
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EPINN: PHYSICS-INFORMED NEURAL NETWORK
WITH EXPONENTIAL ACTIVATION FUNCTIONS FOR
SOLVING STIFF ODES

Anonymous authors
Paper under double-blind review

ABSTRACT

Solving stiff ordinary differential equations (ODEs) through machine learning
methods has been quite a popular topic for years as it challenges the recently pro-
posed physics-informed neural network (PINN). Many variations based on PINN
have been advanced to enhance both the efficiency and the robustness. Nonethe-
less, many of them need to find the trade-off between the precision and speed be-
cause they have to train hundreds or even thousands of parameters if they do not
design good or problem-adapt networks. In this scenario, we put forward a sin-
gle layer physics-informed neural network with exponential activation functions
(EPINN) by implementing the prior knowledge of the solution to the linear stiff
ODEs. Under this simple but useful structure, less parameters would be sufficient
and the model is easy to train. The model is also extended to solve nonlinear sys-
tems by introducing sequential EPINN. The network is tested on six benchmark
problems including both linear and nonlinear ones and shows great performance.

1 INTRODUCTION

Stiff ordinary differential equations (ODEs) are frequently employed to describe variable phenom-
ena of fields such as atmospheric chemistry, physics and chemical engineering. Formally, stiff refers
to the fact that both fast and slow processes exist simultaneously, in which the absolute changes of
different components sometimes could cover several orders of magnitude within a relatively nar-
row time interval, mathematically called boundary or inner layers. On the one hand, this property
makes the numerical solving significantly challenging for both the traditional and machine learning
schemes since one has to use very small time steps or a great number of neurons to capture the huge
change of the solution. On the other hand, stiff ODE systems like Van Der Pol’s equation and Rober
equations are very essential models. As a result, finding highly efficient solver for stiff ODEs is a
demanding and formidable work.

Generally speaking, ODEs can be integrated either by traditional schemes or machine learning meth-
ods. The traditional algorithms, such as finite difference method (FDM), mainly consist of explicit
and implicit methods. Nevertheless, solving stiff ODEs is still a tough task because both efficiency
and high stability are significantly in need especially for stiff ODEs. The explicit methods often do
not satisfy the stability requirement while the implicit ones are computationally intensive most of
the time.

With the development of machine learning, neural network methods have enabled advances in solv-
ing differential equations, among which the recently proposed physics-informed neural network
(PINN) embeds physics laws in the training of the network, transferring data-driven methods into
knowledge-driven methods Raissi et al. (2019). After being brought up, PINN has been successfully
applied to plenty of issues from numerous fields such as solid mechanics Haghighat et al. (2021);
Vahab et al. (2022); Niaki et al. (2021); Samaniego et al. (2020); Arora et al. (2022) and fluid me-
chanics Mao et al. (2020); Almajid & Abu-Al-Saud (2022).

Despite the great performance deep learning methods have shown in many areas, when facing multi-
task or multi-scale problems, regular deep learning schemes are usually not so powerful. For in-
stance, it is known that PINN have troubles in solving stiff ODEs Karniadakis et al. (2021). Reasons
are analyzed Wang et al. (2021) and variations are raised such as stiff PINN, MPINN, vanilla PINN

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

and reduced PINN Ji et al. (2021); Weng & Zhou (2022); Baty (2023); Nasiri & Dargazany (2022).
Although these models improve the performance of the original network, they all have to train hun-
dreds or even thousands of parameters which is time-consuming. PIRPNN observes this issue and
introduces a single layer network to reduce the number of parameters and enhance the efficiency
by using the technique of random projection, while it still needs to lots of neurons to guarantee the
accuracy Fabiani et al. (2023).

In this scenario, our interest is to construct a model with parameters as few as possible while main-
taining both the accuracy and efficiency. Our main contributions can be summarized as follows:

• We put forward a single neural network with exponential activation functions by imple-
menting prior knowledge of the solution to obtain a fast and accurate stiff ODE solver.

• Under our structure, very few parameter would suffice to get a satisfactory solution and the
loss function is smooth and convex so that the global optimizer can be guaranteed.

• The model is tested on several benchmark stiff cases containing both linear and nonlinear
ones and shows great performance.

The paper is organized as follows. In section 2, we introduce the basic information about our prob-
lem settings and preliminaries. In section 3, we discuss the method and construct our model. In
section 4, we compare its performance with the famous stiff ODE solver ode15s in Matlab on six
benchmark cases. Finally, we draw our conclusions in section 5.

2 PROBLEM SETTINGS AND PRELIMINARIES

2.1 PROBLEM SETTINGS

The initial value problem of the following stiff ODEs is of our interest:{
y′ = f(t,y), t ∈ (0, T],

y(0) = y0.
(1)

where y,f ∈ Rd. Without generality, we can always assume the time start of equation 1 be 0
because we can always make a time translation t 7→ t− t0 if the equation starts at t0 ̸= 0.

2.2 CLASSICAL PHYSICS-INFORMED NEURAL NETWORK

With the pure data-driven deep learning methods achieving great break-through in many artificial
intelligence domains, PINN is believed to transform the data-driven methods into knowledge-driven
methods by embedding physics laws or prior knowledge in the design of the network. By imple-
menting PINN, the training data could be reduced to several points, which is especially suitable for
differential equations where only the initial and (or) boundary conditions are known in most cases.

In detail, a neural network can be represented by N (x) with x as input, and N as the output given
by the following composite function 2:

N (x,θ) = l ◦ ΦL ◦ · · · ◦ Φ0(x),

Φi(x) = σi(W
ix+ bi), i = 0, . . . , L.

(2)

where θ denotes the set of weight matrices and bias vectors {W i, bi}Li=0, called adjustable param-
eters, σi a nonlinear activation function, and l a linear amplification function.

Taking the following 1-dimensional partial differential equation (PDE) 3 with Dirichlet boundary
condition as an example, {Lu = 0, x ∈ Ω,

u|x∈∂Ω = h.
(3)

where L is a differential operator. PINN can be constructed by minimizing the following loss func-
tion:

L(θ) =
ωb

|Ωb|
∑
x∈Ωb

|N (x,θ)− h(x)|+ ωe

|Ωe|
∑
x∈Ωe

|LN (x,θ)|. (4)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where Ωb and Ωe are two limited sample sets of ∂Ω and int(Ω), respectively. And ωb, ωe are two
positive adjustable parameters which can be pre-determined or self-adaptive. Finally, denoting the
optimizer of 4 as θ∗, PINN regards N (x,θ∗) as the solution to equation 3.

According to the universal approximation theorem, neural networks offer a good approximation of
a continuous function with sufficient layers and neuronsHornik et al. (1989). However, there is a
dilemma between the accuracy and efficiency because multi-layer structure and too many neurons
would make the model difficult to train although a great deal of techniques are employed to settle
this problem.

2.3 RELATED WORKS

After being proposed, PINN has been successfully utilized to solve many classical differential equa-
tions including the Burgers’ equation, the Navier-Stokes equation and the Schrodinger equation
Raissi et al. (2019); Jin et al. (2021); Naderibeni et al. (2024). However, it has troubles in solving
stiff ODEs. Afterwards, reasons are analyzed and an adaptive algorithm is put forward to balance
the huge gradient difference among different loss terms Wang et al. (2021). Several variations based
on PINN are brought up as well.

Different models emphasize on different aspects. Some transfer the original equations to make
the training easier: Stiff PINN introduces quasi-steady state assumption to make the equations less
stiffer Ji et al. (2021). As a result, the model learns the solution to the milder system rather than
the original one. Reduced PINN transfers the governing equation into an integral one Nasiri &
Dargazany (2022). However, the numerical solving of the integral has to be implemented in a
relatively small time interval, making the method time-consuming. Some adjust the structure of
the network: MPINN uses different networks to learn the fast and slow components separately but
needs some ground truth data to guarantee the accuracy Weng & Zhou (2022), which is inaccessible
in many cases. Vanilla PINN imposes some strategies like hybrid loss and moving collocation grid
but cannot solve the strongly stiff cases Baty (2023). Some focus on the activation functions chosen:
PIRPNN uses a single layer network with Gaussian kernels as its activation functions to approximate
the solution Fabiani et al. (2023). It introduces random projection technique to reduce the parameters
and shows great performance on nonlinear stiff ODEs.

3 METHOD

To guarantee the efficiency of the training, we also choose a single layer network to approximate
the solution, which is to find a group of basis functions σ(t) ∈ Rd such that the solution y(t) to
equation 1 can be approximated by:

y(t) ≈ yN (t) = Wσ(t). (5)

where W ∈ Rd×d. Different from PIRPNN, we use prior knowledge rather than random projection
techniques such that less neurons and weight parameters would be sufficient. To achieve this goal,
we first analyze the structure of the solution.

3.1 THE STRUCTURE OF THE SOLUTION

As nonlinear equation 1 can be approximated by the following linear system:y′ =
∂

∂y
f(t,y0)(y − y0) + f(t,y0), t ∈ (0, T],

y(0) = y0.

(6)

Therefore, we only need to discuss the structure of linear ODEs.

3.1.1 LINEAR ODES WITH CONSTANT COEFFICIENTS

We first consider the following linear ODEs with constant coefficients:{
y′ = Ay + b, t ∈ (0, T],

y(0) = y0.
(7)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where A ∈ Rd×d and y, b ∈ Rd. Suppose λ1, . . . , λm are m eigenvalues of A with geometric
multiplicity d1, . . . , dm, respectively and |λ1|≥ |λ2|≥ · · · ≥ |λm|> 0. The system 7 is called stiff
if:

• ℜ(λi) < 0, i = 1, . . . , d,

• |λ1|
|λm| ≫ 1.

and the above ratio |λ1|
|λm| is called stiffness ratio or rigidity ratio. We can further assume the Jordan

normal form of A is:

J = P−1


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jm

P . (8)

where Ji is the following di × di dimensional Jordan block matrix:

Ji =



λi 1 0 · · · 0 0
0 λi 1 · · · 0 0
0 0 λi · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λi 1
0 0 0 · · · 0 λi

 . (9)

Denoting σi(t) as the column vector composed of:

σi(t) = (eλit; teλit; · · · ; tdi−1eλit), i = 1, . . . ,m. (10)

and σA(t) as (σ1(t); . . . ;σm(t)), it can be proved that the solution to equation 7 can be written as
the linear combination of (1;σA(t)) (seeing details in the appendix A.1).

3.1.2 LINEAR ODES WITH VARIABLE COEFFICIENTS

For linear system with variable coefficients:{
y′ = A(t)y + b(t), t ∈ (0, T],

y(0) = y0.
(11)

where A(t) ∈ Rd×d and y(t), b(t) ∈ Rd. By introducing the technique in the appendix A.2, we can
always assume equation 11 is a homogeneous system (b(t) ≡ 0).

Suppose A(t) =
∑k

i=1
1

i+1Ait
i is a k-th order polynomial matrix function, the analytic solution to

equation 11 can be written as the following form:

y(t) = e
∑k

i=0 Ait
i+1

y0. (12)

However, unlike the first simple case, the exponential matrix function 12 does not have explicit ex-
pression. Therefore, some asymptotic analysis techniques have to be introduced. By utilizing the
skill of operator splittingSportisse (2000), Πk

i=0e
Ait

i+1

y0, denoted as ȳ(t), can be used to approxi-
mate y(t). The benefit is that ȳ(t) has explicit form and can be written as the linear combination of
functions:

σ(t) = ⊗k
i=0σAi

(t). (13)
where ⊗ is the Kronecker product and σAi

(t) is defined in the following way similar to 10:

eλ
i
jt

i+1

, ti+1eλ
i
jt

i+1

, · · · , (ti+1)d
i
j−1eλ

i
jt

i+1

, j = 1, . . . ,mi, i = 0, . . . , k. (14)

where λi
j is the eigenvalues of Ai with multiplicity dij (seeing details in the appendix A.3).

For the case where A(t) is not a polynomial function, we hope to transform the equation into the
one with polynomial coefficients, which is fully discussed. A natural intuition is to use the Taylor

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

expansion of A(t) to approximate A(t), which offers a polynomial function approximation. In
detail, one can find the k-th order Taylor series of A(t) around the initial point as:

A(t) =

k∑
i=0

A(i)(0)

i!
ti. (15)

then it goes back to the polynomial case.

3.2 EXPONENTIAL ACTIVATION FUNCTIONS AND EPINN

As we already know that the solution to system 11 can be written as the linear combination of 13,
we can implement 13 as the activation functions, which we denote as σ(t) and call exponential
activation functions. Afterwards, we apply the linear combination of σ(t) as the output, denoted as
N (t,W) = Wσ(t), which we call exponential physics-informed neural network(EPINN). Under
the format of PINN, the loss function can be constructed as:

L(W) =
ωi

2
∥N (0,W)− y0∥22 +

ωe

2n

n∑
i=1

∥ ∂

∂t
N (ti,W)−A(ti)N (ti,W)− b(ti)∥22. (16)

where Ωe = {t1, · · · , tn} ⊂ (0, T] is the sample set and ωi, ωe are two positive adjustable param-
eters. Through minimizing the loss function L(W), the optimizer of the training is regarded as the
solution. It benefits a lot from constructing EPINN:

• Accuracy of the solution: By the discussion in section 3.1.1, we know our model can
compute the exact solution for linear systems with constant coefficients. Additionally, for
linear systems with variable coefficients and nonlinear systems, EPINN can also offer a
good approximation.

• Efficiency of the training: We construct a single layer neural network similar to PIRPNN
Fabiani et al. (2023), where only a few weight matrix parameters are needed to be opti-
mized. Furthermore, less neurons would suffice as we implement the prior knowledge of
the solution in the design of the network, which makes the training very fast.

• Flexibility of the coding: For any sample set, L(W) is a smooth and convex function.
Therefore, quite a few optimization algorithms such as the least square method and gradient
descent algorithms can be used and the global minimum is guaranteed. Moreover, the
gradient is easy to compute and there is no need to introduce auto differentiation or other
alternatives, which would sharply reduce the complexity of the code.

The discussion above is based on the fact that we are informed with all the eigenvalues of the
corresponding matrix. When the information about the eigenvalues are not or partly known, the
network can also be trained by parameterizing all the eigenvalues of A with algebraic multiplicity
d. In this case, both the weight matrix and the eigenvalue parameters are needed to be optimized.
The loss function would be non-convex but still smooth. It is noteworthy that the more information
about eigenvalues we know, the easier the training would be. Particularly, the model is quite useful
for d ≤ 3 as λ1 and λm can be quickly calculated by using power and inverse power algorithms
under the stiff assumptionGolub & Van Loan (2013). And it is easy to compute all the eigenvalues
by using the fact in matrix computation:

∑m
i=1 diλi = Tr(A).

3.3 TECHNIQUES USED IN THE TRAINING

Several techniques are used to enhance the robustness of the model.

3.3.1 SEQUENTIAL EPINN

The approximation of the nonlinear system 1, the approximation of the linear system with variable
coefficients 11 and the use of operator splitting method 12 are all local properties, which means
the computation can maintain high accuracy only in the small neighborhood of the initial point.
Therefore, sequential EPINN is in need to improve the accuracy and robustness of the model.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

We partition the integral span [0, T] into N sub-intervals: [t0, t1] ∪ [t1, t2] ∪ · · · ∪ [tN−1, tN] where
t0 = 0, tN = T . For i = 1, 2, . . . , N , we solve the following sub-problem:{

y′
i = f(t,yi), t ∈ (ti−1, ti],

yi(ti−1) = yi−1(ti−1).
(17)

where y0(t0) = y0. The partition can be pre-determined or self-adaptive. One can just use equidis-
tant partition or introduce the techniques such as Fabiani et al. (2023); Huang & Seinfeld (2022) to
obtain a self-adaptive time-step scheme.

3.3.2 SOLVING OF EACH OPTIMIZATION PROBLEM

For each sub problem, we need to solve the optimization problem in the following form:

min
W

ωi

2
∥Wσ(0)− y0∥22 +

ωe

2n

n∑
i=1

∥Wσ′(ti)−A(ti)Wσ(ti)− b(ti)∥22. (18)

As we have proved that the above function 18 is convex for any W = (w1,w2, . . . ,wd) ∈ Rd×d,
the minimum can be obtained by solving the first order optimality condition. By writing W as
W̄ = (w1;w2; . . . ;wd) ∈ Rd2

, one can prove the first order optimality condition is the following
linear system(seeing details in the appendix A.4):

PW̄ = p. (19)

where P ∈ Rd2×d2

,p ∈ Rd2

. And the solution is unique if and only if P is non-singular. In
summary, the whole procedures of the algorithm can be written as:

Algorithm 1 Algorithm of EPINN
Input: information about the ODEs
Output: solution on desired points

1: partition the interval [0, T] into [t0, t1] ∪ [t1, t2] ∪ · · · ∪ [tN−1, tN]
2: for each i = 1, 2, . . . , N do
3: linearize equation 17 into 6 and obtain the first order optimality condition: PW̄ = p
4: if P is non-singular then
5: solve the linear system and get the solution on desired points
6: else
7: resample Ωe until P is non-singular and get the solution
8: end if
9: end for

It is worthwhile to note that we would better to sample in the (0,O(1
|λ1|)] as the term eλ1 decays

very fast. Otherwise, P may be singular due to the round-off error. Furthermore, our model has the
potential to be extended to solve stiff PDEs with both time and spatial variables by discretizing the
spatial variable using FDM, which is left with a system of ODEs. Careful discussion is needed.

4 NUMERICAL EXPERIMENTS

In this section, six benchmark numerical experiments are carried out to test the performance of the
model. All the numerical results are coded in Matlab 2024a and run on a desktop computer with an
Intel core i5-12490F CPU, 32 GB DIMM RAM, and a NVIDIA GeFORCE RTX 2060 GPU. The
computation time and the discrete L2 error against the reference solution are two key variables to
show the performance. And the reference solution is obtained either from the analytic solution or
the solution calculated by the built-in stiff ODE solver ode15s in Matlab with RelTol = 1× 10−14

for the cases where analytic solution is unknown. All the experiments are run for 10 times on the
same device and the results are the average value. For every iteration, the weight matrix is trained by
solving a linear system by the built-in function pinv, which is a fast and stable solver for computing
the Moore-Penrose pseudoinverse of a matrix. The adjustable parameters ωi and ωe are chosen as 1
in all experiments.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.1 STIFF SINGLE ODE

We first test our model on a stiff single ODE tested by reduced PINNNasiri & Dargazany (2022)
which is: {

y′ − λy = e−t, t ∈ (0, 1],

y(0) = 2.
(20)

The exact solution is:

yexact(t) = (2 +
1

1 + λ
)eλt − e−t

1 + λ
. (21)

Under our format, we denote y(t) as y1(t) and add a new function y2(t). To make e−t/y2(t) as
simple as possible, we choose y2(t) = e−t. Then the system 21 can be transited into:

(
y′1
y′2

)
=

(
λ 1
0 −1

)(
y1
y2

)
,

y1(0) = 2, y2(0) = 1.

(22)

For this simple case, the two eigenvalues are λ and −1 and the activation functions are 23 if λ ̸= −1.

σ(t) = (eλt, e−t)T . (23)

The original problem is tested for λ = −50. For our model, we test on a much stiffer case where
λ = −1000. The result is shown in figure 4.1.

Figure 1: The result of equation 20 with 10 collation points chosen randomly in (0, 0.1]. The average
computation time is almost 0s and the discrete L2 error is 4.4106×10−14 after running for 10 times.

4.2 LINEAR STIFF ODES WITH CONSTANT COEFFICIENTS

We then test our model on the following linear system of stiff ODEs with constant coefficients which
is used to benchmark stiff ODE solvers by Stoer et al. (1980):

y′1 = (
λ1 + λ2

2
)y1 + (

λ1 − λ2

2
)y2,

y′2 = (
λ1 − λ2

2
)y1 + (

λ1 + λ2

2
)y2,

y1(0) = 2, y2(0) = 0.

(24)

where t ∈ [0, 1]. The exact solutions is:{
y1(t) = eλ1t + eλ2t,

y2(t) = eλ1t − eλ2t.
(25)

The original paper sets λ1 and λ2 as -20 and -2, with stiffness ratio 10. We test our model with a
stiffer case where λ1 = −1000, λ2 = −1 and the stiffness ratio is 1000. The result of y1 and y2 is
shown in figure 4.2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 2: The result of equation 24 with 10 collation points chosen randomly in (0, 0.1]. After
running for 10 times, the average computation time is almost 0s and the discrete L2 errors for y1, y2
are 6.9799× 10−11 and 6.9803× 10−11, respectively.

4.3 LINEAR STIFF ODES WITH POLYNOMIAL COEFFICIENTS

We test our model against the following Linear Stiff ODEs with polynomial coefficients:y′ =

(
−4.5t2 − 4t− 199 −1.5t2 + 99
−1.5t2 + 2t− 198 −4.5t2 − 2t+ 98

)
y,

y(0) = (1, 1)T .

(26)

where t ∈ [0, 1]. This is a stiff equation whose solution does not have explicit form and the refer-
ence solution is obtained from ode15s. As the coefficients is a polynomial matrix function, we can
construct our network by calculating all the eigenvalues either manually or by the computer. After
computation, we get our activation function as: σ(t) = σ1(t)⊗ σ2(t)⊗ σ3(t) with:

σ1(t) = (e−t3 ; e−2t3), σ2(t) = (e−t2 ; e−2t2), σ3(t) = (e−t; e−100t). (27)

The results of y1 and y2 are shown in figure 4.3.

Figure 3: The result of equation 26. Sequential EPINN is employed in this case, where [0,1] is
partitioned into 100 equidistant small intervals and 10 randomly chosen collation points is chosen
as the sample set during each iteration. After running for 10 times, the average time is almost 0s
and the L2 error for y1 and y2 are 7.9811× 10−4 and 7.9859× 10−4, respectively.

4.4 PROTHERO-ROBINSON PROBLEM

The Prothero-Roberson benchmark problemProthero & Robinson (1974) is given by:
y′ = λ(y − b(t)) + b′(t). (28)

The analytical solution is y(t) = b(t) and the problem becomes stiff for |λ|≫ 1. The solution to
equation 28 is actually not stiff while the non-stiff ODE solver often fails to solve this problem for
large parameter λ. We choose b(t) = sin(t), y(0) = b(0) = 0, t ∈ [0, 2π] and λ = −1× 105 same
as Fabiani et al. (2023). To transit system equation 28 in a homogeneous one, we introduce two new
variables for this case. Let y1(t) = y(t), y2(t) = sin(t), y3(t) = cos(t), system equation 28 can be
rewritten as: (

y′1
y′2
y′3

)
=

(
λ −λ 1
0 0 1
0 −1 0

)(
y1
y2
y3

)
. (29)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

The numerical result is shown in figure 4.4.

Figure 4: The result of equation 28 with 10 randomly chosen collation points in (0, 1×10−5]. After
running for 10 times, the average time is almost 0s and the L2 error is 2.1863× 10−6.

4.5 VAN DER POL’S EQUATION

Van Der Pol’s equation is a benchmark stiff problem on studying nonlinear oscillations given by:{
y′′ + µ(y2 − 1)y′ + y = 0,

y(0) = 2, y′(0) = 0.
(30)

where t ∈ [0, 3µ]. Sometimes one system would show stiffness when facing very small or large
parameters. However, the system 30 would show great stiffness even when µ is not that large
because of its non-linearity. By setting y1(t) = y(t), y2(t) = y′(t), system equation 30 can be
transited into the following first order ODEs system:

(
y′1
y′2

)
=

(
y2

−y1 − µ(y21 − 1)y2

)
,

y1(0) = 2, y2(0) = 0.

(31)

The result of y1 and its derivative y2 is shown in figure 4.5.

Figure 5: The result of equation 30. Sequential EPINN is implemented. For our case, µ is chosen as
10 and [0, 3µ] is partitioned into 3000 equidistant small intervals and 5 collation points are randomly
chosen during each iteration. After running for 10 times, the average time is 0.0609s compared with
0.0063s consumed by ode15s. And the L2 error for y1 and y2 are 0.0645 and 0.7324, respectively.

4.6 ROBER PROBLEM

Rober problem is a classical stiff equation which is to describe the reaction among three substances
in chemical kinetics and is very popular in testing stiff ODE solvers. It can be written as the follow-
ing equations: 

(
y′1
y′2
y′3

)
=

 −0.04y1 + 104y2y3
0.04y1 − 3× 107y22 − 104y2y3

3× 107y22

 ,

y1(0) = 1, y2(0) = 0, y3(0) = 0.

(32)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

where t ∈ [0, 0.01]. This example is quite different from what we have discussed because its
Jacobi matrix is degenerate everywhere, which belongs to the category of differential algebraic
equations(DAEs). It is easily observed that

y1(t) + y2(t) + y3(t) ≡ 1, (33)

According to this property, we can add a conservative loss term as:

Lc(W) =
1

2l

l∑
i=1

∥y∗1(ti) + y∗2(ti) + y∗3(ti)− 1∥22, (34)

where y∗1 , y
∗
2 , y

∗
3 are the estimated solutions by the network. The result of the concentration change

of three substances is shown in figure 4.6.

Figure 6: The result of equation 33. Sequential EPINN is also implemented in this case and we
partition the time span into 200 equidistant sub-intervals. The sample set for governing equation loss
term and mass conservative term is 2 and 10 randomly chosen collation points during each iteration,
respectively. After running for 10 times, The average time is 0.0203s compared with almost 0s
consumed by ode15s. And the L2 error for y1, y2 and y3 are 2.9559 × 10−7, 6.3255 × 10−8 and
2.8437× 10−7, respectively.

5 CONCLUSION

In this paper, we propose a brand new single layer PINN to solve the initial value problem of stiff
ODEs by embedding the prior knowledge of the solution structure into the design of the network
and the model shows great performance for both the linear and nonlinear stiff ODEs.

For linear systems, our model not only achieves satisfactory precision but also runs very fast. In
our first four linear systems, the time consumed is all almost 0s. For nonlinear ones, our scheme
also holds a high calculation speed against regular multi-layer PINN models while maintaining great
accuracy.

In the future, there is still an urge for designing higher-precision model to solve nonlinear stiff
ODEs and extending the model to solve stiff PEDs with solid mathematical foundation and abundant
numerical experiments as well. As for the issue this paper focus, one can try to develop the model
with adaptive time step techniques to further enhance the efficiency and robustness.

REFERENCES

Muhammad M Almajid and Moataz O Abu-Al-Saud. Prediction of porous media fluid flow using
physics informed neural networks. Journal of Petroleum Science and Engineering, 208:109205,
2022.

Rajat Arora, Pratik Kakkar, Biswadip Dey, and Amit Chakraborty. Physics-informed neural net-
works for modeling rate-and temperature-dependent plasticity. arXiv preprint arXiv:2201.08363,
2022.

Hubert Baty. Solving stiff ordinary differential equations using physics informed neural networks
(pinns): simple recipes to improve training of vanilla-pinns. arXiv preprint arXiv:2304.08289,
2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In Large Scale Kernel
Machines. MIT Press, 2007.

Gianluca Fabiani, Evangelos Galaris, Lucia Russo, and Constantinos Siettos. Parsimonious physics-
informed random projection neural networks for initial value problems of odes and index-1 daes.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 33(4), 2023.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Ehsan Haghighat, Maziar Raissi, Adrian Moure, Hector Gomez, and Ruben Juanes. A physics-
informed deep learning framework for inversion and surrogate modeling in solid mechanics.
Computer Methods in Applied Mechanics and Engineering, 379:113741, 2021.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527–1554, 2006.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Yuanlong Huang and John H Seinfeld. A neural network-assisted euler integrator for stiff kinetics
in atmospheric chemistry. Environmental Science & Technology, 56(7):4676–4685, 2022.

Weiqi Ji, Weilun Qiu, Zhiyu Shi, Shaowu Pan, and Sili Deng. Stiff-pinn: Physics-informed neural
network for stiff chemical kinetics. The Journal of Physical Chemistry A, 125(36):8098–8106,
2021.

Xiaowei Jin, Shengze Cai, Hui Li, and George E Karniadakis. Nsfnets (navier-stokes flow nets):
Physics-informed neural networks for the incompressible navier-stokes equations. Journal of
Computational Physics, 426:109951, 2021.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Zhiping Mao, Ameya D Jagtap, and George Em Karniadakis. Physics-informed neural networks for
high-speed flows. Computer Methods in Applied Mechanics and Engineering, 360:112789, 2020.

Mahdi Naderibeni, Marcel JT Reinders, Liang Wu, and David MJ Tax. Learning solutions of para-
metric navier-stokes with physics-informed neural networks. arXiv preprint arXiv:2402.03153,
2024.

Pouyan Nasiri and Roozbeh Dargazany. Reduced-pinn: An integration-based physics-informed
neural networks for stiff odes. arXiv preprint arXiv:2208.12045, 2022.

Sina Amini Niaki, Ehsan Haghighat, Trevor Campbell, Anoush Poursartip, and Reza Vaziri.
Physics-informed neural network for modelling the thermochemical curing process of composite-
tool systems during manufacture. Computer Methods in Applied Mechanics and Engineering,
384:113959, 2021.

A Prothero and A Robinson. On the stability and accuracy of one-step methods for solving stiff
systems of ordinary differential equations. Mathematics of Computation, 28(125):145–162, 1974.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Esteban Samaniego, Cosmin Anitescu, Somdatta Goswami, Vien Minh Nguyen-Thanh, Hongwei
Guo, Khader Hamdia, Xiaoying Zhuang, and Timon Rabczuk. An energy approach to the solu-
tion of partial differential equations in computational mechanics via machine learning: Concepts,
implementation and applications. Computer Methods in Applied Mechanics and Engineering,
362:112790, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Bruno Sportisse. An analysis of operator splitting techniques in the stiff case. Journal of computa-
tional physics, 161(1):140–168, 2000.

Josef Stoer, Roland Bulirsch, R Bartels, Walter Gautschi, and Christoph Witzgall. Introduction to
numerical analysis, volume 1993. Springer, 1980.

Mohammad Vahab, Ehsan Haghighat, Maryam Khaleghi, and Nasser Khalili. A physics-informed
neural network approach to solution and identification of biharmonic equations of elasticity. Jour-
nal of Engineering Mechanics, 148(2):04021154, 2022.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow patholo-
gies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–
A3081, 2021.

Yuting Weng and Dezhi Zhou. Multiscale physics-informed neural networks for stiff chemical ki-
netics. The Journal of Physical Chemistry A, 126(45):8534–8543, 2022.

A APPENDIX

A.1 SOLUTION TO LINEAR SYSTEMS WITH CONSTANT COEFFICIENTS

In this section, we prove the solution to equation 7 can be written as the combination (1;σA(t)).
First, the solution can be written in the exponential matrix function form:

y(t) = eAty0 +

∫ t

0

eA(t−s)bds. (35)

where eAt =
∑∞

k=0
1
k! (At)k. Therefore, the key is to figure out the explicit expression of eAt.

By definition, when A = diag{J1,J2, . . . ,Jm}, eA = diag{eJ1 , eJ2 , . . . , eJm} as different
blocks would not bother each other when doing multiplication, which leads to:

eAt,

=eP
−1JP t,

=I + P−1JP t+
1

2!
(P−1JP t)2 + . . . ,

=P−1P + P−1JtP +
1

2!
P−1J2t2P + . . . ,

=P−1(I + Jt+
1

2!
(Jt)2 + . . .)P ,

=P−1eJtP ,

=P−1


eJ1t 0 . . . 0
0 eJ2t . . . 0
...

...
. . .

...
0 0 . . . eJmt

P.

(36)

By the definition of Ji for each i = 1, . . . ,m, we have:

eJit,

=I + Jit+
1

2!
(Jit)

2 + · · · ,

=eλit


1 t . . . tdi−1

(di−1)!

0 1 . . . tdi−2

(di−2)!

...
...

. . .
...

0 0 . . . 1

 .

(37)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

On the other hand, notice the following commutativity holds:

eAtA−1,

=(

∞∑
k=0

1

k!
(At)k)A−1,

=(I +At+
1

2!
(At)2 + . . .)A−1,

=(A−1 +
1

2
At2 + . . .),

=A−1(I +At+
1

2!
(At)2 + . . .),

=A−1eAt.

(38)

By using the fact that (e−At)′ = −Ae−At and A is non-singular (|λm| > 0), we get:

y(t),

=eAty0 + eAt

∫ t

0

−A−1(e−As)′bds,

=eAty0 − eAtA−1(e−At − I)b,

=eAt(y0 +A−1b)−A−1b,

=P−1eJtP (y0 +A−1b)−A−1b.

(39)

Therefore we know y(t) is the linear combination of (1;σ1(t); · · · ;σm(t)) = (1;σA(t)). As a
supplement, the basis function can be written out when A is singular, which needs more careful
calculation.

A.2 TECHNIQUE OF TRANSITING NON-HOMOGENEOUS SYSTEMS INTO HOMOGENEOUS
ONES

In this section, we consider the following non-homogeneous system:{
y′ = A(t)y + b(t), t ∈ (0, T],

y(0) = y0.
(40)

One way to transit equation 40 into a homogeneous one is to add new variables. Generally
speaking, one can consider adding a positive function u(t) ∈ Rd. Denoting b(t)/u(t) =
(b1(t)/u1(t); b2(t)/u2(t), . . . , bd(t)/ud(t)), the criteria of choosing u(t) is to make b(t)/u(t) as
simple as possible. Two cases are shown in section 4.1 and section 4.4.

A.3 SOLUTION TO LINEAR SYSTEMS WITH VARIABLE COEFFICIENTS

In this section, we discuss the structure of ȳ(t) = Πk
i=0e

Ait
i+1

y0. Similar to the discussion in A.1,
we know eAit

i+1

has the following structure by replacing t with ti+1:

eAit
i+1

= P−1
i diag{eJ

i
1 , . . . , eJ

i
mi }Pi. (41)

where Pi is a non-singular matrix and eJ
i
j is:

eJ
i
j = eλ

i
jt

i+1


1 ti+1 . . . (ti+1)

dij−1

(di
j−1)!

0 1 . . . (ti+1)
dij−2

(di
j−2)!

...
...

. . .
...

0 0 . . . 1

 . (42)

where λi
j is the eigenvalue of Ai with multiplicity dij , j = 1, . . . ,mi. Therefore, ȳ(t) can be written

as the linear combination of ⊗k
i=0σAi(t).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.4 EQUIVALENT FORM OF FIRST ORDER OPTIMALITY CONDITION

In this section, we discuss the first order optimality condition of equation 18. By denoting
(w1;w2; . . . ;wd) ∈ Rd2

as W̄ , we know the following property holds:

Wσ(0) =


σ(0)T 0 · · · 0

0 σ(0)T · · · 0
...

...
. . .

...
0 0 · · · σ(0)T

 W̄ . (43)

Wσ′(ti)−A(ti)Wσ(ti),

=


σ′(ti)

T − a11(ti)σ(ti)
T −a12(ti)σ(ti)

T . . . −a1d(ti)σ(ti)
T

−a21(ti)σ(ti)
T σ′(ti)

T − a22(ti)σ(ti) . . . −a2d(ti)σ(ti)
T

...
...

. . .
...

−ad1(ti)σ(ti)
T −ad2(ti)σ(ti)

T . . . σ′(ti)
T − add(ti)σ(ti)

T

 W̄ .

(44)
We denote the 43 as P0W̄ where P0 ∈ Rd×d2

and 44 as PiW̄ where Pi ∈ Rd×d2

, i = 1, . . . , n.
To solve the first order condition ∂

∂W L(W) = 0 is equivalent to solve:

(ωiP
T
0 P0 +

ωe

n

n∑
i=0

P T
i Pi)W̄ = ωiP

T
0 y0 +

ωe

n

n∑
i=0

P T
i b. (45)

which is in the form of PW̄ = p. If P is non-singular, the uniqueness and success of solving is
both guaranteed.

14

	Introduction
	Problem Settings and Preliminaries
	Problem Settings
	Classical Physics-Informed Neural Network
	Related Works

	Method
	The structure of the solution
	Linear ODEs with constant coefficients
	Linear ODEs with variable coefficients

	Exponential activation functions and EPINN
	Techniques used in the training
	Sequential EPINN
	Solving of each optimization problem

	Numerical Experiments
	Stiff Single ODE
	Linear Stiff ODEs with Constant Coefficients
	Linear Stiff ODEs with Polynomial Coefficients
	Prothero-Robinson Problem
	Van Der Pol's Equation
	Rober Problem

	Conclusion
	Appendix
	Solution to linear systems with constant coefficients
	Technique of transiting non-homogeneous systems into homogeneous ones
	Solution to linear systems with variable coefficients
	Equivalent form of first order optimality condition

