Efficient Rectified Flow for Image Fusion

Zirui Wang¹, Jiayi Zhang², Tianwei Guan³, Yuhan Zhou², Xingyuan Liu⁴, Minjing Dong¹, Jinyuan Liu²*

¹ City University of Hong Kong ² Dalian University of Technology ³ Chinese University of Hong Kong ⁴ Zhejiang University zrwang23-c@my.cityu.edu.hk xingyuan_lxy@163.com

Abstract

Image fusion is a fundamental and important task in computer vision, aiming to combine complementary information from different modalities to fuse images. In recent years, diffusion models have made significant developments in the field of image fusion. However, diffusion models often require complex computations and redundant inference time, which reduces the applicability of these methods. To address this issue, we propose RFfusion, an efficient one-step diffusion model for image fusion based on Rectified Flow. We incorporate Rectified Flow into the image fusion task to straighten the sampling path in the diffusion model, achieving one-step sampling without the need for additional training, while still maintaining high-quality fusion results. Furthermore, we propose a task-specific Variational Autoencoder (VAE) architecture tailored for image fusion, where the fusion operation is embedded within the latent space to further reduce computational complexity. To address the inherent discrepancy between conventional reconstruction-oriented VAE objectives and the requirements of image fusion, we introduce a two-stage training strategy. This approach facilitates the effective learning and integration of complementary information from multi-modal source images, thereby enabling the model to retain fine-grained structural details while significantly enhancing inference efficiency. Extensive experiments demonstrate that our method outperforms other state-of-the-art methods in terms of both inference speed and fusion quality. Code is available at https://github.com/zirui0625/RFfusion.

1 Introduction

In computer vision, image fusion is an important task aimed at merging two images from different modalities to obtain a fused image that contains complementary information from both modalities. Image fusion has wide applications across various scenarios. Infrared and visible image fusion (IVIF) [1, 2, 3, 4, 5] aims to enhance perception under adverse conditions by integrating the detailed information from visible images with the thermal radiation characteristics of infrared images. Medical image fusion (MIF) [6, 7] focuses on mitigating the information discrepancies between MRI and CT modalities to provide more comprehensive and accurate diagnostic support. Multi-exposure image fusion (MEF) [8, 9] and multi-focus image fusion (MFF) [10, 11] focus on merging images with different exposures and different focal planes, to synthesize high-quality photographic images.

In recent years, with the advent of Denoising Diffusion Probabilistic Models (DDPMs) [12], diffusion-based methods have been widely adopted across various computer vision tasks, including image fusion. DDPMs learn the denoising process from noisy observations back to clean images over the data distribution, thereby acquiring the ability to generate high-quality images.

^{*}Corresponding author.

Compared to traditional fusion approaches [13, 14], diffusion-based methods [15, 16, 17, 18] not only effectively integrate information from multiple source images but also significantly enhance the visual quality of the fused results. Benefiting from the powerful priors encoded in pre-trained diffusion models, these approaches demonstrate great potential in multitask fusion scenarios, where a single unified framework can be adapted to various fusion tasks with remarkable performance.

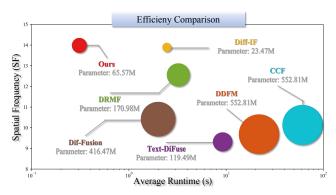


Figure 1: Efficiency comparison with the state-of-the-art diffusion-based methods.

Though diffusion-based methods have

achieved remarkable progress in image fusion tasks, their long inference times pose significant challenges for real-world applications. Recently proposed approaches such as DDFM [15] and CCF [16] introduce fusion priors into the sampling process of diffusion models, effectively improving fusion quality. However, these methods typically require hundreds of sampling steps to achieve satisfactory results. Reducing the number of steps to improve efficiency often leads to a substantial drop in fusion performance. To accelerate inference in diffusion models, several strategies such as distillation and latent space diffusion have been widely explored. Nonetheless, their application to image fusion remains limited. **First**, existing distillation methods can enable single-step sampling but usually require fine-tuning tailored to specific model architectures and datasets, lacking generalization across diverse fusion tasks. **Second**, while latent space diffusion methods based on Variational Autoencoder (VAE) can significantly reduce computational costs, their training objective primarily targets image reconstruction rather than image fusion, leading to considerable challenges when applied directly to fusion scenarios. **Therefore, it is imperative to develop a sampling acceleration method that is tailored to image fusion tasks, capable of preserving fusion quality while maintaining generalizability.**

To address these challenges, we propose a novel method named **RFfusion**, which introduces the Rectified Flow mechanism into image fusion tasks for the first time. RFfusion significantly accelerates the inference process of diffusion models without requiring additional training and exhibits strong generalization across multiple fusion tasks. Specifically, we leverage Rectified Flow to construct a linear trajectory between the input images and the target fused image, embedding prior knowledge of the fused image during the sampling process to achieve efficient and high-quality single-step inference. Moreover, we incorporate the sampling process into the latent space and propose a two-stage training strategy to address the objective mismatch between VAE reconstruction and fusion tasks. In the first stage, we fine-tune the VAE to better capture critical features needed for image fusion. In the second stage, the optimized VAE is integrated into the overall fusion framework for joint training, further enhancing the model's adaptability to fusion scenarios. Extensive experimental results demonstrate that RFfusion not only substantially reduces the number of inference steps and improves computational efficiency, but also outperforms existing state-of-the-art methods across multiple standard image fusion benchmarks. Our contributions can be summarized as:

- We propose a novel Efficient Rectified Flow image fusion (RFfusion) framework that
 enables one-step sampling across various fusion tasks without requiring additional training,
 significantly reducing computational cost and inference time while achieving high-quality
 fused images.
- We introduce the image fusion task into the latent space to effectively reduce computational
 cost. To address the objective discrepancy between the reconstruction-oriented training of
 VAE and the specific requirements of image fusion, we propose a two-stage training strategy
 to enhance the VAE's adaptability to fusion tasks.
- Extensive experiments demonstrate that our method significantly improves inference speed compared to other diffusion-based approaches. Meanwhile, it also achieves superior fusion performance and shows strong adaptability across various fusion tasks, demonstrating excellent generalization capability..

2 Related works

In this section, we first review influential image fusion algorithms from recent years. Then, we introduce the applications of Rectified Flow in various fields, especially in low-level vision.

Image fusion Image fusion combines images from different modalities to create a single image with complementary information. Traditional methods [19, 20, 21] use convolutional neural networks to achieve image fusion. The Transformer [22, 23], has also advanced the field of image fusion, particularly when combined with CNNs for multi-modal fusion [24]. Recently, diffusion models have gained attention in low-level vision tasks [25, 26, 15, 16] for their strong generative power, also being applied to image fusion tasks. DDFM [15], using a Denoising Diffusion Probabilistic Model, has shown promising results in infrared-visible and medical image fusion but struggles with adapting to different scenarios. To address this, CCF [16] proposed a controllable diffusion-based fusion framework, which can optimize the fusion process but still faces challenges like excessive sampling steps.

Rectified flow Liu [27] first proposed the Rectified Flow method, which generates high-quality images by straightening the path between two data distributions, requiring only one or a few sampling steps. InstaFlow [28] applies Rectified Flow to text-to-image (T2I) models, using the same approach to straighten the trajectories of probability flows, enabling it to generate high-quality images in a single step. FlowGrad [29] backpropagates gradients along the ODE trajectory, effectively enabling control over the generated content of a pre-trained Rectified Flow model. Recently, some Rectified Flow-based methods [30, 31, 32, 33] have also been applied to low-level vision tasks for model acceleration. FlowIE [31] constructs a linear many-to-one transport mapping using conditioned Rectified Flow to achieve efficient image enhancement. FluxSR [30] leverages Rectified Flow to distill diffusion model priors, enabling one-step real-world image super-resolution.

3 Preliminary

Rectified Flow Traditional diffusion models are trained by predicting the noise added during the forward process, enabling the model to generate high-quality images from Gaussian noise. However, this process typically requires multiple sampling steps, which significantly prolongs the inference time. In general, the forward process can be represented as:

$$x_t = a_t x_0 + b_t \epsilon, \quad \epsilon \sim \mathcal{N}(0, 1).$$
 (1)

 a_t and b_t satisfy $a_t = 1$, $b_t = 0$ and $a_t = 0$, $b_t = 1$. In DDPM, this formula can be expressed as:

$$x_t = \sqrt{\bar{a}_t} x_0 + \sqrt{1 - \bar{a}_t} \epsilon, \quad \epsilon \sim \mathcal{N}(0, 1).$$
 (2)

Different from DDPM, Rectified Flow treats the forward process as a transformation between two data distributions, which can be seen as a transformation between Gaussian noise and the real image distribution in this case. The goal of Rectified Flow is to train a model v_{θ} to predict the velocity $v_t(x_t)$ along the path at step t as

$$\mathcal{L}_{RF}(\theta) = \mathbb{E}_{t,x_t} \left\| v_{\theta}(x_t, t) - v_t(x_t) \right\|^2. \tag{3}$$

Rectified Flow views the forward process as a straight path between the real data distribution and the noise distribution, and its noise addition formula can be derived through linear interpolation. According to Equation 1, we can derive:

$$x_t = (1 - t)x_0 + t\epsilon, \quad \epsilon \sim \mathcal{N}(0, 1).$$
 (4)

In this case, $v_t(x_t)$ can be expressed as:

$$x_t' = v_t(x_t) = \frac{\epsilon - x_t}{1 - t} = \epsilon - x_0.$$
 (5)

Therefore, according to Equation 3, the training objective of Rectified Flow can be derived as:

$$\mathcal{L}_{RF}(\theta) = \mathbb{E}_{t,x_t,\epsilon} \left\| v_{\theta}(x_t, t) - (\epsilon - x_0) \right\|_2^2.$$
 (6)

By training a neural network on a large-scale dataset, the output of the network, $v_{\theta}(x_t, t)$, is encouraged to closely match the training target $\epsilon - x_0$. This enables the model to find the shortest path between two data distributions, significantly accelerating the sampling process.

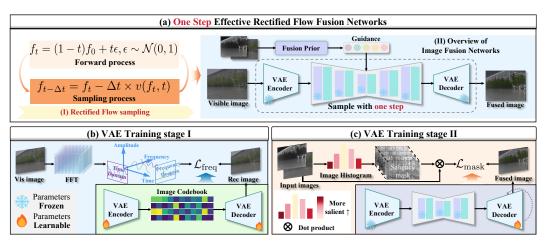


Figure 2: Illustration of the train and inference pipeline of our methods.

Variational Autoencoder In diffusion models, Variational Autoencoders (VAEs) are commonly employed to learn low-dimensional latent representations of data. By encoding images into latent spaces, VAEs enable the diffusion process to operate in a more compact latent space, significantly reducing computational costs while improving modeling efficiency. The training objective of a VAE can be formulated as:

$$Q^* = \arg\min_{E,G,\mathcal{Z}} \max_{D} \mathbb{E}_{x \sim p(x)} \left[\mathcal{L}_{VQ}(E,G,\mathcal{Z}) + \lambda \mathcal{L}_{GAN}(\{E,G,\mathcal{Z}\},D) \right], \tag{7}$$

where E and G represent the encoder and decoder, respectively, \mathcal{Z} denotes the discrete codebook, and D is the GAN discriminator. This formulation allows the VAE to produce compact yet semantically meaningful latent codes, which serve as an efficient and expressive latent space for subsequent diffusion modeling.

4 Methods

In this section, we first introduce how existing methods utilize diffusion models to achieve image fusion. Then, we describe how we incorporate Rectified Flow into the fusion task. Finally, we present the task-specific Variational Autoencoder (VAE) specifically designed for the fusion task, including the two-stage training strategy of VAE and the loss function used for guidance. The pipeline of our method is illustrated in Figure 2.

4.1 Implementation of Fusion Methods in Diffusion Models

Previous image fusion methods based on diffusion models typically leverage prior knowledge acquired through pre-trained diffusion models to generate high-quality fused images. Inspired by the work presented in [34], these methods incorporate fusion image information into the sampling process via posterior sampling mechanisms of diffusion models, thus effectively guiding the generation of the fused image. During this sampling process, fusion information is progressively integrated and validated, ultimately achieving high-quality image fusion. The specific mathematical formulation can be expressed as follows:

$$p_{\theta} (f_{(0:T)} \mid i, v) = p(f_T) \prod_{t=1}^{T} p_{\theta} (f_{t-1} \mid f_t, i, v),$$
(8)

where f_0 is the fused result and f_T is the initial sampling image, usually Gaussian noise. Additionally, the corresponding posterior sampling can be solved using a Stochastic Differential Equation (SDE), and through Bayes' theorem, we can derive:

$$\nabla_{f_t} \log p_t(f_t \mid i, v) = \nabla_{f_t} \log p_t(f_t) + \nabla_{f_t} \log p_t(i, v \mid f_t), \tag{9}$$

where $\nabla_{f_t} \log p_t(f_t)$ can be obtained via the SDE formulation, inspired by [34], $\nabla_{f_t} \log p_t(i, v \mid f_t)$ can be expressed as:

$$\nabla_{f_t} \log p_t(i, v \mid f_t) \approx \nabla_{f_t} \log p_t(i, v \mid \tilde{f}_{0|t}) \approx \rho \nabla_{f_t} ||i, v - \mathcal{M}(\hat{f}_0(f_t))||_2^2.$$
 (10)

Therefore, the fusion prior can be incorporated into the sampling process by computing the observations $\|i, v - \mathcal{M}(\hat{f}_0(f_t))\|$ between the fused image and the input images. In this manner, the high-quality image generation capability of diffusion models is effectively leveraged to achieve image fusion. A more detailed derivation of the formulas is provided in Appendix A.

4.2 One Step Effective Fusion Network

To enable efficient one-step image fusion, inspired by [35], we adopt Rectified Flow for the fusion task. Specifically, we utilize a pre-trained model based on Rectified Flow sampling to generate high-quality fused images. Notably, we observe that using visible-light images as input, rather than pure Gaussian noise, leads to improved fusion performance. The sampling process in our method can be formally expressed as:

$$f_{t-\Delta t} = f_t - \Delta t \times v(f_t, t) \quad v_t(f_t) = \frac{\epsilon - f_t}{1 - t} \quad t \in [1, 0]. \tag{11}$$

Followed by DDFM [15], we incorporate the inference results of the Expectation-Maximization (EM) algorithm into the sampling process of the diffusion model, thereby injecting the prior of the fused image into the diffusion model through posterior sampling, and achieving image fusion. This process can be formulated as:

$$p_{\theta}(f_0 \mid i, v) = \int p(f_t) \, \delta \left(f_0 - \left(f_t - \Delta t \cdot v_{\theta}(f_t \mid i, v) \right) \right) \, df_t, \tag{12}$$

where $p(f_t)$ denotes the initial distribution, while the Dirac delta function δ ensures that the output f_0 is strictly determined by the input f_t and the velocity field $v_{\theta}(f_t \mid i, v)$. It is important to note that Rectified Flow leverages an Ordinary Differential Equation (ODE) framework, meaning that no stochastic noise is injected during the sampling process. Instead, data is deterministically transformed from an initial distribution to the target distribution by optimizing a continuous velocity field $v_{\theta}(f_t | i, v)$. Consequently, Equation 9 in our method can be reformulated as

$$v_{\theta}(f_t|i,v) = v_{\theta}(f_t) + \nabla_{f_t} \log p(i,v \mid f_t) \approx v_{\theta}(f_t) + \nabla_{f_t} \log p_t(i,v \mid \tilde{f}_{0\mid t}). \tag{13}$$

In this way, we transfer Rectified Flow to the image fusion task, achieving an efficient single-step image fusion method without requiring additional training.

4.3 VAE Autoencoder for Image Fusion

LDM [26] was the first to introduce generative diffusion models into the latent space, leveraging the powerful encoding capability of Variational Autoencoder (VAE) to perform image tasks in the latent space, significantly reducing inference costs while achieving high visual fidelity.

Inspired by this work, we introduce VAE into the image fusion task to enable image generation in the latent space. However, applying VAE-based approaches to image fusion faces two key challenges: (1) Previous methods for image reconstruction typically focus on pixel-level visual fidelity, whereas the core of image fusion lies in capturing complementary semantic information across different modalities. (2) Unlike traditional reconstruction tasks where the objective is to recover the original input, image fusion requires decoding a fused image that integrates information from multiple input modalities. Due to inherent differences between the input images and the desired fused output, this discrepancy poses a significant challenge for the direct application of pretrained VAE in image fusion tasks. To address the aforementioned challenges, we propose a two-stage training strategy to effectively adapt VAE architectures for the image fusion task.

VAE training stage I To address Challenge I, we devise a training strategy based on frequency similarity. Specifically, prior research has demonstrated that the complementary semantic information emphasized in image fusion is often closely correlated with the high- and low-frequency components of the input images. Leveraging this insight, we introduce a frequency similarity loss and fine-tune only the VAE encoder and decoder, without involving Rectified Flow sampling or the image fusion process. As a result, the training procedure closely resembles that of conventional image reconstruction. Followed by Equation 7, the corresponding training goal is formulated as follows:

$$\mathcal{R} = \arg\min_{E,G,\mathcal{Z},x} \max_{D} \mathbb{E}_{x \sim p(x)} \left[\mathcal{L}_{\text{VQ}}(E,G,\mathcal{Z}) + \lambda_{\text{GAN}} \mathcal{L}_{\text{GAN}}(\{E,G,\mathcal{Z}\},D) + \lambda_{\text{fre}} \mathcal{L}_{\text{fre}}(x,\hat{x}) \right], \tag{14}$$

Figure 3: Visual comparison of IVIF with SOTA methods on M³FD datasets.

where \mathcal{L}_{VQ} , \mathcal{L}_{GAN} are followed by [36]. The proposed frequency loss, \mathcal{L}_{fre} , is designed to capture discrepancies in the frequency domain by first transforming the input images from the spatial domain using the Fast Fourier Transform (FFT). The transformation process can be expressed as:

$$\hat{I}_{\text{in}} = \mathcal{F}(I_{\text{in}}), \hat{I}_{\text{rec}} = \mathcal{F}(I_{\text{rec}}), \mathcal{F}(u, v) = \sum_{x=0}^{H-1} \sum_{y=0}^{W-1} I(x, y) \cdot e^{-i\frac{2\pi ux}{H}} \cdot e^{-i\frac{2\pi vy}{W}}.$$
 (15)

Next, we shift the zero-frequency components of both \hat{I}_{in} and \hat{I}_{rec} which represent the average intensity of the images to the center of the spectrum, resulting in \hat{I}_{in} and \hat{I}_{rec} for loss computation. The loss can then be formulated as:

$$\mathcal{L}_{\text{fre}} = \left(N \left(\log(1 + |\hat{I}_{\text{in}}^{\text{shift}}|) \right) - N \left(\log(1 + |\hat{I}_{\text{rec}}^{\text{shift}}|) \right) \right)^2, \tag{16}$$

where $N(\cdot)$ denotes a normalization operation. Optimizing the above losses encourages the VAE to focus on semantic information relevant to fusion during image reconstruction.

VAE training stage II To address Challenge II, we propose a training strategy for Variational Autoencoder (VAE) tailored to the image fusion task. Specifically, we integrate the VAE into the overall fusion framework and perform joint training to enhance its adaptability to the fusion process. It is important to note that, in our method, the input is a visible image, and prior information from the fused image is incorporated during the sampling stage to achieve the fusion. As a result, the VAE encoder is only required to effectively compress the input image, while the decoder is responsible for both reconstructing the image and incorporating fusion-related information. Therefore, in the second stage of training, we focus on fine-tuning the VAE decoder to improve its ability to reconstruct fused images. During this stage, we employ a fusion-specific loss function commonly used in image fusion tasks to optimize the VAE, which is formulated as follows:

$$\mathcal{L}_{fusion} = \lambda_{int} \mathcal{L}_{int} + \lambda_{SSIM} \mathcal{L}_{SSIM} + \lambda_{grad} \mathcal{L}_{grad} + \lambda_{color} \mathcal{L}_{color} + \lambda_{mask} \mathcal{L}_{mask}, \tag{17}$$

where \mathcal{L}_{int} , \mathcal{L}_{SSIM} , \mathcal{L}_{grad} , and \mathcal{L}_{color} are followed by [37]. Meanwhile, to achieve saliency-guided regional fusion, we introduce a saliency mask loss, denoted as \mathcal{L}_{mask} , which can be formulated as:

$$\mathcal{L}_{\text{mask}} = \| \mathcal{W}_v \cdot I_v + \mathcal{W}_{ir} \cdot I_{ir} - I_f \|_1.$$
 (18)

Among them, I_{ir} , I_v represent the input images, and I_f are the fused image. \mathcal{W}_v and \mathcal{W}_{ir} denote the saliency-based weight maps computed from the corresponding input images. The saliency mask loss $\mathcal{L}_{\text{mask}}$ guides the network to focus on salient regions during the fusion process, thereby improving the preservation of complementary information within the fused image. By jointly optimizing this loss with other fusion objectives, the reconstruction capability of the VAE decoder is significantly enhanced, ultimately leading to high-quality image fusion results. More details about the training loss $\mathcal{L}_{\text{fusion}}$ and $\mathcal{L}_{\text{mask}}$ can be found in Appendix B.

5 Experiments

Experiment datasets We conduct experiments on three representative image fusion tasks: infrared and visible image fusion (IVIF), multi-exposure image fusion (MEF), and multi-focus image fusion (MFF). For the infrared and visible image fusion task, evaluations are performed on three widely-used benchmark datasets: M³FD [1], TNO [38], and RoadScene [39]. For the multi-exposure and multi-focus fusion tasks, we utilize the MEFB [40] and MFIF [10] datasets, respectively. The MFIF dataset includes the Lytro [41], MFFW [42], and MFI-WHU [43] datasets.

Table 1: Comparison of Metrics with Our Baseline Method DDFM [15].

Methods		M	³ FD Data	set		T&R Datasets					
	EN	MI	SF	VIF	SSIM	EN	MI	SF	VIF	SSIM	
DDFM	6.720	2.871	9.102	0.677	0.867	7.077	1.798	8.910	0.277	0.207	
Ours	6.722	3.320	9.780	0.748	0.914	7.139	2.948	12.55	0.675	0.921	
	(+0.002)	(+0.449)	(+0.678)	(+0.071)	(+0.047)	(+0.062)	(+1.150)	(+3.640)	(+0.398)	(+0.714)	

Implementation Details The two-stage training of the VAE was conducted entirely on an NVIDIA V100 GPU. In the first stage, the model was trained on the LLVIP [44] and MSRS [45] datasets for 20 epochs. Interestingly, the best validation performance was typically achieved within just 4 to 5 epochs. The second stage involved training exclusively on the MSRS [45] dataset for 40 epochs. The remaining hyperparameters for both stages were configured in accordance with the experimental settings detailed in [26] and [37]. We evaluate our method on all three fusion tasks using the same set of checkpoints, without any task-specific fine-tuning, thereby demonstrating the strong generalization capability of our approach across diverse tasks.

Table 2: Quantitative comparison on M³FD, TNO, and RoadScene datasets. The best and second best results are highlighted in **bold** and <u>underline</u>.

Dataset		M ³ FD	Dataset		T&R Dataset				
Method	MI ↑	VIF↑	SCD ↑	EN↑	MI ↑	VIF↑	SCD ↑	EN↑	
U2Fusion [3]	2.760	0.633	1.569	6.659	2.599	0.556	1.338	6.821	
YDTR [46]	3.183	0.635	1.506	6.547	2.976	0.588	1.420	6.842	
UMFusion [47]	3.089	0.613	1.570	6.669	2.888	0.610	1.475	6.967	
ReCoNet [48]	3.066	0.577	1.483	6.679	2.985	0.540	1.510	7.051	
LRRNet [49]	2.805	0.566	1.463	6.437	2.766	0.508	1.558	7.118	
CoCoNet [50]	2.631	0.729	1.772	7.738	2.579	0.568	1.782	7.735	
DDFM [15]	2.871	0.677	1.683	6.720	1.798	0.277	1.160	7.077	
Ours	3.320	0.748	1.574	6.722	2.948	0.675	1.639	7.139	

Table 3: Efficiency comparisons with other diffusion-based methods. The best and second best results are highlighted in **bold** and <u>underline</u>.

Metrics	Methods									
Metrics	DRMF	Dif-Fusion	Diff-IF	Text-DiFuse	DDFM	CCF	Ours			
SF↑	12.57	10.42	13.90	9.319	9.689	10.14	14.00			
AG↑	4.201	4.307	<u>5.179</u>	3.559	3.981	3.882	5.218			
Runtime (s) \downarrow	3.221	<u>1.997</u>	2.457	9.199	22.03	62.47	0.308			
Parameters (M)	170.98	416.47	23.47	119.49	552.81	552.81	65.57			

5.1 Experiments on Infrared and Visible Image Fusion

In this section, we conduct a comprehensive comparison between our proposed RFfusion method and other fusion approaches. We begin by comparing it with our baseline method, DDFM [15]. Subsequently, we evaluate its performance against several state-of-the-art methods proposed in recent years to demonstrate the superiority of our approach, including: U2Fusion [3], YDTR [46], UMFusion [47], ReCoNet [48], LRRNet [49], CoCoNet [50], and DDFM [15].

Comparison with DDFM method Since our method is built upon the DDFM framework by introducing fusion priors to achieve image fusion—with the main differences lying in the sampling strategy and the use of VAE for latent space generation—we primarily compare our approach with DDFM. As shown in Table 1, our method significantly accelerates inference and reduces computational overhead, while outperforming DDFM across all fusion metrics on multiple datasets. These results indicate that our method not only effectively reduces the number of sampling steps but also substantially enhances the quality of the fused images. Furthermore, the results validate the generality and flexibility of our approach, demonstrating its potential to serve as a plug-and-play module that can be integrated into

Figure 4: Visual comparison of multi-exposure image fusion and multi-focus image fusion with SOTA methods on MEFB and MFIF datasets.

other diffusion-based image fusion frameworks to simultaneously improve both inference efficiency and fusion performance.

Quantitative Comparison As shown in Table 2, we conducted a comprehensive evaluation of the proposed method using four widely adopted quantitative metrics across three benchmark datasets: M³FD, TNO, and Roadscene. The results demonstrate that our method consistently ranks among the top two across most metrics, indicating strong overall performance. Specifically, on the M³FD dataset, our method achieves the best performance in terms of Mutual Information (MI), highlighting its effectiveness in preserving informative content from the source images. Moreover, our method achieves the highest scores in Visual Information Fidelity (VIF) across all datasets, further confirming its superiority in enhancing the visual quality of the fused images.

Qualitative Comparison As shown in Figure 3, our method demonstrates superior visual performance compared to other approaches. We selected four images from the M³FD dataset for qualitative analysis, covering different scenarios including both daytime and nighttime, to ensure a comprehensive evaluation. Our method better preserves detailed texture information from the original images, such as window textures on buildings and fine details at the ends of tree branches, whereas other methods tend to blur these features. Additionally, our method highlights human details more effectively and better retains the mutual information between visible and infrared images. This demonstrates the advantages of our method in qualitative results.

5.2 Experiments on efficiency comparisons with other diffusion-based methods

To verify the effectiveness of our method in reducing the inference time and computational cost of diffusion models in image fusion tasks, we compare it with several diffusion-based image fusion approaches proposed in recent years, including DRMF [51], Dif-Fusion [18], Diff-IF [52], Text-DiFuse [17], DDFM [15], and CCF [16]. All experiments are conducted on an NVIDIA V100 GPU, and the fusion speed as well as the number of model parameters are evaluated on the RoadScene [39] dataset to comprehensively assess the efficiency and complexity of each method. As shown in Table 3 and Figure 1, compared with other diffusion-based image fusion methods, our approach demonstrates a significant advantage in inference speed while also achieving superior fusion quality. These results indicate that our method not only greatly improves inference efficiency but also maintains, or even enhances fusion performance, fully validating its capability for joint optimization of efficiency and effectiveness.

5.3 Experiments on Evaluation on Multi-Focus Fusion

Quantitative Comparison As shown in Table 6, we conducted a comprehensive evaluation of the proposed method on the MFIF dataset. The experimental results demonstrate that our method consistently ranks among the top two across most evaluation metrics, fully validating its superior effectiveness in the multi-focus fusion (MFF) task. Notably, the proposed method achieves this performance without any fine-tuning on the multi-focus fusion dataset, further confirming its strong generalization ability and robustness across different tasks.

Qualitative Comparison As shown in Figure 6, we selected two representative images from the MFIF dataset for qualitative analysis, covering both daytime and nighttime scenarios to ensure a comprehensive evaluation. Compared to other methods, our method more effectively preserves

Table 4: Quantitative comparison on MEFB and MFIF datasets. The best and second best results are highlighted in **bold** and underline.

Dataset		MEFI	B Dataset		MFIF Dataset					
Method	MI↑	CC ↑	Qcb ↑	PSNR ↑	MI↑	CC ↑	Qcb ↑	PSNR ↑		
DeFusion [53]	4.854	0.834	0.365	57.70	6.007	0.976	0.627	76.62		
TC-MoA [54]	5.418	0.900	0.430	59.00	6.686	0.968	0.731	74.78		
Text-IF [37]	5.596	0.860	0.385	56.44	5.399	0.967	0.629	71.74		
DDFM [15]	3.850	0.792	0.321	58.39	3.232	0.772	0.413	66.24		
CCF [16]	4.830	0.898	0.398	58.38	4.799	0.956	0.474	66.64		
Ours	6.528	0.901	0.461	<u>58.49</u>	6.443	0.977	<u>0.654</u>	<u>75.04</u>		

clear details from the original images, achieving high-quality multi-focus image fusion and fully demonstrating its superior performance in qualitative evaluation.

5.4 Experiments on Evaluation on Multi-Exposure Fusion

Quantitative Comparison Table 6 presents a quantitative comparison between our method and existing approaches on the MEFB dataset. Notably, our method does not require any fine-tuning on the MEF dataset. It consistently outperforms other multi-exposure fusion (MEF) methods across most evaluation metrics, demonstrating its superior performance and strong generalization capability in the multi-exposure image fusion task.

Qualitative Comparison As shown in Figure 4, compared to other methods, our fusion results better preserve the detailed features of the original images and achieve superior visual performance. We selected two images from the MEFB dataset for qualitative analysis. Our method more effectively retains the texture of windows and the contour features of candles, demonstrating its advantages in qualitative evaluation.

Table 5: Ablation studies on the effectiveness of the two-stage training strategy and loss functions.

Stage I	Stage II	PSNR	MI	SF	AG
_	-	59.41	2.998	12.16	4.615
\checkmark	_	59.68	3.017	12.88	4.676
_	\checkmark	60.36	3.001	12.57	4.783
\checkmark	\checkmark	59.41 59.68 60.36 61.81	3.220	14.00	5.218

$\mathcal{L}_{ ext{fre}}$	- IIIdak	PSNR			AG
_	_	57.22	2.944	12.77	4.882
\checkmark	_	57.22 58.84	3.202	13.56	5.021
_	\checkmark	59.67	3.121	13.31	4.976
\checkmark	\checkmark	61.81	3.220	14.00	5.218

5.5 Ablation Study

Experimental on the effectiveness of the two-stage training strategy. We conducted ablation studies on the two-stage training strategy for the VAE to evaluate its effectiveness in the image fusion task. As shown in Table 5, we compared fusion performance under four settings: without any training, using only the first-stage training, using only the second-stage training, and applying both stages of training. The results demonstrate that the fusion performance is optimal when both stages are applied, validating the effectiveness of the training strategy in enhancing fusion quality.

Experimental on the effectiveness of the loss functions. We conducted ablation experiments on the loss functions used in our proposed training method to evaluate their contributions to image fusion performance, as shown in Table 5. Specifically, we designed four experimental settings: without using either \mathcal{L}_{fre} or \mathcal{L}_{mask} , using only \mathcal{L}_{fre} , using only \mathcal{L}_{mask} , and using both \mathcal{L}_{fre} and \mathcal{L}_{mask} simultaneously. The experimental results demonstrate that both \mathcal{L}_{fre} and \mathcal{L}_{mask} can independently improve fusion quality, while their combined use leads to the best performance. These findings validate the effectiveness and necessity of the proposed loss function design.

6 Limitation

RFfusion still relies on a Rectified Flow pre-trained model trained on generic image generation tasks, which is not specifically designed for image fusion. This limitation may hinder the further improvement of RFfusion's fusion performance.

7 Conclusion

In this paper, we propose an efficient one-step diffusion-based image fusion method called RFfusion. By integrating Rectified Flow into the image fusion task, our method leverages its efficient one-step sampling mechanism to significantly accelerate the diffusion-based fusion process. Moreover, we design a task-specific Variational Autoencoder (VAE) that performs fusion in the latent space, effectively reducing computational overhead while preserving more image details. Extensive experimental results demonstrate that RFfusion achieves superior performance in both inference speed and fusion quality compared to existing state-of-the-art methods, and also exhibits strong generalization capabilities across diverse image fusion tasks. In the future, we will further explore acceleration mechanisms of diffusion models in image fusion tasks to achieve more efficient image fusion methods

Acknowledgments: This work was partially supported by the National Natural Science Foundation of China (No.62302078 and No.62372080), and China Postdoctoral Science Foundation (2023M730741).

References

- [1] Jinyuan Liu, Xin Fan, Zhanbo Huang, Guanyao Wu, Risheng Liu, Wei Zhong, and Zhongxuan Luo. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 5802–5811, 2022.
- [2] Jinyuan Liu, Zhu Liu, Guanyao Wu, Long Ma, Risheng Liu, Wei Zhong, Zhongxuan Luo, and Xin Fan. Multi-interactive feature learning and a full-time multi-modality benchmark for image fusion and segmentation. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 8115–8124, 2023.
- [3] Han Xu, Jiayi Ma, Junjun Jiang, Xiaojie Guo, and Haibin Ling. U2fusion: A unified unsupervised image fusion network. *IEEE transactions on pattern analysis and machine intelligence*, 44(1):502–518, 2020.
- [4] Jiayi Ma, Wei Yu, Pengwei Liang, Chang Li, and Junjun Jiang. Fusiongan: A generative adversarial network for infrared and visible image fusion. *Information fusion*, 48:11–26, 2019.
- [5] Jinyuan Liu, Xingyuan Li, Zirui Wang, Zhiying Jiang, Wei Zhong, Wei Fan, and Bin Xu. Promptfusion: Harmonized semantic prompt learning for infrared and visible image fusion. *IEEE/CAA Journal of Automatica Sinica*, 2024.
- [6] Han Xu and Jiayi Ma. Emfusion: An unsupervised enhanced medical image fusion network. Information Fusion, 76:177–186, 2021.
- [7] Jiawei Li, Jinyuan Liu, Shihua Zhou, Qiang Zhang, and Nikola K Kasabov. Gesenet: A general semantic-guided network with couple mask ensemble for medical image fusion. *IEEE Transactions on Neural Networks and Learning Systems*, 2023.
- [8] Kede Ma, Zhengfang Duanmu, Hanwei Zhu, Yuming Fang, and Zhou Wang. Deep guided learning for fast multi-exposure image fusion. *IEEE Transactions on Image Processing*, 29:2808–2819, 2019.
- [9] Kede Ma, Zhengfang Duanmu, Hojatollah Yeganeh, and Zhou Wang. Multi-exposure image fusion by optimizing a structural similarity index. *IEEE Transactions on Computational Imaging*, 4(1):60–72, 2017.
- [10] Xingchen Zhang. Deep learning-based multi-focus image fusion: A survey and a comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9):4819–4838, 2021.
- [11] Yu Liu, Shuping Liu, and Zengfu Wang. Multi-focus image fusion with dense sift. *Information Fusion*, 23:139–155, 2015.
- [12] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020.

- [13] Xingyuan Li, Yang Zou, Jinyuan Liu, Zhiying Jiang, Long Ma, Xin Fan, and Risheng Liu. From text to pixels: a context-aware semantic synergy solution for infrared and visible image fusion. arXiv preprint arXiv:2401.00421, 2023.
- [14] Jinyuan Liu, Bowei Zhang, Qingyun Mei, Xingyuan Li, Yang Zou, Zhiying Jiang, Long Ma, Risheng Liu, and Xin Fan. Dcevo: Discriminative cross-dimensional evolutionary learning for infrared and visible image fusion. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pages 2226–2235, 2025.
- [15] Zixiang Zhao, Haowen Bai, Yuanzhi Zhu, Jiangshe Zhang, Shuang Xu, Yulun Zhang, Kai Zhang, Deyu Meng, Radu Timofte, and Luc Van Gool. Ddfm: denoising diffusion model for multi-modality image fusion. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 8082–8093, 2023.
- [16] Bing Cao, Xingxin Xu, Pengfei Zhu, Qilong Wang, and Qinghua Hu. Conditional controllable image fusion. *arXiv preprint arXiv:2411.01573*, 2024.
- [17] Hao Zhang, Lei Cao, and Jiayi Ma. Text-difuse: An interactive multi-modal image fusion framework based on text-modulated diffusion model. *arXiv* preprint arXiv:2410.23905, 2024.
- [18] Jun Yue, Leyuan Fang, Shaobo Xia, Yue Deng, and Jiayi Ma. Dif-fusion: Toward high color fidelity in infrared and visible image fusion with diffusion models. *IEEE Transactions on Image Processing*, 32:5705–5720, 2023.
- [19] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, et al. Recent advances in convolutional neural networks. *Pattern recognition*, 77:354–377, 2018.
- [20] Mostafa Amin-Naji, Ali Aghagolzadeh, and Mehdi Ezoji. Ensemble of cnn for multi-focus image fusion. *Information fusion*, 51:201–214, 2019.
- [21] Shutao Li, Xudong Kang, Leyuan Fang, Jianwen Hu, and Haitao Yin. Pixel-level image fusion: A survey of the state of the art. *information Fusion*, 33:100–112, 2017.
- [22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
- [23] Xingyuan Li, Jinyuan Liu, Zhixin Chen, Yang Zou, Long Ma, Xin Fan, and Risheng Liu. Contourlet residual for prompt learning enhanced infrared image super-resolution. In *European Conference on Computer Vision*, pages 270–288. Springer, 2024.
- [24] Zixiang Zhao, Haowen Bai, Jiangshe Zhang, Yulun Zhang, Shuang Xu, Zudi Lin, Radu Timofte, and Luc Van Gool. Cddfuse: Correlation-driven dual-branch feature decomposition for multi-modality image fusion. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 5906–5916, 2023.
- [25] Bin Xia, Yulun Zhang, Shiyin Wang, Yitong Wang, Xinglong Wu, Yapeng Tian, Wenming Yang, and Luc Van Gool. Diffir: Efficient diffusion model for image restoration. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 13095–13105, 2023.
- [26] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. Highresolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF* conference on computer vision and pattern recognition, pages 10684–10695, 2022.
- [27] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer data with rectified flow. In *The Eleventh International Conference on Learning Representations (ICLR)*, 2023.
- [28] Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for high-quality diffusion-based text-to-image generation. In *The Twelfth International Conference on Learning Representations*, 2024.

- [29] Xingchao Liu, Lemeng Wu, Shujian Zhang, Chengyue Gong, Wei Ping, and Qiang Liu. Flow-grad: Controlling the output of generative odes with gradients. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 24335–24344, 2023.
- [30] Jianze Li, Jiezhang Cao, Yong Guo, Wenbo Li, and Yulun Zhang. One diffusion step to real-world super-resolution via flow trajectory distillation. arXiv preprint arXiv:2502.01993, 2025.
- [31] Yixuan Zhu, Wenliang Zhao, Ao Li, Yansong Tang, Jie Zhou, and Jiwen Lu. Flowie: Efficient image enhancement via rectified flow. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 13–22, 2024.
- [32] Xingyuan Li, Zirui Wang, Yang Zou, Zhixin Chen, Jun Ma, Zhiying Jiang, Long Ma, and Jinyuan Liu. Diffisr: A diffusion model with gradient guidance for infrared image superresolution. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pages 7534–7544, 2025.
- [33] Hefei Mei, Minjing Dong, and Chang Xu. Efficient image-to-image diffusion classifier for adversarial robustness. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pages 6081–6089, 2025.
- [34] Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion posterior sampling for general noisy inverse problems. In *The Eleventh International Conference on Learning Representations, ICLR 2023*. The International Conference on Learning Representations, 2023.
- [35] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.
- [36] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 12873–12883, 2021.
- [37] Xunpeng Yi, Han Xu, Hao Zhang, Linfeng Tang, and Jiayi Ma. Text-if: Leveraging semantic text guidance for degradation-aware and interactive image fusion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 27026–27035, 2024.
- [38] Alexander Toet and Maarten A Hogervorst. Progress in color night vision. *Optical Engineering*, 51(1):010901–010901, 2012.
- [39] Han Xu, Jiayi Ma, Zhuliang Le, Junjun Jiang, and Xiaojie Guo. Fusiondn: A unified densely connected network for image fusion. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pages 12484–12491, 2020.
- [40] Xingchen Zhang. Benchmarking and comparing multi-exposure image fusion algorithms. *Information Fusion*, 74:111–131, 2021.
- [41] Mansour Nejati, Shadrokh Samavi, and Shahram Shirani. Multi-focus image fusion using dictionary-based sparse representation. *Information fusion*, 25:72–84, 2015.
- [42] Shuang Xu, Xiaoli Wei, Chunxia Zhang, Junmin Liu, and Jiangshe Zhang. Mffw: A new dataset for multi-focus image fusion. *arXiv preprint arXiv:2002.04780*, 2020.
- [43] Hao Zhang, Zhuliang Le, Zhenfeng Shao, Han Xu, and Jiayi Ma. Mff-gan: An unsupervised generative adversarial network with adaptive and gradient joint constraints for multi-focus image fusion. *Information Fusion*, 66:40–53, 2021.
- [44] Xinyu Jia, Chuang Zhu, Minzhen Li, Wenqi Tang, and Wenli Zhou. Llvip: A visible-infrared paired dataset for low-light vision. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 3496–3504, 2021.
- [45] Linfeng Tang, Jiteng Yuan, Hao Zhang, Xingyu Jiang, and Jiayi Ma. Piafusion: A progressive infrared and visible image fusion network based on illumination aware. *Information Fusion*, 83:79–92, 2022.

- [46] Wei Tang, Fazhi He, and Yu Liu. Ydtr: Infrared and visible image fusion via y-shape dynamic transformer. IEEE Transactions on Multimedia. 25:5413–5428, 2022.
- [47] Di Wang, Jinyuan Liu, Xin Fan, and Risheng Liu. Unsupervised misaligned infrared and visible image fusion via cross-modality image generation and registration. *arXiv preprint arXiv:2205.11876*, 2022.
- [48] Zhanbo Huang, Jinyuan Liu, Xin Fan, Risheng Liu, Wei Zhong, and Zhongxuan Luo. Reconet: Recurrent correction network for fast and efficient multi-modality image fusion. In *European conference on computer Vision*, pages 539–555. Springer, 2022.
- [49] Hui Li, Tianyang Xu, Xiao-Jun Wu, Jiwen Lu, and Josef Kittler. Lrrnet: A novel representation learning guided fusion network for infrared and visible images. *IEEE transactions on pattern analysis and machine intelligence*, 45(9):11040–11052, 2023.
- [50] Jinyuan Liu, Runjia Lin, Guanyao Wu, Risheng Liu, Zhongxuan Luo, and Xin Fan. Coconet: Coupled contrastive learning network with multi-level feature ensemble for multi-modality image fusion. *International Journal of Computer Vision*, 132(5):1748–1775, 2024.
- [51] Linfeng Tang, Yuxin Deng, Xunpeng Yi, Qinglong Yan, Yixuan Yuan, and Jiayi Ma. Drmf: Degradation-robust multi-modal image fusion via composable diffusion prior. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pages 8546–8555, 2024.
- [52] Xunpeng Yi, Linfeng Tang, Hao Zhang, Han Xu, and Jiayi Ma. Diff-if: Multi-modality image fusion via diffusion model with fusion knowledge prior. *Information Fusion*, 110:102450, 2024.
- [53] Pengwei Liang, Junjun Jiang, Xianming Liu, and Jiayi Ma. Fusion from decomposition: A self-supervised decomposition approach for image fusion. In *European Conference on Computer Vision*, pages 719–735. Springer, 2022.
- [54] Pengfei Zhu, Yang Sun, Bing Cao, and Qinghua Hu. Task-customized mixture of adapters for general image fusion. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 7099–7108, 2024.
- [55] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. In *International Conference on Learning Representations*, 2021.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the direction and specific contributions of the proposed work.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See the limitation section of the main texts

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: All theorems, formulas, and proofs in the paper are properly numbered and cross-referenced for clarity and consistency.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides a detailed description of the RFfusion architecture and clearly specifies the datasets used in the experiments, ensuring reproducibility of the main results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

 $\label{lem:composition} Justification: Our code \ can \ be \ found \ in \ \texttt{https://github.com/zirui0625/RFfusion.}$

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: These details are given in the experimental section.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper provides detailed descriptions of the datasets used and experimental setup, but does not include error bars.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: In the experimental section, we describe the compute resources used for both training and testing.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research complies with the ethical standards specified by NeurIPS.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: Our work improves existing methods in the field, and therefore, will have a positive impact on the industry.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no risk of the paper being misused.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Our paper clearly indicates the cited literature and authors, and all used resources and content are properly acknowledged. The relevant licenses and terms of use are explicitly mentioned and strictly adhered to.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces a new method, and the related code and trained models will be made publicly available after the paper is accepted, along with detailed documentation.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: Our research does not include any human-related experiments.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: Our research does not include any human-related experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method of this study does not involve LLM related technologies.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

Appendix

A Detailed derivation of formulas

In this section, we provide a detailed proof regarding posterior sampling in diffusion-based image fusion methods. The noise predicted by the diffusion model at time step t is often related to the score at the current time step. According to [55], the specific formulation can be expressed as:

$$\epsilon_{\phi}(x_t, t) = -\sqrt{1 - \alpha_t} \nabla_{x_t} \log p(x_t), \tag{19}$$

In posterior sampling, we also need to take into account the guidance from image fusion, denoted as i, v. Therefore, what we need to solve is $\nabla_{f_t} \log p(f_t|i, v)$, which can be expressed using Bayes' theorem as:

$$p_t(f_t \mid i, v) = \frac{p_t(i, v \mid f_t) \cdot p_t(f_t)}{p_t(i, v)},$$

$$\Rightarrow \log p_t(f_t \mid i, v) = \log p_t(i, v \mid f_t) + \log p_t(f_t) - \log p_t(i, v),$$

$$\Rightarrow \nabla_{f_t} \log p_t(f_t \mid i, v) = \nabla_{f_t} \log p_t(f_t) + \nabla_{f_t} \log p_t(i, v \mid f_t). \tag{20}$$

Among them, $\nabla_{f_t} \log p(f_t \mid i, v)$ and $\nabla_{f_t} \log p(f_t)$ can be expressed by Equation 19 as follows:

$$\epsilon_{\phi}(f_t, t) = -\sqrt{1 - \alpha_t} \nabla_{f_t} \log p_t(f_t),$$

$$\epsilon'_{\phi}(f_t, t \mid i, v) = -\sqrt{1 - \alpha_t} \nabla_{f_t} \log p_t(f_t \mid i, v).$$
(21)

Therefore, the final equation can be expressed as:

$$\epsilon'_{\phi} = \epsilon_{\phi}(f_t, t) - \sqrt{1 - \alpha_t} \nabla_{f_t} \log p_t(i, v \mid f_t),$$

$$\approx \epsilon_{\phi}(f_t, t) - \sqrt{1 - \alpha_t} \nabla_{f_t} \log p_t(i, v \mid \tilde{f}_{0|t}),$$

$$\approx \epsilon_{\phi}(f_t, t) - \rho \sqrt{1 - \alpha_t} \nabla_{f_t} ||i, v - \mathcal{M}(\hat{f}_0(f_t))||_2^2.$$
(22)

Therefore, we inject the image fusion prior by correcting the predicted noise during the sampling process, thereby achieving high-quality image fusion based on the diffusion model.

B Details about the training loss

In the main text, the loss \mathcal{L}_{fusion} used in the training stage II is defined as follows:

$$\mathcal{L}_{\text{fusion}} = \lambda_{\text{int}} \mathcal{L}_{\text{int}} + \lambda_{\text{SSIM}} \mathcal{L}_{\text{SSIM}} + \lambda_{\text{grad}} \mathcal{L}_{\text{grad}} + \lambda_{\text{color}} \mathcal{L}_{\text{color}} + \lambda_{\text{mask}} \mathcal{L}_{\text{mask}}. \tag{23}$$

Followed by [37], we use the Intensity Loss to encourage the model to focus on salient features in the fused image, which is specifically defined as:

$$\mathcal{L}_{\text{int}} = \frac{1}{HW} \| I_f - \max(I_{\text{vis}}^g, I_{\text{ir}}^g) \|_1.$$
 (24)

Here, I_{vis}^g and I_{ir}^g are the ground truth corresponding to the fused image. We also use $\mathcal{L}_{\text{SSIM}}$ to train the model so that the fused image is structurally as similar as possible to the two input images. It is defined as:

$$\mathcal{L}_{SSIM} = (1 - SSIM(I_f, I_{vis}^g)) + \mu(1 - SSIM(I_f, I_{ir}^g)). \tag{25}$$

We also compute the gradient loss \mathcal{L}_{grad} to ensure the similarity between the fused image and the input images in terms of edge features:

$$\mathcal{L}_{\text{grad}} = \frac{1}{HW} \left\| \nabla I_f - \max(\nabla I_{\text{vis}}^g, \nabla I_{\text{ir}}^g) \right\|_1, \tag{26}$$

and use \mathcal{L}_{color} to keep consistent color with input images:

$$\mathcal{L}_{\text{color}} = \frac{1}{HW} \left\| \mathcal{F}_{CbCr}(I_f) - \mathcal{F}_{CbCr}(I_{\text{vis}}^g) \right\|_1.$$
 (27)

As mentioned in the main text, we use \mathcal{L}_{mask} for saliency-guided regional fusion, which can be represented as:

$$\mathcal{L}_{\text{mask}} = \| \mathcal{W}_v \cdot I_v + \mathcal{W}_{ir} \cdot I_{ir} - I_f \|_1.$$
 (28)

Here, W_v and W_{ir} denote the saliency-based weight maps computed from the corresponding input images. W_v and W_{ir} are computed based on pixel-level visual saliency maps. Specifically, they are estimated by measuring the sparsity of the image pixel histograms: the sparser the pixel distribution, the higher the corresponding saliency. The computation can be formulated as:

$$Saliency(i) = \sum_{j=0}^{255} |i - j| \cdot Hist(j).$$
 (29)

Here, i represents the grayscale value of the current pixel, and j denotes the grayscale value of the traversed pixels. By computing the saliency values $S_{ir}(i,j)$ and $S_v(i,j)$ for each pixel, we can obtain the corresponding \mathcal{W}_v and \mathcal{W}_{ir} . The specific formulas are given as:

$$W_v(i,j) = \mu_v + S_v(i,j) - \mu_v \cdot S_{ir}(i,j)$$
(30)

$$W_{ir}(i,j) = 1 - W_v(i,j) \tag{31}$$

C Additional experiments of our method

Table 6: Quantitative comparison on Lytro, MFFW and MFI-WHU datasets. The best and second best results are highlighted in **bold** and underline.

	e e											
Dataset	Lytro				MFFW				MFI-WHU			
Method	MI	CC	Qcb	PSNR	MI	CC	Qcb	PSNR	MI	CC	Qcb	PSNR
DeFusion [53]	6.27	0.97	0.59	77.2	5.59	0.97	0.55	74.4	6.01	0.97	0.69	77.2
TC-MoA [54]	7.45	0.97	0.76	74.8	5.34	0.96	0.63	<u>72.8</u>	6.76	0.97	0.75	75.6
Text-IF [37]	5.63	0.97	0.65	71.9	5.26	0.96	0.61	70.2	5.31	0.97	0.62	72.3
DDFM [15]	3.53	0.85	0.41	67.2	3.33	0.73	0.38	64.5	2.99	0.74	0.43	66.4
CCF [16]	5.15	0.96	0.49	66.8	4.47	0.95	0.47	66.6	4.95	0.96	0.47	67.1
Ours	6.58	0.98	0.61	<u>76.1</u>	5.80	0.97	0.55	71.7	6.38	0.98	<u>0.71</u>	<u>75.7</u>

More Quantitative Comparison of Multi-Focus Fusion As shown in Table 6, we conducted comparisons on three datasets in MFIF: Lytro [41], MFFW [42], and MFI-WHU [43]. Our method outperforms other approaches on most metrics. Specifically, it achieves either the first or second best performance² on 9 different metrics, surpassing other comparison methods and demonstrating the superiority of our approach in the Multi-Focus Fusion task.

²Compare the percentiles of the same value.