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Abstract

Living with Type 1 Diabetes (T1D) is a constant balancing act, requiring patients
to make complex decisions based on endless streams of data. While Artificial
Pancreas Systems (APS) powered by Reinforcement Learning (RL) have shown
promise in automating insulin delivery, their "black-box" nature makes it hard
for patients and doctors to trust them fully. This paper presents LLM-T1D, a
groundbreaking approach that combines the precision of RL with the clear, human-
like reasoning of Large Language Models (LLMs) to create a more transparent and
reliable insulin pump controller. By training an expert RL system and then distilling
its knowledge into fine-tuned Llama 3.1 8B and Qwen3 8B models using a LoRA
architecture, we developed a controller that not only matches or surpasses the
RL system’s performance but also explains its decisions in plain, understandable
language. Tested on the FDA-approved UVA/Padova T1D simulator, the LLM
controllers deliver excellent blood sugar control while giving patients clear, data-
driven insights they can trust. This hybrid system transforms a complex algorithm
into an approachable "copilot," paving the way for safer, more understandable, and
patient-centered AI solutions for managing chronic conditions like T1D.

1 Introduction

Figure 1: Performance comparison of
glucose control algorithms (MEAN ±
SD)

Type 1 Diabetes (T1D) is a lifelong condition requiring
constant vigilance[1]. Patients must maintain blood glu-
cose between 70–180 mg/dL (3.9–10 mmol/L) by admin-
istering insulin[2, 3]. The proportion of time within this
range, termed Time in Range (TIR)[4] (see Figure3), is
critical, as both hypoglycemia and hyperglycemia can
cause severe, even life-threatening, complications. Man-
aging this balance is difficult, as meals, exercise, stress,
and hormonal shifts all contribute to a heavy mental bur-
den worldwide[5, 6]. Artificial Pancreas Systems (APS)
automate insulin delivery, easing the burden of diabetes
care. While PID and MPC controllers have been effective,
Reinforcement Learning (RL) methods like Proximal Pol-
icy Optimization (PPO) learn personalized dosing directly
from data, handling glucose dynamics without manual
carb counting [7, 8].

A major hurdle for RL-based insulin controllers is trust.
These opaque "black box" algorithms cannot explain why a dose is chosen, making patients and
clinicians wary of handing over such a critical therapy. This lack of transparency remains the key
barrier to AI adoption in life-critical healthcare.
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Figure 2: System Disgram for LLM-T1D

We address this challenge with LLM-T1D, a framework that distills the expertise of high-performing
RL policies into Large Language Models (LLMs) (Figure 2). By training an LLM on RL decisions,
we create a controller that retains performance while explaining its choices in plain, human-readable
language. Our contributions are:

• Hybrid RL LLM Control: A policy distillation method that combines RL’s optimization
with LLM clarity for T1D insulin management.

• Trustworthy and Explainable AI: An LLM controller that explains its insulin dosing,
acting as a reliable "copilot" to foster trust and enable safe oversight.

• Proven Performance and Safety: Validated on FDA-approved UVA/Padova T1D simulator
[9], LLM control matches or surpasses RL baselines while offering decision insights.

• Patient Empowerment: Transparency enhances safety and helps patients better understand
and engage in their own care.

2 Methodology

Our approach bridges the gap between complex numerical optimization and clear, human-readable
reasoning through a multi-stage framework, LLM-T1D, designed to optimize blood glucose control
in Type 1 Diabetes (T1D) management.

2.1 Generating an Expert Policy with Reinforcement Learning

We begin by training an expert control policy using Proximal Policy Optimization (PPO) [10], a
state-of-the-art model-free reinforcement learning (RL) algorithm. The PPO agent is trained in a
simulated environment using the Simglucose simulator, which implements the FDA-approved UVA/-
Padova T1D model [9]. By interacting with simulated T1D patients under diverse and challenging
meal scenarios [11], the agent learns a policy πRL(at | st) that maximizes average rewards. This
results in a robust, optimized policy that serves as the “expert teacher” for our large language model
(LLM) controller.

Figure 3: Glucose levels and Time in Range (TIR) [7]
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2.2 Distilling RL Expertise into an LLM Controller

The core innovation lies in transferring the RL agent’s implicit knowledge into an LLM through
supervised fine-tuning, enabling transparent reasoning. This stage involves three key steps:

• Dataset Generation: We run the trained expert policy πRL for 20,000 of timesteps in the
Simglucose simulator, collecting a large dataset of expert state-action trajectories (st, at, rt).

• JSON Textualization: A deterministic textualization method converts numerical data into
natural language prompts formatted in JSON [12]. Each prompt captures the system’s state,
including current and historical glucose readings and past insulin doses, paired with the
expert action taken by the RL agent. This produces a dataset D = (xt, yt), where xt is the
textualized state and yt is the textualized expert action.

• LLM Fine-Tuning: We fine-tune open-source LLMs (Llama 3 8B and Qwen 8B) using
Parameter-Efficient Fine-Tuning (PEFT) with LoRA [13]. The LLM is trained via
supervised learning to minimize the negative log-likelihood of the expert action yt given the
state prompt xt:

LSFT(θ) = −
∑

(xt,yt)∈D

log πθ(yt | xt)

This process enables the LLM to emulate the expert RL policy’s behavior [14].

To achieve a robust and intelligent system, we combine the strengths of the RL policy and the
fine-tuned LLM into a hybrid controller, enhancing both performance and interpretability.

2.3 Explainable Control for Patient Trust

After producing at, the LLM is prompted to justify its choice, enabling transparency:

{ "context": { "current_glucose": "195 mg/dL",
"trend": "rising rapidly",
"glucose_history": [180,165,150,145],
"last_meal": "30 minutes ago (optional)",
"insulin_on_board": "2.5U" },
"decision": { "action": "Deliver 1.2U correction bolus" },
"instruction": "Explain why this decision was made
in simple terms for a patient." }

The LLM generates a clear rationale (Figure 4,5,6,7), providing the crucial “why” behind each action,
thereby transforming an opaque algorithm into a trusted, collaborative copilot.

3 Results

We validated our framework on the Simglucose implementation [15] of the FDA-approved UVA/-
Padova T1D simulator [9] across the 10-subject adult and 10-subject adolescent cohorts, which
represent the variability of a real T1D population.

Experimental Setup: Models were evaluated over 100 24-hour simulations per subject, using
a challenging meal protocol with a significant amount of carbohydrates daily. We compare four
controllers based on Time in Range (TIR %) and Failure Rate % (severe hypoglycemia):

1. Basal-Bolus Human Error (BBHE), a clinical baseline requiring manual CHO counting with
simulated human error

2. Expert RL (PPO) agent;

3. Fine-tuned Qwen3 8B LLM controller;

4. Fine-tuned LLaMA 3.1 8B controller.

Quantitative Performance: The results, summarized in Table 1 and Figure 1, demonstrate that our
approach achieves explainability without compromising on high performance. The LLaMA 3.1 8B
controller achieves the highest Time in Range (TIR) for the adult cohort (73.5%) and is statistically
comparable to the BBHE baseline, despite requiring no carbohydrate counting, which is a tedious
manual process.. Crucially, it outperforms the standalone RL expert by a small margin, suggesting
the LLM provides a beneficial reasoning layer. It also reduces the rate of catastrophic failures (e.g.,
severe hypoglycemia) compared to the RL expert, highlighting its potential for improved safety.
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Table 1: Performance comparison of glucose control algorithms (Mean ± SD).

Controller Manual
CHO Counting TIR (Adults) (%) TIR (Adolescents) (%) Failure Rate (%)

BBHE (Baseline) Yes 70.2 ± 12.5 71.4 ± 12.3 0.00
RL Expert (PPO) No 69.1 ± 10.5 63.7 ± 14.0 4.93
LLM (Qwen3 8B) No 71.3 ± 9.8 65.1 ± 13.5 2.15
LLM (LLaMA 3.1 8B) No 73.5 ± 9.2 66.8 ± 12.9 1.31

Qualitative Performance: Generating Trust through Explanation: The key result of our work is
the controller’s ability to provide clear, actionable explanations. Figures 4,5,6,7 provide explanations
for the decision, patient-friendly rationales, detailed explanations, and insights and recommendations.
This transforms the patient’s interaction with their device from passive to active understanding.

Figure 4: LLM-Generated Decision / Explanation
Figure 5: Short Explanation (Patient-Friendly Ratio-
nale)

Figure 6: Detailed Explanation (Decision Rationale)
Figure 7: Guidance-Oriented Explanation (Insight
and Recommendation)

4 Insights

While quantitative results confirm strong performance, the greater impact is shifting insulin control
from an opaque black box to a transparent, collaborative partner.

• From Black Box to Glass Box: We build an auditable AI system for healthcare, allowing
patients and clinicians to query model reasoning in real time, enabling safe deployment.

• Catalyst for Adoption and Safety: Explainability fosters clinical acceptance, encouraging
physician prescription and patient adoption. Transparency also acts as a safeguard, surfacing
anomalies hidden in purely numerical controllers.

• Patient Empowerment: LLM-T1D serves as an copilot, providing not only automated
dosing but also clear explanations that educate users and promote active engagement.

5 Conclusion

We introduced a framework for an explainable, trustworthy AI controller for T1D, distilling RL
expertise into an LLM to overcome the long-standing trust barrier in clinical AI. Our controller
delivers strong glycemic control while providing clear, data-driven rationales for its actions. Beyond
performance, it marks progress toward safe, autonomous systems that manage physiological complex-
ity. This work offers a concrete path for translating advanced AI into trust-centered clinical practice,
empowering patients and clinicians, and extending toward personalized medicine beyond T1D.
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Appendix A: Textualization Engine (TE)

The Textualization Engine (TE) is a critical component that bridges the numerical world of Rein-
forcement Learning (RL) with the language-based world of Large Language Models (LLMs). It acts
as a deterministic translator, converting structured numerical state-action data into natural language
prompts that LLMs can process and learn from. RL agents operate on arrays of numbers (e.g., glucose
levels), whereas LLMs reason over text; the TE enables this alignment.

Key Functions

• Dataset Construction: Running an expert RL policy for thousands of steps yields state–
action pairs {(st, at)}. The TE transforms each st into a descriptive text prompt xt and
each at into a target response yt, producing a dataset

D = {(xt, yt)},

which is then used for LLM fine-tuning.
• Structured Prompt Formatting: The TE outputs not just sentences but structured, machine-

readable prompts (often JSON-like). A typical prompt includes:
1. Instruction Block: A directive that defines the LLM’s role and output format (e.g., “You

are an expert insulin dosing assistant. Output must be in Units of insulin.”).
2. Input/State Block: Clearly labeled system state (e.g., glucose: 195 mg/dL, trend: rising,

insulin on board: 2.5 U).
3. Response Block: A placeholder for the LLM’s textualized action.

• Operational Modes:
– State-to-Action: Converts st into a prompt for LLM-only controllers.
– State-and-Action: Encodes both st and a candidate action gt (e.g., from an RL agent)

into a single prompt, enabling the LLM to refine or override RL suggestions in hybrid
architectures.

By systematically translating numerical data into structured prompts, the TE enables the LLM to
absorb the implicit knowledge of an RL policy while providing natural language outputs. This dual
role supports both high-performance control and human-understandable explanations, laying the
foundation for safe and trustworthy AI in healthcare and beyond.

Appendix B: Handling of Different Data Types by the TE

The Textualization Engine (TE) standardizes diverse data types into labeled, human-readable
formats, typically within structured JSON prompts. This ensures that numerical and symbolic
information from the simulation environment is presented to the LLM with sufficient context for
reasoning and learning.

Continuous Values

For continuous variables (e.g., glucose levels), the TE:

• Adds Labels and Units: Each value is paired with descriptive text and its unit. Glucose
values include (mg/dL).

• Provides Contextual Hierarchy: Values are placed in logical groupings to preserve the
system’s structure.

Time-Series Data

Temporal context is critical for detecting trends. The TE:

• Formats as Arrays: Historical measurements are represented as lists (e.g.,
"glucose_history_mg_dL": [180, 165, 150]).
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• Uses Descriptive Labels: Arrays are clearly named so the LLM can recognize sequences
and reason about trends (e.g., rising vs. falling glucose).

By meticulously labeling, structuring, and contextualizing continuous, categorical, and temporal
data, the TE delivers a rich, unambiguous representation of the environment. This allows the LLM
to capture the implicit decision logic of the expert RL policy while producing outputs that remain
interpretable to humans.
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