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Abstract

Increasing interest in privacy-preserving machine
learning has led to new and evolved approaches
for generating private synthetic data from undis-
closed real data. However, mechanisms of privacy
preservation can significantly reduce the utility of
synthetic data, which in turn impacts downstream
tasks such as learning predictive models or infer-
ence. We propose several re-weighting strategies
using privatised likelihood ratios that not only mit-
igate statistical bias of downstream estimators but
also have general applicability to differentially
private generative models. Through large-scale em-
pirical evaluation, we show that private importance
weighting provides simple and effective privacy-
compliant augmentation for general applications
of synthetic data.

1 INTRODUCTION

The prevalence of sensitive datasets, such as electronic
health records, contributes to a growing concern for viola-
tions of an individual’s privacy. In recent years, the notion of
Differential Privacy (Dwork et al., 2006) has gained popular-
ity as a privacy metric offering statistical guarantees. This
framework bounds how much the likelihood of a random-
ised algorithm can differ under neighbouring real datasets.
We say two datasets D and D′ are neighbouring when they
differ by at most one observation. A randomised algorithm
g :M→R satisfies (ε, δ)-differential privacy for ε, δ ≥ 0
if and only if for all neighbouring datasets D,D′ and all
subsets S ⊆ R, we have

Pr(g(D) ∈ S) ≤ δ + eεPr(g(D′) ∈ S).

The parameter ε is referred to as the privacy budget; smaller
ε quantities imply more private algorithms.

Injecting noise into sensitive data according to this paradigm
allows for datasets to be published in a private manner. With
the rise of generative modelling approaches, such as Gen-
erative Adversarial Networks (GANs) (Goodfellow et al.,
2014), there has been a surge of literature proposing gener-
ative models for differentially private (DP) synthetic data
generation and release (Jordon et al., 2019; Xie et al., 2018;
Zhang et al., 2017). These generative models often fail to
capture the true underlying distribution of the real data,
possibly due to flawed parametric assumptions and the in-
jection of noise into their training and release mechanisms.
The constraints imposed by privacy-preservation can lead
to significant differences between nature’s true data generat-
ing process (DGP) and the induced synthetic DGP (SDGP)
(Wilde et al., 2020). This increases the bias of estimators
trained on data from the SDGP which reduces their utility.

Recent literature has proposed techniques to decrease this
bias by modifying the training processes of private al-
gorithms. These approaches are specific to a particular syn-
thetic data generating method (Zhang et al., 2018; Frigerio
et al., 2019; Neunhoeffer et al., 2020), or are query-based
(Hardt and Rothblum, 2010; Liu et al., 2021) and are thus
not generally applicable. Hence, we propose several post-
processing approaches that aid mitigating the bias induced
by the DP synthetic data.

While there has been extensive research into estimating mod-
els directly on protected data without leaking privacy, we
argue that releasing DP synthetic data is crucial for rigorous
statistical analysis. This makes providing a framework to
debias inference on this an important direction of future
research that goes beyond the applicability of any particu-
lar DP estimator. Because of the post-processing theorem
(Dwork et al., 2014), any function on the DP synthetic data
is itself DP. This allows deployment of standard statistical
analysis tooling that may otherwise be unavailable for DP
estimation. These include 1) exploratory data analysis, 2)
model verification and analysis of model diagnostics, 3)
private release of (newly developed) models for which no
DP analogue has been derived, 4) the computation of con-
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fidence intervals of downstream estimators through the non-
parametric bootstrap, and 5) the public release of a data set
to a research community whose individual requests would
otherwise overload the data curator. This endeavour could
facilitate the release of data on public platforms like the
UCI Machine Learning Repository (Lichman, 2013) or the
creation of data competitions, fuelling research growth for
specific modelling areas.

This motivates our main contributions, namely the formu-
lation of multiple approaches to generating DP importance
weights that correct for synthetic data’s issues. In particular,
this includes:

• The bias estimation of an existing DP importance
weight estimation method, and the introduction of an
unbiased extension with smaller variance (Section 3.3).

• An adjustment to DP Stochastic Gradient Descent’s
sampling probability and noise injection to facilitate
its use in the training of DP-compliant neural network-
based classifiers to estimate importance weights from
combinations of real and synthetic data (Section 3.4).

• The use of discriminator outputs of DP GANs as im-
portance weights that do not require any additional
privacy budget (Section 3.5).

• An application of importance weighting to correct for
the biases incurred in Bayesian posterior belief updat-
ing with synthetic data motivated by the results from
(Wilde et al., 2020) and to exhibit our methods’ wide
applicability in frequentist and Bayesian contexts (Sec-
tion 3.1).

2 BACKGROUND

Before we proceed, we provide some brief background on
bias mitigation in non-private synthetic data generation.

2.1 DENSITY RATIOS FOR NON-PRIVATE GANS

Since their introduction, GANs have become a popular tool
for synthetic data generation in semi-supervised and unsu-
pervised settings. GANs produce realistic synthetic data by
trading off the learning of a generator Ge to produce syn-
thetic observations, with that of a classifier Di learning to
correctly classify the training and generated data as real or
fake. The generatorGe takes samples from the prior u ∼ pu
as an input and generates samples Ge(u) ∈ X . The discrim-
inator Di takes an observation x ∈ X as input and outputs
the probability Di(x) of this observation being drawn from
the true DGP. The classification network Di distinguishes
between samples from the DGP with label y = 1 and distri-
bution pD, and data from the SDGP with label y = 0 and
distribution pG. Following Bayes’ rule we can show that the
output of Di(x), namely the probabilities p̂(y = 1|x) and

p̂(y = 0|x), can be used for importance weight estimation:

p̂D(x)

p̂G(x)
=
p̂(x|y = 1)

p̂(x|y = 0)
=
p̂(y = 1|x)

p̂(y = 0|x)

p̂(y = 0)

p̂(y = 1)
. (1)

This observation has been exploited in a stream of literat-
ure focusing on importance weighting (IW) based sampling
approaches for GANs. Grover et al. (2019) analyse how
importance weights of the GAN’s outputs can lead to per-
formance gains; extensions include their proposed usage
in rejection sampling on the GAN’s outputs (Azadi et al.,
2018), and Metropolis–Hastings sampling from the GAN
alongside improvements to the robustness of this sampling
via calibration of the discriminator (Turner et al., 2019). To
date, no one has leveraged these discriminator-based IW
approaches in DP settings where the weights can mitigate
the increased bias induced by privatised data models.

2.2 DIFFERENTIAL PRIVACY IN SYNTHETIC
DATA GENERATION

Private synthetic data generation through DP GANs is built
upon the post processing theorem: If Di is (ε, δ)- DP, then
any composition Di ◦ Ge is also (ε, δ)-DP (Dwork et al.,
2014) since Ge does not query the protected data. Hence, to
train private GANs, we only need to privatise the training
of their discriminators, see e.g. Hyland et al. (2018). Xie
et al. (2018) propose DPGAN, a Wasserstein GAN which is
trained by injecting noise to the gradients of the discrimin-
ator’s parameters. In contrast, Jordon et al. (2019) privatise
the GAN discriminator by using the Private Aggregation of
Teacher Ensembles algorithm. Recently, Torkzadehmahani
et al. (2019) proposed DPCGAN as a conditional variant to
DPGAN that uses an efficient moments accountant. In con-
trast, PrivBayes (Zhang et al., 2017) learns a DP Bayesian
network and does not rely on a GAN-architecture. Other gen-
erative approaches, for instance, include Chen et al. (2018);
Acs et al. (2018). See Abay et al. (2018); Fan (2020) for an
extensive overview of more DP generative approaches.

Differentially private bias mitigation In this paper, we
offer an augmentation to the usual release procedure for
synthetic data by leveraging true and estimated importance
weights. Most related to our work are the contributions
from Elkan (2010) and Ji and Elkan (2013) who train a
regularised logistic regression model and assign weights
based on the Laplace-noise-contaminated coefficients of
the logistic regression. In follow up work, Ji et al. (2014)
propose to modify the update step of the Newton-Raphson
optimisation algorithm used in fitting the logistic regression
classifier to achieve DP. However, neither of these generalise
well to more complex and high dimensional settings because
of the linearity of the classifier. Further, the authors assume
the existence of a public dataset while we consider the
case where we first generate DP synthetic data and then
weight them a posteriori, providing a generic and universally



applicable approach. The benefit of learning a generative
model over using public data include on the one hand that
there is no requirement for the existence of a public data set,
and on the other hand the possibility to generate new data
points. This distinction necessitates additional analysis as
the privacy budget splits between the budget spent on fitting
the SDGP and the budget for estimating the IW approach.
Furthermore, we show that the approach from Ji and Elkan
(2013) leads to statistically biased estimation and formulate
an unbiased extension with improved properties.

3 DIFFERENTIAL PRIVACY AND
IMPORTANCE WEIGHTING

From a decision theoretic perspective, the goal of statistics is
estimating expectations of functions h : X 7→ R, e.g. loss or
utility functions, w.r.t the distribution of future uncertainties
x ∼ pD. Given data from {x′1, . . . , x′ND} =: x′1:ND

i.i.d.∼ pD
the data analyst can estimate these expectations consistently
via the strong law of large numbers as Ex∼pD (h(x)) ≈
1
ND

∑ND
i=1 h(x′i). However, under DP constraints the data

analyst is no longer presented with a sample from the true
DGP x′1:ND

i.i.d.∼ pD but with a synthetic data sample x1:NG
from the SDGP pG. Applying the naive estimator in this
scenario biases the downstream tasks as 1

NG

∑NG
i=1 h(xi)→

Ex∼pG(h(x)) almost surely.

This bias can be mitigated using a standard Monte Carlo
method known as importance weighting (IW). Suppose we
had access to the weights w(x) := pD(x)

pG(x) . If pG(·) > 0

whenever h(·)pD(·) > 0, then IW relies on

Ex∼pD [h(x)] = Ex∼pG [w(x)h(x)] . (2)

So we have almost surely for x1:NG
i.i.d.∼ pG the convergence

IN (h|w) :=
1

NG

NG∑
i=1

w(xi)h(xi)
NG→∞−→ Ex∼pD [h(x)].

3.1 IMPORTANCE WEIGHTED EMPIRICAL
RISK MINIMISATION

A downstream task of particular interest is the use of
x′1:ND ∼ pD to learn a predictive model, f(·) ∈ F , for
the data generating distribution pD based on empirical risk
minimisation. Given a loss function h : F ×X 7→ R com-
paring models f(·) ∈ F with observations x ∈ X and data
x′1:ND ∼ pD, the principle of empirical risk minimisation
(Vapnik, 1991) states that the optimal f̂ is given by the
minimisation of

1

ND

ND∑
i=1

h(f(·), x′i) ≈ Ex∼pD [h(f(·), x)]

over f . Maximum likelihood estimation (MLE) is a special
case of the above with h(f(·), xi) = − log f(xi|θ) for a
class of densities f parameterised by θ. Given synthetic
data x1:NG ∼ pG, Equation (2) can be used to debias the
learning of f .

Remark 1 (Supplement B.5). Minimisation of the import-
ance weight adjusted log-likelihood, −w(xi) log f(xi|θ),
can be viewed as an M -estimator (e.g. Van der Vaart, 2000)
with clear relations to the standard MLE.

Bayesian Updating. Wilde et al. (2020) showed that na-
ively conducting Bayesian updating using DP synthetic data
without any adjustment could have negative consequences
for inference. To show the versatility of our approach and
to address the issues they pointed out, we demonstrate how
IW can help mitigate this. The posterior distribution for
parameter θ given x̃′ := x′1:ND ∼ pD is

π(θ|x̃′) ∝ π(θ)

ND∏
i=1

f(x′i|θ) = π(θ) exp

(
ND∑
i=1

log f(x′i|θ)

)

where π(θ) denotes the prior distribution for θ. This pos-
terior is known to learn about model parameter θKLD

pD :=
arg minθ KLD (pD||f(·|θ)) (Berk, 1966; Bissiri et al.,
2016) where KLD denotes the Kullback-Leibler divergence.

Given only synthetic data x̃ := x1:NG from the ‘proposal
distribution’ pG, we can use the importance weights defined
in Equation (2) to construct the (generalised) posterior dis-
tribution

πIW (θ|x̃) ∝ π(θ) exp

(
NG∑
i=1

w(xi) log f(xi|θ)

)
. (3)

In fact, Equation (3) corresponds to a generalised Bayesian
posterior (Bissiri et al., 2016) with `IW (xi; θ) :=
−w(xi) log f(xi|θ), providing a coherent updating of be-
liefs about parameter θKLD

pD using only data from the SDGP.

Theorem 1 (Supplement B.6). The importance weighted
Bayesian posterior πIW (θ|x1:NG), defined in Equation
(3) for x1:NG

i.i.d.∼ pG, admits the same limiting Gaus-
sian distribution as the Bayesian posterior π(θ|x′1:ND )

where x′1:ND
i.i.d.∼ pD, under regularity conditions as in

(Chernozhukov and Hong, 2003; Lyddon et al., 2018).

It is necessary here to acknowledge the existence of meth-
ods to directly conduct privatised Bayesian updating (e.g.
Dimitrakakis et al., 2014; Foulds et al., 2016; Wang et al.,
2015) or M-estimation (Avella-Medina, 2021). We refer the
reader Section 1 for why the attention of this paper focuses
on downstream tasks for private synthetic data. We consider
the application of DP IW to Bayesian updating as a natural
example of such a task.



3.2 ESTIMATING THE IMPORTANCE WEIGHTS

The previous section shows that IW can be used to re-
calibrate inference for synthetic data. Unfortunately, both
the DGP pD and SDGP pG densities are typically unknown,
e.g. due to the intractability of GAN generation, and thus
the ‘perfect’ weight w(x) cannot be calculated. Instead, we
must rely on estimates of these weights, ŵ(x). In this sec-
tion, we show that the existing approach to DP importance
weight estimation is biased, and how the data curator can
correct it.

Using the same reasoning as in Section 2.1, we argue that
any calibrated classification method that learns to distin-
guish between data from the DGP, labelled thenceforth with
y = 1, and from the SDGP, labelled with y = 0, can be
used to estimate the likelihood ratio (Sugiyama et al., 2012).
Using Equation (1), we compute

ŵ(x) =
p̂(y = 1|x)

p̂(y = 0|x)

ND
NG

where p̂ are the probabilities estimated by such a classifica-
tion algorithm. To improve numerical stability, we can also
express the log weights as

log ŵ(x) = σ−1(p̂(y = 1|x)) + log
ND
NG

,

where σ(x) := (1 + exp(−x))−1 is the logistic function
and σ−1(p̂(y = 1|x)) are the logits of the classification
method. We will now discuss two such classifiers: logistic
regression and neural networks.

3.3 PRIVATISING LOGISTIC REGRESSION

DP guarantees for a classification algorithm g can be
achieved by adding noise to the training procedure. The
scale of this noise is determined by how much the algorithm
differs when one observation of the dataset changes. In
more formal terms, the sensitivity of g w.r.t a norm | · | is
defined by the smallest number S(g) such that for any two
neighbouring datasets D and D′ it holds that

|g(D)− g(D′)| ≤ S(g).

Dwork et al. (2006) show that to ensure the differential
privacy of g, it suffices to add Laplacian noise with standard
deviation S(g)/ε to g.

Possibly the simplest classifier g one could use to estimate
the importance weights is logistic regression with L2 regu-
larisation. It turns out this also has a convenient form for its
sensitivity. If the data is scaled to a range from 0 to 1 such
that X ⊂ [0, 1]d, Chaudhuri et al. (2011) show that the L2

sensitivity of the optimal coefficient vector estimated by β̂
in a regularised logistic regression with model

p̂(y = 1|xi) = σ(β̂Txi) =
(

1 + e−β̂
T xi
)−1

is S(β̂) = 2
√
d/(NDλ) where λ is the coefficient of the

L2 regularisation term added to the loss during training.
For completeness, when the logistic regression contains an
intercept parameter, we let xi denote the concatenation of
the feature vector and the constant 1.

Ji and Elkan (2013) propose to compute DP importance
weights by training such an L2 regularised logistic clas-
sifier on the private and the synthetic data, and perturb
the coefficient vector β̂ with Laplacian noise. For a d di-
mensional noise vector ζ with ζj

i.i.d.∼ Laplace(0, ρ) with
ρ = 2

√
d/(NDλε) for j ∈ {1, . . . , d}, the private regres-

sion coefficient is then β = β̂ + ζ , akin to adding heterosce-
dastic noise to the private estimates of the log weights

logw(xi) = β
T
xi = β̂Txi + ζxi. (4)

The resulting privatised importance weights can be shown
to lead to statistically biased estimation.

Proposition 1 (Supplement B.1). Let w denote the import-
ance weights computed by noise perturbing regression coef-
ficients as in Equation (4) (Ji and Elkan, 2013, Algorithm
1). The IS estimator IN (h|w) is biased.

Introducing bias on downstream estimators of sensitive in-
formation is undesirable as it can lead to an increased ex-
pected loss. To address this issue, we propose a way for the
data curator to debias the weights after computation.

Proposition 2 (Supplement B.2). Let w denote the import-
ance weights computed by noise perturbing the regression
coefficients as in Equation (4) (Ji and Elkan, 2013, Al-
gorithm 1) where ζ can be sampled from any noise dis-
tribution that ensures (ε, δ)-differential privacy of β. Define

b(xi) := 1/Epζ [exp
(
ζTxi

)
],

and adjusted importance weight

w∗(xi) = w(xi)b(xi) = ŵ(xi) exp
(
ζTxi

)
b(xi). (5)

The importance sampling estimator IN (h|w∗) is unbiased
and (ε, δ)-DP for Epζ [exp

(
ζTxi

)
] > 0.

In Supplement B.2.4, we further show that our approach
does not only decrease the bias, but also the variance of the
importance weighted estimators.

For the case of component-wise independent Laplace per-
turbations ζj

i.i.d.∼ Laplace(0, ρ), we show that the bias
correction term can be computed as

b(xi) =

d∏
j=1

(
1− ρ2x2ij

)
, provided |xij | < 1/ρ ∀j.

In practice, e.g. as we observe empirically in Section 4, the
optimal choice of the regularisation term λ is sufficiently



large such that ρ < 1. Since the data is scaled to a range of
0 to 1 (Chaudhuri et al., 2011), this bias correction method
is not limited by the restriction |xij | < 1/ρ,∀j. If the data
curator still encounters a case where this condition is not
fulfilled, they can choose to perturb the weights with Gaus-
sian noise instead, in which case the bias correction term
always exists (see Supplement B.2.2). Laplacian perturba-
tions are however preferred as the required noise scale can
be expressed analytically without additional optimisation
(Balle and Wang, 2018), and as they give stricter privacy
guarantees with δ = 0.

Alternatively, unbiased importance weighted estimates can
be computed directly by noising the weights instead of the
coefficients of the logistic regression. While this procedure
removes the bias of the estimates and can also be shown to
be consistent, it increases the variance to a greater extent
than noising the coefficients does, and is thus only sustain-
able when small amounts of data are released. Please refer
to Supplement A.1 for more details.

3.4 PRIVATISING NEURAL NETWORKS

If logistic regression fails to give accurate density ratio es-
timates, for example because of biases introduced by the
classifier’s linearity assumptions, a more complex discrimin-
ator in the form of a neural network can be trained. We can
train DP classification neural networks for the aim of likeli-
hood ratio estimation with stochastic gradient decent (SGD)
by clipping the gradients and adding calibrated Gaussian
noise at each step of the SGD, see e.g. Abadi et al. (2016).
The noised gradients are then added up in a lot before the
descent step where lots resemble mini-batches.

These optimisation algorithms are commonly formulated
for the case when the complete dataset is private. How-
ever, in our setting, ND observations are private and NG
observations are non-private. Thus, we can define a relaxed
version of DP SGD. Algorithm 1 provides an overview of
our proposed method. We highlight the modifications to
Algorithm 1 from Abadi et al. (2016) in blue.

Proposition 3. Each step in the SGD outlined in Al-
gorithm 1 is (ε, δ)-differentially private w.r.t the lot and
(O(qε), δ) differentially private w.r.t the full dataset where

q = L
ND+NG

and σ =
√

2 log ( 1.25
δ )/ε.

The differential privacy w.r.t a lot follows directly from
the observation that the gradients of the synthetic data are
already private. Further, the labels of the synthetic data
are public knowledge. Lastly, the differential privacy w.r.t
the dataset follows from the amplification theorem (Kas-
iviswanathan et al., 2011), the fact that sampling one particu-
lar private observation within a lot of size L is q = L

ND+NG
,

and the reasoning behind the moment accountant of Abadi
et al. (2016). We still clip the gradients of the public dataset

Algorithm 1: Relaxed DP SGD
Input: Examples x1:ND , y1:ND from the DGP and

xND+1:ND+NG , yND+1:ND+NG from the
SDGP, loss function
L(θ) = 1

NG+ND

∑
i L(θ, xi, yi). Parameters:

learning rate ηt, noise scale σ, expected lot size
L, gradient norm bound C.

1 Initialise θ0 randomly
2 for t ∈ [T ] do
3 Construct a random subset

Lt ⊂ {1, . . . , ND +NG} by including each index
independently at random with probability L

ND+NG

4 Compute gradient
5 For each i ∈ Lt, compute

gt(xi, yi)← ∆θtL(θt, xi, yi)
6 Clip gradient
7 gt(xi, yi)← gt(xi, yi)/max(1, ||gt(xi,yi)||2C )
8 Add noise
9 g̃t ← 1

L

∑
i∈Lt(gt(xi, yi) +N(0, σ2C2I)1(yi=1)),

where 1(yi=1) is 1 if yi = 1 and 0 otherwise
10 Descent
11 θt+1 ← θt + ηtg̃t

Output: θT and the overall privacy cost (ε, δ) using the
moment’s accountant of Abadi et al. (2016)
with sampling probability q = L

ND+NG
.

as their influence will otherwise be overproportional under
strong maximum norm assumptions.

3.5 GAN DISCRIMINATOR WEIGHTS

The downside of the aforementioned likelihood ratio estim-
ators (Equation (4), Equation (5), Algorithm 1) is that their
training requires an additional privacy budget which has to
be added to the privacy budget used to learn the SDGP. If
we however use a GAN such as DPGAN or PATE-GAN
for private synthetic data generation, we can use the GAN’s
discriminator for the computation of the importance weights.
According to the post processing theorem, these importance
weights can be released without requiring an additional pri-
vacy budget. In contrast to the weights computed from DP
classification networks, this approach is more robust and
requires less hyperparameter tuning (confer to Section 4).

4 EXPERIMENTS

We demonstrate the benefits of using debiased IW for
DP data release with a large-scale experimental study
comparing three different SDGPs (DPGAN, DPCGAN,
PrivBayes) on six real-world data sets (Iris, TGFB, Boston,
Breast, Banknote, MNIST) for two different privacy
budgets, ε ∈ {1, 6}. We stress that debiasing comes with
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Figure 1: Kernel density plots of 100 observations sampled from a two dimensional uniform square distribution as SDGP
(bottom left) and a uniform triangle distribution as DGP (second figure in second row). The first row depicts histograms of
the computed weights starting with the true importance weights (True). The DP weights were privatised with ε = 1, and
the regularisation was chosen as λ = 0.1. The second row illustrates the importance weighted synthetic observations. We
observe that while BetaDebiased corrects the weights of the logistic regression, the complex nature of the MLPs allows a
better modelling of the DGP even in this simple setting.
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Figure 2: ROC-AUC score distributions calculated via
chains of parameters sampled from a Bayesian logistic re-
gression model fit on synthesised Banknote data across 10
seeds.

little overhead to the actual computations. As we see in
Supplement C.2, the computations of the logistic regression
and neural network importance weight estimates take less
than one and a half minutes to train, even on MNIST.
These weight estimators can be applied to any kind of
synthetic data generation model, while the importance
weights of the GAN discriminator can be computed
in a single line of Python code and do not require any
additional concerns regarding the privacy budget. Please
see https://github.com/sghalebikesabi/
importance-weighted-differential-privacy
for the implementation.

Computation of importance weights After fitting the
SDGP on the scaled true data, we weight each synthetic

observation with importance weights. Based on the train
and the synthetic data, we apply one of the following IW
approaches: weights computed from a non-private logistic
regression (LogReg), its DP alternative introduced by Ji and
Elkan (2013) (BetaNoised), or our debiased proposal (Bet-
aDebiased), and likelihood ratios estimated by a non-private
multi-layer perceptron (MLP), or a DP-MLP trained using
Algorithm 1. We also compare to the naive estimator using
uniform weights without IW (called ’None’).

Please refer to Supplement C.1 for more details on the imple-
mentation and the hyperparameters used in our experiments.
In Supplement C.8, we provide a comparison to the exper-
imental results reported by related papers. Because of the
large scale of our experimental study, we present only the
most important results in this section, and give a complete
overview in Supplement C. The code and data for all experi-
ments can be found in the Supplements, and will be made
available online.

4.1 TOY EXAMPLE

We start our analysis with a simple example to illustrate
the benefits of the different weighting schemes. We assume
that the synthetic data is sampled from a two-dimensional
uniform distribution from 0 to 1 whereas the true data fol-
lows a uniform distribution on the lower triangle given by
x1 + x2 < 1 for x1, x2 ∈ [0, 1]. This illustrative toy ex-
ample was chosen for a fairer comparison of the logistic
regression and the neural network based approaches. As we
see in Figure 1, the weighted kernel density estimate (KDE)
of BetaDebiased is closer to the LogReg weighted KDE,
and also the true KDE compared to the BetaNoised KDE.

4.2 UCI DATA SETS

Datasets and preprocessing We performed additional ex-
periments on four UCI datasets of different characteristics

https://github.com/sghalebikesabi/importance-weighted-differential-privacy
https://github.com/sghalebikesabi/importance-weighted-differential-privacy


Breast Banknote
IW DPGAN DPCGAN PrivBayes DPGAN DPCGAN PrivBayes

W
ST
↓

None 2.3665±0.0982 1.5853±0.1333 2.1117±0.1740 0.4746±0.0214 0.7442±0.0333 0.3237±0.0162

BetaNoised 1.4337±0.1114 2.2232±0.2325 1.2322±0.0823 0.2509±0.0436 0.4355±0.0456 0.2318±0.0035

BetaDebiased 1.8922±0.1237 1.9913±0.3507 1.1825±0.0933 0.4015±0.0766 0.4618±0.0832 0.2369±0.0061

DP-MLP 1.4570±0.1492 1.0315±0.1415 1.2190±0.0795 0.2035±0.0427 0.4298±0.0433 0.0456±0.0061

Discriminator 1.0007±0.0004 1.0001±0.0001 - 0.3382±0.0399 0.1087±0.0415 -
LogReg 1.6451±0.1168 2.2953±0.2121 1.4663±0.1152 0.2508±0.0432 0.4348±0.0460 0.2348±0.0034

MLP 1.6129±0.1404 1.0709±0.1579 1.4141±0.1216 0.0913±0.0259 0.3860±0.0452 0.0021±0.0004

β
M

SE
↓

None 2.0643±0.2012 4.9828±1.5701 2.3904±0.1050 11.0215±1.8377 19.3243±3.7708 8.1724±0.3987

BetaNoised 2.7532±0.2650 2.5025±0.3763 2.1144±0.2400 8.4298±1.0383 15.2862±4.0365 5.7001±0.1885

BetaDebiased 2.8337±0.3842 2.2324±1.0446 1.8266±0.2392 8.3508±2.3127 12.9909±5.9024 6.6862±0.1458

DP-MLP 2.3965±0.2083 3.8865±0.6043 2.3130±0.2195 17.1597±2.5448 16.4618±4.1011 3.5519±0.2895

Discriminator 1.4591±0.1837 4.0612±0.9523 - 12.5471±2.3124 10.9282±5.4283 -
LogReg 2.6934±0.2667 2.2156±0.3366 1.5333±0.2138 8.4760±1.0406 15.2964±4.0396 5.6751±0.1785

MLP 2.3999±0.2040 3.8343±0.7032 1.6581±0.2020 17.9390±2.4926 15.5211±4.2147 2.6286±0.3761

M
L

P
R

O
C

-A
U

C
↑ None 0.6374±0.0421 0.6791±0.0966 0.8366±0.0579 0.8546±0.0213 0.6863±0.0436 0.7630±0.0495

BetaNoised 0.6110±0.0477 0.6546±0.0727 0.7076±0.0983 0.8495±0.0274 0.6063±0.0510 0.8943±0.0173

BetaDebiased 0.6820±0.0510 0.7173±0.0842 0.8557±0.0765 0.8729±0.0310 0.5868±0.1005 0.7632±0.0517

DP-MLP 0.7942±0.0404 0.5686±0.0823 0.7353±0.0887 0.7697±0.0419 0.5657±0.0570 0.8953±0.0299

Discriminator 0.6992±0.0839 0.7290±0.0720 - 0.8695±0.0167 0.7114±0.0424 -
LogReg 0.6631±0.0469 0.6484±0.1081 0.7618±0.1019 0.8172±0.0327 0.6034±0.0534 0.9102±0.0129

MLP 0.7730±0.0412 0.7358±0.1017 0.7573±0.0738 0.8291±0.0333 0.5974±0.0627 0.8594±0.0231

Table 1: Mean and standard error over 10 runs for (ε = 1, δ = N−1D − e−6) on the Breast and Banknote data. Best score out
of the private methods is marked in bold.

as decribed in Supplement C.1: Iris, Banknote, Boston, and
Breast. Similarly to Chaudhuri et al. (2011); Ji and Elkan
(2013), we scale all data to a feature range from 0 to 1. We
use a train-test split of 80%. In all experiments we fix δ to
N−1D − 10−6, and choose ε ∈ {1, 6}. We refer to Supple-
ment C.7 for a complete overview of the results.

Synthetic data generators We used DPCGAN (Torkza-
dehmahani et al., 2019), DPGAN (Xie et al., 2018), and
their corresponding non-DP analogues (CGAN and CGAN)
to generate DP synthetic data of the same size as the training
data set. Additionally we also consider PrivBayes (Zhang
et al., 2017), a DP Bayesian Network, as a potential SDGP.

Hyperparameter tuning Note that hyperparameter tun-
ing is essentially non-private, and has to be accounted for
in the privacy budget. Since hyperparemeter tuning in a DP
setting is an unresolved problem (Liu and Talwar, 2019;
Rosenblatt et al., 2020; Papernot and Steinke, 2021), we
follow Jordon et al. (2019) and tune the hyperparameters
of the underlying baselines on private validation data sets.
However, we propose default parameters for our methods.
This leads to an over-optimistic presentation of the baseline
performance, and a conservative presentation of our exten-
sions.

Evaluation metrics In order to show that IW decreases
statistical bias, we train a linear prediction model on the
synthetic data and approximate its bias. Since the true DGP
is not known, we train the same linear predictor on the

test data and report the mean squared error (MSE) between
the test parameters and the parameters estimated on the
SDGP, as β MSE. We further analyse the divergence of the
weighted SDGP and the DGP in a similar way by computing
the Wassertstein (WST) distance w.r.t the test data.As one
exemplary supervised downstream task, we consider the
training of a linear downstream classifier or regressor on the
synthetic data. This downstream predictor is then assessed
by the error measured in the parameter vector compared
to the parameters learnt using the test set (beta MSE). As
another downstream task, we train a one-hidden-layer MLP
on the training data, and report the test prediction error as
MLP ROC-AUC for classification tasks, and MLP MSE for
regression tasks.

Choice of budget split We only present results for ε = 1
in this section, and refer the reader to Supplement C.7 for
further results with ε = 6. If the weight computation proced-
ure requires a separate privacy budget (e.g. if the weights
are computed by a separate MLP or logistic regression), we
spend 10% of the ε-budget on fitting the SDGP and 30%
of the δ-budget on the weight computation; the complete
budget can be spent on fitting the SDGP if no weights, or
the weights of the discriminator are used. In Supplement
C.3, we evaluate a range of different privacy splits on the
Breast and Boston data.

Results In Tables 1 and 2, we see that the performance
of the models mostly improved when weighted with any
type of estimated weights. Although the best inference for



IW DPGAN PrivBayes
W

ST
↓

None 2.2013±0.0945 1.3938±0.0231

BetaNoised 2.0922±0.0419 1.3009±0.0338

BetaDebiased 2.0930±0.0393 1.2705±0.0290

DP-MLP 2.0542±0.0184 1.0265±0.0035

Discriminator 2.0145±0.0141 -
LogReg 2.2051±0.0819 1.4078±0.0492

MLP 2.0350±0.0158 1.0072±0.0009

β
M

SE
↓

None 0.1867±0.0434 0.0011±0.0002

BetaNoised 0.1761±0.0948 0.0088±0.0028

BetaDebiased 0.0667±0.0188 0.0077±0.0022

DP-MLP 0.1530±0.0812 0.0048±0.0024

Discriminator 0.1567±0.1825 -
LogReg 0.0749±0.0279 0.0037±0.0016

MLP 0.1476±0.0804 0.0008±0.0002

M
L

P
M

SE
↓

None 1.8851±0.5262 0.1973±0.0108

BetaNoised 1.0057±0.1973 0.2200±0.0154

BetaDebiased 0.9024±0.1244 0.2139±0.0122

DP-MLP 0.9462±0.1702 0.1877±0.0174

Discriminator 1.6256±0.2394 -
LogReg 1.0606±0.2648 0.2515±0.0305

MLP 1.0979±0.2225 0.1697±0.0079

Table 2: Mean and standard error over 10 runs for (ε = 1,
δ = N−1D − e−6) on the Boston Housing data. Best score
out of the private methods is marked in bold.

IW β MSE ↓ MLP ROC-AUC
↑

None 0.6605±0.0384 0.8502±0.0386

BetaNoised 0.6247±0.0184 0.8766±0.0086

BetaDebiased 0.6240±0.0179 0.8783±0.0093

DP-MLP 0.5813±0.0246 0.8683±0.0055

Discriminator 0.6242±0.0140 0.8631±0.0310

LogReg 0.6234±0.0183 0.8770±0.0092

MLP 0.5707±0.0207 0.8737±0.0058

Table 3: Mean and standard error over 10 runs with standard
errors for (ε = 9.64, δ = 60, 000−1 − e−6) on MNIST.

each data set is nearly always achieved after importance
weighting, we notice that there are some rare cases where no
importance weighting performs (insignificantly) better. For
instance, we observe that the SDGP obtained with PrivBayes
seems to be close to the true DGP of the Boston Housing
data, and that importance weighting is no longer helpful. In
settings where the SDGP and the DGP are really close, it is
possible that the effects of additional variance induced by
estimating and privatising the importance weights (where ap-
propriate) cancels out the reduction in bias. This effect might
be mitigated with hyperparameter tuning. Further, we note
that debiasing the logistic regression weights mainly results
in better performance. Even though we experience a slight
drop in performance from BetaNoised to BetaDebiased in
some rare cases, this can be explained by randomness in the
data set as we show in Supplement Table 6 that the weights
estimated by BetaDebiased are significantly closer to the

true LogReg weights than the importance weights given
by BetaNoised. If a GAN is used as SDGP, and the data
curator is hesitant to release additional importance weights,
the discriminator weights nearly always lead to an improve-
ment in results without requiring additional computations.
To further illustrate the practical meaning of debiasing, we
have included an exemplary case study in Supplement C.6.

4.3 BAYESIAN UPDATING WITH IW

We investigate the effectiveness of IW in a Bayesian learn-
ing setting as per Equation 3. We evaluated and compared
the performance of these weighted posteriors alongside the
standard non-weighted posterior by applying them to learn-
ing the parameters of models for various regression tasks.
Figure 2 shows the ROC-AUC scores associated with the
Bayesian predictive distribution arising from integration
over the posterior of a Bayesian logistic regression model fit
on synthesised versions of the Banknote dataset. We observe
that the ROC-AUC under PrivBayes’ synthetic data is sig-
nificantly improved upon across all IW methods, with sim-
ilar gains made to the median performance under CGAN’s
synthetic data. Additionally, most of the methods help in
decreasing variability in the results, especially DP-MLP
and MLP. See Supplement C.5 for a full specification of
the experimental details and for further results from fitting
Bayesian linear regression and multinomial logistic regres-
sion models on the TGFB and Iris datasets respectively.

4.4 MNIST

Additionally, we assessed how IW performs in a high-
dimensional setting such as a classification task on the
MNIST dataset. Since PrivBayes does not scale to large
data sets, we only evaluate DPCGAN as possible SDGP. For
this we follow the setup by Torkzadehmahani et al. (2019)
for ε = 9.64 and δ = 6000−1 − 10−6. We observe in Table
3 that all IW methods improve upon the state of the art.

5 DISCUSSION

In this paper, we investigated importance weighting methods
to correct for biases in downstream estimation tasks when us-
ing differentially private synthetic data. While classification
algorithms can be used to estimate the required importance
weights, noise must be added in order to maintain privacy.
We presented methods to debias inference based on privat-
ised weights estimated by logistic regression, developed
private estimation procedures allowing the complexity of
neural networks to be leveraged for weight estimation, and
proposed using inbuilt discriminator weights from GAN
synthetic data generation to avoid increases to the privacy
budget.



Following these developments, we advocate that future re-
leases of DP synthetic data are augmented with privatised
importance weights to allow researchers to conduct unbiased
downstream model estimation. Future work will focus on
improved hyperparameter tuning practises to choose the
optimal IW approach for the task and dataset at hand.
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A ADDITIONAL MATERIAL

A.1 UNBIASED IMPORTANCE WEIGHTING BY OUTPUT PERTURBATION

A simple approach to ensure DP of an algorithm is to add noise (Dwork et al., 2006) to its output, that is the estimated
importance weights of the synthetic data. We establish general results under which such a noise perturbation of an unbiased
non-private weights algorithm ŵ(x) preserves the unbiasedness of IS estimation.

Theorem 2. Let σ2(h)/N denote the variance of the IS estimate IN (h|w) defined in Equation (2). Then the IS estimator
IN (h|w∗) using noise perturbed importance weights w∗(xi) = ŵ(xi) + ζi, where ζi are i.i.d. and E[exp(ζi)] = 1, is
unbiased and has variance σ∗2(h)/N where

σ∗2(h) = σ2(h) + Var [exp(ζ)]EpG [(ŵ(x)h(x))2]. (6)

We refer the reader to Supplement B.3 for the proof. In the following we will analyse how the noise ζ has to be chosen to
ensure DP.

Corollary 1. The IS estimator with importance weights defined by

logw∗(xi) = β̂Txi + ζi (7)

for ζi ∼ Laplace(log(1− ρ2), ρ) and ρ =
2
√
d

NDλε
< 1

is (NSε, 0)-differentially private. It is further unbiased and for ρ < 1
2 has variance as defined in equation 6:

Var [exp(ζ)] = exp(2 log(1− ρ2))

(
1

1− 4λ2
− 1

(1− λ2)
2

)
.

Note that privacy budget is additive. If we want to release NS DP weights, we thus have to scale the noise proportional to
NS . Although this approach increases the variance of the estimator, it remains unbiased.

A limitation of this approach is that ρ < 1/2. Alternatively, Blum et al. (2005) show that adding Gaussian noise ζ ′ ∼
N(0, 2

ε2S(f)2 log 2
δ ) to an algorithm f ensures (ε, δ)-DP for δ > 0. From our analysis it follows that we could adjust

Corollary 1 as follows.

Corollary 2. The IS estimator with importance weights defined by

logw∗(xi) = β̂Txi + ζ ′i

for ζ ′i ∼ N(−γ
2

2
, γ2) and γ =

√
8d

(NDλε)2
log

2

δ

is (NSε, δ)-differentially private with δ > 0 and ε < 1. It is further unbiased and has variance as defined in equation 6 with
Var [exp(ζ ′)] = γ2.

This result trivially extends to the case of ε ≥ 1 with accordingly adjusted noise scales following results from Balle and
Wang (2018).

Sources of Bias and Variance. This analysis gives us insights on two sources of bias and variance. The first one is the
bias and/or variance introduced by privatising the weights. The estimator of Ji and Elkan (2013) is biased but as a result
adds noise with a smaller variance, whereas to be unbiased by noising the weights we have to pay a price of increasing the
variance, e.g., by adding more noise or by releasing fewer samples. The second source is the bias and variance introduced by
estimating the weights through the classifier. The importance weighting procedure is only unbiased when we know exactly
how to estimate the true weights. Using a logistic regression to estimate these cannot reasonably be considered as unbiased
for any complicated data. However, using an arbitrarily complex classifier such as a classification neural network could
arguably be considered as less biased at estimating the density ratio if it converges, but possibly increases the variance of the
estimators due to the increased number of parameters to learn.



A.2 POST-PROCESSING OF LIKELIHOOD RATIOS

The performance of importance weighting can suffer from a heavy right tailed distribution of the likelihood ratio estimates
which increases the variance of downstream estimators. A simple remedy is tempering: for a τ ∈ [0, 1] the weights
{ŵ(xi)

τ}i∈{1,...,NG} are less extreme.

Alternatively, Vehtari et al. (2015) propose Pareto smoothed IS (PSIS). This procedure requires to fit a generalised Pareto
distribution to the upper tail of the distribution of the simulated importance ratios. Their algorithm does not only post-hoc
stabilise IS, but also reports a warning when the estimated shape parameter of the Pareto distribution exceeds a certain
threshold. Similarly, Koopman et al. (2009) propose a test to detect whether importance weights have finite variance. In both
warnings, there are certain characteristics of the DGP which are not captured by the SDGP and the resulting IS estimates are
likely to be unstable. This warning can thus be understood as a general indicator for unsuitable proposal distributions. For
large shape parameters the data owner should not release the SDGP. It is also computationally more efficient than comparable
distribution divergences such as maximum mean discrepancy or Wasserstein distance. We must also consider that unlike
traditional IS where the importance weights are known (at least up to normalisation), here they are being estimated from
data, providing further motivation for regularisation.

Aside from unstable likelihood ratios, the computed importance weights can suffer from the inability of the classification
method to correctly capture the density ratios. To mitigate this problematic, Turner et al. (2019) propose post-calibration of
the likelihood ratios in a non-private setting. If we can assume that the data analyst has access to a small dataset of the DGP,
as e.g. in Wilde et al. (2020), we can make use of post-calibration methods, such as beta calibration (Kull et al., 2017).

B PROOFS

B.1 PROPOSITION 1: BIAS AND VARIANCE OF ALGORITHM 1 OF JI & ELKAN (2013)

Consider Ji and Elkan (2013) Algorithm 1, where under the assumption that p(y=1)
p(y=0) ≈

ND
NS

= 1, the unprivatised importance
weights are estimated using logistic regression

ŵ(xi) =
p∗(y = 1|xi)
p∗(y = 0|xi)

= exp
(
β̂Txi

)
,

and then the privacy preserving process adds noise to the β̂ coefficients of this logistic regression β∗ = β̂ + ζ with
ζ ∼ Laplace(2

√
d/(NDλε)), a vector of length d, to generate privatised estimates of the importance weights

w(xi) = exp
(
β∗

T

xi

)
= exp

(
β̂Txi

)
· exp (ζxi) . (8)

The following proposition proves that w(xi) is a biased estimate of ŵ(xi), the consequences being that if the ‘true’
importance weight really is given by a logistic regression then the procedure of Ji and Elkan (2013) will be biased.

Proposition 1. Let w denote the importance weights computed by noise perturbing the regression coefficients as in Equation
(8) (Ji and Elkan, 2013, Algorithm 1). The importance sampling estimator IN (h|w) is biased.

Proof. Firstly, we show that w(xi) is not an unbiased estimate of ŵ(xi)

Eζ [w(xi)] = Eζ
[
exp

(
β̂Txi

)
· exp (ζxi)

]
= Eζ [ŵ(xi) · exp (ζxi)]

6= ŵ(xi).

As a consequence, we show that even if the true density ratio can be captured by a logistic regression, i.e. there exists β0
such that pD(x)

pG(x) = exp
(
βT0 x

)
, then the importance sampling estimator

IN (h|w) =
1

N

N∑
i=1

w(xi)h(xi), xi ∼ pG(·),



with w(·) calculated using ‘privatised’ β∗ = β0 + ζ, ζ distributed as above, is a biased estimate of EpD [h(x)]. Indeed, we
have

Ex1:N∼pG

[
1

N

N∑
i=1

w(xi)h(xi)

]
= Ex1:N∼pG

[
1

N

N∑
i=1

exp
(
βT0 xi

)
· exp (ζxi)h(xi)

]

=
1

N

N∑
i=1

Exi∼pG [w (xi) · exp (ζxi)h(xi)]

=
1

N

N∑
i=1

Exi∼pD [exp (ζxi)h(xi)]

6= Exi∼pD [h(xi)] .

The proof of Proposition 1 provides several insights on what is required for an unbiased estimator. The fact that the bias
depends explicitly on the observation suggests either 1) asking the data curator to debias the noise given the synthetic data
they are about to release or 2) adding noise to the weights themselves rather to the process of how they are calculated.

Ji and Elkan (2013) compute the variance of the estimator β∗ = β̂ + ζ where ζ ∼ Laplace( 4(d+1)d
(NDλε)2

) as

Var(β∗) = Var(β̂) + Var(ζ) = Var(β̂) +
4(d+ 1)d

(NDλε)2
.

They show that the asymptotic variance of importance sampling with the unperturbed weights obtained from the logistic
regression wlogreg can be upper bounded by

Var(IN (h,wlogreg)) = αTVar(β̂)α = αT
dId
NDλ2

α

with

α =

∑
xi,xj∈D e

βT0 (xi+xj) (h (xi)− h (xj)) (xi − xj)∑
xi,xj∈E e

βT0 (xi+xj)
,

where β0 optimises the loss function of a logistic regression on fixed G and the true distribution of D. The asymptotic
variance of the importance sampling estimator with the weights w∗logreg from the logistic regression with parameter β∗ is
then

Var(IN (h,w∗logreg)) = αTVar(β∗)α = αT (
dId
NDλ2

+
4(d+ 1)d

(NDλε)2
)α.

B.2 PROPOSITION 2: DEBIASING OF JI & ELKAN (2013)

As prescribed by Ji and Elkan (2013) Algorithm 1, consider importance weights

w(xi) = exp
(
β∗

T

xi

)
= exp

(
β̂Txi

)
· exp

(
ζTxi

)
. (9)

for privacy preserved β̂ coefficients of this logistic regression β∗ = β̂ + ζ with ζ ∼ Laplace(2
√
d/(NDλε)), a vector of

length d. Proposition 1 proved that usingw(·) resulted in biased expectation estimation. However, Proposition 2 demonstrates
that we can debias this in closed form.

Proposition 2. Let w denote the importance weights computed by noise perturbing the regression coefficients as in Equation
(9) (Ji and Elkan, 2013, Algorithm 1) with ζ ∼ pζ . Define

b(xi) := 1/Eζ∼pζ [exp
(
ζTxi

)
],

and adjusted importance weight

w∗(xi) = w(xi) · b(xi) = ŵ(xi) · exp
(
ζTxi

)
· b(xi).



The importance sampling estimator IN (h|w∗) is unbiased and (ε, 0)-differentially private. The variance of estimator
IN (h|w∗) has the following decomposition

Varp∗G [IN (h|w∗)] =
σ∗2(h)

N
+

(
1− 1

N

)
c∗(h).

with

σ∗2(h) = σ2(h) + Ex∼pG
[
h(x)2ŵ(x)2Varζ∼pζ [b(x) exp(ζx)]

]
,

σ2(h) = Varx∼pG [h(x)ŵ(x)] , (10)

c∗(h) = Ex,x′∼pG
[
h(x)ŵ(x)h(x′)ŵ(x′)

(
b(x)b(x′)

b(x+ x′)
− 1

)]
.

Proof. Consider (x1, . . . , xN , ζ)
i.i.d∼ p∗G, i.e. xi

i.i.d∼ pG, i = 1, . . . , N and ζ ∼ pζ and

IN (h|w∗) =
1

N

N∑
i=1

h(xi)ŵ(xi) exp
(
ζTxi

)
b(xi),

then

Ep∗G [IN (h|w∗)] =Ex∼pG(x)Eζ∼pζ [h(x)ŵ(x) exp
(
ζTx

)
b(x)]

=Ex∼pG(x)[h(x)ŵ(x)b(x)Eζ∼pζ [exp
(
ζTx

)
]]

=Ex∼pG(x)[h(x)ŵ(x)]

=Ex∼pD(x)[h(x)]

and as a result IN (h|w∗) is an unbiased estimator of Ex∼pD(x)[h(x)]. The variance of estimator IN (h|w∗) is given by

Varp∗G [IN (h|w∗)] =
1

N2

N∑
i=1

Varp∗G [h(xi)w
∗(xi)] +

2

N2

N∑
i=1

∑
j<i

Covp∗G [h(xi)w
∗(xi), h(xj)w

∗(xj)]

=
σ∗2(h)

N
+

(
1− 1

N

)
c∗(h). (11)

where the weights are dependent under p∗G because ζ is not sampled independently for each xi, it is only sampled once. The
terms making up (11) are

σ∗2(h) =Varp∗G [h(x)ŵ(x) exp(ζx)b(x)]

=Ep∗G
[
(h(x)ŵ(x) exp(ζx)b(x))

2
]
− Ep∗G [h(x)ŵ(x) exp(ζx)b(x)]

2

=Ex∼pG
[
h(x)2ŵ(x)2Eζ∼pζ

[
b(x)2 exp(ζx)2

]]
− EpG [h(x)ŵ(x)]

2

=Ex∼pG
[
h(x)2ŵ(x)2

(
Varζ∼pζ [b(x) exp(ζx)] + 1

)]
− EpG [h(x)ŵ(x)]

2

=σ2(h) + Ex∼pG
[
h(x)2ŵ(x)2Varζ∼pζ [b(x) exp(ζx)]

]
,

with Eζ∼pζ [b(x) exp(ζx)] = 1 by construction and σ2(h) defined in (10), and

c∗(h) =Covp∗G
[
h(x)ŵ(x) exp

(
ζTx

)
b(x), h(x′)ŵ(x′) exp

(
ζTx′

)
b(x′)

]
=Ex,x′∼pG,ζ∼pζ

[
h(x)ŵ(x) exp

(
ζTx

)
b(x) · h(x′)ŵ(x′) exp

(
ζTx′

)
b(x′)

]
− Ex,ζ∼p∗G

[
h(x)ŵ(x) exp

(
ζTx

)
b(x)

]
· Ex′,ζ∼p∗G

[
h(x′)ŵ(x′) exp

(
ζTx′

)
b(x′)

]
.

By Eζ
[
exp

(
ζTx

)
b(x)

]
= 1, and x, x′ iid∼ pG the second term simplifies to

Ex∼p∗G
[
h(x)ŵ(x) exp

(
ζTx

)
b(x)

]
· Ex′∼p∗G

[
h(x′)ŵ(x′) exp

(
ζTx′

)
b(x′)

]
= Ex∼pG [h(x)ŵ(x)]

2
.



The first term can be simplified as

Ex,x′∼pG,ζ∼pζ
[
h(x)ŵ(x) exp

(
ζTx

)
b(x) · h(x′)ŵ(x′) exp

(
ζTx′

)
b(x′)

]
= Ex,x′∼pG

[
h(x)ŵ(x)h(x′)ŵ(x′)b(x)b(x′)Eζ∼pζ

[
exp

(
ζT (x+ x′)

)]]
= Ex,x′∼pG

[
h(x)ŵ(x)h(x′)ŵ(x′)

b(x)b(x′)

b(x+ x′)

]
= Ex,x′∼pG

[
h(x)ŵ(x)h(x′)ŵ(x′)

(
b(x)b(x′)

b(x+ x′)
− 1

)]
+ Ex∼pG [h(x)ŵ(x)]Ex′∼pG [h(x′)ŵ(x′)] (indep.)

= Ex,x′∼pG
[
h(x)ŵ(x)h(x′)ŵ(x′)

(
b(x)b(x′)

b(x+ x′)
− 1

)]
+ Ex∼pG [h(x)ŵ(x)]

2
.

As a result

c∗(h) = Ex,x′∼pG
[
h(x)ŵ(x)h(x′)ŵ(x′)

(
b(x)b(x′)

b(x+ x′)
− 1

)]

B.2.1 Special Case 1: Laplace Noise

Recall that xi and ζ are d-dimensional vectors with d ≥ 1. For i.i.d. ζj , j = 1, . . . , d

E
[
exp

(
ζTxi

)]
= E

exp

 d∑
j=1

ζjxij


= E

 d∏
j=1

exp (ζjxij)


=

d∏
j=1

E [exp (ζjxij)] , (independence)

which is the moment generating function for random variable ζj evaluated at t = xij . Now for ζj
iid∼ L(µ, ρ)

d∏
j=1

E [exp (ζjxij)] =

d∏
j=1

exp (µxij)

1− ρ2x2ij
, for |xij | < 1/ρ ∀j

=
exp

(
µ
∑d
j=1 xij

)
∏d
j=1

(
1− ρ2x2ij

) , for |xij | < 1/ρ ∀j.

as a result

b(xi) =

∏d
j=1

(
1− ρ2x2ij

)
exp

(
µ
∑d
j=1 xij

) , with |xij | < 1/ρ ∀j (12)



The variance Of interest to the performance of such an approach are the terms

Varζ∼pζ
[
b(xi) exp(ζTxi)

]
= b(xi)

2Varζ∼pζ
[
exp(ζTxi)

]
= b(xi)

2
(
Eζ∼pζ

[
exp(ζTxi)

2
]
− Eζ∼pζ

[
exp(ζTxi)

]2)
= b(xi)

2
(
Eζ∼pζ

[
exp(2ζTxi)

]
− Eζ∼gpζ

[
exp(ζTxi)

]2)
=

∏d
j=1

(
1− ρ2x2ij

)2
exp

(
2µ
∑d
j=1 xij

)
exp

(
2µ
∑d
j=1 xij

)
∏d
j=1

(
1− 4b2x2ij

) − exp
(

2µ
∑d
j=1 xij

)
∏d
j=1

(
1− ρ2x2ij

)2


=

d∏
j=1

(
1− ρ2x2ij

)2(
1− 4b2x2ij

) − 1

with |xij | < 1/2ρ ∀j, and

(
b(x)b(x′)

b(x+ x′)
− 1

)
=

∏d
j=1(1−ρ

2x2
j)

exp(µ
∑d
j=1 xj)

∏d
j=1

(
1−ρ2x

′2
j

)
exp(µ

∑d
j=1 x

′
j)∏d

j=1(1−ρ2(xj+x′j)2)
exp(µ

∑d
j=1(xj+x

′
j))

− 1, with |xj |, |x′j | and |xj + x′j | < 1/ρ ∀j

=

∏d
j=1

(
1− ρ2x2j

) (
1− ρ2x′2j

)
∏d
j=1

(
1− ρ2(xj + x′j)

2
) − 1.

B.2.2 Special Case 2: Gaussian Noise

Recall that xi and ζ are d-dimensional vectors with d ≥ 1. The reciprocal of the bias correction

1

b(xi)
= Eζ [exp

(
ζTxi

)
],

is the moment generating function of random variable ζTxi evaluated at t = 1. Now if ζj
iid∼ N (µ, σ2), j = 1, . . . , d, then

ζTxi =

d∑
j=1

ζjxij ∼ N (µ

d∑
j=1

xij , σ
2

d∑
j=1

x2ij)

and therefore

Eζ
[
exp

(
ζTxi

)]
= exp

µ d∑
j=1

xij +
1

2
σ2

d∑
j=1

x2ij

 .

The variance Of interest to the performance of such an approach are the terms

Varζ∼pζ
[
b(xi) exp(ζTxi)

]
= b(xi)

2Varζ∼pζ
[
exp(ζTxi)

]
= b(xi)

2
(
Eζ∼pζ

[
exp(2ζTxi)

]
− Eζ∼pζ

[
exp(ζTxi)

]2)
= exp

−2µ

d∑
j=1

xij − σ2
d∑
j=1

x2ij

exp

2µ

d∑
j=1

xij + 2σ2
d∑
j=1

x2ij


− exp

2µ

d∑
j=1

xij + σ2
d∑
j=1

x2ij


= exp

σ2
d∑
j=1

x2ij

− 1



and (
b(x)b(x′)

b(x+ x′)
− 1

)
=

exp
(
−µ
∑d
j=1 xj −

1
2σ

2
∑d
j=1 x

2
j

)
exp

(
−µ
∑d
j=1 x

′
j − 1

2σ
2
∑d
j=1 x

′2
j

)
exp

(
−µ
∑d
j=1(xj + x′j)− 1

2σ
2
∑d
j=1(xj + x′j)

2
) − 1

= exp

1

2
σ2

d∑
j=1

{
(xj + x′j)

2 − x2j − x
′2
j

}− 1

= exp

σ2
d∑
j=1

xjx
′
j

− 1

B.2.3 Differential Privacy

The differential privacy of the approach follows from the post-processing theorem: since the synthetic data x1, . . . , xNG is
already privatised, the corresponding weights w̄(x1), ..., w̄(xNG) are (ε, δ) differentially private, and the adversary can be
assumed to know which differential privacy mechanism is used (Balle and Wang, 2018), the data curator can debias the
weights without any additional privacy budget.

B.2.4 Variance Comparison of Debiasing Ji & Elkan (2013)

Ji and Elkan (2013) provide bounds for the asymptotic variance of their privatised estimator. Here, we investigate the finite
sample variance of their (biased) method and compare it with the finite variance of our unbiased estimator form Proposition
2. Note that we do not consider self-normalised IW while this is an implicit assumption made by Ji and Elkan (2013).

The variance of estimator IN (h|w), where w is defined in Equation (9), is given by

Varp∗G [IN (h|w)] =
1

N2

N∑
i=1

Varp∗G [h(xi)w(xi)] +
2

N2

N∑
i=1

∑
j<i

Covp∗G [h(xi)w(xi), h(xj)w(xj)]

=
σ2(h)

N
+

(
1− 1

N

)
c(h).

where, x, x′ ∼ p∗G. The term σ2(h) is

σ2(h) =Varp∗G
[
h(x)ŵ(x) exp(ζTx)

]
=Ep∗G

[(
h(x)ŵ(x) exp(ζTx)

)2]− Ep∗G
[
h(x)ŵ(x) exp(ζTx)

]2
=Ex∼pG

[
h(x)2ŵ(x)2Eζ∼pζ

[
exp(ζTx)2

]]
− Ex∼pG(x)

[
h(x)ŵ(x)

b(x)

]2
=Ex∼pG

[
h(x)2ŵ(x)2

(
Varζ∼pζ

[
exp(ζTx)

]
+

1

b(x)2

)]
− Ex∼pG(x)

[
h(x)ŵ(x)

b(x)

]2
=Ex∼pG

[
h(x)2ŵ(x)2Varζ∼pζ

[
exp(ζTx)

]]
+ Varx∼pG(x)

[
h(x)ŵ(x)

b(x)

]
.

Further, c(h) is

c(h) =Covp∗G
[
h(x)ŵ(x) exp

(
ζTx

)
, h(x′)ŵ(x′) exp

(
ζTx′

)]
=Ex,x′∼p∗G

[
h(x)ŵ(x) exp

(
ζTx

)
· h(x′)ŵ(x′) exp

(
ζTx′

)]
− Ex∼p∗G

[
h(x)ŵ(x) exp

(
ζTx

)]
· Ex′∼p∗G

[
h(x′)ŵ(x′) exp

(
ζTx′

)]
,

where firstly,

Ex∼p∗G
[
h(x)ŵ(x) exp

(
ζTx

)]
· Ex′∼p∗G

[
h(x′)ŵ(x′) exp

(
ζTx′

)]
= Ex∼pG(x)

[
h(x)ŵ(x)

b(x)

]2
,



and

Ex,x′∼p∗G
[
h(x)ŵ(x) exp

(
ζTx

)
· h(x′)ŵ(x′) exp

(
ζTx′

)]
=Ex,x′∼pG

[
h(x)ŵ(x)h(x′)ŵ(x′)Eζ∼pζ

[
exp

(
ζT (x+ x′)

)]]
=Ex,x′∼pG

[
h(x)ŵ(x)h(x′)ŵ(x′)

1

b(x+ x′)

]
=Ex,x′∼pG

[
h(x)ŵ(x)h(x′)ŵ(x′)

(
1

b(x+ x′)
− 1

b(x)b(x′)

)]
+ Ex,x′∼pG

[
h(x)ŵ(x)

b(x)

h(x′)ŵ(x′)

b(x′)

]
=Ex,x′∼pG

[
h(x)ŵ(x)h(x′)ŵ(x′)

(
1

b(x+ x′)
− 1

b(x)b(x′)

)]
+ Ex∼pG

[
h(x)ŵ(x)

b(x)

]
Ex′∼pG

[
h(x′)ŵ(x′)

b(x′)

]
(indep.)

=Ex,x′∼pG
[
h(x)ŵ(x)h(x′)ŵ(x′)

(
1

b(x+ x′)
− 1

b(x)b(x′)

)]
+ Ex∼pG

[
h(x)ŵ(x)

b(x)

]2
as a result

c(h) = Ex,x′∼pG
[
h(x)ŵ(x)h(x′)ŵ(x′)

(
1

b(x+ x′)
− 1

b(x)b(x′)

)]
= Ex,x′∼pG

[
h(x)ŵ(x)

b(x)

h(x′)ŵ(x′)

b(x′)

(
b(x)b(x′)

b(x+ x′)
− 1

)]
.

Comparisons after debiasing: We can compare the variance of IN (h|w) with the previously evaluated variance of
IN (h|w∗) as follows

Varp∗G [IN (h|w∗)] =
σ∗2(h)

N
+

(
1− 1

N

)
c∗(h).

Varp∗G [IN (h|w)] =
σ2(h)

N
+

(
1− 1

N

)
c(h).

with

σ∗2(h) =Ex∼pG
[
h(x)2ŵ(x)2Varζ∼pζ [b(x) exp(ζx)]

]
+ Varx∼pG(x) [h(x)ŵ(x)]

σ2(h) =Ex∼pG
[
h(x)2ŵ(x)2Varζ∼pζ

[
exp(ζTx)

]]
+ Varx∼pG(x)

[
h(x)ŵ(x)

b(x)

]
and

c∗(h) = Ex,x′∼pG
[
h(x)ŵ(x)h(x′)ŵ(x′)

(
b(x)b(x′)

b(x+ x′)
− 1

)]
c(h) = Ex,x′∼pG

[
h(x)ŵ(x)

b(x)

h(x′)ŵ(x′)

b(x′)

(
b(x)b(x′)

b(x+ x′)
− 1

)]
.

Comparison for the introduction of Laplace noise: From Equation (12), under ζj ∼ L(0, ρ) we have that

b(xi) =

p∏
j=1

(
1− ρ2x2ij

)
, with |xij | < 1/ρ ∀j.



The condition that |xij | < 1/ρ ensures that

0 ≤
(
1− ρ2x2ij

)
≤ 1, ∀j

⇒ 0 ≤ b(x) =

p∏
j=1

(
1− ρ2x2j

)
≤ 1

As a result,

Varζ∼g
[
b(x) exp(ζTx)

]
≤ Varζ∼g

[
exp(ζTx)

]
, ∀x

and h(x)ŵ(x) ≤ h(x)ŵ(x)

b(x)
, ∀x

which provides that

σ∗2(h) ≤ σ2(h)

and c∗(h) ≤ c(h)

⇒ Varp∗G [IN (h|w∗)] ≤ Varp∗G [IN (h|w)] . (13)

Not only does debiasing remove bias, it also makes the estimator’s variance smaller.

B.3 THEOREM 2: NOISY IMPORTANCE SAMPLING

For privacy purposes, we want to be able to noise the importance weights as in

logw∗(x) = log ŵ(x) + ζ, for ζ ∼ g drawn from a noise distribution (14)

but we would like to still preserve the consistency properties of importance sampling estimates.

To achieve this, we expand the original target in importance sampling as follows

p∗D(x, ζ) = pD(x) exp(ζ)g(ζ)

where ζ ∈ R will correspond to some additive noise on the log weights, and g(ζ) is a probability density on R such that by
assumption ∫

exp(ζ)g(ζ)dζ = 1,

So, in particular, this implies that ∫
p∗D(x, ζ)dζ = pD(x).

Now, we can use a proposal density p∗G(x, ζ) = pG(x)g(ζ) targeting p∗D(x, ζ) and the resulting importance weight is indeed

w∗(x, ζ) =
p∗D(x, ζ)

p∗G(x, ζ)
= ŵ(x) exp(ζ),

i.e. the importance weight in this extended space is a noisy version of the original weight ŵ(x). We thus have

EpD [h(x)] = EpG [h(x)ŵ(x)]

= Ep∗G [h(x)w∗(x, ζ)]

= Ep∗G [h(x)ŵ(x) exp(ζ)].

It follows that for i.i.d. (xi, ζi) ∼ p∗G, i.e. xi ∼ pG and ζi ∼ g, then

IN (h|w∗) =
1

N

N∑
i=1

h(xi)ŵ(xi) exp(ζi)



is an unbiased and consistent estimator of EpD [h(x)]. Its variance is

Var [IN (h|w∗)] =
1

N
Varp∗D [h(x)ŵ(x) exp(ζ)] =

σ∗2(h)

N
.

By the variance decomposition formula, we have

σ∗2(h) =Varp∗D [h(x)ŵ(x) exp(ζ)]

=Eg [exp(ζ)]
2 VarpG [h(x)ŵ(x)]

+ Varg [exp(ζ)]EpG
[
(h(x)ŵ(x))2

]
(variance decomposition formula)

=σ2(h) + Varg [exp(ζ)]EpG [(h(x)ŵ(x))2],

as Eg [exp(ζ)] = 1 by assumption and Var [IN (h|w)] = 1
N VarpG [h(x)ŵ(x)]. The variance of our estimator is inflated as

expected by the introduction of noise.

B.4 COROLLARY 1 AND 2: DIFFERENTIAL PRIVACY OF LOG-LAPLACE NOISED IMPORTANCE
WEIGHTS

Following Kozubowski and Podgórski (2003), the (symmetric) log-Laplace distribution is the distribution of random variable
x such that y = log(x) has a Laplace density with location parameter µ and scale λ. The density of a log-Laplace(µ, λ)
random variable is

fX(x|µ, λ) =
1

2λ

1

x
exp

(
− 1

λ
|log x− µ|

)
.

Note this is recovered from the asymmetric log-Laplace in Kozubowski and Podgórski (2003) with α = β = 1
λ . Kozubowski

and Podgórski (2003) further provide forms for the expectation and variance of the log-Laplace distribution as

E [X] =
exp(µ)

1− λ2
for λ < 1, (15)

Var[X] = exp(2µ)

(
1

1− 4λ2
− 1

(1− λ2)
2

)
for λ <

1

2
.

Next we wish to investigate the differential privacy provided by using the Laplace mechanism (Dwork et al., 2006) to
noise importance weights. Adding Laplace noise to the log-weights, as in Equation (14), is equivalent to multiplying the
importance weights by log-Laplace noise. In order for the importance sampling to remain unbiased, the log-Laplace noise
must have expectation 1. From Equation (15) this will be the case for all λ < 1 if we set µ = log

(
1− λ2

)
.

A binary logistic-regression classifier specifies class probabilities

p̂(y = 1|x, β̂) =
1

1 + exp
(
−xβ̂

) , p̂(y = 0|x, β̂) =
exp

(
−xβ̂

)
1 + exp

(
−xβ̂

) .
We denote by z1:NG the private data sampled from the DGP, and by x1:ND the synthetic data sampled from the SDGP. Let z′1:NG

be the neighboring data set of z1:NG . The importance weights estimated by such a classifier become

ŵ(xi|x1:NG , z1:ND ) =
p̃(yi = 1|xi, β̂(x1:NG , z1:ND ))

p̃(yi = 0|xi, β̂(x1:NG , z1:ND ))

ND
NG

=
1

1 + exp
(
−xiβ̂(x1:NG , z1:ND )

) 1 + exp
(
−xiβ̂(x1:NG , z1:ND )

)
exp

(
−xiβ̂(x1:NG , z1:ND )

) ND
NG

=exp
(
xiβ̂(x1:NG , z1:ND )

) ND
NG

,



and as a result ∣∣log ŵ(xi|x1:NG , z1:ND )− log ŵ(xi|x1:NG , z
′
1:ND )

∣∣
=

∣∣∣∣xiβ̂(x1:NG , z1:ND ) + log
ND
NG
−
(
xiβ̂(x1:NG , z

′
1:ND ) + log

ND
NG

)∣∣∣∣
=
∣∣∣xiβ̂(x1:NG , z1:ND )− xiβ̂(x1:NG , z

′
1:ND )

∣∣∣
=

∣∣∣∣∣
p∑
j=1

xij
(
β̂(x1:NG , z1:ND )j − β̂(x1:NG , z

′
1:ND )j

)∣∣∣∣∣
≤ |xi|

d∑
j=1

∣∣∣(β̂(x1:NG , z1:ND )j − β̂(x1:NG , z
′
1:ND )j

)∣∣∣
≤ 2
√
d

NDλ

if the features are minmax scaled using the sensitivity computed by Chaudhuri et al. (2011).

B.5 REMARK 1: THE IMPORTANCE-WEIGHTED LIKELIHOOD AND M-ESTIMATION

Remark 1. Minimisation of the importance weight adjusted log-likelihood, −w(xi) log f(xi|θ), can be viewed as an M -estimator with
clear relations to the standard MLE.

Remark 1 of the paper points out the the connection between the Minimisation of the importance weight adjusted log-likelihood,
`IW (x, θ) := −w(xi) log f(xi|θ) and the standard maximum likelihood estimator which can be seen through the lens of M-estimation.
We exemplify this below.

Following Van der Vaart (2000), the M -estimate of parameter

β∗h := argmax
β

Ex∼pD [h(β, x)]

is given by

β̂
(n)
h := argmax

β

n∑
i=1

h(β, xi).

The estimator β̂(n)
h is consistent and is asymptotically normal, i.e.

√
n
(
β̂

(n)
h − β∗h

)
D−→ N

(
0, Ṽ (β∗h)

)
where

Ṽ (β) :=
(
E
[
∇2
βh(β, x)

])−1 · Var [∇βh(β, x)] ·
(
E
[
∇2
βh(β, x)

])−1
.

M-estimators generalises the case of MLE under model misspecification and the variance calculation collapses to the standard inverse
Fisher’s information if the likelihood is correctly specified for the DGP.

The minimiser of the importance weight adjusted log-likelihood can be considered an M-estimate with the following form

θ̂
(n)
IW = argmax {−`IW (x; θ)} = argmax {w(x) log f(x; θ)} .

As a result, given x1:n ∼ PG the covariance of the asymptotic Gaussian distribution for θ̂(n)
IW simplifies to,

ṼIW (θ∗IW ) =
(
EpG

[
−∇2

θ`IW (x, θ∗IW )
])−1 · VarpG [−∇θ`IW (x, θ∗IW )] ·

(
EpG

[
−∇2

θ`IW (x, θ∗IW )
])−1

=
(
EpD

[
−∇2

θ`0(x, θ
∗
0)
])−1 · VarpG [−∇θ`IW (x, θ∗IW )] ·

(
EpD

[
−∇2

θ`0(x, θ
∗
0)
])−1

=
(
EpD

[
−∇2

θ`0(x, θ
∗
0)
])−1 · EpG

[
(−∇θ`IW (x, θ∗IW )) (−∇θ`IW (x, θ∗IW ))

T
]
·
(
EpD

[
−∇2

θ`0(x, θ
∗
0)
])−1

where VarpG [−∇θ`IW (x, θ∗IW )] = EpG
[
(−∇θ`IW (x, θ∗IW )) (−∇θ`IW (x, θ∗IW ))T

]
because at the maximiser θ∗IW

EpG [−∇θ`IW (x, θ∗IW )] = 0



Further we can write the variance of the minimiser of the importance weight adjusted log-likelihood in terms of the variance of the
standard MLE given the same number of observations x1:n ∼ PD as follows:

ṼIW (θ∗IW )

Ṽ0 (θ∗0)
=

EpG
[
(∇θ`IW (x, θ∗IW )) (∇θ`IW (x, θ∗IW ))T

]
EpD

[
(∇θ`0(x, θ∗0)) (∇θ`0(x, θ∗0))

T
] =

EpD
[
w(x) (∇θ`0(x, θ∗IW )) (∇θ`0(x, θ∗IW ))T

]
EpD

[
(∇θ`0(x, θ∗0)) (∇θ`0(x, θ∗0))

T
] .

We can then use such notions to produce an idea of the effective sample size of synthetic data.

B.5.1 The Effective Sample Size of Synthetic Data

When constructing traditional Importance Sampling estimates it is typical to talk about the ‘effective sample’ size of the sample from the
proposal density. The effective sample size is the number of independent samples from the true target that gives an unbiased estimator with
the same variance as the importance sampling estimator using NG samples from the proposal density. When using importance weights to
adjust the likelihood for Bayesian updating we are not directly seeking to estimate an expectation, but minimize an (expected) loss to
produce a parameter estimate.

Analogously, in this scenario we define the effective sample size of the synthetic data as the number of samples, N (e)
G , from true DGP

PD that would provide an unbiased maximum likelihood estimate (MLE) with the same variance as the Importance-Weighted MLE
(IW-MLE), i.e.

N
(e)
G :=

{
n :
∣∣∣V [θ̂(NG)

IW

]∣∣∣ = ∣∣∣V [θ̂(n)
0

]∣∣∣} ,
where the function V corresponds to the asymptotic variance of that estimator, and |·| is a norm summary of the matrix values covariance
of the estimator. Given the asymptotic analysis presented above for the importance-weighted likelihood we have that

N
(e)
G =

√NG
∣∣∣Ṽ (θ̂(n)

0

)∣∣∣∣∣∣Ṽ (θ̂(NG)
IW

)∣∣∣
2

(16)

where ∣∣∣Ṽ (θ̂(n)
0

)∣∣∣∣∣∣Ṽ (θ̂(NG)
IW

)∣∣∣ =
∣∣∣EpD [ŵ(x) (∇θ`0(x, θ∗IW )) (∇θ`0(x, θ∗IW ))T

]∣∣∣∣∣∣EpD [(∇θ`0(x, θ∗0)) (∇θ`0(x, θ∗0))T ]∣∣∣
=

∣∣∣EpG [(∇θ`IW (x, θ∗IW )) (∇θ`IW (x, θ∗IW ))T
]∣∣∣∣∣∣EpG [ŵ(x) (∇θ`0(x, θ∗0)) (∇θ`0(x, θ∗0))T ]∣∣∣ .

We note that for multidimensional parameter vectors the V ’s are covariance matrices and therefore we need to take a scalar summary
using the norm | · | of these matrices in order to provide an integer effective sample size N (e)

G . Faced with a similar problem Lyddon et al.
(2018) consider the matrix trace for example.

Lastly, given a sample x1:NG ∼ PG the effective sample size can be estimated by using empirical expectations∣∣∣Ṽ (θ̂(n)
0

)∣∣∣∣∣∣Ṽ (θ̂(NG)
IW

)∣∣∣ ≈
∣∣∣∣ 1
NG

∑NG
i=1

(
∇θ`IW (xi, θ̂

(n)
IW )

)(
∇θ`IW (xi, θ̂

(n)
IW )

)T ∣∣∣∣∣∣∣∣ 1
NG

∑NG
i=1 ŵ(xi)

(
∇θ`0(xi, θ̂(n)

IW )
)(
∇θ`0(xi, θ̂(n)

IW )
)T ∣∣∣∣ .

B.6 THEOREM 1: ASYMPTOTIC POSTERIOR DISTRIBUTION OF IMPORTANCE WEIGHTED BAYESIAN
UPDATING

Section 3.1 of the paper considers the importance weighted Bayesian updating as a special case of general Bayesian updating where the
loss function is specifically chosen to account for the fact that inference is being done with samples from pG while trying to approximate
pD . We henceforth write

πIW (θ|{xi}i∈{1,...,NG}) ∝π(θ) exp

(
−
NG∑
i=1

−ŵ(xi) log f(xi|θ)

)

=π(θ) exp

(
−
NG∑
i=1

`IW (xi; θ)

)
,



for `IW (xi; θ) := −ŵ(xi) log f(xi|θ) and ŵ(xi) = pD(xi)/pG(xi). The next theorem shows that such a posterior given observations
from pG has the same asymptotic distribution as the standard Bayes posterior given samples from pD would have, and therefore we
consider this posterior to be asymptotically calibrated.

We give here the formal statement of Theorem 1. Below D−→ denotes convergence in distribution.

Theorem 1. Let the regular conditions in (Chernozhukov and Hong, 2003; Lyddon et al., 2018) hold. Consider θ̂
(N)
IW :=

argminθ∈Θ

∑N
i=1 `IW (xi; θ), xi

i.i.d.∼ pG and θ̂(N)
0 := argminθ∈Θ

∑N
i=1 `0(xi; θ), xi

i.i.d.∼ pD where `0(x; θ) := − log f(x; θ).
Then both θ̂(N)

0 and θ̂(N)
IW are consistent estimates of θ∗0 := argminθ∈Θ

∫
`0(x; θ)dPD(x). Moreover there exists a non-singular matrix

J−1 such that we have under the importance weighted Bayesian posterior πIW (θ|x1:N )

√
N
(
θ − θ̂(N)

IW

)
D−→ N

(
0, J−1) ,

almost surely w.r.t. x1:∞
1 while under the standard Bayesian posterior π(θ|x1:N )

√
N
(
θ − θ̂(N)

0

)
D−→ N

(
0, J−1) ,

almost surely w.r.t. x1:∞.

Proof. Firstly, define

θ∗IW := argmin
θ∈Θ

∫
`IW (x;θ)dPG(x), JIW (θ) :=

∫
∇2
θ`IW (x; θ)dPG(x).

Then Chernozhukov and Hong (2003); Lyddon et al. (2018) show that under regularity conditions the following asymptotic result holds

√
N
(
θ − θ̂(N)

IW

)
D−→ N

(
0, JIW (θ∗IW )

−1
)

as N →∞ when θ is distributed according to the general Bayesian posterior almost surely w.r.t. x1:∞. Similarly, if we define

J0(θ) :=

∫
∇2
θ`0(x; θ)dPD(x),

then we have that under the standard Bayesian posterior (Chernozhukov and Hong, 2003; Kleijn et al., 2012; Lyddon et al., 2018)

√
N
(
θ − θ̂(N)

0

)
D−→ N

(
0, J0 (θ

∗
0)
−1
)

almost surely w.r.t. x1:∞. Now it follows from the importance sampling identity that

θ∗IW = argmin
θ∈Θ

∫
`IW (x; θ)dPG(x) = argmin

θ∈Θ

∫
`0(x; θ)dPD(x) = θ∗0 ,

JIW (θ) =

∫
∇2
θ`IW (x; θ)dPG(x) =

∫
ŵ(x)∇2

θ`0(x; θ)dPG(x) =

∫
∇2
θ`0(x; θ)dPD(x) = J0(θ)

Moreover θ̂(N)
0 and θ̂(N)

IW are also consistent estimates of θ∗0 under the same regularity conditions. This establishes the result.

B.6.1 Finite Sample Importance-Weighted Bayesian posterior

To complement the asymptotic results connecting the importance weighted general Bayesian posterior given data from pG and the standard
Bayesian pD we can consider the difference between these two for finite n = m. This is formulated in the following proposition.

Proposition 4. The expected KLD beween standard Bayesian posterior π(θ|x1:n) and its importance weighted approximation
πIW (θ|z1:m) in expectation over the generating distributions for x1:n ∼ PD and z1:m ∼ PG, for n = m is

Ex∼pD [Ez∼pG [KLD(π(θ|x1:n)||πIW (θ|z1:m)]]

=nEx∼pD
[
Eθ∼π(·|x1:n)

[(
log f(x; θ)− Ex′∼pD

[
log f(x′; θ)

])]]

1πIW (θ|x1:N ) and π(θ|x1:N ) are here interpreted as random probability measures, and functions of the random observations x1:N .



Proof. We have

Ex∼pD [Ez∼pG [KLD(π(θ|x1:n)||πIW (θ|z1:m)]]

=Ex∼pD
[
Ez∼pG

[∫
π(θ|x1:n) log

π(θ|x1:n)

πIW (θ|z1:m)
dθ

]]
=Ex∼pD

[
Ez∼pG

[
Eπ(θ|x1:n)

[
n∑
i=1

log f(xi; θ)−
m∑
j=1

ŵ(zi) log f(zi; θ)

]]]
.

Now by Fubini we can reorder these integrals assuming that they all exist

=Ex∼pD

[
Eθ∼π(·|x1:n)

[(
n∑
i=1

log f(xi; θ)−
m∑
j=1

Ez∼pG [ŵ(zi) log f(zi; θ)]

)]]

=Ex∼pD

[
Eθ∼π(·|x1:n)

[(
n∑
i=1

log f(xi; θ)−mEx′∼pD
[
log f(x′; θ)

])]]
.

Now assuming n = m, we have

=Ex∼pD

[
Eθ∼π(·|x1:n)

[
n∑
i=1

(
log f(xi; θ)− Ex′∼pD

[
log f(x′; θ)

])]]
=nEx∼pD

[
Eθ∼π(·|x1:n)

[(
log f(x; θ)− Ex′∼pD

[
log f(x′; θ)

])]]
.

C EXPERIMENTS

C.1 EXPERIMENTAL DETAILS

Please refer to Table 4 for an overview of the data sets used. We considered a random 80/20 train test split for all data sets except for
MNIST for which the default split was used.

Data # training observations # features prediction problem
Iris 150 4 3-class classification
tgfb 262 7 regression
Boston 506 10 regression
Breast 569 30 binary classification
Banknote 1372 4 binary classification
MNIST 60000 784 10-class classification

Table 4: Characteristics of the analysed data sets

We obtained the code for PrivBayes from https://github.com/DataResponsibly/DataSynthesizer, and the code for
DPCGAN from https://github.com/ricardocarvalhods/dpcgan. This code was used and changed to write the code for
DPGAN. For the logistic regression alternatives we use an adaption of the sklearn implementation. DPGAN was trained on labelled
data by concatenating the features with the one hot encoding of the labels. Our implementation will be made available online. We train
different downstream tasks on the synthetic data and test them on test data to ensure their utility for the setting of supervised learning. The
downstream algorithms were trained using sklearn with default parameters.

Hyperparameter tuning is a non-private operation as it queries private data to evaluate the model at validation time. To ensure that we do
not undermine the performance of the baselines we tuned them for ε = 1., and chose default parameters for our method. PrivBayes is
trained in correlated attribute mode, and with optimal bandwidth computation. For the GAN alternatives, we tuned the norm clip (1.0, 0.5),
the batch size (32, 64), and number of epochs (50, 100) with grid search on a validation set (10% split of training). The noise multiplier
was chosen such that the desired privacy budget was reached. The models were then retrained on the full training data set. Note that
these hyperparameters are chosen smaller than in a non-private setting as the noise to be added would otherwise explode. The optimal
hyperparameters can be found in the GitHub repository. Further we chose learning rate of the discriminator and generator as 0.15, and the

https://github.com/DataResponsibly/DataSynthesizer
https://github.com/ricardocarvalhods/dpcgan


number of hidden dimensions as d following Jordon et al. (2019). For the MNIST experiment, we chose to use the hyperparameters found
by Torkzadehmahani et al. (2019). The regularisation parameter of the logistic regression for weight estimation was chosen from 0.1, 1, 2.

The MLP for likelihood ratio estimation was computed based on the tensorflow and tensorflow_privacy package. To ensure
the privacy of the MLP, we started with a configuration of one epoch, a batch size of 1, an L2 norm clip of 1, a noise multiplier of 5.2, 20
microbatches and a learning rate of 0.1. We computed the ε using built-in functions and increased/decreased the noise multiplier and
the number of epochs until the desired privacy level was reached. We chose NS = ND unless otherwise mentioned. To compute the
output-noised weights we computed the largest NS such that the scale restriction was satisfied and conducted the downstream analysis on
this smaller dataset.

C.2 COMPUTATIONAL TIME OF IMPORTANCE WEIGHT ESTIMATION

Please refer to Table 5 for an overview of the additional time needed to compute the importance weights. All experimental results were
computed by training on a single Tesla V100 GPU. We observe that the estimation of the importance weights comes with negligible
computational overhead.

weighting Iris Banknote Housing Breast MNIST
BetaNoised 0.0064±0.0002 0.0084±0.0002 0.0133±0.0011 0.0824±0.0206 51.5605±9.0042
BetaDebiased 0.0237±0.0125 0.0112±0.0003 0.0742±0.0083 0.1856±0.0858 59.0723±10.5120
DP-MLP 0.8338±0.0964 5.4649±0.0654 1.7303±0.1104 2.9363±0.1208 87.2693±4.7303
Discriminator 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0001
LogReg 0.0071±0.0004 0.0099±0.0003 0.0143±0.0012 0.0910±0.0210 52.0331±9.1285
MLP 0.7741±0.1436 1.5895±0.0261 1.7491±0.1414 1.4480±0.1441 30.1968±6.3155

Table 5: Additional computational time in seconds needed for the computation of importance weights averaged over 10
seeds and SDGP for ε = 1.

C.3 CHOICE OF PRIVACY SPLIT

In Figure 3, we plot the change in evaluation metrics for different values of privacy budget splits. We notice that the impact of the split
parameter decreases the larger ε is. Similarly, the variability in the metrics for different δ splits decreases, the larger εIW is, where εIW
denotes the privacy budget dedicated to the importance weight estimation. While a larger δ split of 30-50% seems beneficial for DP-MLP,
the fraction of ε dedicated to the importance weighting model should be chosen relatively small, i.e. 10%. Note that we chose these default
values based on their performance on the Adult, Credit and Spam data set. Tuning them to the underlying data and task characteristics will
be able to improve their results. As hyperparameter tuning is an unsolved problem in DP, we leave the procedure for choosing the optimal
privacy split per data set for future work. We note that an additional intricacy appears in DP because of the noise injection which increases
the variability of the model’s performances.

C.4 MSE OF IMPORTANCE WEIGHT ESTIMATION

For each of our experiments, we compute the mean squared error between the privatised parameters of the logistic regression for
importance weight estimation and the parameters of an unperturbed logistic regression trained on the private data. Please refer to Table 6
for the results. We observe that debiasing almost always decreases the MSE in the low-privacy regimes. For large privacy budgets, the
scale of the perturbations can be negligible for low-dimensional data sets which is why both approaches perform similarly on Iris and
Banknote, but debiasing still helps with larger data sets such as Breast.

C.5 BAYESIAN UPDATING EXPERIMENTAL DETAILS

In addition to the logistic regression ROC-AUC score distributions presented in the main body of the paper, we applied importance
weighted posteriors to updating and learning the parameters of linear regression and multinomial logistic regression models applied to the
TGFB and Iris datasets respectively, see Figures 4a and 4b. It can be seen that in the case of linear regression, the DP-MLP and MLP IW
methods are again very effective, with the performance improving across all SDGPs. Other methods again tend to reduce variance in
the results whilst not damaging performance and so can be seen to be effective in at least ensuring greater robustness and consistency
when learning under synthetic data. In the case of the Iris data, we calculated 1 vs all ROC-AUC scores for each class separately, then
averaged these per-class ROC-AUCs to get a single multi-class average ROC-AUC. Again, MLP and DP-MLP are stand-out in their
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Figure 3: Multiple metrics measured across a range of privacy splits on Breast and Boston averaged over 10 seeds, and
displayed with standard errors. The maximum mean discrepancy (MMD) was included as a measure of divergence between
the weighted SDGP and the test distribution.



ε = 1 ε = 6SDGP data BetaNoised BetaDebiased BetaNoised BetaDebiased
CGAN Breast 1.4833±0.9603 0.0775±0.0197 0.0024±0.0006 0.0020±0.0004

Banknote 0.0420±0.0211 0.0413±0.0196 0.0014±0.0007 0.0014±0.0007

Iris 8.7522±4.9893 3.4687±1.3044 0.1160±0.0240 0.1290±0.0311
GAN Housing 8.2081±7.7702 1.4406±0.8314 3.7916±3.3246 1.5479±1.0430

DPCGAN Breast 0.0582±0.0165 0.0445±0.0162 0.0015±0.0003 0.0014±0.0003

Banknote 0.0420±0.0211 0.0413±0.0196 0.0022±0.0013 0.0021±0.0012

Iris 0.7834±0.2341 1.2300±0.7050 0.2502±0.1627 0.2806±0.1760
DPGAN Breast 6.0487±3.7927 3.7629±2.2881 0.0251±0.0245 0.0238±0.0234

Banknote 0.0582±0.0353 0.0610±0.0397 0.0062±0.0057 0.0061±0.0056

Iris 2.6486±1.3518 1.3698±1.1554 0.0741±0.0228 0.0864±0.0274
Housing 5.9175±2.8546 0.8398±0.6328 1.9044±1.1426 2.1111±1.3450

Table 6: Mean squared error averaged over 10 runs with standard errors reported in brackets for (ε = 1, δ = 10−5) and
(ε = 6, δ = 10−5) where εIW = 0.1ε.

performance, significantly improving the performance measured by this metric, especially under synthetic data from the CGAN, DPCGAN
and PrivBayes generators. Similar gains can be seen across the majority of the methods for the DPCGAN, especially at the higher ε = 6.

All of these models were implemented in the Turing.jl PPL Ge et al. (2018). We then ran an experiment for each model and dataset
on a defined grid across all seeds, synthetic generators and ε values. For each combination, we generated 10,000 samples across 4 chains
(not counting 1,000 discarded warm-up samples per chain) for each of the importance weighting methods, as well as once for a model fit
on the synthetic data with its standard non-weighted posterior, and once for the real data. We used Turing’s implementation of the NUTS
sampling algorithm with a target acceptance ratio of 0.65 for sampling the linear regression models’ parameters, and for the logistic and
multinomial logistic regression models we used HMC with a leapfrog step size of 0.05 and 10 leapfrog steps per iteration. The logistic
and multinomial logistic regression models’ coefficients (including intercepts) were given centred Normal priors with σ = 1. The linear
regression models’ coefficient priors were given the same centred Normal priors with σ = 1; its variance was given a non-informative
prior via a truncated Normal distribution ensuring positivity with σ = 10.

We then took all 10,000 samples and calculated our evaluation metrics on the test set for each sample, storing all of these. We then present
the distributions of metric scores that arise in the included box-plot figures.

C.6 ILLUSTRATIVE EXAMPLE OF THE IMPLICATIONS OF BIAS MITIGATION

Figure 5: Illustrative example of debiasing with
IW on PrivBayes synthesised Banknote data.

In Figure 5, we visualise the benefit of debiasing: We fitted a logistic regression
as a downstream classifier on the private data to get the true β coefficients. The
predicted β coefficients are estimated by training the logistic classifier on the
importance weighted synthetic data. Each dot in the figure plots one dimension
of the predicted β coefficients against its true counterpart for one training run
(out of ten). An optimal classifier would reconstruct the true coefficients. In
this case all lines would be on the diagonal. An unbiased estimator would on
average reconstruct the true coefficients: For each true β coefficient, the predicted
coefficients would be centred around the true value. We observe that coefficients
learned without importance weighting exhibit the largest distance to the diagonal
line, while the importance weighting alternatives push the dots closer to the
diagonal line. Our method, DP-MLP, is particularly successful in decreasing the
bias in the β coefficients.

C.7 COMPLETE UCI RESULTS

The complete experimental results on the UCI data sets can be found in Tables 7 to 10. Each table displays the performance of the different
weight estimators for private and non-private synthetic data generative models for ε ∈ {1, 6}, εIW = 0.1ε and δIW = 0.3δ. We observe
that importance weighting brings significant gains especially in low privacy regimes. For high privacy regimes this effect is reduced as the
SDGP gets closer to the DGP.
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SDGP CGAN DPCGAN DPGAN PrivBayes

ε
=

1

M
L

P-
R

O
C

-A
U

C
↑ None 0.4619±0.1010 0.4717±0.1103 0.5357±0.0752 0.5243±0.1299

BetaNoised 0.5824±0.0931 0.5841±0.0831 0.5487±0.0803 0.6651±0.0884

BetaDebiased 0.5669±0.1237 0.5913±0.1136 0.5998±0.1141 0.5005±0.0793
DP-MLP 0.6299±0.0984 0.5725±0.0859 0.5448±0.0912 0.6143±0.0374
Discriminator 0.5809±0.0840 0.5995±0.0982 0.6475±0.0701 -
LogReg 0.4980±0.0780 0.4908±0.0950 0.4806±0.0806 0.6245±0.1235
MLP 0.7230±0.0791 0.6273±0.0988 0.5770±0.1199 0.6778±0.0923

β
M

SE
↓

None 1.3594±0.3789 1.0460±0.2457 3.8955±0.9764 0.3511±0.0753
BetaNoised 1.4944±0.2321 1.1133±0.1911 4.1565±1.0469 0.4739±0.0469
BetaDebiased 1.3682±0.3080 1.3347±0.2830 4.1694±0.9246 0.8147±0.1690
DP-MLP 0.6109±0.0481 1.0663±0.1411 4.4986±1.2881 0.1962±0.0413

Discriminator 1.0454±0.3012 0.9404±0.1024 3.9049±0.6010 -
LogReg 1.3345±0.2725 0.9557±0.1356 4.1971±1.1035 0.3659±0.0660
MLP 0.6091±0.0546 0.8316±0.1630 4.5109±1.3057 0.1551±0.0162

W
ST
↓

None 0.7226±0.0543 0.7448±0.0423 0.7919±0.0458 0.5055±0.0111
BetaNoised 0.2771±0.0490 0.1014±0.0519 0.1893±0.0266 0.1412±0.0493
BetaDebiased 0.2340±0.0210 0.0989±0.0062 0.1457±0.0143 0.1059±0.0032

DP-MLP 0.3960±0.0561 0.2376±0.0196 0.2613±0.0627 0.3451±0.0253
Discriminator 0.2698±0.0383 0.1696±0.0371 0.1003±0.0003 -
LogReg 0.2341±0.0687 0.1444±0.0406 0.1611±0.0178 0.3531±0.0357
MLP 0.2677±0.0693 0.0967±0.0287 0.0752±0.0261 0.1396±0.0139

ε
=

6

M
L

P-
R

O
C

-A
U

C
↑ None 0.4662±0.1039 0.5202±0.0928 0.5252±0.0844 0.4875±0.1139

BetaNoised 0.5842±0.0900 0.5531±0.1093 0.5603±0.0980 0.6218±0.1304

BetaDebiased 0.6029±0.1100 0.6992±0.0801 0.6445±0.0906 0.5388±0.1258
DP-MLP 0.6007±0.1060 0.6054±0.0951 0.5181±0.0957 0.5639±0.0483
Discriminator 0.5894±0.0829 0.5806±0.1014 0.5909±0.0903 -
LogReg 0.5073±0.0852 0.5353±0.0793 0.4934±0.1051 0.7088±0.0843
MLP 0.7206±0.0774 0.7118±0.0774 0.5923±0.1130 0.6734±0.0881

β
M

SE
↓

None 1.4111±0.3882 1.0262±0.1866 2.0710±0.3284 0.2650±0.0610
BetaNoised 1.2894±0.2726 0.9507±0.3017 2.8284±1.0195 0.3338±0.0701
BetaDebiased 1.2679±0.2854 0.9511±0.3113 2.8256±1.0359 0.3492±0.0719
DP-MLP 0.5928±0.0682 0.7773±0.2286 4.1112±1.1372 0.2559±0.0527

Discriminator 1.0434±0.3014 0.9449±0.2838 2.1203±0.5427 -
LogReg 1.2606±0.2771 0.9604±0.3155 2.8409±1.0311 0.3603±0.0806
MLP 0.6174±0.0523 0.5102±0.1630 3.9403±1.1462 0.1283±0.0252

W
ST
↓

None 0.7399±0.0445 0.6598±0.1077 0.6770±0.0379 0.4255±0.0208
BetaNoised 0.2703±0.0492 0.3032±0.0697 0.2622±0.0229 0.4467±0.0200
BetaDebiased 0.3035±0.0601 0.3171±0.0746 0.2770±0.0332 0.3383±0.0070

DP-MLP 0.4507±0.0722 0.5374±0.0654 0.4445±0.0635 0.4850±0.0160
Discriminator 0.2134±0.0419 0.2168±0.0032 0.2178±0.0037 -
LogReg 0.3090±0.0612 0.2836±0.0742 0.2601±0.0262 0.4591±0.0121
MLP 0.2064±0.0819 0.1343±0.0299 0.2711±0.0235 0.1981±0.0192

Table 7: Results on Iris averaged over 10 seeds.



SDGP CGAN DPCGAN DPGAN PrivBayes

ε
=

1

M
L

P-
R

O
C

-A
U

C
↑ None 0.7408±0.0522 0.8546±0.0213 0.6863±0.0436 0.7630±0.0495

BetaNoised 0.7469±0.0522 0.8495±0.0274 0.6063±0.0510 0.8943±0.0173
BetaDebiased 0.7864±0.0888 0.8729±0.0310 0.5868±0.1005 0.7632±0.0517
DP-MLP 0.7313±0.0613 0.7697±0.0419 0.5657±0.0570 0.8953±0.0299

Discriminator 0.7511±0.0523 0.8695±0.0167 0.7114±0.0424 -
LogReg 0.7986±0.0391 0.8172±0.0327 0.6034±0.0534 0.9102±0.0129
MLP 0.7253±0.0521 0.8291±0.0333 0.5974±0.0627 0.8594±0.0231

β
M

SE
↓

None 15.3278±2.5238 11.0215±1.8377 39.3243±3.7708 8.1724±0.3987
BetaNoised 11.7636±2.1960 8.4298±1.0383 35.2862±4.0365 5.7001±0.1885
BetaDebiased 8.4946±1.7858 8.3508±2.3127 32.9909±5.9024 6.6862±0.1458
DP-MLP 14.6644±2.9599 17.1597±2.5448 36.4618±4.1011 3.5519±0.2895

Discriminator 14.9537±2.5553 12.5471±2.3124 30.9282±5.4283 -
LogReg 11.7777±2.2000 8.4760±1.0406 35.2964±4.0396 5.6751±0.1785
MLP 15.4584±3.0826 17.9390±2.4926 35.5211±4.2147 2.6286±0.3761

W
ST
↓

None 0.6702±0.0282 0.4746±0.0214 0.7442±0.0333 0.3237±0.0162
BetaNoised 0.3106±0.0475 0.2509±0.0436 0.4355±0.0456 0.2318±0.0035
BetaDebiased 0.3837±0.0990 0.4015±0.0766 0.4618±0.0832 0.2369±0.0061
DP-MLP 0.1418±0.0283 0.2035±0.0427 0.4298±0.0433 0.0456±0.0061

Discriminator 0.6366±0.0273 0.3382±0.0399 0.1087±0.0415 -
LogReg 0.3092±0.0470 0.2508±0.0432 0.4348±0.0460 0.2348±0.0034
MLP 0.0494±0.0141 0.0913±0.0259 0.3860±0.0452 0.0021±0.0004

ε
=

6

M
L

P-
R

O
C

-A
U

C
↑ None 0.7212±0.0491 0.8958±0.0179 0.8323±0.0301 0.8357±0.0354

BetaNoised 0.7811±0.0423 0.8771±0.0227 0.8216±0.0320 0.8588±0.0295
BetaDebiased 0.6951±0.0958 0.8992±0.0334 0.7061±0.1083 0.8136±0.0648
DP-MLP 0.6879±0.0547 0.8582±0.0330 0.7445±0.0511 0.8899±0.0148

Discriminator 0.7332±0.0529 0.8976±0.0148 0.8071±0.0362 -
LogReg 0.7953±0.0421 0.8867±0.0207 0.7871±0.0351 0.8668±0.0336
MLP 0.6960±0.0456 0.8599±0.0291 0.8025±0.0212 0.8404±0.0400

β
M

SE
↓

None 19.2959±4.0480 8.3074±1.6718 18.0835±2.5051 7.9052±0.3837
BetaNoised 14.4350±2.3116 6.4683±0.9572 23.0590±3.2307 5.4736±0.1792
BetaDebiased 13.1578±2.9727 5.6890±1.0695 19.1627±6.1430 6.4776±0.1134
DP-MLP 18.7059±3.0658 8.8820±1.4421 24.0433±3.4451 3.0883±0.2703

Discriminator 18.9194±4.0483 8.0682±1.5928 13.6267±1.9313 -
LogReg 14.4464±2.3126 6.4701±0.9581 23.0696±3.2327 5.4706±0.1781
MLP 18.2400±3.1143 9.7111±1.4901 23.0268±3.2550 2.4589±0.3184

W
ST
↓

None 0.6642±0.0270 0.4723±0.0294 0.5645±0.0219 0.2928±0.0118
BetaNoised 0.2507±0.0384 0.3078±0.0231 0.2608±0.0370 0.2269±0.0036
BetaDebiased 0.2316±0.0670 0.2892±0.0442 0.3029±0.0883 0.2176±0.0076
DP-MLP 0.1395±0.0262 0.0957±0.0183 0.1730±0.0413 0.1142±0.0017

Discriminator 0.6303±0.0278 0.3596±0.0470 0.0436±0.0100 -
LogReg 0.2504±0.0384 0.3083±0.0231 0.2607±0.0370 0.2272±0.0035
MLP 0.0658±0.0208 0.0409±0.0104 0.0787±0.0325 0.2025±0.0004

Table 8: Results on Banknote averaged over 10 seeds.



SDGP GAN DPGAN PrivBayes
ε

=
1

M
L

P
M

SE
↓

None 1.4464±0.1591 1.8851±0.5262 0.1973±0.0108
BetaNoised 0.6455±0.0942 1.0057±0.1973 0.2200±0.0154
BetaDebiased 0.6421±0.1290 0.9024±0.1244 0.2139±0.0122
DP-MLP 0.8279±0.0974 0.9462±0.1702 0.1877±0.0174

Discriminator 1.5126±0.1639 1.6256±0.2394 -
LogReg 0.6292±0.0909 1.0606±0.2648 0.2515±0.0305
MLP 0.6266±0.1273 1.0979±0.2225 0.1697±0.0079

β
M

SE
↓

None 0.1017±0.0118 0.1867±0.0434 0.0011±0.0002

BetaNoised 0.0601±0.0172 0.1761±0.0948 0.0088±0.0028
BetaDebiased 0.0608±0.0190 0.0667±0.0188 0.0077±0.0022
DP-MLP 0.0363±0.0192 0.1530±0.0812 0.0048±0.0024
Discriminator 0.0940±0.0100 0.1567±0.1825 -
LogReg 0.0707±0.0194 0.0749±0.0279 0.0037±0.0016
MLP 0.0058±0.0007 0.1476±0.0804 0.0008±0.0002

W
ST
↓

None 1.3060±0.0319 2.2013±0.0945 1.3938±0.0231
BetaNoised 1.0060±0.0023 2.0922±0.0419 1.3009±0.0338
BetaDebiased 1.0023±0.0009 2.0930±0.0393 1.2705±0.0290
DP-MLP 1.0036±0.0015 2.0542±0.0184 1.0265±0.0035

Discriminator 0.9472±0.0764 2.0145±0.0141 -
LogReg 1.0070±0.0042 2.2051±0.0819 1.4078±0.0492
MLP 1.0001±0.0001 2.0350±0.0158 1.0072±0.0009

ε
=

6

M
L

P
M

SE
↓

None 1.8218±0.1514 1.8016±0.1771 0.1633±0.0074
BetaNoised 0.5318±0.0806 0.6529±0.0814 0.1940±0.0156
BetaDebiased 0.5647±0.1065 0.9025±0.1462 0.1810±0.0131
DP-MLP 0.9737±0.1178 1.0902±0.1486 0.1428±0.0068

Discriminator 1.8398±0.1446 1.8631±0.1986 -
LogReg 0.5501±0.0540 0.9050±0.1553 0.1934±0.0224
MLP 0.4725±0.0736 0.7464±0.1185 0.1581±0.0076

β
M

SE
↓

None 0.1230±0.0110 0.1450±0.0174 0.0009±0.0002
BetaNoised 0.0695±0.0203 0.0608±0.0231 0.0022±0.0006
BetaDebiased 0.0693±0.0207 0.0613±0.0240 0.0018±0.0004
DP-MLP 0.0030±0.0006 0.0354±0.0112 0.0008±0.0002

Discriminator 0.1135±0.0098 0.2274±0.0375 -
LogReg 0.0697±0.0207 0.0606±0.0237 0.0018±0.0004
MLP 0.0063±0.0011 0.0212±0.0060 0.0008±0.0001

W
ST
↓

None 1.3727±0.0249 1.5681±0.0368 1.3306±0.0271
BetaNoised 1.0031±0.0012 1.0615±0.0304 1.3906±0.0410
BetaDebiased 1.0031±0.0012 1.0598±0.0286 1.4106±0.0432
DP-MLP 1.0140±0.0032 1.0338±0.0126 1.2405±0.0133

Discriminator 1.0481±0.0752 1.3844±0.0654 -
LogReg 1.0031±0.0012 1.0623±0.0298 1.4033±0.0406
MLP 1.0001±0.0000 1.0081±0.0045 1.0097±0.0010

Table 9: Results on Boston averaged over 10 seeds.



SDGP CGAN DPCGAN DPGAN PrivBayes

ε
=

1

M
L

P-
R

O
C

-A
U

C
↑ None 0.6801±0.0655 0.6374±0.0421 0.6791±0.0966 0.8366±0.0579

BetaNoised 0.7732±0.0589 0.6110±0.0477 0.6546±0.0727 0.7076±0.0983
BetaDebiased 0.7151±0.1146 0.6820±0.0510 0.7173±0.0842 0.8557±0.0765

DP-MLP 0.7166±0.1038 0.7942±0.0404 0.5686±0.0823 0.7353±0.0887
Discriminator 0.8607±0.0485 0.6992±0.0839 0.7290±0.0720 -
LogReg 0.7141±0.0755 0.6631±0.0469 0.6484±0.1081 0.7618±0.1019
MLP 0.6942±0.1262 0.7730±0.0412 0.7358±0.1017 0.7573±0.0738

β
M

SE
↓

None 2.3646±0.2983 2.0643±0.2012 4.9828±1.5701 2.3904±0.1050
BetaNoised 1.4900±0.1807 2.7532±0.2650 2.5025±0.3763 2.1144±0.2400
BetaDebiased 1.5413±0.2378 2.8337±0.3842 2.2324±1.0446 1.8266±0.2392

DP-MLP 0.9977±0.1617 2.3965±0.2083 3.8865±0.6043 2.3130±0.2195
Discriminator 1.8554±0.3263 1.4591±0.1837 4.0612±0.9523 -
LogReg 1.1940±0.1610 2.6934±0.2667 2.2156±0.3366 1.5333±0.2138
MLP 1.0120±0.1383 2.3999±0.2040 3.8343±0.7032 1.6581±0.2020

W
ST
↓

None 1.8426±0.1329 2.3665±0.0982 1.5853±0.1333 2.1117±0.1740
BetaNoised 1.3109±0.0507 1.4337±0.1114 2.2232±0.2325 1.2322±0.0823
BetaDebiased 1.0649±0.0120 1.8922±0.1237 1.9913±0.3507 1.1825±0.0933

DP-MLP 1.4737±0.1027 1.4570±0.1492 1.0315±0.1415 1.2190±0.0795
Discriminator 1.8814±0.1682 1.0007±0.0004 1.0001±0.0001 -
LogReg 1.4374±0.0467 1.6451±0.1168 2.2953±0.2121 1.4663±0.1152
MLP 1.3056±0.0524 1.6129±0.1404 1.0709±0.1579 1.4141±0.1216

ε
=

6

M
L

P-
R

O
C

-A
U

C
↑ None 0.6177±0.0737 0.9790±0.0058 0.9756±0.0042 0.9435±0.0152

BetaNoised 0.7185±0.0898 0.9715±0.0031 0.9710±0.0065 0.9699±0.0121
BetaDebiased 0.9070±0.0434 0.9723±0.0033 0.9724±0.0066 0.9820±0.0064

DP-MLP 0.7203±0.1028 0.9703±0.0040 0.9728±0.0059 0.9754±0.0063
Discriminator 0.8712±0.0471 0.9763±0.0071 0.9737±0.0065 -
LogReg 0.6869±0.0760 0.9706±0.0033 0.9719±0.0049 0.9825±0.0061
MLP 0.6899±0.1290 0.9584±0.0080 0.9767±0.0043 0.9506±0.0250

β
M

SE
↓

None 2.3602±0.4035 0.9886±0.2287 1.0653±0.1229 0.9142±0.1575

BetaNoised 1.2400±0.1637 1.0329±0.0732 1.1586±0.1312 1.0465±0.1358
BetaDebiased 0.9388±0.0802 1.0150±0.0783 1.1617±0.1936 0.9843±0.1766
DP-MLP 0.9949±0.1486 1.0119±0.0698 0.8969±0.0837 1.3442±0.0900
Discriminator 1.7588±0.3421 0.8539±0.2323 0.5423±0.0457 -
LogReg 1.2221±0.1598 1.0310±0.0719 1.1484±0.1276 1.0234±0.1274
MLP 1.0845±0.1210 1.0953±0.0844 0.9275±0.0938 1.5354±0.1343

W
ST
↓

None 1.8436±0.1257 1.3378±0.0282 1.6449±0.0849 2.0437±0.2188
BetaNoised 1.4164±0.0483 0.6526±0.0463 1.5485±0.0635 1.4808±0.0943
BetaDebiased 1.3314±0.0459 0.6641±0.0482 1.5156±0.0935 1.4133±0.1346

DP-MLP 1.7176±0.1206 0.7931±0.0380 1.5551±0.0826 1.4923±0.0685
Discriminator 1.8523±0.1553 0.2363±0.0425 1.1020±0.0158 -
LogReg 1.4140±0.0493 0.6597±0.0470 1.5281±0.0622 1.4824±0.0952
MLP 1.3487±0.0591 0.3762±0.0383 1.2309±0.0387 1.3406±0.0792

Table 10: Results on Breast averaged over 10 seeds.



C.8 COMPARISON TO EXPERIMENTAL RESULTS REPORTED BY RELATED WORK

We compare our results to PATE-GAN and DPGAN as DP synthetic data generators (Jordon et al., 2019; Xie et al., 2018). The PATEGAN
implementation is taken from https://github.com/vanderschaarlab/mlforhealthlabpub. For DPGAN we chose the
code from the DataSynthesizer package. In the implementation of the PATE-GAN method, Jordon et al. (2019) generate 50 independent
synthetic data sets for each function call, returning the best synthetic data set as defined by a comparison with non-private validation data.
The relative level of privacy violation in these situations is unknown, making interpretation of results and comparison between methods
in tables and figures challenging. On re-implementing the methods to generate DP synthetic data, we find a substantial and significant
drop in performance, which nonetheless is improved through bias mitigation. Please see the GitHub repository for further results and an
illustration why PATE GAN underperforms.

https://github.com/vanderschaarlab/mlforhealthlabpub
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