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Abstract

Image fusion is a fundamental and important task in computer vision, aiming to
combine complementary information from different modalities to fuse images. In
recent years, diffusion models have made significant developments in the field of
image fusion. However, diffusion models often require complex computations and
redundant inference time, which reduces the applicability of these methods. To
address this issue, we propose RFfusion, an efficient one-step diffusion model for
image fusion based on Rectified Flow. We incorporate Rectified Flow into the
image fusion task to straighten the sampling path in the diffusion model, achieving
one-step sampling without the need for additional training, while still maintaining
high-quality fusion results. Furthermore, we propose a task-specific Variational Au-
toencoder (VAE) architecture tailored for image fusion, where the fusion operation
is embedded within the latent space to further reduce computational complexity.
To address the inherent discrepancy between conventional reconstruction-oriented
VAE objectives and the requirements of image fusion, we introduce a two-stage
training strategy. This approach facilitates the effective learning and integration of
complementary information from multi-modal source images, thereby enabling the
model to retain fine-grained structural details while significantly enhancing infer-
ence efficiency. Extensive experiments demonstrate that our method outperforms
other state-of-the-art methods in terms of both inference speed and fusion quality.
Code is available at https://github.com/zirui0625/RFfusion.

1 Introduction

In computer vision, image fusion is an important task aimed at merging two images from different
modalities to obtain a fused image that contains complementary information from both modalities.
Image fusion has wide applications across various scenarios. Infrared and visible image fusion
(IVIF) [1, 2, 3, 4, 5] aims to enhance perception under adverse conditions by integrating the detailed
information from visible images with the thermal radiation characteristics of infrared images. Medical
image fusion (MIF) [6, 7] focuses on mitigating the information discrepancies between MRI and CT
modalities to provide more comprehensive and accurate diagnostic support. Multi-exposure image
fusion (MEF) [8, 9] and multi-focus image fusion (MFF) [10, 11] focus on merging images with
different exposures and different focal planes, to synthesize high-quality photographic images.

In recent years, with the advent of Denoising Diffusion Probabilistic Models (DDPMs) [12],
diffusion-based methods have been widely adopted across various computer vision tasks, includ-
ing image fusion. DDPMs learn the denoising process from noisy observations back to clean
images over the data distribution, thereby acquiring the ability to generate high-quality images.
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Figure 1: Efficiency comparison with the state-of-the-art
diffusion-based methods.

Compared to traditional fusion ap-
proaches [13, 14], diffusion-based
methods [15, 16, 17, 18] not only ef-
fectively integrate information from
multiple source images but also signif-
icantly enhance the visual quality of
the fused results. Benefiting from the
powerful priors encoded in pre-trained
diffusion models, these approaches
demonstrate great potential in multi-
task fusion scenarios, where a single
unified framework can be adapted to
various fusion tasks with remarkable
performance.

Though diffusion-based methods have
achieved remarkable progress in image fusion tasks, their long inference times pose significant
challenges for real-world applications. Recently proposed approaches such as DDFM [15] and
CCF [16] introduce fusion priors into the sampling process of diffusion models, effectively improving
fusion quality. However, these methods typically require hundreds of sampling steps to achieve
satisfactory results. Reducing the number of steps to improve efficiency often leads to a substantial
drop in fusion performance. To accelerate inference in diffusion models, several strategies such as
distillation and latent space diffusion have been widely explored. Nonetheless, their application to
image fusion remains limited. First, existing distillation methods can enable single-step sampling but
usually require fine-tuning tailored to specific model architectures and datasets, lacking generalization
across diverse fusion tasks. Second, while latent space diffusion methods based on Variational
Autoencoder (VAE) can significantly reduce computational costs, their training objective primarily
targets image reconstruction rather than image fusion, leading to considerable challenges when applied
directly to fusion scenarios. Therefore, it is imperative to develop a sampling acceleration method
that is tailored to image fusion tasks, capable of preserving fusion quality while maintaining
generalizability.

To address these challenges, we propose a novel method named RFfusion, which introduces the
Rectified Flow mechanism into image fusion tasks for the first time. RFfusion significantly accelerates
the inference process of diffusion models without requiring additional training and exhibits strong
generalization across multiple fusion tasks. Specifically, we leverage Rectified Flow to construct a
linear trajectory between the input images and the target fused image, embedding prior knowledge
of the fused image during the sampling process to achieve efficient and high-quality single-step
inference. Moreover, we incorporate the sampling process into the latent space and propose a two-
stage training strategy to address the objective mismatch between VAE reconstruction and fusion
tasks. In the first stage, we fine-tune the VAE to better capture critical features needed for image
fusion. In the second stage, the optimized VAE is integrated into the overall fusion framework for
joint training, further enhancing the model’s adaptability to fusion scenarios. Extensive experimental
results demonstrate that RFfusion not only substantially reduces the number of inference steps and
improves computational efficiency, but also outperforms existing state-of-the-art methods across
multiple standard image fusion benchmarks. Our contributions can be summarized as:

• We propose a novel Efficient Rectified Flow image fusion (RFfusion) framework that
enables one-step sampling across various fusion tasks without requiring additional training,
significantly reducing computational cost and inference time while achieving high-quality
fused images.

• We introduce the image fusion task into the latent space to effectively reduce computational
cost. To address the objective discrepancy between the reconstruction-oriented training of
VAE and the specific requirements of image fusion, we propose a two-stage training strategy
to enhance the VAE’s adaptability to fusion tasks.

• Extensive experiments demonstrate that our method significantly improves inference speed
compared to other diffusion-based approaches. Meanwhile, it also achieves superior fusion
performance and shows strong adaptability across various fusion tasks, demonstrating
excellent generalization capability..
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2 Related works

In this section, we first review influential image fusion algorithms from recent years. Then, we
introduce the applications of Rectified Flow in various fields, especially in low-level vision.

Image fusion Image fusion combines images from different modalities to create a single image with
complementary information. Traditional methods [19, 20, 21] use convolutional neural networks
to achieve image fusion. The Transformer [22, 23], has also advanced the field of image fusion,
particularly when combined with CNNs for multi-modal fusion [24]. Recently, diffusion models
have gained attention in low-level vision tasks [25, 26, 15, 16] for their strong generative power,
also being applied to image fusion tasks. DDFM [15], using a Denoising Diffusion Probabilistic
Model, has shown promising results in infrared-visible and medical image fusion but struggles with
adapting to different scenarios. To address this, CCF [16] proposed a controllable diffusion-based
fusion framework, which can optimize the fusion process but still faces challenges like excessive
sampling steps.

Rectified flow Liu [27] first proposed the Rectified Flow method, which generates high-quality
images by straightening the path between two data distributions, requiring only one or a few sampling
steps. InstaFlow [28] applies Rectified Flow to text-to-image (T2I) models, using the same approach
to straighten the trajectories of probability flows, enabling it to generate high-quality images in a
single step. FlowGrad [29] backpropagates gradients along the ODE trajectory, effectively enabling
control over the generated content of a pre-trained Rectified Flow model. Recently, some Rectified
Flow-based methods [30, 31, 32, 33] have also been applied to low-level vision tasks for model
acceleration. FlowIE [31] constructs a linear many-to-one transport mapping using conditioned
Rectified Flow to achieve efficient image enhancement. FluxSR [30] leverages Rectified Flow to
distill diffusion model priors, enabling one-step real-world image super-resolution.

3 Preliminary

Rectified Flow Traditional diffusion models are trained by predicting the noise added during the
forward process, enabling the model to generate high-quality images from Gaussian noise. However,
this process typically requires multiple sampling steps, which significantly prolongs the inference
time. In general, the forward process can be represented as:

xt = atx0 + btϵ, ϵ ∼ N (0, 1). (1)

at and bt satisfy at = 1, bt = 0 and at = 0, bt = 1. In DDPM, this formula can be expressed as:

xt =
√
ātx0 +

√
1− ātϵ, ϵ ∼ N (0, 1). (2)

Different from DDPM, Rectified Flow treats the forward process as a transformation between two
data distributions, which can be seen as a transformation between Gaussian noise and the real image
distribution in this case. The goal of Rectified Flow is to train a model vθ to predict the velocity
vt(xt) along the path at step t as

LRF(θ) = Et,xt
∥vθ(xt, t)− vt(xt)∥2 . (3)

Rectified Flow views the forward process as a straight path between the real data distribution and
the noise distribution, and its noise addition formula can be derived through linear interpolation.
According to Equation 1, we can derive:

xt = (1− t)x0 + tϵ, ϵ ∼ N (0, 1). (4)

In this case, vt(xt) can be expressed as:

x′
t = vt(xt) =

ϵ− xt

1− t
= ϵ− x0. (5)

Therefore, according to Equation 3, the training objective of Rectified Flow can be derived as:

LRF(θ) = Et,xt,ϵ ∥vθ(xt, t)− (ϵ− x0)∥22 . (6)

By training a neural network on a large-scale dataset, the output of the network, vθ(xt, t), is encour-
aged to closely match the training target ϵ − x0. This enables the model to find the shortest path
between two data distributions, significantly accelerating the sampling process.
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Figure 2: Illustration of the train and inference pipeline of our methods.

Variational Autoencoder In diffusion models, Variational Autoencoders (VAEs) are commonly
employed to learn low-dimensional latent representations of data. By encoding images into latent
spaces, VAEs enable the diffusion process to operate in a more compact latent space, significantly
reducing computational costs while improving modeling efficiency. The training objective of a VAE
can be formulated as:

Q∗ = arg min
E,G,Z

max
D

Ex∼p(x) [LVQ(E,G,Z) + λLGAN({E,G,Z}, D)] , (7)

where E and G represent the encoder and decoder, respectively, Z denotes the discrete codebook, and
D is the GAN discriminator. This formulation allows the VAE to produce compact yet semantically
meaningful latent codes, which serve as an efficient and expressive latent space for subsequent
diffusion modeling.

4 Methods

In this section, we first introduce how existing methods utilize diffusion models to achieve image
fusion. Then, we describe how we incorporate Rectified Flow into the fusion task. Finally, we present
the task-specific Variational Autoencoder (VAE) specifically designed for the fusion task, including
the two-stage training strategy of VAE and the loss function used for guidance. The pipeline of our
method is illustrated in Figure 2.

4.1 Implementation of Fusion Methods in Diffusion Models

Previous image fusion methods based on diffusion models typically leverage prior knowledge acquired
through pre-trained diffusion models to generate high-quality fused images. Inspired by the work
presented in [34], these methods incorporate fusion image information into the sampling process
via posterior sampling mechanisms of diffusion models, thus effectively guiding the generation of
the fused image. During this sampling process, fusion information is progressively integrated and
validated, ultimately achieving high-quality image fusion. The specific mathematical formulation can
be expressed as follows:

pθ
(
f(0:T ) | i, v

)
= p(fT )

T∏
t=1

pθ (ft−1 | ft, i, v) , (8)

where f0 is the fused result and fT is the initial sampling image, usually Gaussian noise. Additionally,
the corresponding posterior sampling can be solved using a Stochastic Differential Equation (SDE),
and through Bayes’ theorem, we can derive:

∇ft log pt(ft | i, v) = ∇ft log pt(ft) +∇ft log pt(i, v | ft), (9)
where ∇ft log pt(ft) can be obtained via the SDE formulation, inspired by [34], ∇ft log pt(i, v | ft)
can be expressed as:

∇ft log pt(i, v | ft) ≈ ∇ft log pt(i, v | f̃0|t) ≈ ρ∇ft∥i, v −M(f̂0(ft))∥22. (10)
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Therefore, the fusion prior can be incorporated into the sampling process by computing the obser-
vations ∥i, v − M(f̂0(ft))∥ between the fused image and the input images. In this manner, the
high-quality image generation capability of diffusion models is effectively leveraged to achieve image
fusion. A more detailed derivation of the formulas is provided in Appendix A.

4.2 One Step Effective Fusion Network

To enable efficient one-step image fusion, inspired by [35], we adopt Rectified Flow for the fusion
task. Specifically, we utilize a pre-trained model based on Rectified Flow sampling to generate
high-quality fused images. Notably, we observe that using visible-light images as input, rather than
pure Gaussian noise, leads to improved fusion performance. The sampling process in our method can
be formally expressed as:

ft−∆t = ft −∆t× v(ft, t) vt(ft) =
ϵ− ft
1− t

t ∈ [1, 0]. (11)

Followed by DDFM [15], we incorporate the inference results of the Expectation-Maximization (EM)
algorithm into the sampling process of the diffusion model, thereby injecting the prior of the fused
image into the diffusion model through posterior sampling, and achieving image fusion. This process
can be formulated as:

pθ(f0 | i, v) =
∫

p(ft) δ (f0 − (ft −∆t · vθ(ft | i, v))) dft, (12)

where p(ft) denotes the initial distribution, while the Dirac delta function δ ensures that the output
f0 is strictly determined by the input ft and the velocity field vθ(ft | i, v). It is important to
note that Rectified Flow leverages an Ordinary Differential Equation (ODE) framework, meaning
that no stochastic noise is injected during the sampling process. Instead, data is deterministically
transformed from an initial distribution to the target distribution by optimizing a continuous velocity
field vθ(ft|i, v). Consequently, Equation 9 in our method can be reformulated as

vθ(ft|i, v) = vθ(ft) +∇ft log p(i, v | ft) ≈ vθ(ft) +∇ft log pt(i, v | f̃0|t). (13)

In this way, we transfer Rectified Flow to the image fusion task, achieving an efficient single-step
image fusion method without requiring additional training.

4.3 VAE Autoencoder for Image Fusion

LDM [26] was the first to introduce generative diffusion models into the latent space, leveraging the
powerful encoding capability of Variational Autoencoder (VAE) to perform image tasks in the latent
space, significantly reducing inference costs while achieving high visual fidelity.

Inspired by this work, we introduce VAE into the image fusion task to enable image generation in the
latent space. However, applying VAE-based approaches to image fusion faces two key challenges:
(1) Previous methods for image reconstruction typically focus on pixel-level visual fidelity, whereas
the core of image fusion lies in capturing complementary semantic information across different
modalities. (2) Unlike traditional reconstruction tasks where the objective is to recover the original
input, image fusion requires decoding a fused image that integrates information from multiple input
modalities. Due to inherent differences between the input images and the desired fused output,
this discrepancy poses a significant challenge for the direct application of pretrained VAE in image
fusion tasks. To address the aforementioned challenges, we propose a two-stage training strategy to
effectively adapt VAE architectures for the image fusion task.

VAE training stage I To address Challenge I, we devise a training strategy based on frequency
similarity. Specifically, prior research has demonstrated that the complementary semantic information
emphasized in image fusion is often closely correlated with the high- and low-frequency components
of the input images. Leveraging this insight, we introduce a frequency similarity loss and fine-
tune only the VAE encoder and decoder, without involving Rectified Flow sampling or the image
fusion process. As a result, the training procedure closely resembles that of conventional image
reconstruction. Followed by Equation 7, the corresponding training goal is formulated as follows:

R = arg min
E,G,Z,x

max
D

Ex∼p(x) [LVQ(E,G,Z) + λGANLGAN({E,G,Z}, D) + λfreLfre(x, x̂)] ,

(14)
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Figure 3: Visual comparison of IVIF with SOTA methods on M3FD datasets.

where LVQ, LGAN are followed by [36]. The proposed frequency loss, Lfre, is designed to capture
discrepancies in the frequency domain by first transforming the input images from the spatial domain
using the Fast Fourier Transform (FFT). The transformation process can be expressed as:

Îin = F(Iin), Îrec = F(Irec),F(u, v) =

H−1∑
x=0

W−1∑
y=0

I(x, y) · e−i 2πux
H · e−i 2πvy

W . (15)

Next, we shift the zero-frequency components of both Îin and Îrec which represent the average
intensity of the images to the center of the spectrum, resulting in Îin and Îrec for loss computation.
The loss can then be formulated as:

Lfre =
(
N

(
log(1 + |Îshift

in |)
)
−N

(
log(1 + |Îshift

rec |)
))2

, (16)

where N(·) denotes a normalization operation. Optimizing the above losses encourages the VAE to
focus on semantic information relevant to fusion during image reconstruction.

VAE training stage II To address Challenge II, we propose a training strategy for Variational
Autoencoder (VAE) tailored to the image fusion task. Specifically, we integrate the VAE into the
overall fusion framework and perform joint training to enhance its adaptability to the fusion process.
It is important to note that, in our method, the input is a visible image, and prior information from the
fused image is incorporated during the sampling stage to achieve the fusion. As a result, the VAE
encoder is only required to effectively compress the input image, while the decoder is responsible for
both reconstructing the image and incorporating fusion-related information. Therefore, in the second
stage of training, we focus on fine-tuning the VAE decoder to improve its ability to reconstruct fused
images. During this stage, we employ a fusion-specific loss function commonly used in image fusion
tasks to optimize the VAE, which is formulated as follows:

Lfusion = λintLint + λSSIMLSSIM + λgradLgrad + λcolorLcolor + λmaskLmask, (17)

where Lint, LSSIM, Lgrad, and Lcolor are followed by [37]. Meanwhile, to achieve saliency-guided
regional fusion, we introduce a saliency mask loss, denoted as Lmask, which can be formulated as:

Lmask = ∥Wv · Iv +Wir · Iir − If∥1 . (18)

Among them, Iir, Iv represent the input images, and If are the fused image. Wv and Wir denote the
saliency-based weight maps computed from the corresponding input images. The saliency mask loss
Lmask guides the network to focus on salient regions during the fusion process, thereby improving
the preservation of complementary information within the fused image. By jointly optimizing this
loss with other fusion objectives, the reconstruction capability of the VAE decoder is significantly
enhanced, ultimately leading to high-quality image fusion results. More details about the training
loss Lfusion and Lmask can be found in Appendix B.

5 Experiments

Experiment datasets We conduct experiments on three representative image fusion tasks: infrared
and visible image fusion (IVIF), multi-exposure image fusion (MEF), and multi-focus image fusion
(MFF). For the infrared and visible image fusion task, evaluations are performed on three widely-
used benchmark datasets: M3FD [1], TNO [38], and RoadScene [39]. For the multi-exposure and
multi-focus fusion tasks, we utilize the MEFB [40] and MFIF [10] datasets, respectively. The MFIF
dataset includes the Lytro [41], MFFW [42], and MFI-WHU [43] datasets.

6



Table 1: Comparison of Metrics with Our Baseline Method DDFM [15].

Methods M3FD Dataset T&R Datasets
EN MI SF VIF SSIM EN MI SF VIF SSIM

DDFM 6.720 2.871 9.102 0.677 0.867 7.077 1.798 8.910 0.277 0.207
Ours 6.722 3.320 9.780 0.748 0.914 7.139 2.948 12.55 0.675 0.921

(+0.002) (+0.449) (+0.678) (+0.071) (+0.047) (+0.062) (+1.150) (+3.640) (+0.398) (+0.714)

Implementation Details The two-stage training of the VAE was conducted entirely on an NVIDIA
V100 GPU. In the first stage, the model was trained on the LLVIP [44] and MSRS [45] datasets for
20 epochs. Interestingly, the best validation performance was typically achieved within just 4 to 5
epochs. The second stage involved training exclusively on the MSRS [45] dataset for 40 epochs. The
remaining hyperparameters for both stages were configured in accordance with the experimental
settings detailed in [26] and [37]. We evaluate our method on all three fusion tasks using the same set
of checkpoints, without any task-specific fine-tuning, thereby demonstrating the strong generalization
capability of our approach across diverse tasks.

Table 2: Quantitative comparison on M3FD, TNO, and RoadScene datasets. The best and second
best results are highlighted in bold and underline.

Dataset M3FD Dataset T&R Dataset
Method MI ↑ VIF ↑ SCD ↑ EN ↑ MI ↑ VIF ↑ SCD ↑ EN ↑

U2Fusion [3] 2.760 0.633 1.569 6.659 2.599 0.556 1.338 6.821
YDTR [46] 3.183 0.635 1.506 6.547 2.976 0.588 1.420 6.842
UMFusion [47] 3.089 0.613 1.570 6.669 2.888 0.610 1.475 6.967
ReCoNet [48] 3.066 0.577 1.483 6.679 2.985 0.540 1.510 7.051
LRRNet [49] 2.805 0.566 1.463 6.437 2.766 0.508 1.558 7.118
CoCoNet [50] 2.631 0.729 1.772 7.738 2.579 0.568 1.782 7.735
DDFM [15] 2.871 0.677 1.683 6.720 1.798 0.277 1.160 7.077
Ours 3.320 0.748 1.574 6.722 2.948 0.675 1.639 7.139

Table 3: Efficiency comparisons with other diffusion-based methods. The best and second best results
are highlighted in bold and underline.

Metrics
Methods

DRMF Dif-Fusion Diff-IF Text-DiFuse DDFM CCF Ours
SF↑ 12.57 10.42 13.90 9.319 9.689 10.14 14.00
AG↑ 4.201 4.307 5.179 3.559 3.981 3.882 5.218
Runtime (s) ↓ 3.221 1.997 2.457 9.199 22.03 62.47 0.308
Parameters (M) 170.98 416.47 23.47 119.49 552.81 552.81 65.57

5.1 Experiments on Infrared and Visible Image Fusion

In this section, we conduct a comprehensive comparison between our proposed RFfusion method
and other fusion approaches. We begin by comparing it with our baseline method, DDFM [15].
Subsequently, we evaluate its performance against several state-of-the-art methods proposed in
recent years to demonstrate the superiority of our approach, including: U2Fusion [3], YDTR [46],
UMFusion [47], ReCoNet [48], LRRNet [49], CoCoNet [50], and DDFM [15].

Comparison with DDFM method Since our method is built upon the DDFM framework by introduc-
ing fusion priors to achieve image fusion—with the main differences lying in the sampling strategy
and the use of VAE for latent space generation—we primarily compare our approach with DDFM. As
shown in Table 1, our method significantly accelerates inference and reduces computational overhead,
while outperforming DDFM across all fusion metrics on multiple datasets. These results indicate that
our method not only effectively reduces the number of sampling steps but also substantially enhances
the quality of the fused images. Furthermore, the results validate the generality and flexibility of our
approach, demonstrating its potential to serve as a plug-and-play module that can be integrated into
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other diffusion-based image fusion frameworks to simultaneously improve both inference efficiency
and fusion performance.

Quantitative Comparison As shown in Table 2, we conducted a comprehensive evaluation of the
proposed method using four widely adopted quantitative metrics across three benchmark datasets:
M3FD, TNO, and Roadscene. The results demonstrate that our method consistently ranks among
the top two across most metrics, indicating strong overall performance. Specifically, on the M3FD
dataset, our method achieves the best performance in terms of Mutual Information (MI), highlighting
its effectiveness in preserving informative content from the source images. Moreover, our method
achieves the highest scores in Visual Information Fidelity (VIF) across all datasets, further confirming
its superiority in enhancing the visual quality of the fused images.

Qualitative Comparison As shown in Figure 3, our method demonstrates superior visual perfor-
mance compared to other approaches. We selected four images from the M3FD dataset for qualitative
analysis, covering different scenarios including both daytime and nighttime, to ensure a compre-
hensive evaluation. Our method better preserves detailed texture information from the original
images, such as window textures on buildings and fine details at the ends of tree branches, whereas
other methods tend to blur these features. Additionally, our method highlights human details more
effectively and better retains the mutual information between visible and infrared images. This
demonstrates the advantages of our method in qualitative results.

5.2 Experiments on efficiency comparisons with other diffusion-based methods

To verify the effectiveness of our method in reducing the inference time and computational cost of
diffusion models in image fusion tasks, we compare it with several diffusion-based image fusion
approaches proposed in recent years, including DRMF [51], Dif-Fusion [18], Diff-IF [52], Text-
DiFuse [17], DDFM [15], and CCF [16]. All experiments are conducted on an NVIDIA V100 GPU,
and the fusion speed as well as the number of model parameters are evaluated on the RoadScene [39]
dataset to comprehensively assess the efficiency and complexity of each method. As shown in Table 3
and Figure 1, compared with other diffusion-based image fusion methods, our approach demonstrates
a significant advantage in inference speed while also achieving superior fusion quality. These results
indicate that our method not only greatly improves inference efficiency but also maintains, or even
enhances fusion performance, fully validating its capability for joint optimization of efficiency and
effectiveness.

5.3 Experiments on Evaluation on Multi-Focus Fusion

Quantitative Comparison As shown in Table 6, we conducted a comprehensive evaluation of
the proposed method on the MFIF dataset. The experimental results demonstrate that our method
consistently ranks among the top two across most evaluation metrics, fully validating its superior
effectiveness in the multi-focus fusion (MFF) task. Notably, the proposed method achieves this
performance without any fine-tuning on the multi-focus fusion dataset, further confirming its strong
generalization ability and robustness across different tasks.

Qualitative Comparison As shown in Figure 6, we selected two representative images from the
MFIF dataset for qualitative analysis, covering both daytime and nighttime scenarios to ensure a
comprehensive evaluation. Compared to other methods, our method more effectively preserves
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Table 4: Quantitative comparison on MEFB and MFIF datasets. The best and second best results are
highlighted in bold and underline.

Dataset MEFB Dataset MFIF Dataset
Method MI ↑ CC ↑ Qcb ↑ PSNR ↑ MI ↑ CC ↑ Qcb ↑ PSNR ↑

DeFusion [53] 4.854 0.834 0.365 57.70 6.007 0.976 0.627 76.62
TC-MoA [54] 5.418 0.900 0.430 59.00 6.686 0.968 0.731 74.78
Text-IF [37] 5.596 0.860 0.385 56.44 5.399 0.967 0.629 71.74
DDFM [15] 3.850 0.792 0.321 58.39 3.232 0.772 0.413 66.24
CCF [16] 4.830 0.898 0.398 58.38 4.799 0.956 0.474 66.64
Ours 6.528 0.901 0.461 58.49 6.443 0.977 0.654 75.04

clear details from the original images, achieving high-quality multi-focus image fusion and fully
demonstrating its superior performance in qualitative evaluation.

5.4 Experiments on Evaluation on Multi-Exposure Fusion

Quantitative Comparison Table 6 presents a quantitative comparison between our method and
existing approaches on the MEFB dataset. Notably, our method does not require any fine-tuning on
the MEF dataset. It consistently outperforms other multi-exposure fusion (MEF) methods across
most evaluation metrics, demonstrating its superior performance and strong generalization capability
in the multi-exposure image fusion task.

Qualitative Comparison As shown in Figure 4, compared to other methods, our fusion results better
preserve the detailed features of the original images and achieve superior visual performance. We
selected two images from the MEFB dataset for qualitative analysis. Our method more effectively
retains the texture of windows and the contour features of candles, demonstrating its advantages in
qualitative evaluation.

Table 5: Ablation studies on the effectiveness of the two-stage training strategy and loss functions.

Stage I Stage II PSNR MI SF AG
– – 59.41 2.998 12.16 4.615
✓ – 59.68 3.017 12.88 4.676
– ✓ 60.36 3.001 12.57 4.783
✓ ✓ 61.81 3.220 14.00 5.218

Lfre Lmask PSNR MI SF AG
– – 57.22 2.944 12.77 4.882
✓ – 58.84 3.202 13.56 5.021
– ✓ 59.67 3.121 13.31 4.976
✓ ✓ 61.81 3.220 14.00 5.218

5.5 Ablation Study

Experimental on the effectiveness of the two-stage training strategy. We conducted ablation
studies on the two-stage training strategy for the VAE to evaluate its effectiveness in the image fusion
task. As shown in Table 5, we compared fusion performance under four settings: without any training,
using only the first-stage training, using only the second-stage training, and applying both stages of
training. The results demonstrate that the fusion performance is optimal when both stages are applied,
validating the effectiveness of the training strategy in enhancing fusion quality.

Experimental on the effectiveness of the loss functions. We conducted ablation experiments on
the loss functions used in our proposed training method to evaluate their contributions to image
fusion performance, as shown in Table 5. Specifically, we designed four experimental settings:
without using either Lfre or Lmask, using only Lfre, using only Lmask, and using both Lfre and Lmask
simultaneously. The experimental results demonstrate that both Lfre and Lmask can independently
improve fusion quality, while their combined use leads to the best performance. These findings
validate the effectiveness and necessity of the proposed loss function design.

6 Limitation

RFfusion still relies on a Rectified Flow pre-trained model trained on generic image generation
tasks, which is not specifically designed for image fusion. This limitation may hinder the further
improvement of RFfusion’s fusion performance.
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7 Conclusion

In this paper, we propose an efficient one-step diffusion-based image fusion method called RFfusion.
By integrating Rectified Flow into the image fusion task, our method leverages its efficient one-step
sampling mechanism to significantly accelerate the diffusion-based fusion process. Moreover, we
design a task-specific Variational Autoencoder (VAE) that performs fusion in the latent space, effec-
tively reducing computational overhead while preserving more image details. Extensive experimental
results demonstrate that RFfusion achieves superior performance in both inference speed and fusion
quality compared to existing state-of-the-art methods, and also exhibits strong generalization capabil-
ities across diverse image fusion tasks. In the future, we will further explore acceleration mechanisms
of diffusion models in image fusion tasks to achieve more efficient image fusion methods
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tions of the proposed work.
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2. Limitations
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• The paper should point out any strong assumptions and how robust the results are to
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cross-referenced for clarity and consistency.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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clearly specifies the datasets used in the experiments, ensuring reproducibility of the main
results.
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to reproduce that algorithm.
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the architecture clearly and fully.
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the dataset).
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authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code can be found in https://github.com/zirui0625/RFfusion.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: These details are given in the experimental section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper provides detailed descriptions of the datasets used and experimental
setup, but does not include error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the experimental section, we describe the compute resources used for both
training and testing.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research complies with the ethical standards specified by NeurIPS.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our work improves existing methods in the field, and therefore, will have a
positive impact on the industry.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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any negative applications, the authors should point it out. For example, it is legitimate
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
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Answer: [NA]

Justification: There is no risk of the paper being misused.
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• The answer NA means that the paper poses no such risks.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
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has curated licenses for some datasets. Their licensing guide can help determine the
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces a new method, and the related code and trained models
will be made publicly available after the paper is accepted, along with detailed documenta-
tion.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our research does not include any human-related experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research does not include any human-related experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method of this study does not involve LLM related technologies.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Detailed derivation of formulas

In this section, we provide a detailed proof regarding posterior sampling in diffusion-based image
fusion methods. The noise predicted by the diffusion model at time step t is often related to the score
at the current time step. According to [55], the specific formulation can be expressed as:

ϵϕ(xt, t) = −
√
1− αt∇xt

log p(xt), (19)

In posterior sampling, we also need to take into account the guidance from image fusion, denoted
as i, v. Therefore, what we need to solve is ∇ft log p(ft|i, v), which can be expressed using Bayes’
theorem as:

pt(ft | i, v) =
pt(i, v | ft) · pt(ft)

pt(i, v)
,

⇒ log pt(ft | i, v) = log pt(i, v | ft) + log pt(ft)− log pt(i, v),

⇒ ∇ft log pt(ft | i, v) = ∇ft log pt(ft) +∇ft log pt(i, v | ft). (20)

Among them, ∇ft log p(ft | i, v) and ∇ft log p(ft) can be expressed by Equation 19 as follows:

ϵϕ(ft, t) = −
√
1− αt∇ft log pt(ft),

ϵ′ϕ(ft, t | i, v) = −
√
1− αt∇ft log pt(ft | i, v). (21)

Therefore, the final equation can be expressed as:

ϵ′ϕ = ϵϕ(ft, t)−
√
1− αt∇ft log pt(i, v | ft),

≈ ϵϕ(ft, t)−
√
1− αt∇ft log pt(i, v | f̃0|t),

≈ ϵϕ(ft, t)− ρ
√
1− αt∇ft∥i, v −M(f̂0(ft))∥22. (22)

Therefore, we inject the image fusion prior by correcting the predicted noise during the sampling
process, thereby achieving high-quality image fusion based on the diffusion model.

B Details about the training loss

In the main text, the loss Lfusion used in the training stage II is defined as follows:

Lfusion = λintLint + λSSIMLSSIM + λgradLgrad + λcolorLcolor + λmaskLmask. (23)

Followed by [37], we use the Intensity Loss to encourage the model to focus on salient features in the
fused image, which is specifically defined as:

Lint =
1

HW
∥If −max(Igvis, I

g
ir)∥1 . (24)

Here, Igvis and Igir are the ground truth corresponding to the fused image. We also use LSSIM to train
the model so that the fused image is structurally as similar as possible to the two input images. It is
defined as:

LSSIM = (1− SSIM(If , I
g
vis)) + µ(1− SSIM(If , I

g
ir)). (25)

We also compute the gradient loss Lgrad to ensure the similarity between the fused image and the
input images in terms of edge features:

Lgrad =
1

HW
∥∇If −max(∇Igvis,∇Igir)∥1 , (26)

and use Lcolor to keep consistent color with input images:

Lcolor =
1

HW
∥FCbCr(If )−FCbCr(I

g
vis)∥1 . (27)

As mentioned in the main text, we use Lmask for saliency-guided regional fusion, which can be
represented as:

Lmask = ∥Wv · Iv +Wir · Iir − If∥1 . (28)
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Here, Wv and Wir denote the saliency-based weight maps computed from the corresponding input
images. Wv and Wir are computed based on pixel-level visual saliency maps. Specifically, they are
estimated by measuring the sparsity of the image pixel histograms: the sparser the pixel distribution,
the higher the corresponding saliency. The computation can be formulated as:

Saliency(i) =
255∑
j=0

|i− j| · Hist(j). (29)

Here, i represents the grayscale value of the current pixel, and j denotes the grayscale value of the
traversed pixels. By computing the saliency values Sir(i, j) and Sv(i, j) for each pixel, we can obtain
the corresponding Wv and Wir. The specific formulas are given as:

Wv(i, j) = µv + Sv(i, j)− µv · Sir(i, j) (30)

Wir(i, j) = 1−Wv(i, j) (31)

C Additional experiments of our method

Table 6: Quantitative comparison on Lytro, MFFW and MFI-WHU datasets. The best and second
best results are highlighted in bold and underline.

Dataset Lytro MFFW MFI-WHU
Method MI CC Qcb PSNR MI CC Qcb PSNR MI CC Qcb PSNR

DeFusion [53] 6.27 0.97 0.59 77.2 5.59 0.97 0.55 74.4 6.01 0.97 0.69 77.2
TC-MoA [54] 7.45 0.97 0.76 74.8 5.34 0.96 0.63 72.8 6.76 0.97 0.75 75.6
Text-IF [37] 5.63 0.97 0.65 71.9 5.26 0.96 0.61 70.2 5.31 0.97 0.62 72.3
DDFM [15] 3.53 0.85 0.41 67.2 3.33 0.73 0.38 64.5 2.99 0.74 0.43 66.4
CCF [16] 5.15 0.96 0.49 66.8 4.47 0.95 0.47 66.6 4.95 0.96 0.47 67.1
Ours 6.58 0.98 0.61 76.1 5.80 0.97 0.55 71.7 6.38 0.98 0.71 75.7

More Quantitative Comparison of Multi-Focus Fusion As shown in Table 6, we conducted
comparisons on three datasets in MFIF: Lytro [41], MFFW [42], and MFI-WHU [43]. Our method
outperforms other approaches on most metrics. Specifically, it achieves either the first or second best
performance2on 9 different metrics, surpassing other comparison methods and demonstrating the
superiority of our approach in the Multi-Focus Fusion task.

2Compare the percentiles of the same value.
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