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Abstract

Computer Science (CS) stands as a testament to the intricacies of human intelli-1

gence, profoundly advancing the development of artificial intelligence and modern2

society. However, the current community of large language models (LLMs) overly3

focuses on benchmarks for analyzing specific foundational skills (e.g. mathematics4

and code generation), neglecting an all-round evaluation of the computer science5

field. To bridge this gap, we introduce CS-Bench, the first bilingual (Chinese-6

English) benchmark dedicated to evaluating the performance of LLMs in computer7

science. CS-Bench comprises approximately 5K meticulously curated test samples,8

covering 26 subfields across 4 key areas of computer science, encompassing var-9

ious task forms and divisions of knowledge and reasoning. Utilizing CS-Bench,10

we conduct a comprehensive evaluation of over 30 mainstream LLMs, revealing11

the relationship between CS performance and model scales. We also quantita-12

tively analyze the reasons for failures in existing LLMs and highlight directions13

for improvements, including knowledge supplementation and CS-specific reason-14

ing. Further cross-capability experiments show a high correlation between LLMs’15

capabilities in computer science and their abilities in mathematics and coding.16

Moreover, expert LLMs specialized in mathematics and coding also demonstrate17

strong performances in several CS subfields. Looking ahead, we envision CS-18

Bench serving as a cornerstone for LLM applications in the CS field and paving19

new avenues in assessing LLMs’ diverse reasoning capabilities.20

1 Introduction21

Serving as the cornerstone of the modern information revolution, the significance of computer science22

(CS) extends from the early days of electronic computers to today’s advancements in artificial23

intelligence (AI) [1, 2]. As a new milestone in AI, large language models (LLMs) [3, 4] represented24

by ChatGPT [5] and GPT-4 [6] are not limited to the natural language processing (NLP) community,25

showing vast potential in fields including education, industry, and science [7, 8, 9, 10, 11, 12, 13].26

However, enabling LLMs to effectively utilize computer science knowledge and serve humanity more27

efficiently is one of the key challenges on the path to the future intelligent era [14, 15, 16].28

Understanding the performance of LLMs in computer science is fundamental to the research and29

application of LLMs within the field. Despite studies like MMLU and C-Eval [17, 18, 19, 20, 21]30

covering a wide range of fields including CS, their broad scope implies that CS is merely a component31

within the multiple categories of science and engineering, overlooking the importance of thoroughly32
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Figure 1: Overview diagram and statistics of CS-Bench.

evaluating the CS field. Moreover, such evaluation result can further guide the development of33

LLMs, offering practical insights to advance the corresponding capabilities. Recently, a series of34

studies have devoted on actively assessing and analyzing the capabilities of LLMs in mathematics,35

coding, and logical reasoning [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. Unfortunately, efforts on36

LLMs in cross-capability evaluation is quite scarce. Considering the intersection of computer science37

with coding, mathematics, and reasoning abilities, we have grounds to believe that cross-capability38

research and analysis in CS can effectively propel the comprehensive development of the LLM39

community. Here, we are particularly interested in two research questions for evaluating LLMs’40

proficiency in computer science field:41

RQ1: How do LLMs perform in the field of computer science and what are the challenges and42

potential directions for improvement?43

RQ2: What are the relationship between the abilities of LLMs in computer science, mathematics, and44

code programming?45

As the bedrock for exploration, we first propose CS-Bench, the first benchmark dedicated to evaluating46

the performance of LLMs in the field of computer science. CS-Bench features high-quality, diverse47

task forms, varying capacities, and bilingual evaluation. Firstly, CS-Bench comprises approximately48

5,000 carefully curated test items spanning 26 sections across 4 key CS domains. Diverging from49

conventional benchmarks consisting solely of multiple-choice (MC) questions [17, 18, 20], CS-50

Bench includes 4 tasks: multiple-choice, assertion, fill-in-the-blank (FITB), and open-ended, to better51

simulate real-world scenarios and assess the robustness of LLMs to different task formats. In addition52

to knowledge-type questions assessing LLMs’ mastery of CS knowledge, reasoning-type questions53

further evaluate LLMs’ ability to apply CS knowledge for reasoning. Lastly, by supporting bilingual54

evaluation in Chinese and English, CS-Bench enables the appraisal of LLMs’ adeptness in addressing55

CS challenges across different language contexts.56

In response to RQ1, we evaluate over 30 mainstream LLMs on CS-Bench. Our main findings57

are: (1) CS-Bench effectively differentiates the capabilities of LLMs in the CS field while also58

posing significant challenges to the best-performing GPT-4/ GPT-4o. (2) LLMs exhibit a consistent59

logarithmic growth pattern in scale and a linear growth pattern in scores on the CS-Bench. By60

establishing the scale-score fitting function, smaller models can be used to predict and guide the61

development of larger-scale models. (3) Further error type analysis indicates that the primary62

reason for the limited performance of LLMs is the lack of domain knowledge, and the CS-specific63
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reasoning is difficult to achieve merely by enhancing general reasoning abilities, necessitating targeted64

reinforcement.65

In response to RQ2, we perform a detailed analysis of the relationship of General LLMs’ ability in66

three domains: mathematics, coding, and computer science, as well as the performance of code- and67

math-specific expert LLMs on CS-Bench. We observe consistent trends in the overall performance of68

the general LLMs across CS-Bench and scores in benchmarks related to mathematics and coding,69

indicating a strong correlation between LLM’s computer science proficiency and its mathematical70

and programming abilities. Furthermore, despite a decline in general capabilities, some expert LLMs71

still exhibit improvements in certain areas of CS, such as data structures and algorithms, with more72

pronounced knowledge and reasoning capabilities evident in supplementary smaller-scale models.73

To summarize, our contributions are as follows:74

• We introduce CS-Bench, the first benchmark dedicated to evaluate the performance of LLMs in75

the field of computer science. CS-Bench supports both Chinese and English, covers four key areas76

with 26 subfields, and includes a diverse range of task formats.77

• Utilizing CS Bench, we conduct a comprehensive evaluation of mainstream LLMs, revealing the78

relationship between CS performance and model scales. We also quantitatively analyze the reasons79

for failures in existing LLMs and highlight directions for improvement.80

• We conduct exploratory experiments on LLMs’ cross-ability and find a strong relationship between81

their CS proficiency and mathematical and programming abilities. Moreover, the expertise in82

mathematics and programming of expert LLMs can improve performance in specific CS subfields.83

2 CS-Bench84

2.1 Design Principle85

The objective of CS-Bench is to robustly assess the knowledge and reasoning capabilities of LLMs86

in different linguistic contexts within the field of computer science. To this end, our benchmark87

adheres to the following guidelines: (1) Coverage of key domains: it covers key areas of CS with88

finer subfields for specificity. (2) Diverse task forms: questions vary in format to simulate diverse89

real-world user queries. (3) CS-specific reasoning: it evaluates CS logical and arithmetic reasoning90

in addition to CS knowledge. (4) Multilinguality support: it supports assesses LLMs’ performance91

in different language environments. Based on these criteria, CS-Bench focuses on bilingual evaluation92

in Chinese and English, covering four domains: Data Structure and Algorithm (DSA), Computer93

Organization (CO), Computer Network (CN), and Operating System (OS). Twenty-six fine-grained94

subfields, diverse task forms, and divisions of knowledge and reasoning are further developed to95

enrich the dimensions of assessment and simulate real-world scenarios.96

2.2 Data Collection97

Table 1: Comparison of perplexity (PPL) across
evaluation datasets. The PPL of English and Chi-
nese datasets is calculated on Llama2-7B-base and
Qwen1.5-7B-base, respectively. “MC” denotes
multiple-choice, and “ALL” denotes all tasks.

English Dataset PPL Chinese Dataset PPL

TruthfulQA (MC) [34] 7.73 C-Eval [18] 11.47
MMLU [35] 9.54 CMMLU [20] 13.62
CS-Bench (MC) 11.86 CS-Bench (MC) 13.31
CS-Bench (ALL) 13.3 CS-Bench (ALL) 16.95

Data Sources. Diverse data sources are key98

to achieving the sample diversity of CS-Bench.99

Our raw data originates from three sources:100

(1) Computer science-related questions ob-101

tained from publicly available online chan-102

nels, such as professional exams and practice103

tests1. (2)Knowledge-type questions obtained104

through the initial manual extraction and subse-105

quent adaptation of blog articles from various106

computer-related websites2. (3) Construction107

1e.g., https://github.com/CodePanda66/CSPostgraduate-408
2e.g., https://www.wikipedia.org/,https://www.cnblogs.com/, https://www.csdn.net/
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of teaching materials and examination papers authorized by the authors’ institutions. The latter108

two categories constitute the vast majority (over 70%) of the data, and these data are not directly109

exposed on the internet, effectively reducing the likelihood of LLMs encountering these questions110

during pre-training. We compare the perplexity [36] of models on CS-Bench and several prominent111

evaluation datasets in Table 1. In both English and Chinese, the perplexity of CS-Bench is comparable112

to or even higher than that of other datasets, further indicating the high quality of CS-Bench samples113

and the rarity of data leakage instances.114

Data Processing. The data processing relies on a team composed of five members, each holding a115

bachelor’s degree in computer science and receiving appropriate compensation. Initially, we parse116

questions and answers for each sample from the data sources either automatically or manually.117

Subsequently, we manually label questions with knowledge-type or reasoning-type tags depending118

on whether in-depth reasoning and calculation are required. For reasoning-type questions, we attempt119

to collect explanations from the data sources whenever possible; otherwise, we handle them through120

cross-annotation and verification among team members. We first construct Chinese data, then translate121

it into English using GPT-4, supplemented by manual checks, to create English data. Finally, we122

conduct thorough manual checks on the entire dataset to ensure quality. We provide detailed data123

sources and processing procedures in the supplemental materials.124

Statistics. CS-Bench is an evaluation benchmark supporting bilingual assessment, encompassing125

a total of 26 subfields across 4 domains, with a cumulative total of 4838 samples. These samples126

encompass various task formats including multiple-choice, assertion, fill-in-the-blank, and open-127

ended questions. Besides, CS-Bench assesses both knowledge-type and higher-order reasoning-type128

questions, with each reasoning question accompanied by an explanation. To validate the effectiveness129

of models, we randomly sample 10% of the data for validation, using the remaining 90% for testing.130

The statistics of CS-Bench are shown in Figure 1, with detailed exposition provided in Appendix C.131

3 Experiment132

3.1 Experimental Setup133

Evaluation Protocols. Due to the diverse task formats in CS-Bench, we first design question134

templates for each task type. For comprehension tasks (MC and Assertion), we use regex to135

match LLM’s predictions and then calculate their accuracy against the ground-truth answers. For136

generation tasks (FITB and Open-ended), due to the diversity of ground-truth answers, we score137

LLM’s predictions by GPT-4 using standard answers in CS-Bench as references. In detail, FITB138

questions are scored as either 0 or 1, while the score range for Open-ended questions is 1-10, which139

is then linearly mapped to a range of 0.1 to 1. Finally, scores are weighted based on the quantity140

of each type to derive the ultimate overall score. It is worth emphasizing that while employing141

GPT-4 for scoring generation tasks may introduce a certain threshold for evaluation, its primary142

purpose is to simulate diverse task formats in real-world scenarios. Therefore, we encourage isolating143

comprehension tasks from CS-Bench to facilitate automatic evaluation with no need for GPT-4. We144

provide the details of the evaluation setup in Appendix D, where we also verify the validity of GPT-4145

scoring through its consistency with manually scored results.146

Models. We evaluate nearly 30 models in different sizes from 12 model families. For open-147

source models, we selected Gemma-2B/7B [37], Llama2-7B/13B/70B [38], Llama3-8B/70B148

[39], ChatGLM3-6B [40], Baichuan2 (v2.0)-7B/13B [41], InternLM2-7B/20B [42] , Qwen1.5-149

4B/7B/14B/72B/110B [43], Mistral-7B (v0.2) [44], Mixtral-8×7B (v0.1) [45], and DeepSeekLLM-150

7B/67B [46]. For closed-source commercial models, we utilized PaLM-2 (palm-2-chat-bison) [47],151

Claude-2.1 [48], Claude-3 (opus) [49], as well as GPT-3.5, GPT-4 (0125 version) [50] and GPT-4o152

[6]. To ensure the instruction-following abilities, we employ the official chat or instruction-tuned153

versions for all models. Details on these models are provided in Appendix D.4.154
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Table 2: Zero-shot scores (%) of LLMs across domains on CS-Bench (EN), where “Klg” denotes
knowledge-type, “Rng” denotes reasoning-type, and “Avg” denotes Average. The random scores are
weighted as follows: 25% for MC, 50% for Assertion, 0% for FITB, and 10% for Open-ended.

Model Data Struc & Algo Computer Organization Computer Network Operating System Overall

Klg Rng Avg Klg Rng Avg Klg Rng Avg Klg Rng Avg Klg Rng Avg

Random 28.04 24.63 26.65 26.57 25.24 26.13 26.34 22.49 24.98 29.06 24.23 27.27 27.4 24.12 26.2

Open-source LLM (Scale < 10B)

Gemma-2B 56.76 23.44 43.20 47.69 30.18 41.92 45.22 26.38 38.59 37.79 31.32 35.39 46.89 27.59 39.86
Qwen1.5-4B 58.76 36.56 49.72 52.31 33.88 46.23 52.70 33.97 46.11 40.03 38.52 39.47 51.18 35.70 45.54

ChatGLM3-6B 51.10 34.08 44.17 48.11 32.73 43.04 51.15 32.66 44.64 43.57 37.03 41.14 48.63 34.07 43.33
Llama2-7B 51.51 32.61 43.82 48.89 31.82 43.26 46.72 30.75 41.10 41.04 26.26 35.55 47.15 30.48 41.08

DeepseekLLM-7B 56.42 28.94 45.23 52.09 32.48 45.62 52.43 31.41 45.03 41.66 31.98 38.06 50.87 31.11 43.67
Baichuan2-7B 53.11 34.95 45.72 45.10 38.67 42.98 51.26 34.27 45.28 43.47 33.63 39.82 48.29 35.33 43.57

Gemma-7B 59.53 35.18 49.62 49.97 33.27 44.46 60.87 37.09 52.50 48.67 34.23 43.31 54.90 35.02 47.66
Qwen1.5-7B 59.90 35.28 49.88 55.21 42.73 51.09 61.56 43.02 55.04 52.01 39.78 47.47 57.34 40.08 51.05

InternLm2-7B 59.57 40.92 51.98 58.83 37.94 51.94 62.65 40.60 54.89 50.94 39.29 46.61 58.31 39.77 51.56
Mistral-7B 63.24 34.86 51.69 57.52 38.67 51.30 61.48 44.92 55.65 51.66 43.79 48.73 58.63 40.44 52.01
Llama3-8B 66.25 37.29 54.46 55.38 40.67 50.53 62.21 53.02 58.98 55.26 49.34 53.06 59.75 44.97 54.37

Open-source LLM (Scale > 10B)

Llama2-13B 51.74 35.00 44.93 51.81 36.18 46.66 53.03 37.99 47.74 48.12 32.36 42.27 51.31 35.46 45.54
Baichuan-13B 54.82 33.39 46.10 50.50 39.52 46.88 55.87 42.21 51.06 48.44 34.73 43.35 52.53 37.44 47.03
Qwen1.5-14B 64.95 46.74 57.54 60.06 45.58 55.28 68.66 52.91 63.12 56.56 51.48 54.67 62.79 49.18 57.83

InternLm2-20B 66.72 38.21 55.11 58.38 39.82 52.26 64.13 50.35 59.28 53.51 46.43 50.88 60.81 43.66 54.56
Qwen1.5-32B 69.70 51.19 62.17 67.63 52.91 62.78 69.23 58.74 65.54 60.06 56.21 58.63 66.87 54.72 62.45
Mistral-8×7B 70.94 40.50 58.55 66.88 42.06 58.70 67.49 52.86 62.34 57.56 51.65 55.37 65.91 46.66 58.90

DeepseekLLM-67B 69.70 44.17 59.31 63.59 39.15 55.53 69.04 50.25 62.43 57.86 50.11 54.98 65.23 45.96 58.22
Llama2-70B 64.28 41.51 55.01 56.35 40.85 51.24 61.99 43.07 55.33 51.79 41.15 47.84 58.73 41.68 52.52
Llama3-70B 75.72 53.03 66.48 71.45 51.09 64.74 74.78 63.02 70.64 63.77 58.08 61.65 71.65 56.36 66.08

Qwen1.5-72B 72.71 50.69 63.75 69.28 54.12 64.28 71.97 66.73 70.13 63.96 59.62 62.35 69.63 57.75 65.31
Qwen1.5-110B 73.11 53.58 65.16 73.65 54.18 67.23 75.36 70.75 73.74 64.55 65.27 64.82 71.98 60.91 67.95

Closed-source LLM

PaLM-2 70.07 38.98 57.41 63.81 41.91 56.59 65.11 49.43 59.59 60.41 45.96 55.22 64.85 44.01 57.26
Claude-2.1 68.39 44.54 58.68 62.09 50.24 58.18 66.58 52.81 61.74 53.93 50.55 52.67 62.97 49.42 58.04
Claude-3 77.53 52.25 67.24 72.53 64.12 69.76 75.08 68.69 72.83 64.36 62.80 63.78 72.57 61.75 68.63
GPT-3.5 71.34 39.22 58.27 60.78 42.97 54.91 65.27 52.16 60.66 54.42 39.01 48.69 63.04 43.45 55.91
GPT-4 78.53 59.36 70.73 75.40 59.21 70.06 77.38 67.64 73.95 67.21 64.40 66.16 74.85 62.66 70.41

GPT-4o 81.51 57.80 71.86 75.60 58.61 70.00 80.57 71.76 77.47 69.35 68.68 69.10 76.95 64.15 72.29
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type scores across all models.
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3.2 Main Results155

Table 2 presents the overall results of all foundation models directly answering questions under156

the zero-shot setting 3. In summary, the overall scores of models range from 39.86% to 72.29%,157

demonstrating CS-Bench’s effectiveness in distinguishing between the abilities of various models158

in the field of CS while also posing significant challenges to the best-performing existing models.159

Subsequently, we conduct a comprehensive analysis of the results from various aspects as follows.160

Comparison between Foundation Models. Firstly, the closed-source models GPT-4/GPT-4o161

represent the highest standard on CS-Bench, being the only two models exceeding 70% proficiency.162

Secondly, the disparity between the leading open-source and closed-source models is not significant.163

Notably, premier open-source models such as Qwen1.5-110B and Llama3-70B have surpassed164

previously strong closed-source models like GPT-3.5 and Claude-2.1, drawing close to Claude-3165

3Due to space constraints, the results and analysis on CS-Bench (CN) are provided in Appendix E.3.
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in performance. Thirdly, newer models demonstrate significant improvements compared to earlier166

versions. For example, among models with scales below 10B, Llama3-8B performs the best, rivaling167

previous much larger-scale models and even surpassing Llama2-70B, indicating significant potential168

for compression in model parameters [51]. Lastly, while performance variations exist among models169

of different families at the same scale, models within the same family continue to improve with170

increasing scale on CS-Bench (see detailed scale analysis in Section 3.3).171

Comparison of Knowledge and Reasoning. Overall, all models perform worse on reasoning172

(average 44.63%) compared to knowledge scores (average 60.52%), indicating that reasoning poses173

a greater challenge to LLMs compared to knowledge. As shown in Figure 2, there is a strong174

positive correlation between reasoning scores and knowledge scores. However, this correlation is not175

absolute. For instance, PaLM-2 has a higher knowledge score but a lower reasoning score compared176

to Claude-2.1, showing PaLM-2’s weakness in applying knowledge. Furthermore, more powerful177

LLMs demonstrate a stronger ability to use knowledge for reasoning compared to weaker LLMs. This178

is reflected in the much lower reasoning scores of weaker models relative to their knowledge scores.179

However, as the model’s capability increases, the growth in reasoning scores is more pronounced180

than that of knowledge scores, gradually bridging the gap between knowledge and reasoning abilities.181

Comparison between Domains. First, regarding knowledge scores in Table 2 and Figure 3 (a),182

models generally perform best in DSA and worst in OS, which we attribute mainly to differences in183

the scale of pretraining data and the varying learning capabilities induced by model size. Second,184

the demand for reasoning ability varies across different domains, as evidenced by the gap between185

knowledge and reasoning scores. A notable example is GPT-4o, which shows close knowledge and186

reasoning scores in OS, while exhibiting extreme differences in DSA, with the highest and lowest187

scores, respectively. We further explore LLMs’ performance in fine-coursed subfields in Appendix188

E.1 and explore the impact of Code and Math abilities on different CS domains in Section 3.4.189

Comparison between Tasks. As shown in Figure 3 (b) and Table 13, given the varying initial190

random scores, LLMs generally performs best on Assertion questions (average 63.11% across all191

models), followed by MC questions (average 54.92%), Open-ended questions (average 49.1%), and192

performs worst on FITB questions (average 41%). However, the variation in task format sensitivity193

is highly pronounced in weaker models, while stronger models can mitigate the disparities caused194

by different task formats, exhibiting robustness. For instance, Llama2-7B scores only 26.19% on195

Open-ended reasoning but 60.61% on Assertion reasoning, whereas GPT-4 scores comparably on196

both Open-ended reasoning (68.94%) and Assertion reasoning (67.68%).197

3.3 Qualitative Analysis198

Relationship between Scores and Model Scales. To investigate how the performance of models199

varies with the increase in parameter size, we examine several model families and plot the results in200

6
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Figure 4 (a). It can be observed that although different families exhibit distinct performances, models201

within the same family consistently show improvement as the parameter size increases. However, as202

the model parameter size continues to increase, the performance gains from scaling diminish, resulting203

in diminishing returns in efficiency. For instance, the score in Qwen1.5 improves by 16.19% from204

0.5B to 7B, by 7.11% from 14B to 72B, and by only 2.66% from 72B to 110B. Additionally, as shown205

in Figure 4 (b), when the parameter scale grows exponentially, the score approximately increases206

linearly. This indicates that in the CS field, the model’s performance also follows a logarithmic scale207

pattern. Given the substantial computational resources required for large-scale models, we aim to208

establish the relationship between model scales and scores to predict the performance of larger-scale209

models in the CS field by fitting smaller-scale model scores. Due to space limitations, the specific210

design and implementation of the fitting function are provided in Appendix E.2. Overall, we fit the211

functions of Llama2 and Qwen1.5 series based on models ranging from 7B to 70/72B. We validate212

the fitting function on Qwen-1.5 110B, where the predicted value (67.83%) closely matches the actual213

value (67.95%), enabling further predictions for theoretical models, even up to 1000B.214

Comparison between Zero-shot, Few-shot and COT Prompting. To investigate the impact of215

few-shot prompts and chain of thought (COT [52]) on model performance, we evaluate model’s216

performance under 5-shot answer-only (AO) and 5-shot COT prompts in Figure 4 (c), where the217

prompt samples are sampled from the validation set and match the domain of the test questions.218

Given that model-generated results under 0-shot COT often don’t adhere to specific formats, making219

regular matching difficult, we omit 0-shot COT experiments, similar to C-Eval. Additionally, for220

Open-ended questions, since the answers include detailed explanations, 5-shot COT is the same as221

5-shot AO. For all tested models, the 5-shot prompts show improvement compared to 0-shot, with222

average increases of 1.47% for 5-shot AO and 2.00% for 5-shot COT, respectively. Moreover, the223

efficacy of few-shot prompts in bringing improvements appears more pronounced in some robust224

models such as GPT-3.5 and GPT-4, owing to their superior in-context learning capabilities.225

Analysis of Error Types. To delve into the roots of LLMs’ failure on CS-Bench and offer pathways226

toward improvement, we acquire the solution process of model errors under 5-shot COT, and utilize227

GPT-4 to categorize each error type in MC questions in Figure 5. It should be emphasized that models228

may cause joint errors, resulting in more than one error type assigned to a single answer. In general,229

from Llama2-7B all the way to GPT-4, the total number of errors continues to decrease for both230

knowledge-type and reasoning-type questions. For knowledge-type questions, both single concept231

errors and concept confusion show a decreasing trend. Initially, some completely wrong concepts232

transitioning to partially erroneous ones and subsequently being eliminated, thus exhibiting an initial233

rise followed by a decline in partial concept errors. For reasoning-type questions, we observe that a234

significant portion of errors still fall under the category of knowledge-based mistakes. While stronger235

models have evidently reduced arithmetic reasoning errors for reasoning inaccuracies, there hasn’t236

been much change in logic reasoning errors specific to the CS field. Our analysis highlights that237

reinforcing CS knowledge concepts is the most direct and effective approach to improving LLMs’238

performance in the field of CS. Furthermore, significant improvements in CS reasoning performance239

are challenging to achieve solely by enhancing general reasoning abilities and mathematical reasoning,240

necessitating CS-specific reinforcement. More details can be found in E.4.241
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Table 3: The performance of the Math-expert LLMs on CS-Bench (EN). We use blue to emphasize
areas where the expert LLMs improve compared to the Chat LLMs.

Model Type DSA CO CN OS All

Klg Rng Klg Rng Klg Rng Klg Rng Klg Rng Avg

InternLm2-7B Chat 59.57 40.92 58.83 37.94 62.65 40.60 50.94 39.29 58.31 39.77 51.56
InternLM-Math-7B [53] Math 60.23 31.56 50.56 38.61 55.93 44.47 47.69 43.85 53.64 39.41 48.45

DeepseekLLM-7B Chat 56.42 28.94 52.09 32.48 52.43 31.41 41.66 31.98 50.87 31.11 43.67
DeepSeekMath-Instruct-7B [54] Math 63.98 34.82 55.13 39.64 61.26 42.16 45.29 42.69 56.68 39.67 50.49

Llama2-13B Chat 51.74 35.00 51.81 36.18 53.03 37.99 48.12 32.36 51.31 35.46 45.54
MAammoTH-13B [55] Math 50.84 28.26 46.16 34.61 51.39 30.45 34.94 32.64 46.20 31.32 40.78

Llama2-70B Chat 64.28 41.51 56.35 40.85 61.99 43.07 51.79 41.15 58.73 41.68 52.52
WizardMath-70B [56] Math 60.17 28.67 56.41 34.91 58.52 41.51 47.01 42.53 55.77 36.67 48.82

Table 4: The performance of the Code-expert LLMs on CS-Bench (EN).
Model Type DSA CO CN OS All

Klg Rng Klg Rng Klg Rng Klg Rng Klg Rng Avg

Llama2-7B Chat 51.51 32.61 48.89 31.82 46.72 30.75 41.04 26.26 47.15 30.48 41.08
CodeLlama-7B [57] Code 58.90 36.15 45.46 36.24 52.87 26.23 44.35 25.33 50.36 31.09 43.34
Dolphcoder-7B [58] Code 50.13 36.47 34.71 34.36 41.78 23.92 40.03 28.35 41.40 30.82 37.54

WizardCoder-7B [59] Code 47.42 33.58 35.54 37.09 41.17 26.03 40.88 30.60 41.02 31.73 37.63

Llama2-13B Chat 51.74 35.00 51.81 36.18 53.03 37.99 48.12 32.36 51.31 35.46 45.54
CodeLlama-13B [57] Code 59.87 34.17 44.96 35.82 51.56 35.83 43.28 34.56 49.84 35.08 44.47

WizardCoder-13B [59] Code 50.80 32.98 38.69 35.27 43.42 28.34 40.88 34.29 43.27 32.59 39.38

3.4 What’s the Relationship between CS, Math, and Code abilities of LLMs?242

To explore the relationship between CS proficiency and the mathematical and coding capabilities of243

models, we investigate (1) the performance of general LLMs across the fields of Math, Code, and CS,244

and (2) the performance of LLMs specialized in Code and Math within the field of CS.245
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Figure 6: The score changes on CS-Bench as
LLM’s Math/Code score increases. p denotes
Pearson correlation coefficient. We obtain the
scores on Math/Code datasets from [43].

Exploration on General Models. In Figure 6, we246

illustrate how the models’ performance on CS-Bench247

varies with increasing scores on the Math datasets248

(GSM8K [60], MATH [35]) and Code datasets (Hu-249

manEval [61], MBPP [62]). We observe that the250

overall trend in CS-Bench performance closely aligns251

with changes in Math and Code scores, as indicated252

by a Pearson correlation coefficient [63] exceeding253

0.9. Besides the general enhancement of diverse com-254

petencies that superior models typically bring, we255

consider this evidence to suggest a close correlation256

between CS proficiency and abilities in Math as well257

as Code. Next, we examine models with inconsistent258

patterns between CS and Math/Code. In the Math259

domain, Qwen1.5-7B outperforms Llama2-70B in260

both GSM8K and MATH, yet in CS-Bench, Llama2-261

70B surpasses Qwen1.5-7B. In the Code domain,262

Mixtral-8×7B performs better than Qwen1.5-32B on263

HumanEval and MBPP, whereas the opposite is observed on CS-Bench. Given the NLP community’s264

sustained focus on the Code and Math domains, some recently released models have been trained on a265

large amount data in these domains, leading to smaller-scale models outperforming much larger-scale266

ones (e.g., Qwen1.5-7B surpassing Llama2-70B). However, in the CS domain, due to insufficient267

attention and training data, even excellent small-scale models struggle to surpass much larger-scale268

models. This also indicates that CS-Bench has not been overfitted during LLM pretraining, making it269

a fairer benchmark for measuring model performance differences.270

Exploration on Expert Models. We present the results of the Math and Code expert LLMs in271

Tables 3 and 4. Compared to general Chat LLMs, expert LLMs usually sacrifice other abilities to272

boost proficiency in Math or Code, which is reflected in the lower overall performance of most expert273
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LLMs. Therefore, we are more concerned with identifying the specific aspects of CS where Math and274

Code models show improvement. Regarding mathematics, InternLm-Math-7B improves InternLm2-275

7B’s performance in CO, CN, and OS reasoning tasks, while DeepseekMath exhibits significant276

improvements across all domains. According to [54], DeepseekMath effectively maintains general277

knowledge and reasoning ability during specialization. Conversely, MAammoTH and WizardMath278

perform poorly due to just fine-tuning on limited mathematical datasets, resulting in a significant279

decline in general knowledge and reasoning. The score changes in LLMs suggest that OS is most280

closely linked to mathematics, followed by CO, and lastly DSA and CN. In terms of Code, many281

Code models show significant improvements in DSA (especially knowledge) and OS (especially282

reasoning), such as CodeLlama and Dolphcoder. This indicates that the disciplines of DSA and OS283

are more closely related to code, thus enhancing knowledge and reasoning abilities in these directions,284

while CO and CN have lower relevance, leading to a decrease in scores. Finally, we observe that the285

enhancement brought about by small-scale expert LLMs compared to larger-scale LLMs is more286

pronounced (see CodeLlama-7B/13B, WizardCoder-7B/13B). We attribute this to the supplementary287

need for specific knowledge and reasoning capabilities in small-scale LLMs, whereas large-scale288

LLMs already encompass a greater breadth of knowledge and stronger reasoning abilities, resulting289

in diminishing gains from further training in specific domains.290

4 Related Work291

Exploration of LLMs in Computer Science. Given the powerful capabilities of LLMs, recent292

research has explored their potential applications across various industries and scientific fields293

[12, 10, 64, 64, 65, 9, 66, 11, 67, 8, 13]. Currently, studies exploring LLMs in the field of computer294

science fall into two main categories. The first category includes broad evaluation benchmarks295

covering various fields, such as MMLU [17], CMMLU [20], C-Eval [18], Xiezhi [21], and M3KE296

[19]. However, computer science constitutes only a small fraction of these benchmarks, accounting297

for less than 5% and lacking detailed CS-specific analysis. The second category focuses solely on298

exploring specific applications of LLMs within computer science, such as network topology [14],299

cybersecurity [68, 15], and software engineering [16, 69]. Nonetheless, there has been a persistent300

lack of comprehensive evaluation of LLMs’ foundational knowledge and reasoning abilities in301

computer science. To address this gap, we propose CS-Bench and conduct a thorough evaluation of302

LLMs, providing guidance for understanding and improving their performance in the CS field.303

Evaluation of LLMs’ Capabilities. Evaluating and understanding the capabilities of LLMs is304

a major focus within the NLP community. Researchers have extensively explored the capabilities305

of LLMs including planning [70], multilingual processing [71, 72], instruction following [73, 74],306

and out-of-distribution generalization [75, 76]. Recently, there has been growing interest in LLMs’307

abilities in mathematics [22, 23, 24, 25, 26, 27], code programming [59, 57, 58, 28, 29], and logical308

reasoning [30, 31, 32, 33]. While individual capabilities have been well-studied, research on their309

integrated application and interrelationships remains sparse. Different from [26], which investigates310

interactions between abilities during the supervised fine-tuning phase, we choose computer science as311

the research context and utilize CS-Bench to delve into the relationship between LLMs’ performance312

in computer science and their mathematical and coding abilities.313

5 Conclusion314

In this work, we introduce CS-Bench, the first benchmark specifically designed to systematically315

analyze the knowledge and reasoning capabilities of mainstream LLMs in the field of computer316

science. Our evaluation of over 30 models highlights that even the top-performing GPT-4o has317

significant room for improvement in computer science. Further score-scale experiments and error318

type analyses provide directions for enhancing LLMs in the field. Moreover, our investigation319

into the relationship between computer science, mathematics, and coding demonstrates their close320

interconnections and provides valuable insights into LLMs’ cross-abilities and applications.321
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A Limitations578

In this paper, we introduce CS-Bench, providing a comprehensive evaluation of LLMs and exploring579

the relationships between model capabilities. However, there are still some limitations to this paper.580

(1) Coverage Limitations: Although CS-Bench has made significant strides in comprehensiveness of581

CS evaluations compared to existing work, given the breadth of computer science, our evaluations582

cannot cover the entire scope of computer science knowledge. Furthermore, our assessment content583

focuses on university-level content, examining LLM’s mastery of basic subjects in computer science,584

rather than specific computer science-related research scenarios.585

(2) Evaluation Limitations: In the CS-Bench evaluation experiments, we employ GPT-4 scoring to586

assess generative tasks such as fill-in-the-blank and open-ended tasks. This might lead to certain587

evaluation thresholds and costs. However, such issues only constitute about 20% of CS-Bench.588

Additionally, we provide an evaluation scheme that separates comprehension tasks from CS-Bench,589

allowing for automatic evaluations without the need for GPT-4.590

(3) Language Limitations: CS-Bench are primarily focused on Chinese and English-dominated591

language environments, ensuring comprehensive and in-depth evaluations in these two language592

environments. However, for other non-Chinese and English language environments, its support and593

coverage are relatively weak, and further optimization and improvement are needed.594

B Broaden Impact595

Societal Impact. CS-Bench is anticipated to play a significant role in the field of computer science.596

LLMs, trained and evaluated with the aid of CS-Bench, can enhance the work efficiency of relevant597

professionals, enabling them to complete computer-related tasks, such as code review, error detection,598

and algorithm optimization, more quickly and accurately. Although this might result in the disappear-599

ance of some repetitive jobs, it could also create new career opportunities. In the realm of education,600

the CS-Bench dataset can serve as an effective teaching tool, assisting teachers in better explaining601

complex computer science concepts and techniques, and also enabling students to better understand602

and master this knowledge through practice.603

Ethics Statement. We ensure adherence to applicable laws and ethical guidelines during the604

process of data collection, annotation, and usage, providing adequate compensation to all our crowd605

workers. As this benchmark pertains to objective knowledge and reasoning in the field of computer606

science, the annotation content is not influenced by regional or cultural differences among annotators.607

Moreover, our dataset does not contain any personally identifiable information or offensive content.608

The authenticity and accuracy of CS-Bench have been thoroughly verified, providing a reliable609

basis for evaluating LLMs. CS-Bench is intended solely for academic and research purposes. Any610

commercial use or other misuse deviating from this purpose is strictly prohibited. We urge all users611

to respect this provision to maintain the integrity and ethical use of this valuable resource.612

C More Details on CS-Bench613

In C.1, we provide a detailed explanation of the design motivation and statistics for CS-Bench. In614

C.2, we present the distribution of question and answer lengths for each task in CS-Bench. In C.3,615

we provide a case example for each type under each dimension of CS-Bench.616

C.1 Detailed Design Motivation and Statistics of CS-Bench617

We elaborate on the design motivation of CS-Bench and statistics under each dimension as follows.618

Evaluation Content. To ensure comprehensive coverage of fundamental and critical areas in619

computer science, we select the four most foundational and prevalent domains within the field of620

17



Table 5: Summary of 26 fine-grained subfields of CS-Bench.
Chatpter Main Content Subject Question Number

Overview Concepts and elements of data structure, Temporal and spatial complexity... DSA 84
Linear List Linear tables, Sequential tables and Linked lists... DSA 138
Stack, Queue,and Array Shared stack, Circle queue, Arrays,Special matrices... DSA 176
String Concept and operation of strings, Pattern matching of strings... DSA 66
Tree Binary trees, Traversal of trees ans forests, Huffman tree... DSA 214
Graph Concepts of graphs, Traversals of graphs,Application of graphs... DSA 184

Searching Sequential search, Half-split search, Chunked search, Red-black tree, B-tree
and B+ tree, Hash search... DSA 158

Sorting Insert Sorting, Swap Sorting, Selection Sorting, Merge Sorting, Heap Sorting,
Merge Sorting, Cardinality Sorting, External Sorting Algorithms... DSA 178

Overview Hardware and performance indicators of computers... CO 112
Data Representation and
Operation

Number system and encoding, Representation and operation of fixed-point nu-
mbers and floating-point numbers...

CO 218

Storage System Main Memory, External Memory, Cache Memory, Virtual Memory... CO 224
Instruction System Instruction format, Instruction addressing method, CISC and RISC... CO 156

Central Processing Unit
Functions of CPU, Instruction execution process, CPU internal bus and data
path, CPU hard wiring design and micro programming, Exception and inter-
rupt mechanisms, Instruction pipelines, and multiprocessor concepts...

CO 244

Bus Overview of the bus, Bus arbitration, Bus operation and timing, Bus standards... CO 134
Input/Output System I/O interfaces and methods... CO 156

Overview and Architecture Concepts, compositions, functions of computer networks, Architecture and
reference models of computer networks... CN 148

Physical Layer Fundamentals of Communication Theory, Transmission Media and Physical
Layer Devices... CN 164

Data Link Layer Data frames, Error control, Flow control and Reliable transmission, Media acc-
ess control, Local and wide area networks, and data link layer devices... CN 316

Network Layer Overview of network layer functions, Routing algorithms, IPv4 and IPv6, Rou-
ting protocols, IP multicast, Mobile IP, Router... CN 300

Transport Layer The services provided by the transport layer, UDP and TCP protocols... CN 182

Application Layer Network application model, Domain name system DNS, FTP protocol, World
Wide Web, and HTTP... CN 204

Overview Concepts of operating systems, Development and classification of operating
systems, Operational mechanisms and architecture of operating systems... OS 166

Processes and Threads Processes and threads, Scheduling of processors, Synchronization and mutual
exclusion of processes, Deadlock issues... OS 350

Memory Management Concept of memory management, Concept of virtual memory management,
and methods of virtual memory management... OS 216

File Management File systems, Organization and management of disks... OS 166
Input/Output Management I/O devices and control methods, I/O core subsystem, Buffer management... OS 184
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Figure 7: The quantity and proportion of each type in different dimensions on CS-Bench.

computer science as the core content of the CS-Bench dataset. These four domains are as follows:621

Data Structure and Algorithm, investigating data organization and algorithmic efficiency; Computer622

Organization, focusing on hardware composition and foundational system operation; Computer623

Network, involving the analysis of network communication and data transmission; Operating System,624

delving into system resource management and process control. As depicted in Figure 7 (a), these four625

disciplines exhibit a roughly uniform distribution. Furthermore, we subdivide the disciplines into 26626

granular chapters, allowing CS-Bench to furnish more nuanced evaluation outcomes for models and627

provide comprehensive guidance for model refinement. We summarize these chapters in Table 5.628

Task Format. To better simulate the diverse forms of problems encountered in the real world,629

we introduce assertion, fill-in-the-blank, and open-ended questions in addition to multiple-choice630

questions. Specifically, multiple-choice and assertion questions correspond to understanding tasks in631

CS, while fill-in-the-blank and open-ended questions correspond to generation tasks in CS. Although632

18



assessing generation tasks using GPT-4 incurs certain costs, it is important to emphasize that this633

component represents only a minority (fill-in-the-blank: 10.67%, open-ended: 7.81%), whereas634

comprehension tasks relying on rule-based scoring constitute the majority (multiple-choice: 61.22%,635

assertion: 20.3%). Therefore, if resources are limited, we recommend considering the independent636

use of understanding tasks from CS-Bench for evaluation purposes.637

Knowledge/Reasoning. The design goal of CS-Bench is not only to assess the mastery of knowl-638

edge in the field of CS but also to evaluate the model’s ability to reason using CS knowledge. There-639

fore, each dataset is labeled with “knowledge” or “reasoning”, corresponding to simple questions640

requiring knowledge recall and challenging questions necessitating knowledge inference, respectively.641

As shown in Figure 7 (c), knowledge-based questions account for 63.58%, while reasoning-based642

questions account for 36.42%.643

Language. To assess the ability of LLMs in addressing CS problems in various linguistic environ-644

ments, and to adapt CS-Bench for the evaluation of a wider range of LLMs, CS-Bench comprises645

bilingual Chinese-English data, with each language accounting for 50%. The English data is obtained646

through translation by GPT-4, followed by manual verification of processed Chinese data.647

C.2 Distribution of Word Lengths648

Due to CS-Bench containing both English and Chinese languages, we separately compute the649

distributions of word lengths for questions and answers in CS-Bench (English) and CS-Bench650

(Chinese) across various task formats, as illustrated in Figure 8 and Figure 9. For Multiple-Choice651

questions, the question length includes both the question itself and the four options. Since Multiple-652

Choice and Assertion questions are comprehension tasks, the answers consist of only one character653

(A/B/C/D or True/False). For generation tasks, Fill-in-the-blank answers are relatively short, with654

an average word length of approximately 2, whereas Open-ended questions typically yield longer655

answers as they entail detailed explanatory processes.656
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Figure 8: Question and answer lengths of each task format in CS-Bench (English).
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C.3 CS-Bench Examples657

We present samples from various domains in Table 6, samples of different task formats in Table 7,658

samples of knowledge and reasoning types in Table 8, and samples from different languages in Table659

9.660

Table 6: Examples of samples in different domains.
Domain Example

Data
Structure

and
Algorithm

Question:
The correct statement about data structures is ().
A: The logical structure of data is independent of its storage structure.
B: The storage structure of data is independent of its logical structure.
C: The logical structure of data uniquely determines its storage structure.
D: The data structure is determined solely by its logical structure and storage structure.
Answer:
A
Analysis:
The logical structure of data is approached from the perspective of practical problems,
using only abstract expressions and is independent of the various choices of data storage
methods. The storage structure of data is the mapping of the logical structure on a
computer, and it cannot exist independently of the logical structure. Data structure
includes three essential elements, all of which are indispensable.

Computer
Organization

Question:
A complete computer system should include ().
A: Arithmetic Logic Unit (ALU), Memory, Control Unit
B: Peripheral devices and host computer
C: Host and Application
D: The accompanying hardware devices and software systems
Answer:
D
Analysis:
A is a component of the computer host, while B and C only involve parts of the computer
system and are both incomplete.

Computer
Network

Question:
The most basic function of computer networks is ().
A: Data Communication
B: Resource Sharing
C: Distributed Processing
D: Information Synthesis Processing
Answer:
A
Analysis:
The functions of computer networks include: data communication, resource sharing,
distributed processing, integrated information processing, load balancing, enhancing
reliability, etc. However, the most fundamental function is data communication, which is
also the basis for realizing other functions.

Operating
System

Question:
Among the following options, () is not an issue of concern for the operating system.
A: Manage bare-metal computers
B: Design and provide an interface between user programs and hardware systems
C: Manage computer system resources
D: Compiler for High-Level Programming Languages
Answer:
D
Analysis:
The operating system manages computer software/hardware resources, expands the bare
machine to provide a more powerful extended machine, and acts as an intermediary
between the user and the hardware. Clearly, the compiler for high-level programming
languages is not a concern of the operating system. The essence of a compiler is a set of
program instructions that are stored in the computer.
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Table 7: Examples of different task formats.
Type Example

Multiple
Choice

Question:
Given that the storage space for a circular queue is the array A[21], with front pointing to
the position before the head element and rear pointing to the tail element, assuming the
current values of front and rear are 8 and 3, respectively, the length of the queue is ().
A: 5
B: 6
C: 16
D: 17
Answer:
C
Analysis:
The length of the queue is (rear - front + maxsize) % maxsize = (rear - front + 21) % 21 =
16. This situation is the same as when front points to the current element and rear points
to the next element after the last element in the queue.

Assertion

Question:
In a directed graph with n vertices, the degree of each vertex can reach up to 2n.
Answer:
False.
Analysis:
In a directed graph, the degree of a vertex is equal to the sum of its in-degree and
outdegree. In a directed graph with n vertices, any given vertex can have at most one pair
of oppositely directed edges connecting it with each of the other n-1 vertices.

Fill-in-
the-blank

Question:
In a sequential list of length n, when deleting the ith (1 ≤ i ≤ n) element, () elements
need to be moved forward.
Answer:
n-i
Analysis:
The elements from a[i+1] to a[n] need to be moved forward by one position, involving the
movement of n-(i+1)+1=n-i elements.

Open-ended

Question:
Given that the 9th level of a complete binary tree has 240 nodes, how many nodes does
the entire complete binary tree have? How many leaf nodes are there?
Answer:
In a complete binary tree, if the 9th level is full, then the number of nodes = 2(9−1) = 256.
However, currently, there are only 240 nodes on the 9th level, indicating that the 9thlevel
is not full and is the last level. Levels 1 to 8 are full, so the total number of nodes =
28 + 240 = 495. Since the 9th level is the last level, all nodes on the 9th level are leaf
nodes. Moreover, the parents of the 240 nodes on the 9th level are on the 8th level, with
the number of parents being 120, which means there are 120 branch nodes on the 8th
level, and the rest are leaf nodes. Therefore, the number of leaf nodes on the 8th level is
2(8−1) − 120 = 8. Consequently, the total number of leaf nodes = 8 + 240 = 248.
Analysis:
None
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Table 8: Examples of knowledge-type and reasoning-type.
Type Example

Knowledge

Question:
The three fundamental elements of data structure include ().
A: Logical structure, storage structure, operations on data.
B: Logical structure, algorithm design, program implementation.
C: Data types, data storage, data manipulation.
D: Data Definition, Data Implementation, Data Manipulation.
Answer:
A
Analysis:
None

Reasoning

Question:
The time complexity of a certain algorithm is O(n2), indicating that the algorithm’s ().
A: The problem size is O(n2).
B: Execution time equals O(n2).
C: The execution time is directly proportional to O(n2).
D: The problem size is directly proportional to O(n2).
Answer:
C
Analysis:
The time complexity is O(n2), which means the time complexity T (n) satisfies
T (n) ≤ c ∗ n2 (where c is a proportionality constant), that is, T (n) = O(n2). The time
complexity T (n) is a function of the problem size n, and the problem size remains n, not
n2.

Table 9: Examples of different languages.
Type Example

English

Question:
For a linear list with sequential storage, the operation with a time complexity of O(1)
should be ().
A: Sort n elements in ascending order.
B: Remove the i-th (1 ≤ i ≤ n) element.
C: Change the value of the i-th element (1 ≤ i ≤ n).
D: Insert a new element after the i-th (1 ≤ i ≤ n) element.
Answer:
C
Analysis:
The time complexity for sorting n elements is at least O(n) (when initially ordered), and
typically O(n log2 n) or O(n2). Options B and D are clearly incorrect. Sequential lists
support random access by index.

Chinese

Question:
对于顺序存储的线性表，其算法时间复杂度为O(1)的运算应该是()。
A:将n个元素从小到大排序
B:删除第i (1 ≤ i ≤ n)个元素
C:改变第i (1 ≤ i ≤ n)个元素的值
D:在第i (1 ≤ i ≤ n)个元素后插入个新元素
Answer:
C
Analysis:
对n个元素进行排序的时间复杂度最小也要O(n)（初始有序时）通常为
O(n log2 n)或O(n2)。B和D显然错误。顺序表支持按序号的随机存取方式。
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D More Details on Experiment Setup661

In D.1, we present the question templates used to prompt models for each type of task. In D.2, we show662

the prompts used for GPT-4 to score models’ answers to fill-in-the-blank and open-ended questions,663

and validate the effectiveness of GPT-4’s automatic scoring through consistency experiments with664

human scoring. In D.3, we detail the experimental environment used to implement model inference.665

In D.4, we introduce all the evaluated model families.666

D.1 Details of Template for Each Task Format667

We present the templates for querying LLMs with various question formats in Table 10.

Table 10: Prompt Templates for asking various questions to LLMs.
Type Prompt Template

Multiple
Choice

This is a multiple-choice question. Please read the question carefully and choose the
correct answer. Question: <Question>
Which one of the following options is correct? Options:
(A) <A>
(B) <B>
(C) <C>
(D) <D>
Please provide the answer to this question directly (a single letter):

Assertion
This is a true/false question. Please determine whether the following statement is true
or false. Statement: <Question>
Please give the answer directly (true or false):

Fill-in-
the-blank

You are a professor proficient in computer science. This is a fill-in-the-blank question.
Give answers to the following question without explanation or repeating it.
Question: <Question>
Answer:

Open-ended This is a subjective Question: <Question>
Please provide a brief answer to this question:

668

D.2 Details of GPT-4 Scoring669

GPT-4 Scoring Prompt. In Table 12, we present the prompts utilized to instruct GPT-4 in scoring670

the outputs of LLMs in CS generation tasks, encompassing both Fill-in-the-blank and Open-ended671

questions.672

Consistency between GPT-4 Scoring and Manual Scoring. To assess the effectiveness of GPT-673

4 scoring in evaluating LLM responses, we conduct a consistency experiment between GPT-4674

prediction scores and manual scores. For Fill-in-the-blank and Open-ended types, we randomly675

sample 100 instances from the GPT-4 scoring samples and employ three human annotators to score676

these predicted results. In Table 11, we report the consistency scores among human annotators677

(measured by Cronbach’s alpha), as well as the consistency scores between the average human678

annotation scores and GPT-4 scoring (measured by Pearson correlation coefficient). The excellent679

consistency between human and GPT-4 scores validates the effectiveness of GPT-4 scoring.680

Table 11: Consistency between GPT-4 scoring and human scoring.

Type Annotation Count Consistency

Human-GPT4 Human-Human

Fill-in-the-blank 100 0.808 0.9311
Open-ended 100 0.9494 0.9751
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Table 12: Scoring Prompts for Fill-in-the-blank and Open-ended Questions.
Type Prompt Template

Fill-in-
the-blank

You are now a teaching assistant. As a TA, your task is to grade the fill-in-the-blank
assignments of computer science students.
You will see the standard answer for each question (these answers are verified and
completely correct), and you need to score the students’ answers based on this.
If the student’s answer conveys the same meaning as the standard answer or other
answers (different formats are also considered correct), then award 1 point; if not,
then 0 points.
Question: <question>
Standard Answer: <correct_answer>
Other Answers: <other_answers>
Student Response: <predict_output>
Score (0 or 1):

Open-
ended

You are now serving as a teaching assistant. In this role, your task is to grade the
subjective homework assignments of computer science students. You will be presented
with the standard answers for each question (which are verified and completely correct),
and you must use these to score the students’ responses. The grading scale ranges from 1
to 10 points, with 10 being the highest and 1 being the lowest. When grading, please take
into consideration the accuracy, relevance, completeness, and depth of thought of the
answers. Scores should be assigned based on the following *criteria*:

First Tier: 1-3 points
Accuracy: The answer contains several fundamental errors, showing limited understanding.
Relevance: The answer has low relevance to the question and standard answer, with most
content straying from the requirements. Completeness: The answer omits multiple key
points, failing to cover the main aspects of the question.

Second Tier: 4-6 points
Accuracy: There are some errors in the answer, although most of the basic concepts are
understood correctly.
Relevance: The answer is generally relevant to the question and standard answer, but
some content does not fully conform to the requirements.
Completeness: The answer is fairly complete, but lacks some important details or certain
key points are not fully elaborated.

Third Tier: 7-8 points
Accuracy: The answer is almost entirely correct, with only very minor errors.
Relevance: The answer is highly relevant to the question and standard answer, focused
and with almost no deviation from the topic.
Completeness: The answer is comprehensive and detailed, covering all key aspects
very well.

Fourth Tier: 9-10 points
Accuracy: The answer is free of any errors, demonstrating a deep understanding and
precise grasp of the issue.
Relevance: The answer is in complete accordance with the requirements, strictly aligned
with the question and standard answer, without any deviation.
Completeness: The answer is structured rigorously, logically organized, and systemati-
cally covers all aspects of the question.

Grading Guide: When assigning a score, please first make a preliminary assessment of
accuracy based on the student’s answer compared to the standard answer. Then, consider
the relevance and completeness to determine the final score. Ensure that each point
awarded is based on a fair and justified comprehensive evaluation.

D.3 Details of Inference Implementation681

For all open-source models, we utilize a cluster with 8 NVIDIA A100-80GB GPUs to run the infer-682

ence, and we use vLLM [77] for inference acceleration, applying the corresponding chat templates683

and the same hyper-parameters: batch size=1, temperature=0, top-p=1.0, and max_tokens=2048. For684
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all closed-source models with API access, we also adopt the generation scheme with temperature=0,685

and simply run the inference with CPUs, which typically completes within a day. During the evalua-686

tion of GPT-4, we also applied the setting of temperature=0. To avoid error bias, we conducted the687

experiments 3 times and took the average of the scores. For models supporting web search or tool688

calls, we disable these features to ensure a fair comparison.689

D.4 Details of the Models being Evaluated690

Gemma [37] is a family of lightweight, open models from Google, built from the same research691

and technology used to create the Gemini models. They are text-to-text, decoder-only large language692

models, available in English, with open weights, pre-trained variants, and instruction-tuned variants.693

The Gemma model excels on academic benchmarks in language understanding, reasoning, and694

security. Gemma publishes models in two sizes (2 billion and 7 billion parameters) .695

Llama2 [38] is an upgraded version of Llama developed by MetaAI. It utilizes more robust data696

cleaning and mixing techniques, and up-samples sources closest to factual information, which can697

enhance knowledge and reduce hallucinations. Additionally, it employs Grouped-Query Attention698

technology to lessen reliance on memory.699

Llama3 [39] is the latest generation of large language models developed by MetaAI. The training700

dataset for Llama 3 is seven times larger than that used for Llama 2, with the amount of code701

included being four times that of Llama 2. Compared to previous versions of the model, it has seen a702

tremendous enhancement in reasoning, code generation, and instruction following capabilities.703

Llama3-Chinese [78] is an instruction-tuned language model for Chinese and English users with704

various abilities such as roleplaying and tool-using built upon the Meta-Llama-3-8B-Instruct model.705

ChatGLM3 [79] is a next-generation conversational pre-trained model jointly released by Zhipu706

AI and KEG Lab of Tsinghua University. ChatGLM3-6B adopts a newly designed Prompt format, in707

addition to regular multi-turn dialogue. It also natively supports complex scenarios such as function708

call, code interpretation.709

Baichuan2 [41] is a large-scale multilingual model developed by Baichuan Company. It adopts710

several advanced techniques in its design and training process, including Rotary Position Embedding,711

a novel position encoding technique, SwiGLU activation function, and memory efficient attention712

mechanism. Compared with Baichuan1, its performance has been greatly improved.713

InternLM2 [42] is an open-source large-scale language model developed by Shanghai AI Labora-714

tory. This model has good processing ability for ultra long texts and adopts COOL RLHF technology.715

It solves human preference conflicts through a conditional reward model and performs multiple716

rounds of online RLHF to improve the model’s alignment ability.717

Qwen1.5 [80] is a family of language models developed by Alibaba. It has features such as718

SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention719

and full attention, etc. Qwen 1.5 series models have strong basic capabilities including language720

understanding.721

Mistral-7B [44], a 7-billion-parameter language model designed for superior performance and722

efficiency, which is developed by Mistral AI. Mistral 7B leverages Packet Query Attention (GQA) for723

faster inference, combined with Sliding Window Attention (SWA) to efficiently process sequences of724

arbitrary length while reducing inference costs.725

Mixtral-8×7B [45] is a Sparse Mixture of Experts (SMoE) language model developed by Mistral726

AI. Its architecture is the same as that of the Mistral 7B, except that each layer consists of 8727
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feedforward blocks (i.e., experts). Mixtral has demonstrated exceptional abilities in math, code728

generation, and tasks that require multilingual understanding.729

DeepSeekLLM [46] is a family of models released by DeepSeek-AI, and its core architecture730

borrows from the Llama model. This family of models employs Multi-Head Attention (MHA)731

and Group Query Attention (GQA) techniques, which significantly enhance their performance and732

efficiency. Furthermore, DeepSeekLLM demonstrates strong bilingual capabilities in both Chinese733

and English.734

PaLM-2 [47] is the higher-performance successor to PaLM released by Google, which differs in735

terms of dataset mixing. Compared to the first-generation PaLM version, it uses a smaller model but736

performs more training calculations. It also relies on more diverse pre-training targets.737

Claude Claude2.1[48] and Claude3 [49] are AI models developed by Anthropic, showcasing ad-738

vanced language understanding and generation capabilities. Utilizing the constitutional AI framework,739

Claude models are designed to ensure helpfulness and trustworthiness.740

GPT GPT-3.5 [5], GPT-4 [50] and GPT-4o [6], released by OpenAI, are part of the GPT-series741

models enhanced by a three-stage reinforcement learning with human feedback (RLHF) algorithm.742

This algorithm not only improves the models’ ability to follow instructions but also significantly743

reduces the generation of harmful or toxic content. Additionally, GPT-4 supports image inputs and744

achieves human-level performance on various benchmarks. GPT-4o, the latest model developed by745

OpenAI, boasts powerful real-time reasoning, language interaction, and multimodal capabilities.746

GLM-4 [81] is a new generation base large model developed by Zhipu AI. It has strong tool calling747

and multi-modal capabilities, as well as strong mathematical reasoning ability and code generation748

ability.749

ERNIE [82] ERNIE3.5 and ERNIE4 are large language models developed by Baidu. ERNIE3.5 is750

capable of processing text data in multiple languages and has a good understanding and representation751

ability for entities and relationships in text. Ernie 4 has adopted more advanced knowledge graph752

information and more advanced knowledge integration technology, further improving the performance753

of the model.754
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E More Details on Experiment755

In E.1, we present detailed performance of the models on CS-Bench (EN), including the leaderboard,756

task formats, and domains. In E.2, we describe and validate the design of the scale-score fitting757

function. In E.3, we evaluate models’ performance on CS-Bench (CN) and compare the differences758

in performance between the English and Chinese contexts. In E.4, we conduct case studies to better759

understand the specific details of the models’ failures on CS-Bench.760

E.1 Details of Model Performance761

The Leaderboard on CS-Bench (EN). We visualize the results of LLMs on CS-Bench (EN) in762

Figure 10.
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Figure 10: The leaderboard of LLMs on CS-Bench (EN).

763

Detailed Performance on Each Task Format. We present models’ performance on four types of764

tasks in Table 13 and visualize the results in Figure 11.765
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Figure 11: Performance of various LLMs for each ability dimension about task formats.
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Table 13: Zero-shot scores (%) of LLMs across question formats on CS-Bench (EN).
Model Multiple-choice Assertion Fill-in-the-blank Open-ended All

Klg Rng Avg Klg Rng Avg Klg Rng Avg Klg Rng Avg Klg Rng Avg

Random 25.00 25.00 25.00 50.00 50.00 50.00 0.00 0.00 0.00 10.00 10.00 10.00 27.4 24.12 26.20

Open-source LLM (Scale < 10B)

Gemma-2B 46.87 25.85 38.74 52.58 48.48 51.64 34.12 7.55 27.68 49.60 26.02 32.96 46.89 27.59 39.86
Qwen1.5-4B 53.00 35.47 46.22 56.84 58.59 57.24 29.41 11.32 25.02 55.40 28.58 36.47 51.18 35.70 45.54

ChatGLM3-6B 47.51 33.07 41.92 58.97 60.61 59.34 31.76 5.66 25.43 53.80 28.94 36.25 48.63 34.07 43.33
Llama2-7B 47.00 28.06 39.67 56.84 60.61 57.70 23.53 5.66 19.20 63.80 26.19 37.25 47.15 30.48 41.08

DeepseekLLM-7B 50.19 28.06 41.63 60.49 58.59 60.06 31.76 13.21 27.26 59.80 28.67 37.83 50.87 31.11 43.67
Baichuan2-7B 47.51 35.27 42.77 57.14 59.60 57.70 32.94 7.55 26.78 52.40 26.90 34.40 48.29 35.33 43.57

Gemma-7B 56.70 33.07 47.56 58.05 57.58 57.94 38.82 15.09 33.06 58.20 33.36 40.67 54.90 35.02 47.66
Qwen1.5-7B 59.90 40.08 52.23 58.97 56.57 58.42 38.24 16.98 33.08 69.60 35.75 45.71 57.34 40.08 51.05

InternLm2-7B 59.26 39.48 51.61 60.49 55.56 59.36 45.88 15.09 38.41 69.00 39.03 47.84 58.31 39.77 51.56
Mistral-7B 57.34 39.68 50.51 62.61 54.55 60.77 53.53 16.98 44.66 67.40 42.39 49.75 58.63 40.44 52.01
Llama3-8B 61.81 46.09 55.73 64.44 61.62 63.80 38.24 11.32 31.71 67.60 41.33 49.06 59.75 44.97 54.37

Open-source LLM (Scale > 10B)

Llama2-13B 50.06 33.87 43.79 55.93 56.57 56.08 44.71 22.64 39.36 62.00 29.65 39.16 51.31 35.46 45.54
Baichuan-13B 53.00 37.68 47.07 58.66 53.54 57.49 35.88 16.98 31.30 59.80 31.15 39.58 52.53 37.44 47.03
Qwen1.5-14B 64.62 50.70 59.23 62.61 59.60 61.92 51.76 28.30 46.07 70.60 43.45 51.44 62.79 49.18 57.83

InternLm2-20B 62.20 43.69 55.04 61.09 62.63 61.44 51.18 24.53 44.72 67.20 36.02 45.19 60.81 43.66 54.56
Qwen1.5-32B 70.63 57.92 65.71 63.53 62.63 63.32 53.53 22.64 46.04 73.20 48.76 55.95 66.87 54.72 62.45
Mixtral-8×7B 66.28 47.09 58.85 67.78 56.57 65.22 58.24 26.42 50.52 71.00 45.93 53.30 65.91 46.66 58.90

DeepseekLLM-67B 66.92 45.29 58.55 65.96 63.64 65.43 54.71 28.30 48.30 67.20 42.57 49.81 65.23 45.96 58.22
Llama2-70B 58.88 42.28 52.46 61.09 59.60 60.75 51.18 16.98 42.88 63.80 34.96 43.44 58.73 41.68 52.52
Llama3-70B 73.95 57.52 67.59 69.91 63.64 68.48 63.53 37.74 57.27 72.00 53.98 59.28 71.65 56.36 66.08

Qwen1.5-72B 72.03 60.32 67.50 70.52 66.67 69.64 55.29 28.30 48.74 73.00 52.30 58.39 69.63 57.75 65.31
Qwen1.5-110B 74.33 62.73 69.84 73.25 67.68 71.98 57.06 33.96 51.46 75.20 60.00 64.47 71.98 60.91 67.95

Closed-source LLM

PaLM-2 65.91 43.66 57.30 66.36 62.77 65.54 56.52 29.79 50.04 64.47 35.64 44.12 64.85 44.01 57.26
Claude-2.1 63.47 46.89 57.05 66.87 67.68 67.06 49.41 24.53 43.38 72.40 55.84 60.71 62.97 49.42 58.04
Claude-3 73.82 61.32 68.98 73.56 70.71 72.91 62.94 37.74 56.83 76.73 66.11 69.23 72.57 61.75 68.63
GPT-3.5 63.35 41.48 54.89 68.39 63.64 67.30 48.82 24.53 42.93 68.00 42.65 50.11 63.04 43.45 55.91
GPT-4 77.27 62.32 71.48 75.38 67.68 73.62 61.18 43.40 56.87 77.40 68.94 71.43 74.85 62.66 70.41

GPT-4o 80.08 63.73 73.75 75.68 72.73 75.01 64.71 41.51 59.08 75.20 69.47 71.16 76.95 64.15 72.29
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Figure 12: Performance of various LLMs for each ability dimension about CS domains.

Detailed Performance on Each Subfield. In Figure 12, we visualize the models’ knowledge and766

reasoning performance across the four domains of CS-Bench. Subsequently, we focus on the models’767

performance in 26 fine-grained subfields. Table 14 presents the results of eight representative models.768

Firstly, we can observe significant variations in scores across different subfields within the same769

domains for the models. Taking the DSA domain as an example, Llama2-70B scores range from770

45.44% to 76.67% across different chapters (average 56.93%), while GPT-3.5 scores range from771

55.17% to 80.00% (average 60.67%). Secondly, the performance of different models in the same772

subfield is generally consistent compared to the average scores. For instance, all models perform773

above the average scores in the “Overview” and “Stack, Queue, and Array” subfields of DSA but774

below average in the “Tree” and “Graph” subfields. These detailed scores allow us to understand775

which content poses greater challenges for the models and provides guidance for improving the776

models’ performance in computer science by strengthening these weaker subfields.777
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Table 14: Detailed scores of models on fine-grained subfields.
Content Llama2-7B Llama2-13B Llama2-70B Mixtral-8×7B Llama3-8B Llama3-70B GPT-3.5 GPT-4

Data Structure and Algorithm

Overview 56.67 51.11 59.44 68.06 73.33 68.06 71.11 74.17
Linear List 34.48 44.83 53.45 58.62 53.45 65.52 55.17 67.24
Stack, Queue, and Array 49.61 50.91 57.40 57.66 58.96 71.95 61.43 76.49
String 76.67 66.67 76.67 66.67 70.00 80.00 80.00 70.00
Tree 32.78 36.33 45.78 47.89 35.67 57.11 40.33 60.56
Graph 43.80 37.47 45.44 65.70 54.56 68.23 56.96 68.61
Searching 51.29 52.00 61.14 60.57 54.86 56.71 58.14 74.86
Sorting 30.52 37.27 56.10 52.08 54.55 71.56 62.21 74.68
Average 46.98 47.07 56.93 59.66 56.92 67.39 60.67 70.83

Computer Organization

Overview 51.20 61.40 61.60 76.40 68.20 80.20 73.20 81.80
Data Representation and Operation 27.95 38.72 38.46 50.51 39.74 50.38 45.64 57.44
Storage System 41.80 46.10 58.00 61.70 53.60 68.10 56.20 68.50
Instruction System 51.76 53.68 57.79 59.56 53.82 75.74 65.29 80.44
Central Processing Unit 41.93 42.66 53.67 54.50 51.65 62.75 51.74 74.86
Bus 60.70 59.12 61.40 66.32 47.37 71.75 66.49 73.33
Input/Output System 37.58 35.48 29.19 52.42 44.03 52.42 35.48 58.23
Average 44.70 48.17 51.44 60.20 51.20 65.91 56.29 70.66

Computer Network

Overview and Architecture 52.15 48.31 58.77 62.77 58.15 68.62 57.23 69.08
Physical Layer 42.11 47.61 52.25 57.89 53.52 65.77 54.51 69.01
Data Link Layer 32.35 41.06 42.35 57.12 50.61 59.62 60.23 63.94
Network Layer 38.40 48.78 58.47 62.37 65.19 75.57 62.98 77.48
Transport Layer 42.95 48.72 66.28 70.77 63.46 81.79 61.54 86.79
Application Layer 47.61 55.00 60.34 65.91 63.30 75.34 64.55 79.89
Average 42.60 48.25 56.41 62.81 59.04 71.12 60.17 74.37

Operating System

Overview 39.74 40.65 48.57 65.32 60.65 69.87 51.82 68.31
Processes and Threads 34.14 42.61 43.57 55.73 50.83 63.57 47.58 66.82
Memory Management 31.63 42.04 52.04 51.02 53.67 60.71 51.02 70.41
File Management 40.00 49.34 57.37 54.87 55.66 61.97 56.32 64.08
Input/Output Management 34.88 36.83 41.46 50.98 47.07 51.10 38.05 59.76
Average 36.08 42.29 48.60 55.58 53.58 61.44 48.96 65.88

Overall 41.08 45.54 52.52 58.90 54.37 66.08 55.91 70.41
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Figure 13: The performance of the Llama2 series models in each subfield.

We further observe that although the overall scores of models from the same family increase with778

scale, not all chapters follow this pattern. As shown in Figure 13, the Llama2 series exhibits a trend779

of scores increasing with scale in most subfields (17 out of 26 subfields); however, there are some780

exceptions. For instance, Llama2-7B performs exceptionally well in the “string” chapter of DSA,781

while Llama2-13B excels in the “Data Representation and Operation” chapter of CO, surpassing the782

performance of Llama2-70B.783
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E.2 Scale-Score Fitting Function for CS-Bench784
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Figure 14: The logarithmic scale-score performance and scale-score fitting curve of Qwen1.5 and
Llama2 series.

To enhance CS performance, large-scale models are often utilized; however, these models demand785

more computational resources for both training and deployment inference. Therefore, it is desirable786

to establish a relationship between model scale and CS performance, enabling the prediction of787

theoretically larger models’ scores on CS-Bench based on the performance of smaller-scale models.788

The established fitting function should adhere to the following criteria:789

1. The score should monotonically increase with the increase in model scale, approaching 0 as the790

scale approaches 0, and approaching 1 (100%) as the scale approaches infinity.791

2. As illustrated in Figure 14 (a), when the model scale varies exponentially, the score should exhibit792

an approximately linear trend.793

3. Due to variations in performance and change slopes among different model families at the same794

scale, the fitting function needs to incorporate model-family-specific hyperparameters.795

Guided by these criteria, we experiment with various functions and find the following function to796

satisfy the conditions and work best:797

Score = 1− 1

θ1log10(θ2 · Scale + 1) + 1
(1)

Where θ1 and θ2 are hyperparameters specific to the model family. To validate the effectiveness of798

the function, we estimate hyperparameters based on the minimum mean square error on small-scale799

models and predict performance scores on larger-scale models. For the Qwen1.5 family, we use800

models of 7, 14, 32, and 72B to predict the 110B model’s performance. For the Llama2 series, we801

predict the 70B model’s performance based on 7B and 13B. As depicted in Figure 14 (b), for Qwen1.5802

110B, the predicted score (67.83%) closely matches the true value (67.95%). For Llama2-70B, with803

only two reference data points, the predicted score (55.08%) deviates from the true value (52.52%)804

by only 2.56%.805

E.3 Performance of Models on CS-Bench (Chinese)806

We assess models that support Chinese on CS-Bench (CN). The foundation models include the807

LLama3 and GPT-4 series, which are not specifically optimized for Chinese, as well as Chinese-808

oriented open-source models, including ChatGLM, Baichuan2, InternLm2, Qwen1.5 and llama3-809

chinese series. We also evaluate Chinese-oriented closed-source models, including GLM-4 and810

ERNIE-3.5/4. Details of these models are provided in Appendix D.4.811

As shown in Table 15 and Table 16, the scores of these models on CS-Bench(CN) range from812

40.45% to 70.26%. Despite not being specifically optimized for Chinese, GPT-4o still achieves the813
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Table 15: Zero-shot scores (%) of LLMs across domains on CS-Bench (CN), where “Klg” represents
knowledge-type, “Rng” represents reasoning-type, and “Avg” represents Average.

Model Data Struc & Algo Computer Organization Computer Network Operating System Overall

Klg Rng Avg Klg Rng Avg Klg Rng Avg Klg Rng Avg Klg Rng Avg

Open-source LLM (Scale < 10B)

Random 28.04 24.63 26.65 26.57 25.24 26.13 26.34 22.49 24.98 29.06 24.23 27.27 27.4 24.12 26.20

ChatGLM3-6B 41.74 32.48 37.97 44.07 34.91 41.05 49.02 32.31 43.14 43.02 32.86 35.98 44.67 33.09 40.45
Baichuan2-7B 42.04 31.51 37.75 44.93 37.88 42.61 50.74 31.11 43.83 42.18 34.07 39.16 45.27 33.47 40.97
InternLm2-7B 41.97 34.54 38.95 55.77 38.67 50.13 60.05 41.86 53.65 50.94 44.07 48.39 52.71 39.61 47.94
Qwen1.5-7B 49.13 37.71 44.48 60.86 44.48 55.46 60.90 45.68 55.54 58.38 48.24 54.61 57.62 43.79 52.59
Llama3-8B 50.47 29.68 42.01 50.81 36.30 46.03 56.09 42.21 51.21 52.01 38.85 47.12 52.46 36.61 46.69

Llama3-8B-Chinese 49.20 33.72 42.90 54.99 33.09 47.77 58.77 48.59 55.19 55.58 41.10 50.20 54.84 39.17 49.13

Open-source LLM (Scale > 10B)

Baichuan2-13B 48.83 34.68 43.07 54.18 36.00 48.18 55.11 39.85 49.74 49.19 40.27 45.88 52.10 37.63 46.83
Qwen1.5-14B 51.47 48.81 50.39 64.43 46.85 58.63 68.69 55.18 63.94 69.58 56.59 64.76 63.78 51.81 59.42

InternLm2-20B 51.97 38.03 46.30 58.36 45.76 54.20 60.60 50.50 57.05 58.70 45.66 53.86 57.59 44.85 52.95
Qwen1.5-32B 55.89 56.70 56.22 67.74 60.00 65.19 70.33 66.83 69.10 72.40 62.03 68.55 66.77 61.35 64.80
Llama3-70B 53.28 55.41 54.15 67.97 49.58 61.91 71.07 61.81 67.81 65.29 57.36 62.35 64.86 56.18 61.70

Qwen1.5-72B 58.16 52.02 55.66 70.28 52.91 64.55 75.25 66.23 72.08 74.12 63.19 70.06 69.73 58.52 65.64

Closed-source LLM

GPT-3 54.15 39.63 48.24 60.86 43.27 55.06 64.29 48.89 58.87 56.36 39.84 50.22 59.27 42.96 53.33
GPT-4 60.03 60.28 60.13 77.60 60.24 71.88 73.50 72.86 73.27 71.46 65.60 69.29 71.06 64.80 68.78
GPT-4o 61.67 66.45 63.62 78.86 55.32 71.10 78.61 74.17 77.05 72.66 69.94 71.67 73.46 66.69 71.00
GLM-4 58.12 58.37 58.22 74.03 59.49 69.24 71.65 70.21 71.14 73.31 67.14 71.06 69.55 63.75 67.44

ERNIE-3.5 58.16 55.62 57.13 74.56 58.73 69.34 74.68 65.16 71.33 72.13 63.37 68.94 70.28 60.63 66.77
ERNIE-4 57.92 62.33 59.72 78.24 64.18 73.60 76.27 69.74 73.97 75.84 69.54 73.54 72.49 66.36 70.26

Table 16: Zero-shot scores (%) of LLMs across task formats on CS-Bench (CN).
Model Multiple-choice Assertion Fill-in-the-blank Open-ended Overall

Klg Rng Avg Klg Rng Avg Klg Rng Avg Klg Rng Avg Klg Rng Avg

Random 25.00 25.00 25.00 50.00 50.00 50.00 0.00 0.00 0.00 10.00 10.00 10.00 27.4 24.12 26.20

Open-source LLM (Scale < 10B)

ChatGLM3-6B 45.21 34.07 40.90 54.41 48.48 53.05 23.53 11.32 20.57 43.80 25.22 30.68 44.67 33.09 40.45
Baichuan2-7B 44.96 32.26 40.05 53.80 56.57 54.43 29.41 13.21 25.48 47.20 27.52 33.31 45.27 33.47 40.97
InternLm2-7B 51.09 40.08 46.83 59.88 55.56 58.89 44.12 18.87 38.00 60.80 33.27 41.37 52.71 39.61 47.94
Qwen1.5-7B 59.64 48.50 55.33 60.79 50.51 58.44 42.35 15.09 35.74 58.20 30.35 38.54 57.62 43.79 52.59
Llama3-8B 53.26 35.67 46.45 56.23 59.60 57.00 42.35 16.98 36.20 49.60 29.47 35.39 52.46 36.61 46.69

Llama3-8B-Chinese 55.43 40.08 49.49 59.57 56.57 58.88 42.94 16.98 36.64 55.60 30.62 37.97 54.84 39.17 49.13

Open-source LLM (Scale > 10B)

Baichuan2-13B 52.11 39.48 47.22 59.57 51.52 57.73 40.00 16.98 34.42 43.40 27.08 31.88 52.10 37.63 46.83
Qwen1.5-14B 67.82 57.72 63.91 65.05 56.57 63.11 43.53 24.53 38.92 63.80 34.96 43.44 63.78 51.81 59.42

InternLm2-20B 58.49 46.89 54.00 59.57 54.55 58.42 47.06 26.42 42.05 67.00 35.40 44.69 57.59 44.85 52.95
Qwen1.5-32B 71.26 68.74 70.28 64.74 63.64 64.49 51.76 28.30 46.07 63.40 42.04 48.32 66.77 61.35 64.80
Llama3-70B 66.03 60.32 63.82 66.57 65.66 66.36 58.24 33.96 52.35 59.00 40.71 46.09 64.86 56.18 61.70

Qwen1.5-72B 72.41 67.74 70.60 72.34 55.56 68.51 54.71 28.30 48.30 63.80 34.96 43.44 69.73 58.52 65.64

Closed-source LLM

GPT-3 57.98 42.48 51.98 65.05 61.62 64.27 54.71 24.53 47.39 56.60 36.81 42.63 59.27 42.96 53.33
GPT-4 73.31 67.13 70.92 72.04 67.68 71.04 62.35 60.38 61.87 60.40 54.16 56.00 71.06 64.80 68.78
GPT-4o 75.92 69.33 73.37 73.86 68.69 72.68 62.94 50.94 60.03 70.20 62.92 65.06 73.46 66.69 71.00
GLM-4 73.68 69.76 72.16 68.09 57.58 65.69 55.03 47.17 53.12 68.00 52.92 57.36 69.55 63.75 67.44

ERNIE-3.5 72.24 63.71 68.94 69.30 61.62 67.55 63.91 50.94 60.76 70.40 51.95 57.38 70.28 60.63 66.77
ERNIE-4 73.55 70.35 72.31 72.34 56.57 68.74 70.00 67.92 69.50 68.40 58.32 61.28 72.49 66.36 70.26

best performance. Among the Chinese-oriented models, ERNIE-4 outperforms GPT-4, achieving814

performance close to GPT-4o. Additionally, ERNIE-3.5 and GLM-4 score similarly, slightly lower815

than GPT-4’s performance in Chinese. Notably, Llama3-8B-chinese surpasses Llama3-8B by 2.44%,816

highlighting the importance of adapting models to specific languages. We further compare the817

performance of the models on CS-Bench(EN) and CS-Bench(CN) in Figure 15. Compared to English,818

the GPT and Llama3 series, which are not optimized for Chinese, perform worse on Chinese context.819

For instance, Llama3-8B experiences a decrease of 7.68% on Chinese, and Llama3-70B drops by820

4.38%. Although some Chinese-oriented models also show slight decreases in performance in the821

Chinese context, such as InterLm2-20B, the decline is much less significant than that of the Llama3822

series. Moreover, the Qwen1.5 series even demonstrates improved performance on Chinese tasks.823

Finally, we observe that larger models within the same family are less affected by different languages,824

as reflected in Baichuan2-7/13B, Internlm2-7/20B, and Llama3-8/70B.825
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Figure 15: Comparison of models in different languages on CS-Bench.

E.4 Case Study of Error Types826

We first introduce the error types of knowledge-type questions and reasoning-type questions in Table827

17 and Table 18. To facilitate a better understanding of each error type, we provide examples of each828

error type made by GPT-3.5 in knowledge-based and reasoning-based questions in Table19 and 20,829

respectively. Additionally, Table 21 presents several examples that contain multiple error types.830

Table 17: Error types for knowledge-type questions.
Error Type Explanation

Complete
conceptual error

For a certain piece of knowledge or concept, the model is completely unaware of it
or has misunderstood all of it.

Partial
conceptual error

For a certain piece of knowledge or concept, the model has only grasped part of it
or has misunderstood part of its content.

Conceptual
confusion

For multiple pieces of knowledge or concepts, the model has incorrectly matched
their names with their attributes.

Table 18: Error types for reasoning-type questions.
Error Type Explanation

Concept-
related error

The model misunderstands certain pieces of knowledge, causing incorrect
answers, This includes the three types of knowledge-based errors mentioned above.

Logical
reasoning error

The model made logical reasoning errors when answering computer science-related
questions.

Mathematical
reasoning error

During the response process, errors in numerical calculations, symbolic calculations,
and other computational processes caused the model to produce incorrect answers.
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Table 19: Example of knowledge-type question error types. We use red to mark errors in the output
and blue to indicate the reasons for the errors.

Error Type Example

Complete
conceptual

error

Question:
When two sequential stacks share the same one-dimensional array space, how are their
stack bottoms and stack tops set?"
A: Two stacks with the same bottom end, extending in opposite directions from the top.
B: Two stacks with tops at the same end and bottoms extending in opposite directions.
C: The bottom and top of the stack are at the same end.
D: Two stacks with bottoms at opposite ends and tops extending towards the middle.
Answer:
D
Wrong Output:
When two sequential stacks share the same one-dimensional array space, their stack
bottoms and stack tops are set as follows: Two stacks with tops at the same end and bott-
oms extending in opposite directions. This means that the top of one stack and the bottom
of the other stack are at the same end of the array, while their bottoms extend in opposite
directions. This allows for efficient utilization of the array space for both stacks. The
correct answer is (B). Answer: (B) Two stacks with tops at the same end and bottoms
extending in opposite directions.
Error Details:
In GPT-3.5’s response, it was mentioned that the top of two stacks are at the same end,
while the bottom of the stack extends in opposite directions. This reflects that GPT-3.5 is
completely not familiar with the implementation of shared stacks.

Partial
conceptual

error

Question:
What are the main functions of the network layer?
A: Data Transparent Transmission
B: Power Management
C: Signal Amplification
D: Data Compression
Answer:
A
Wrong Output:
The main functions of the network layer are data transparent transmission and data
compression. The network layer is responsible for routing and forwarding data packets
between different networks, ensuring that data is delivered to the correct destination. It
does not handle power management or signal amplification. The correct answers are A
and D.
Error Details:
GPT-3.5 correctly answered that transparent data transmission is a function of the network
layer, but at the same time incorrectly pointed out that data compression is the main
function of the network layer, witch indicating an incorrect understanding of certain
aspects of network layer functionality.

Conceptual
confusion

Question:
What are the basic steps of simple selection sort?
A: Select the element with the smallest key from the elements to be sorted and swap it
with the first element. B: Insert elements into the sorted sequence in order.
C: Compare adjacent elements in sequence and swap them.
D: Use the divide and conquer method to sort elements.
Answer:
D
Wrong Output:
The basic steps of simple selection sort are: (A) Select the element with the smallest key
from the elements to be sorted and swap it with the first element. (C) Compare adjacent
elements in sequence and swap them. The correct answer is A and C.
Error Details:
The answers output by GPT-3.5 are A and C, and it is claimed that the basic steps of
simple selection sorting are to select the smallest element and exchange it with the first
element, and to compare adjacent elements and exchange them. This is obviously
incorrect because comparing adjacent elements and swapping them is a Bubble Sort This
indicates that GPT confuses bubble sorting and selection sorting.
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Table 20: Example of reasoning-type question error types.
Error Type Example

Concept-
related
error

Question:
In the topological ordering of the directed graph G, if vertex Vi precedes vertex Vj, then
the following situation cannot occur: ()
A: G contains an arc <Vi, Vj>.
B: There is a path from Vi to Vj in G.
C: There is no arc <Vi, Vj> in G.
D: There is a path from Vj to Vi in G.
Answer: D
Wrong Output:
If vertex Vi precedes vertex Vj in the topological ordering of the directed graph G, then it
means that there is a directed path from Vi to Vj in G. Therefore, the si- tuation where
there is no arc <Vi, Vj> in G cannot occur. The correct answer is (C) There is no arc <Vi,
Vj> in G.
Error Details:
The sequence obtained by topological sorting has i before j. GPT-3.5 chose C in the
answer, but according to the topological sorting rule, placing i before j does not
necessarily indicate that two nodes can be directly connected. GPT-3.5 does not under-
stand the meaning of topological sorting.

Logical
reasoning

error

Question:
In the array representation of a linear list with n elements, the operations with a time
complexity of O(1) are () I. Accessing the ith (1 ≤ i ≤ n) node and finding the immediate
predecessor of the ith (2 ≤ i ≤ n) node. II. Inserting a new node after the last node. III.
Deleting the first node. IV. Sequentially outputting the values of these n elements.
A:I
B: II, III
C: I, II
D: I, II, III
Answer: C
Wrong Output:
The operations with a time complexity of O(1) in the array representation of a linear list
with n elements are: I. Accessing the ith (1 ≤ i ≤ n) node and finding the immediate
predecessor of the ith(2 ≤ i ≤ n) node. II. Inserting a new node after the last node. III.
Deleting the first node. Therefore, the correct answer is (D) I, II, III. Answer: D
Error Details:
For item II in the question, after deleting the first element of the array, the next n-1
elements need to be moved forward, resulting in a time complexity of o (n). However,
GPT-3.5 considers it to be o(1), which is a GPT-3.5 inference error.

Mathematical
reasoning

error

Question:
In a computer with an 8-bit adder, the machine numbers of signed integers X and y are
represented in two’s complement, with [x] complement = F5H and [y] complement =
7EH. If the calculation X - y is performed in this adder,the carry-in information for the
lower bit and the overflow flag OF after the operation are respectively ().
A: 1,1 B: 1,0 C: 0,1 D: 0,0
Answer: C
Wrong Output:
First, let’s find the two’s complement of y. The two’s complement of a number is obtained
by inverting all the bits and adding 1. [y] complement = 7EH Inverting all the bits:
10000001. Adding 1: 10000010.Now, we can perform the subtraction X - y using the
8-bit adder. [X] complement = F5H [y] complement = 10000010. Adding X and the two’s
complement of y: 11110101 + 10000010 = 101101111. The result is 10110111, which is
the two’s complement representation of the result of X - y. To determine the carry-in
information for the lower bit, we need to look at the carry-out from the lower bit. In this
case, the carry-out is 1, so the carry-in for the lower bit is also 1. To determine the
overflow flag (OF), we need to compare the carry-in and carry-out from the sign bit. In
this case, the carry-in and carry-out from the sign bit are both 0, so the overflow flag is 0.
Error Details:
The complement of x and (- y) is calculated incorrectly.
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Table 21: Examples containing multiple types of errors.
Error Type Example

Logical
reasoning error

&
Mathematical

reasoning error

Question:
Given that the system uses a 32-bit physical address and a 48-bit virtual address, with a
page size of 4KB and a page table entry size of 8B. Assuming the system employs pure
paging, it will use a ()-level page table, and the page offset is () bits.
A: 3, 12
B: 3, 14
C: 3, 12
D: 4, 14
Answer:
C
Wrong Output:
To determine the number of levels in the page table, we need to calculate the number of
bits required to represent the virtual address space. The virtual address space is 48 bits,
and the page size is 4KB, which is equivalent to 212 bytes. Therefore, the num- ber of
pages in the virtual address space is 248 / 212 = 236 pages. Since each page table entry is
8 bytes, we can calculate the number of entries in each level of the page table. At the first
level, there are 236 entries, which can be represented by 36 bits. At the second level, each
entry points to a page table at the next level, so there are 236 entries. At the third level,
each entry points to a page table at the next level, so there are 236 entries. Therefore, we
need 3 levels of page tables. The page offset is the number of bits required to represent
the offset within a page. Since the page size is 4KB, which is equivalent to 212 bytes, the
page offset is 12 bits. Therefore, the correct answer is (A) 3, 12.
Error Details:
The number of page table items that can be accommodated on each page is 4KB/8B =
512=29, while GPT-3.5 did not mention calculations and directly stated that the first level
page table has 236 items; According to the GPT-3.5 calculation, if there are 236 items in
the first level page table, there should be a 36/36=first level page table instead of a third
level page table, resulting in a mathematical inference error. From the process of
calculating the number of page table levels in GPT-3.5, it can be seen that its logical
reasoning path is not correct.

Complete
conceptual error

&
Conceptual
confusion

Question:
The following network connecting devices that operate at the data link layer are ()
A: Repeaters and Hubs
B: Hubs and Bridges
C: Network bridges and local area network switches
D: Hubs and Local Area Network (LAN) Switches
Answer:
C
Wrong Output:
The correct answer is (D) Hubs and Local Area Network (LAN) Switches. Repeaters
operate at the physical layer, while hubs and bridges operate at the data link layer. Local
Area Network (LAN) switches also operate at the data link layer. Therefore, the correct
combination of network connecting devices that operate at the data link layer is hubs and
LAN switches.
Error Details:
GPT-3.5 is unaware that the bridge is a network link device operating at the data link
layer, indicating a lack of knowledge about the bridge. Meanwhile, GPT-3.5 believes that
the Hub is a device at the data link layer, indicating that it confuses physical layer devices
with data link layer devices.

35



Checklist831

1. For all authors...832

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s833

contributions and scope? [Yes]834

Justification: In Abstract and Section 1, our main claims accurately reflect the paper’s835

contributions and scope.836

(b) Did you describe the limitations of your work? [Yes]837

Justification: We discuss the limitations of our work in Appendix A.838

(c) Did you discuss any potential negative societal impacts of your work? [Yes]839

Justification: We discuss the potential negative societal impacts of our work in Appendix840

B.841

(d) Have you read the ethics review guidelines and ensured that your paper conforms to842

them? [Yes]843

Justification: We discuss the ethics impacts of our work in Appendix B.844

2. If you are including theoretical results...845

(a) Did you state the full set of assumptions of all theoretical results? [N/A]846

Justification: There are no theoretical results in our work.847

(b) Did you include complete proofs of all theoretical results?848

Justification: There are no theoretical results in our work. [N/A]849

3. If you ran experiments (e.g. for benchmarks)...850

(a) Did you include the code, data, and instructions needed to reproduce the main experi-851

mental results (either in the supplemental material or as a URL)? [Yes]852

Justification: We provide all instructions and details for reproducibility experiments in853

Appendix D, and provide the code and data in the supplementary materials.854

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they855

were chosen)? [Yes]856

Justification: We specify all the training details in Appendix D.3.857

(c) Did you report error bars (e.g., with respect to the random seed after running experi-858

ments multiple times)? [Yes]859

Justification: We report error bars in Appendix D.3.860

(d) Did you include the total amount of compute and the type of resources used (e.g., type861

of GPUs, internal cluster, or cloud provider)? [Yes]862

Justification: We include the total amount of compute and the type of resources used in863

Appendix D.3.864

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...865

(a) If your work uses existing assets, did you cite the creators? [Yes]866

Justification: We cite the creators in References.867

(b) Did you mention the license of the assets? [Yes]868

Justification: We mention the license of the assets in the supplemental material.869

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]870

Justification: We include the new assets in the supplemental material.871

(d) Did you discuss whether and how consent was obtained from people whose data you’re872

using/curating? [Yes]873

Justification: We discuss the data obtaining process in Section 2.2 and the supplemental874

material.875

(e) Did you discuss whether the data you are using/curating contains personally identifiable876

information or offensive content? [Yes]877

Justification: We discuss whether our data contains personally identifiable information878

or offensive content in Appendix B.879

36



5. If you used crowdsourcing or conducted research with human subjects...880

(a) Did you include the full text of instructions given to participants and screenshots, if881

applicable? [Yes]882

Justification: We include the instructions in the supplemental material.883

(b) Did you describe any potential participant risks, with links to Institutional Review884

Board (IRB) approvals, if applicable? [N/A]885

Justification: There are no potential participant risks in our work.886

(c) Did you include the estimated hourly wage paid to participants and the total amount887

spent on participant compensation? [Yes]888

Justification: We include salary details in the supplementary material.889

37


	Introduction
	CS-Bench
	Design Principle
	Data Collection

	Experiment
	Experimental Setup
	Main Results
	Qualitative Analysis
	What's the Relationship between CS, Math, and Code abilities of LLMs?

	Related Work
	Conclusion
	Limitations
	Broaden Impact
	More Details on CS-Bench
	Detailed Design Motivation and Statistics of CS-Bench
	Distribution of Word Lengths
	CS-Bench Examples

	More Details on Experiment Setup
	Details of Template for Each Task Format
	Details of GPT-4 Scoring
	Details of Inference Implementation
	Details of the Models being Evaluated

	More Details on Experiment
	Details of Model Performance
	Scale-Score Fitting Function for CS-Bench
	Performance of Models on CS-Bench (Chinese)
	Case Study of Error Types


