 70.2 72.2 68.8 69.6 72.6 69.8 76.0

Table 7: Reasoning accuracy of prompts in different orders on MATH500 compared to COC.

A.4 Examples of questions written in different languages 733

Figure 9 provides examples of questions written in different languages. 734

A.5 Models 735

We select a range of open-source state-of-the-art LLMs in varying scales. For all models, we only consider 736

instruction-tuned versions. 737

7-8B: Phi-3-7B (128k) (Abdin et al., 2024); Qwen2.5-7B (Yang et al., 2024a); Qwen2.5-7B-Math (Yang 738

et al., 2024b); Llama-3.1-8B (Grattafiori et al., 2024); Aya-expanse-8B (Üstün et al., 2024); Ministral-8B5. 739

5https://huggingface.co/mistralai/Ministral-8B-Instruct-2410
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Language MathQuestion

EN

BN

DE

ES

FR

JA

RU

SW

TE

TH

ZH

কেলজ ছা' িকেমার +িত -সামবার, ব0ধবার ও 34বাের িতন6 1-ঘ8ার 9াস থােক। +িত ম;লবার ও ব<হ>িতবাের, তার দু6 2-ঘ8ার 9াস থােক। এক6 -সিমBার 16 
সCােহর D0 ল থােক। এক6 -সিমBাের, িকেমােক 9ােস কত ঘ8া বEয় করেত হয়? 

Montags, mittwochs und freitags hat College-Student Kimo drei1-st\u00fcndige Kurse pro Tag. Dienstags und Donnerstags hat er
zwei 2-st\u00fcndige Kurse pro Tag. Ein Semester hat 16 Schulwochen. Wie vieleStunden verbringt Kimo in einem Semester mit
Kursbesuchen?

Los lunes, miércoles y viernes, el estudiante universitario Kimo tiene tres clases de 1 hora por día. Los martes y jueves, tiene dos 
clases de 2 horas por día. En un semestre, hay 16 semanas de clases. En un semestre, ¿cuántas horas pasa Kimo en clases?

Les lundis, mercredis et vendredis, l'étudiant Kimo a trois cours d'une heure par jour. Les mardis et jeudis, il a deux cours de 2 
heures chaque jour. S'il y a 16 semaines d'école par semestre, combien d'heures Kimo consacre-t-il à ses cours durant un 
semestre ?

月曜、水曜、金曜に、大学生のキモは1時間の3つの講義を各日受ける。火曜と木曜に、彼は2時間の講義を2つ各日受ける。1セメスターで、学校は16週間ある。
1セメスターで、キモは何時間講義に出席して過ごす？

Каждый понедельник, среду и пятницу у студента колледжа Кимо три 1-часовых занятия. Каждый вторник и четверг у него два 2-часовых 
занятия. В одном семестре 16 учебных недель. Сколько часов Кимо проводит на занятиях за один семестр?

Siku za Jumatatu, Jumatano, na Ijumaa, Kimo mwanafunzi wa chuo huwa na masomo matatu ya saa 1 kila siku. Siku za Jumanne na
Alhamisi, huwa ana masomo mawili ya saa 2 kila siku. Katika muhula moja, kuna wiki 16 za shule. Katika muhula moja, Kimo huwa
anatumia saa ngapi kuhudhuria masomo?

On Mondays, Wednesdays, and Fridays, college student Kimo has three 1-hour  classes each day.  On Tuesdays and Thursdays, 
he has two 2-hour classes each day.  In one semester, there are 16 weeks of school.  In one semester, how many hours does 
Kimo spend attending classes?

!" మ$ా&ాల(, బ*ధ$ా&ాల(, మ&,య* .క0$ా&ాల 12డ4, 5ాల67 892:&,; 5<=క( ప?@&AB మCడ4 1-గంట 5ాG సుల( ఉ12KL. మంగళ$ారం మ&,య* 
గ*రO$ా&ాలPG , అతST5< ప?@&AB &Uండ4 2-గంటల 5ాG సుల(12KL. ఒక WXYసZ[ లP, సూ^ల(లP 16 $ా&ాల( ఉ12KL. ఒక WXYసZ[ లP, 5<= 5ాG సులక( _జరO 
5ావS2b5< ఎbK గంటల( గSTdాడ4? 

ในวันจันทร์ วันพุธ และวันศุกร์ ไคโมซึ7งเป็นนักศึกษาเข้าเรียนสามคาบต่อวัน โดยแต่ละคาบใช้ เวลา 1 ชั7วโมง ส่วนในวันอังคารและวันพฤหัสบดี เขาเข้าเรียนสองคาบต่อวัน ซึ7งแต่ละคาบใช้ เวลา 2 ชั7วโมง ในหนึ7ง
ภาคการศึกษามีการเรียนการสอน 16 สัปดาห์ ไคโมใช้เวลากี7ชั7 วโมงไปกับการเข้าเรียน 

周一、周三和周五，大学生基莫每天有 3 节 1 小时的课。周二和周四，他每天有 2 节 2 小时的课。一个学期中有 16 周的上学时间。
在一个学期中，基莫用多少时间上课？

Figure 9: Examples of questions written in different languages.

14-32B: Phi-3-14B (Abdin et al., 2024); Mistral-22B6; Aya-expanse-32B (Üstün et al., 2024).740

70-72B: Qwen2.5-72B (Yang et al., 2024a); Qwen2.5-72B-Math (Yang et al., 2024b); Llama-3.1-741

70B (Grattafiori et al., 2024).742

A.6 Implementation743

We perform inference experiments on 4 × NVIDIA H100 94GB GPUs using the library vLLM (Kwon744

et al., 2023), without training or fine-tuning language models. During inference, we use few-shot prompts745

covering the 11 languages released by Shi et al. (2023a). In the multilingual scenario, we use 4-shot746

for all languages except TE which only uses 2-shot, since a 4-shot prompt would exceed the default747

maximum length, due to tokenization issues unfavourable to this language (Ahia et al., 2023). We use748

greedy decoding unless otherwise specified. For all experiments we report the final answer accuracy749

except the reasoning consistency score.750

A.7 Correlation751

Figure 10 shows the correlations of models’ accuracy with the three consistency scores. COC and CPC752

have high correlations with reasoning accuracy, while CLC has a weak and non-significant one. This753

suggests that we can use COC and CPC to assess the model’s uncertainty in its generated solutions without754

using gold answers. While CLC does not seem to be a reasonable metric to assess models’ accuracy, it755

can still be used to evaluate models from a multilingual perspective.756

6https://huggingface.co/mistralai/Mistral-Small-Instruct-2409
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Pearson r = 0.87
p-value < 0.001

Pearson r = 0.93
p-value < 0.001

Pearson r = 0.49
p-value = 0.11

COC score CPC score CLC score

Figure 10: Pearson correlation between models’ accuracy and different consistency scores.
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