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Abstract

Domain generalization (DG) methods aim to maintain good performance in an
unseen target domain by using training data from multiple source domains. While
success on certain occasions are observed, enhancing the baseline across most sce-
narios remains challenging. This work introduces a simple yet effective framework,
dubbed learning from multiple experts (LFME), that aims to make the target model
an expert in all source domains to improve DG. Specifically, besides learning the
target model used in inference, LFME will also train multiple experts specialized
in different domains, whose output probabilities provide professional guidance by
simply regularizing the logit of the target model. Delving deep into the framework,
we reveal that the introduced logit regularization term implicitly provides effects of
enabling the target model to harness more information, and mining hard samples
from the experts during training. Extensive experiments on benchmarks from
different DG tasks demonstrate that LFME is consistently beneficial to the base-
line and can achieve comparable performance to existing arts. Code is available
at https://github.com/liangchen527/LFME.

1 Introduction

Deep networks trained with sufficient labeled data are expected to perform well when the training
and test domains with similar distributions [74, 4]. However, test domains in real-world often exhibit
unexpected characteristics, leading to significant performance degradation for the trained model.
Such a problem is referred to as distribution shift and is ubiquitous in common tasks such as image
classification [43, 27] and semantic segmentation [19, 40]. Various domain generalization (DG)
approaches have been proposed to address the distribution shift problem lately, such as invariant
representation learning [53, 69, 57, 62, 29], augmentation [91, 48, 79, 47], adversarial learning
[24, 46, 81, 49], meta-learning [44, 2, 22, 45], to name a few. Yet, according to [27], most arts
perform inferior to the classical Empirical Risk Minimization (ERM) when applied with restricted
hyperparameter search and evaluation protocol. Both the experiments in [27] and our findings suggest
that existing models are incapable of consistently improving ERM in all evaluated datasets. The
consistent improvement for ERM thus becomes our motivation to further explore DG.

Our approach derives from the observation in [10] that some of the data encountered at test time are
similar to one or more source domains, and in which case, utilizing expert models specialized in the
domains might aid the model in making a better prediction. The observation can be better interpreted
with the example in Fig. 1. Given experts trained in the “infograph", “real", and “quickdraw" domains,
and test samples from the novel “sketch" domain. Due to the large domain shift, it would be better to
rely mostly on the expert trained on the similar “quickdraw" domain than others.
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Figure 1: Pipeline of LFME. Experts and the target model are trained simultaneously. To obtain
a target model that is an expert on all source domains, we learn multiple experts specialized in
corresponding domains to help guide the target model during training. For each sample, the guidance
is implemented with a logit regularization term that enforces similarity between the logit of the target
model and probability from the corresponding expert. Only the target model is utilized in inference.
Please refer to Algorithm 1 for detailed implementations.

However, the test domain information is often unavailable in DG, indicating that we can not specif-
ically train an expert specialized in a particular domain. In light of this, obtaining a target model
that is an expert on all source domains seems to be a practical alternative for handling potential
arbitrary test domains. A naive implementation would be training multiple experts on each domain,
and dynamically aggregate them to form the target model. So that any encountered test samples
can be predicted by corresponding experts who are familiar with their characteristics. Nevertheless,
such a practice has two inherent limitations: (1) designing an effective aggregation mechanism is
essential and inevitable for the naive model. In fact, our experimental study indicates that using naive
aggregating strategies, such as averaging, may deteriorate the performance. (2) the overall framework
requires much more resources for deployment when there are many training domains, since all the
experts must be leveraged during the test phase.

This work proposes a simple framework for learning from multiple experts (LFME), capable of
obtaining an expert specialized in all source domains while avoiding the aforementioned limitations.
Specifically, during the training stage, instead of heuristically aggregating different experts, we
suggest training a universal target model that directly inherits knowledge from all these experts,
which is achieved by a simple logit regularization term that enforces the logit of the target model
to be similar to probability from the corresponding expert. With this approach, the target model is
expected to leverage professional guidance from multiple experts, evolving into an expert across all
source domains. During the test phase, only the target model is utilized. As a result, both model
aggregations and extra memory and computation resources are not required during the deployment,
since we only leverage one model. The overall training and test pipelines are illustrated in Fig. 1.

Our method can be interpreted through the lens of knowledge distillation (KD), where the core idea
is transferring knowledge by training the student (i.e. the target model) with soft labels from teachers
(i.e. experts) [31]. Unlike traditional KD [31] that uses teachers’ output probabilities as soft labels in
a cross entropy loss, we employ a logit regularization term that uses experts’ probabilities to refine the
logit of the target model in a regression manner, which can be regarded as extending the effectiveness
of mean squared error (MSE) loss in classification [37] within the KD realm.

To gain a deeper understanding of the effectiveness of our logit regularization term, we perform
in-depth analyses and uncover that its merit over the baseline can be explained in twofold. (1)
It implicitly regularizes the probability of the target model within a smaller range, enabling it to
use more information for prediction and improve DG accordingly. It is noteworthy that the effect
is achieved inherently differs from that by label smoothing (LS) [71], as LFME does not require
explicitly calibration for the output probability. Expanding upon this analysis, we find that a simple
combination of cross entropy and MSE losses achieves comparable performance among existing
arts. Given its straightforward implementation without unnecessary complexities, this expanding may
offer a "free lunch" for DG; (2) It further boosts generalization by helping the target model to focus
more on hard samples from the experts, supported by our theoretical finding. Through experiments on
different datasets, we find that hard samples from the experts are more beneficial for generalization
than those from the model itself. Given that hard sample mining is essential for easing distribution
shift [35, 42], this discovery may offer valuable guidance for future research endeavors.

2



Through evaluations on the classification task with the DomainBed benchmark [27] and segmentation
task with the synthetic [63, 64] to real [20, 83, 55] setting, we illustrate that LFME is consistently
beneficial to the baseline and can obtain favorable performance against current arts (other KD ideas
included). Our method favors extreme simplicity, adding only one hyper-parameter, that can be tuned
in a rather large range, upon training the baseline ERM.

2 Related Works

General DG methods. Domain generalization (DG), designed to enable a learned model to maintain
robust results in unknown distribution shift, is gaining increasing attention in the research community
lately. The problem can be traced back to a decade ago [6], and various approaches and applications
have been proposed to push the generalization boundary ever since [53, 26, 46, 32, 81, 49, 2, 16, 11,
13, 82, 12]. The pioneering work [4] theoretically proves that the DG performance is bounded by
both the intra-domain accuracy and inter-domain differences. Most previous arts focus on reducing
the inter-domain differences by learning domain-invariant features with ideas such as kernel methods
[53, 26], feature disentanglement [10, 61], and gradient regularization techniques [69, 62]. Same
endeavors also include different learning skills: adversarial training is leveraged [24, 81] to enforce
representations to be domain agnostic; meta-learning is utilized [2, 45] to simulate distribution shifts
during training. Other works aim to improve the intra-domain accuracy: some suggest explicitly
mining hard samples or representations with handcraft designs, such as masking out dominant features
[36], weighting more on hard samples [42], or both [35]. LFME falls into this category as the target
model can also mine hard samples from the experts, beneficial for excelling in all source domains (in
Sec. 6.5).

Utilizing experts for DG. Methods with the most relevant motivations with our LFME are perhaps
those also involves experts [86, 28, 89, 90]. In DAELDG [90], a shared feature extractor is adopted,
which is followed by different classifiers (i.e. expert) that correspond to specific domains. Their
experts are trained by enforcing the outputs to be similar to the average output from the non-expert
classifiers. Different from our work, it uses the average outputs from different experts as the final
result. In Meta-DMoE [89], similar to LFME, different experts are trained on their specific domains
where a traditional KD idea is adopted: the feature from the target model is enforced to be similar to
the transformer-processed version of their experts’ output features. Notably, Meta-DMoE and LFME
share very distinct objectives for the expert models. Specifically, Meta-DMoE aims to adapt the
trained target model to a new domain in test. To facilitate adaptation, their target model is assumed to
be capable of identifying domain-specific information (DSI), and is enforced to extract DSI similar to
those from domain experts. In their settings, domain experts are expected to thrive in all domains and
are used not in their trained domains but rather in an unseen one. Differently, LFME expects its target
model to be expert in all source domains, where domain experts provide professional guidance for the
target model only in their corresponding domains. Additionally, Meta-DMoE involves meta-learning
and test-time training, which is more complicated than the end-to-end training adopted in LFME.
Unlike their empirical design, our method is more self-contained, supported by in-depth analysis to
explain its efficacy (in Sec. 4). We further show in our experiments (in Sec. 5.1 and E) that these
related two methods perform inferior to our design, and the improvements from their basic designs:
using average performance (in Sec. 6.4) or enforcing feature similarity between the target model and
experts (in Sec. 6.3) are subtle compared to our logit regularization.

DG in semantic segmentation. Different from image classification, semantic segmentation involves
classifying each pixel of the image, and the generalizing task often expects a model trained from the
synthetic environments to perform well on real-world views. Directly extending general DG ideas
to semantic segmentation is not easy. Current solutions mainly consist of domain randomization
[34, 85], normalization [19, 56, 73], or using some task-related designs, such as the class memory
bank in [40]. Different from some existing DG methods, LFME can be directly extended to ease the
distribution shift problem in the semantic segmentation task without requiring any tweaks, and we
show that it can obtain competitive performance against recent arts specially designed for the task.

3 Methodology

Problem Setting. In the vanilla DG setting, we are given 𝑀 source domains D𝑠 = {D1,D2, ...,D𝑀 },
where D𝑖 is the 𝑖-th source domain containing data-label pairs (𝑥𝑖𝑛, 𝑦𝑖𝑛) sampled from different
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probabilities on the joint space X×Y, the goal is to learn a model from D𝑠 for making predictions
on the data from the unseen target domain D𝑀+1. For either DG or the downstream semantic
segmentation task, source and target domains are considered with an identical label space, and we
assume that there are a total of 𝐾 classes.

Learning multiple experts. LFME trains all the experts and the target model simultaneously, and the
training procedure is illustrated in the upper part of Fig. 1. As each expert corresponds to a specific
domain, given the 𝑀 source domains, a total of 𝑀 experts have to be trained during this stage, and the
training process of each expert is the same as that of the ERM model. Given a training batch B ∈ D𝑠 ,
for the 𝑖-th expert 𝐸𝑖 , we only use data from the 𝑖-th domain, and the computed loss regarding the
data-label pair (𝑥𝑖 , 𝑦𝑖) ∈ (B ∩D𝑖) can be written as,

L𝑖 =H(𝑞𝐸𝑖 , 𝑦𝑖), s.t. 𝑞𝐸𝑖𝑐 = softmax(𝑧𝐸𝑖𝑐 ) = 𝑒𝑥𝑝(𝑧𝐸𝑖𝑐 )∑𝐾
𝑗 𝑒𝑥𝑝(𝑧

𝐸𝑖
𝑗
)
, (1)

where 𝑞𝐸𝑖 ∈ R𝐾 is the output probability computed by applying the softmax function over the output
logits 𝑧𝐸𝑖 with 𝑧𝐸𝑖 = 𝐸𝑖 (𝑥𝑖); H denotes the cross-entropy loss: H(𝑞, 𝑦) =∑𝐾

𝑐 −𝑦𝑐 log𝑞𝑐.
Learning the target model. Data-label pairs (𝑥, 𝑦) ∈ B from all domains are used for training the
target model 𝑇 . The main classification loss L𝑐𝑙𝑎 is computed similar to Eq. (1): L𝑐𝑙𝑎 =H(𝑞, 𝑦),
s.t. 𝑞 = softmax(𝑧) = 𝑒𝑥𝑝 (𝑧𝑐 )∑𝐾

𝑗 𝑒𝑥𝑝 (𝑧 𝑗 )
and 𝑧 = 𝑇 (𝑥). Then, to incorporate professional guidance from the

experts, we further introduce a logit regularization term L𝑔𝑢𝑖𝑑 , to assist 𝑇 to become an expert on all
source domains, which is computed by using the probabilities from the experts as a label for 𝑇 :

L𝑔𝑢𝑖𝑑 = ∥𝑧− 𝑞𝐸 ∥2, (2)

where 𝑞𝐸 is the concatenate probabilities from different experts along the batch dimension 2, ∥ · ∥
denotes the 𝐿2 norm, and this term is only enforced on the target model. Note we use the normalized
version of 𝑧𝐸 (i.e. 𝑞𝐸) for computing L𝑔𝑢𝑖𝑑 , which can be regarded as extending the effectiveness
of MSE loss [37] in the KD realm. Our experimental studies (in Sec. 6.3) find it leads to better
performance, and the following contents also elaborate on the motivation. Then, the overall loss L𝑎𝑙𝑙
for updating the target model can be represented as,

L𝑎𝑙𝑙 = L𝑐𝑙𝑎 +
𝛼

2
L𝑔𝑢𝑖𝑑 , (3)

where 𝛼 is the weight parameter, the only additional parameter upon ERM. We train the target model
and the experts simultaneously for simplicity. Please refer to pseudocode in Algorithm 1 for details.

Rationality (comprehension from a KD perspective). Our logit regularization term can be viewed
as a new KD form, wherein the fundamental principle is to utilize the teachers’ (i.e. experts) outputs as
soft labels for the student (i.e. target model) in a training objective [31]. In the context of classification
tasks, the cross entropy loss H(𝑞, 𝑦) is widely used in the literature. Based on this objective, an
intuitive revision to achieve distillation is by replacing the ground-truth label 𝑦 with 𝑞𝐸 in a cross
entropy regularization manner (i.e. H(𝑞, 𝑞𝐸)), which builds the rationality for the pioneering KD art
[31]. Nevertheless, a recent study [37] suggests that the MSE loss ∥𝑧− 𝑦∥ (without applying softmax
function on 𝑧) performs as well as the cross entropy loss when being applied in the classification
task. Correspondingly, a distillation scheme motivated by this objective can thus be utilizing the
soft label 𝑞𝐸 in a regression manner, which comes to our logit-regularized term: ∥𝑧− 𝑞𝐸 ∥. From
this perspective, the rationality of the introduced logit regularization term aligns with the principle
of KD, and it can be regarded as extending the applicability of MSE loss in classification to the
KD realm. We compare our new KD form with other ideas in Sec 6.3, demonstrating its superior
performance against existing KD ideas in the DG task. We delve deep into our method and explain
the effectiveness of LFME in the following section.

Computational cost. Inherited from KD, training LFME inevitably requires more resources as both
the teacher and student have to be involved during training. However, LFME uses the same test
resources as the baseline ERM given only the target model is utilized. Meanwhile, please also note
that the computational cost for LFME is not proportional w.r.t the domain size. Instead, the training
cost will always be doubled compared to ERM, as each sample will require two forward passes: one
for the target model and the other for the corresponding expert. Please refer to Tab. 11 for training
time comparisons between different arts. In Sec. F, we show that simply increasing training resources
for current arts cannot improve their performances, suggesting it may not be a primary factor in DG.

2𝑧 can also be regarded as concatenated results from different domains: L𝑔𝑢𝑖𝑑 =
∑
𝑖L𝑖𝑔𝑢𝑖𝑑 =

∑
𝑖 ∥𝑧𝑖 −𝑞𝐸𝑖 ∥2.

4



0 1000 2000 3000 4000 5000
Iteration steps

0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag

e 
va

lu
es

 o
f p

ro
ba

bi
lit
y

q∗
K
∑

c≠ ∗
qc

0 1000 2000 3000 4000 5000
Iteration steps

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er
ag

e 
va

lu
es

 o
f p

ro
ba

bi
lit
y

q∗
K
∑

c≠ ∗
qc

0 1000 2000 3000 4000 5000
Iteration steps

−20

−10

0

10

20

Av
er
ag

e 
va

lu
es
 o
f l
og

its

z∗
K
∑

c≠ ∗
zc

0 1000 2000 3000 4000 5000
Iteration steps

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

Av
er
ag

e 
va

lu
es

 o
f l
og

its

z∗
K
∑

c≠ ∗
zc

K
∑
c
zc

0 1000 2000 3000 4000 5000
Iteration steps

−8

−6

−4

−2

0

Av
er
ag

e 
re
sc
al
in
g 
fa
ct
or
s



`

(a) 𝑞 from ERM (b) 𝑞 from LFME (c) 𝑧 from ERM (d) 𝑧 from LFME (e) F and F ′

Figure 2: Values of probabilities, logits, and rescaling factors(i.e. 𝑞, 𝑧, F , F ′) from the ERM model
and LFME. Models are trained on three source domains from PACS with the same settings.

4 Deeper Analysis: How the Simple Logit Regularization Term Benefits DG?

4.1 Enabling the Target Model to Use More Information

Specifically, for the baseline model, using only the classification loss L𝑐𝑙𝑎 encourages the probability
𝑞 to be diverse: the ground truth 𝑞∗ to approximate 1 and 0 for others. Consequently, the corresponding
logits 𝑧∗ will increase ceaselessly, i.e. 𝑧∗ →+∞, and vice versa for 𝑧𝑐, i.e. 𝑧𝑐 →−∞,∀𝑐 ≠ ∗ (depicted
in Fig. 2 (a) and (c)), as this is the solution for minimizing − log 𝑒𝑥𝑝 (𝑧∗ )∑

𝑒𝑥𝑝 (𝑧𝑐 ) . From another point of
view, L𝑐𝑙𝑎 encourages the model to explicitly focus on the dominant and exclusive features that are
strongly discriminative but may be biased towards simplistic patterns [25].

Differently, when L𝑔𝑢𝑖𝑑 is imposed, the logits 𝑧 will approximate the range of 𝑞𝐸 (i.e. [0,1]).
Eventually, the final logits will balance these two losses (i.e. 𝑧∗ ∈ (𝑞𝐸∗ ,+∞) and 𝑧𝑐 ∈ (−∞, 𝑞𝐸𝑐 )∀𝑐 ≠ ∗
as shown in Fig. 2 (d)), resulting in a smoother distribution of 𝑞, where 𝑞𝑐 (∀𝑐 ≠ ∗) in LFME will
be larger than it is in ERM (see Fig. 2 (b)). Since both two losses encourage the model to make a
good prediction (i.e. 𝑧∗ is expected to be the largest in both losses), the increase of 𝑞𝑐 indicates that
besides learning the dominant features, the target model will be enforced to learn other information
that is shared with others. Compared with ERM that prevents the model from learning other features,
LFME is more likely to make good predictions when certain types of features are missing while
others exist in unseen domains. We provide a “free lunch" inspired by the analysis in Sec. 6.1, and
more justifications (including visual and empirical evidence) to support this analysis in Sec. D.1
and D.2. In Sec. C, we demonstrate that other KD ideas face challenges in achieving the same merit.

The above finding can also be endorsed by the information theory [68]. Specifically, with a smoother
distribution of 𝑞, the entropy, which measures information, will naturally increases [51], suggesting a
theoretical basis for utilizing more information in LFME. According to the principle of maximum
entropy [38], the improvement for generalization is thus foreseeable [88].

Note this effect is achieved inherently differs from that by label smoothing (LS) [71], as LFME does
not involve hand-crafted settings to deliberately calibrate the output probability, which is essential
in LS. In Sec. 6.2, we show LS is ineffective in DG compared to LFME. Besides the advantage of
avoiding problems raised by potential improper heuristic designs, we show in the following that the
logit regularization in LFME provides another merit over LS.

4.2 Enabling the Target Model to Mine Hard Samples from the Experts

This effect is realized by example re-weighting, motivated by proposition 2 in [72]. The single sample
gradient of L𝑎𝑙𝑙 with respect to the 𝑐-th logit value 𝑧𝑐 can be formulated as,

𝜕L𝑎𝑙𝑙
𝜕𝑧𝑐

= 𝑞𝑐 − 𝑦𝑐 +𝛼(𝑧𝑐 − 𝑞𝐸𝑐 ). (4)

When the target probability corresponds to the ground-truth 𝑦∗ = 1, Eq. (4) is reduced into,
𝜕L𝑎𝑙𝑙
𝜕𝑧∗

= 𝑞∗ −1+𝛼(𝑧∗ − 𝑞𝐸∗ ). (5)

In this situation, the rescaling factor F is given by,

F =
𝜕L𝑎𝑙𝑙
𝜕𝑧∗

/ 𝜕L𝑐𝑙𝑎
𝜕𝑧∗

= 1−𝛼 𝑧∗ − 𝑞
𝐸
∗

1− 𝑞∗
. (6)

On the other hand, for ∀𝑐 ≠ ∗, summing the gradient values over the finite indexes gives,∑︁
𝑐≠∗

𝜕L𝑎𝑙𝑙
𝜕𝑧𝑐

=
∑︁
𝑐≠∗

𝑞𝑐 +𝛼
∑︁
𝑐≠∗

(𝑧𝑐 − 𝑞𝐸𝑐 ), (7)
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Table 1: Evaluations in DomainBed with default settings (3 random seeds each with 20 trials). Top5
and score count how often a method achieves the top 5 performance and outperforms ERM. Results
with † are from the ResNet50 backbone and others are with ResNet18. Best and second bests results
are highlighted. Results with SWAD are cited from [8], and all others are reevaluated in our device.

PACS VLCS OfficeHome TerraInc DomainNet Avg. Top5↑ Score↑
MMD [46] 81.3 ± 0.8 74.9 ± 0.5 59.9 ± 0.4 42.0 ± 1.0 7.9 ± 6.2 53.2 0 2
RSC [36] 80.5 ± 0.2 75.4 ± 0.3 58.4 ± 0.6 39.4 ± 1.3 27.9 ± 2.0 56.3 0 1
IRM [1] 80.9 ± 0.5 75.1 ± 0.1 58.0 ± 0.1 38.4 ± 0.9 30.4 ± 1.0 56.6 0 1
DANN [24] 79.2 ± 0.3 76.3 ± 0.2 59.5 ± 0.5 37.9 ± 0.9 31.5 ± 0.1 56.9 0 1
GroupGRO [66] 80.7 ± 0.4 75.4 ± 1.0 60.6 ± 0.3 41.5 ± 2.0 27.5 ± 0.1 57.1 0 1
VREx [42] 80.2 ± 0.5 75.3 ± 0.6 59.5 ± 0.1 43.2 ± 0.3 28.1 ± 1.0 57.3 1 1
CAD [65] 81.9 ± 0.3 75.2 ± 0.6 60.5 ± 0.3 40.5 ± 0.4 31.0 ± 0.8 57.8 0 2
CondCAD [65] 80.8 ± 0.5 76.1 ± 0.3 61.0 ± 0.4 39.7 ± 0.4 31.9 ± 0.7 57.9 0 1
MTL [5] 80.1 ± 0.8 75.2 ± 0.3 59.9 ± 0.5 40.4 ± 1.0 35.0 ± 0.0 58.1 0 0
ERM [75] 79.8 ± 0.4 75.8 ± 0.2 60.6 ± 0.2 38.8 ± 1.0 35.3 ± 0.1 58.1 0 -
MixStyle [91] 82.6 ± 0.4 75.2 ± 0.7 59.6 ± 0.8 40.9 ± 1.1 33.9 ± 0.1 58.4 1 1
MLDG [44] 81.3 ± 0.2 75.2 ± 0.3 60.9 ± 0.2 40.1 ± 0.9 35.4 ± 0.0 58.6 0 1
Mixup [80] 79.2 ± 0.9 76.2 ± 0.3 61.7 ± 0.5 42.1 ± 0.7 34.0 ± 0.0 58.6 0 2
MIRO [9] 75.9 ± 1.4 76.4 ± 0.4 64.1 ± 0.4 41.3 ± 0.2 36.1 ± 0.1 58.8 3 3
Fishr [62] 81.3 ± 0.3 76.2 ± 0.3 60.9 ± 0.3 42.6 ± 1.0 34.2 ± 0.3 59.0 0 2
Meta-DMoE [89] 81.0 ± 0.3 76.0 ± 0.6 62.2 ± 0.1 40.0 ± 1.2 36.0 ± 0.2 59.0 1 3
SagNet [54] 81.7 ± 0.6 75.4 ± 0.8 62.5 ± 0.3 40.6 ± 1.5 35.3 ± 0.1 59.1 1 2
SelfReg [39] 81.8 ± 0.3 76.4 ± 0.7 62.4 ± 0.1 41.3 ± 0.3 34.7 ± 0.2 59.3 1 3
Fish [69] 82.0 ± 0.3 76.9 ± 0.2 62.0 ± 0.6 40.2 ± 0.6 35.5 ± 0.0 59.3 1 4
CORAL [70] 81.7 ± 0.0 75.5 ± 0.4 62.4 ± 0.4 41.4 ± 1.8 36.1 ± 0.2 59.4 1 3
SD [60] 81.9 ± 0.3 75.5 ± 0.4 62.9 ± 0.2 42.0 ± 1.0 36.3 ± 0.2 59.7 2 4
CausEB [17] 82.4 ± 0.4 76.5 ± 0.4 62.2 ± 0.1 43.2 ± 1.3 34.9 ± 0.1 59.8 3 4
ITTA [15] 83.8 ± 0.3 76.9 ± 0.6 62.0 ± 0.2 43.2 ± 0.5 34.9 ± 0.1 60.2 3 4
RIDG [14] 82.8 ± 0.3 75.9 ± 0.3 63.3 ± 0.1 43.7 ± 0.5 36.0 ± 0.2 60.3 4 4
Ours 82.4 ± 0.1 76.2 ± 0.1 63.2 ± 0.1 46.3 ± 0.5 36.1 ± 0.1 60.8 4 5

ERM† [75] 83.1 ± 0.9 77.7 ± 0.8 65.8 ± 0.3 46.5 ± 0.9 40.8 ± 0.2 62.8 - -
Fish† [69] 84.0 ± 0.3 78.6 ± 0.1 67.9 ± 0.5 46.6 ± 0.4 40.6 ± 0.2 63.5 - -
CORAL† [70] 85.0 ± 0.4 77.9 ± 0.2 68.8 ± 0.3 46.1 ± 1.2 41.4 ± 0.0 63.9 - -
SD† [60] 84.4 ± 0.2 77.6 ± 0.4 68.9 ± 0.2 46.4 ± 2.0 42.0 ± 0.2 63.9 - -
Ours† 85.0 ± 0.5 78.4 ± 0.2 69.1 ± 0.3 48.3 ± 0.9 42.1 ± 0.1 64.6 - -
ERM w/ SWAD† 88.1 ± 0.1 79.1 ± 0.1 70.6 ± 0.2 50.0 ± 0.3 46.5 ± 0.1 66.9 - -
CORAL w/ SWAD† 88.3 ± 0.1 78.9 ± 0.1 71.3 ± 0.1 51.0 ± 0.1 46.8 ± 0.0 67.3 - -
Ours w/ SWAD† 88.7 ± 0.2 79.7 ± 0.1 73.1 ± 0.2 53.4 ± 0.4 47.5 ± 0.0 68.5 - -

and the rescaling factor F ′ in this situation is,

F ′ =
∑︁
𝑐≠∗

𝜕L𝑎𝑙𝑙
𝜕𝑧𝑐

/
∑︁
𝑐≠∗

𝜕L𝑐𝑙𝑎
𝜕𝑧𝑐

= 1−𝛼
1−∑

𝑐≠∗ 𝑧𝑐 − 𝑞𝐸∗
1− 𝑞∗

. (8)

We observe that both F and F ′ are strictly monotonically increased regarding the value of 𝑞𝐸∗ . Given
almost all values of the rescaling factors are negative as can be observed in Fig. 2 (e) (except in
the few initial steps where 𝑧∗ and 𝑞𝐸∗ are both small and L𝑔𝑢𝑖𝑑 barely contributes) 3, with the same
logits, a smaller 𝑞𝐸∗ , in which case the expert is less confident, will lead to larger |F | and |F ′ |. This
phenomenon indicates that with the logit regularization term, the target model will focus more on
the harder samples from the experts. Empirical findings supporting this analysis are in Sec. D.3
and D.4. Note that the segmentation task also utilizes one-hot labels and cross-entropy loss, making
it applicable to the two analyses presented.

5 Experiments

5.1 Generalization in Image classification

Datasets and Implementation details. We conduct experiments on 5 datasets in DomainBed [27],
namely PACS [43] (9,991 images, 7 classes, 4 domains), VLCS [23] (10,729 images, 5 classes, 4

3We also observe plots of F and F ′ almost overlap in Fig. 2 (e). This is because optimizing ∥𝑧− 𝑞𝐸∗ ∥2

leads to
∑
𝑐 (𝑧𝑐 − 𝑞𝐸𝑐 ) = 0, enforcing

∑
𝑐 𝑧𝑐 ≈ 𝑞𝐸𝑐 = 1. Since there is no other constraint for

∑
𝑐 𝑧𝑐 (L𝑐𝑙𝑎 does

not impose a constraint on the summation of logits), we will have
∑
𝑐 𝑧𝑐 ≈ 1 and F ≈ F ′ in all cases, this is

consistent with the observation in Fig. 2 (d).
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Table 2: Evaluations on the semantic segmentation task. Results with † are directly cited from [19],
others are reevaluated in our device. Best results are colored as red.

Cityscapes (%) BDD100K (%) Mapillary (%) Avg. (%)
mIOU mAcc mIOU mAcc mIOU mAcc mIOU mAcc

Baseline† 35.46 - 25.09 - 31.94 - 30.83 -
IBN-Net [56]† 35.55 - 32.18 - 38.09 - 35.27 -
RobustNet [19]† 37.69 - 34.09 - 38.49 - 36.76 -
Baseline 37.19 48.75 27.95 39.04 32.01 48.88 32.38 45.56
PinMem [40] 41.86 48.30 34.94 44.11 39.41 49.87 38.74 47.43
SD [60] 34.77 46.63 28.00 40.33 31.41 48.18 31.39 45.05
Ours 38.38 48.99 35.70 46.16 41.04 53.71 38.37 49.62

domains), OfficeHome [76] (15,588 images, 65 classes, 4 domains), TerraInc [3] (24,788 images,
10 classes, 4 domains), and DomainNet [59] (586,575 images, 345 classes, 6 domains). We use the
ImageNet [21] pretrained ResNet [30] as the backbone for both the experts and the target model.
Following the designs in DomainBed, the hyper-parameter 𝛼

2 in Eq. (3) is randomly selected in a
range of [0.01,10]. To ensure fair comparisons, all methods are reevaluated using the default settings
in DomainBed in the same device with each of them evaluated for 3 × 20 times in different domains.
Training-domain validation is adopted as the evaluation protocol. Other settings (batch size, learning
rate, dropout, etc.) are dynamically selected for each trial according to DomainBed.

Results with ResNet18. Results are listed in Tab. 1. We observe that ERM can obtain competitive
results among the models compared, which leads more than half of the sophisticated designs, and
only 6 methods lead ERM in most datasets (with scores ≥ 3). We also note that current strategies
cannot guarantee improvements for ERM in all situations, given that none of them with a score of 5.
Differently, our method can consistently improve ERM in all evaluated datasets and lead others in
average accuracy. Specifically, our approach obtains the leading results in 4 out of the 5 datasets, and
it also improves ERM by a large margin (nearly 8pp) in the difficult TerraInc dataset. Compared to
methods that explicitly explore hard samples or representations (i.e. VREx and RSC) and that use
MoE (i.e. Meta-DMoE), the performances of LFME are superior to them in all cases.

Results with ResNet50. Because larger networks require more training resources, we only reevaluate
some of leading methods (i.e. ERM, Fish, CORAL, and SD). in our device when experimenting with
ResNet50. We note that our method surpasses the baseline ERM model in all datasets and leads it
by 1.8 in average. Meanwhile, our method can still outperform the second best (i.e. SD) by 0.7 in
average. These results indicate that our method can consistently improve the baseline model, and it
can perform favorably against existing arts when implemented with a larger ResNet50 backbone.

We also combine LFME with SWAD [8]. Same with the original design, the hyper-parameter
searching space in this setting is smaller than the original DomainBed. We use the reported numbers
in [8] for comparisons. As shown, our method can also improve the baseline and obtain competitive
results when combined with SWAD. These results further validate the effectiveness of our method.

5.2 Generalization in Semantic Segmentation

Datasets and Implementation details. The training and test processes of the compared algorithms
involve 5 different datasets: 2 synthetics for training, where each dataset is considered a specific
domain, and 3 real datasets for evaluation. Synthetic: GTAV [63] has 24,966 images from 19
categories; Synthia [64] contains 9,400 images of 16 categories. Real: Cityscapes [20] 3,450 finely
annotated and 20,000 coarsely-annotated images collected from 50 cities; Bdd100K [83] contains 8K
diverse urban driving scene images; Mapillary [55] includes 25K street view images. Following the
design [40], we use the pretrained DeepLabv3+ [18] and ResNet50 as the segmentation backbone for
experiments. The maximum iteration step is set to 120K with a batch size of 4, and the evaluations
are conducted after the last iteration step. The hyper-parameter 𝛼

2 in Eq. (3) is fixed as 1 in this
experiment for simplicity. We use the mean Intersection over Union (mIoU) and mean accuracy
(mAcc) averaged over all classes as criteria to measure the segmentation performance.

Experimental results. Results are shown in Tab. 2. To better justify the effectiveness of our method,
we reevaluate the baseline model, which aggregates and trains on all source data, and PinMem in
our device. We also implement SD [60], which is a leading method in the image classification
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(a) Input (b) Bsseline (c) SD (d) Pinmem (e) Ours (f) Ground Truth
Figure 3: Qualitative comparisons. The compared methods make unsatisfactory predictions about
several objects, such as clouds with varying shapes, car logo, or people and car in the shadow. Please
zoom in for a better view.

Table 3: Evaluations of free lunch for DG (i.e. ERM+) and different LS ideas (i.e. LS [71], MbLS [50],
and ACLS [58]). We use the suggested settings in their original papers for evaluating.

Model Target domain in PACS Avg. Target domain in TerraInc Avg.Art Cartoon Photo Sketch L100 L38 L43 L46
ERM 78.0 ± 1.3 73.4 ± 0.8 94.1 ± 0.4 73.6 ± 2.2 79.8 ± 0.4 42.1 ± 2.5 30.1 ± 1.2 48.9 ± 0.6 34.0 ± 1.1 38.8 ± 1.0
ERM+ 81.9 ± 0.4 75.1 ± 0.7 94.8 ± 0.7 73.8 ± 2.2 81.4 ± 0.5 46.7 ± 2.6 37.1 ± 1.3 53.2 ± 0.4 34.8 ± 1.3 42.9 ± 0.7
LS 81.0 ± 0.3 75.4 ± 0.6 94.9 ± 0.2 73.3 ± 1.0 81.2 ± 0.2 48.1 ± 2.8 33.0 ± 1.6 53.0 ± 0.6 34.1 ± 1.6 42.1 ± 0.5
MbLS 81.3 ± 0.5 75.2 ± 0.6 94.8 ± 0.4 75.6 ± 0.8 81.7 ± 0.2 44.9 ± 3.3 39.1 ± 2.3 52.2 ± 0.9 33.8 ± 1.1 42.5 ± 1.5
ACLS 80.8 ± 0.3 75.9 ± 1.0 94.9 ± 0.4 72.3 ± 3.9 81.0 ± 0.6 45.6 ± 4.7 36.8 ± 0.8 48.9 ± 1.3 34.1 ± 1.7 41.4 ± 1.4
LFME 81.0 ± 0.9 76.5 ± 0.9 94.6 ± 0.5 77.4 ± 0.2 82.4 ± 0.1 53.4 ± 0.4 40.7 ± 2.4 54.9 ± 0.4 36.4 ± 0.7 46.3 ± 0.5

task. Results from other methods are directly cited from [19]. We observe SD does not perform as
effectively as it does in the classification task, which decreases the baseline model in most situations.
In comparison, our LFME can boost the baseline in all datasets, similar to that in the classification task.
It also performs favorably against existing methods specially designed for the semantic segmentation
task, obtaining best results in 2 out of the 3 evaluated datasets in both mIOU and mAcc.

Visualized examples are provided in Fig. 3. We note that when it comes to unseen objects (i.e.
clouds with different shapes and a new car logo), or objects with an unfamiliar background, such
as the person and car hidden in the shadow, due to the large distribution shift between real and
synthetic data, compared methods make unsatisfactory predictions. In comparison, LFME can
provide reasonable predictions in these objects, demonstrating its effectiveness against current arts
regarding generalization to new scenes. These results validate the effectiveness of LFME and its
strong applicability in the generalizable semantic segmentation task.

6 Analysis

Analyses in this section are conducted on the widely-used PACS dataset unless otherwise mentioned.
Experimental settings are same as that detailed in Sec. 5.1. Please see the appendix for more analysis.

6.1 A Free Lunch for DG

As stated in Sec. 4.1, when the basis of discrimination is not compromised (𝑞∗ corresponds to a larger
value in the label and vice versa for 𝑞𝑐 for ∀𝑐 ≠ ∗), the increase of 𝑞𝑐 can encourage the model to
learn more information that is shared with other classes, and use them to improve generalization.
Based on this analysis, it seems that using the one-hot label to regularize the logit is also reasonable.
To validate this hypothesis, we replace 𝑞𝐸 in Eq. (3) with the ground truth and reformulate L𝑎𝑙𝑙 into,

L𝑎𝑙𝑙 =H(softmax(𝑧), 𝑦) + 𝛼
2
∥𝑧− 𝑦∥2, s.t. 𝑧 = 𝑇 (𝑥). (9)

Denoting as ERM+, results listed in the second row in Tab. 3 suggest that this idea can improve ERM
in all unseen domains. Because the hard sample information is absent in this strategy, we observe it
performs inferior to LFME. However, this alternative does not require experts or any other special
designs, even the setting of the hyper-parameter 𝛼 cannot be wrong: Eq. (9) will approximate the
baseline either with 𝛼 = 0 or 𝛼 approximates +∞. Thus, we argue this simple modification can serve
as a free lunch to improve DG. More evaluations of this idea are in our appendix.
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6.2 Compare with Label Smoothing

As detailed in Sec. 4.1, LFME will explicitly constrain the probability of the target model within
a smaller range. This effect may resemble the LS technique that aims to implicitly calibrate the
output probability. However, compared to LS, LFME has two advantages. First, LFME does not
involve heuristic designs of hyper-parameters for determining its probability, which is essentially
required in existing LS ideas, such as 𝜖 in [71] and predefined margin in [50, 58], avoiding the
possibility of deteriorating the performance when not choosing them properly; Second, LFME can
explicitly mine hard samples from the experts, further ensuring improvements for DG. We evaluate 3
LS methods in both PACS and the difficult TerraInc datasets: (1) the pioneer LS method from [71]);
(2) margin-based LS (MbLS) [50] that penalizes logits deviate from the maxima; (3) adaptive and
conditional LS (ACLS) that can adaptively determine the degree of smoothing for different classes.
Results are illustrated in 3rd-5th columns in Tab. 3. We observe that although these LS methods can
improve the baseline, they are all inferior to LFME, validating the effectiveness of LFME against LS.

6.3 Compare with Other Knowledge Distillation Ideas

To test the effectiveness of our logit regularization (i.e. ∥𝑧− 𝑞𝐸 ∥2), we compare it with several other
KD options, namely different combinations of the logits or probabilities from the target model and
the experts, including ∥𝑧− 𝑧𝐸 ∥2 (which is the basic design in Meta-DMoE [89]), ∥𝑞 − 𝑧𝐸 ∥2, and
∥𝑞− 𝑞𝐸 ∥2. Moreover, we also compare it with a common practice in KD that uses the probability
from the teacher (i.e. experts) as a label for the student (i.e. target model), which reformulates the
Eq. (3) into: L𝑎𝑙𝑙 = (1− 𝛼

2 )H (𝑞, 𝑦) + 𝛼
2 H(𝑞, 𝑞𝐸), and denoted as H(𝑞, 𝑞𝐸) in Tab. 4. Following the

suggestion in [41], we gradually increase 𝛼
2 over the iteration steps to achieve better performance.

Results listed in 2nd-5th columns in Tab. 4 show that not all KD strategies can improve DG and
the logit regularization choice achieves the best result in terms of average accuracy. This can be
explained by the analysis in Sec. 4.1 that our logit regularization can help using more information.
Please also the explanation in Sec. C for details.

6.4 Compare with Naive Aggregation Ideas

Table 4: Out-of-domain evaluations of different KD ideas
(using different L𝑔𝑢𝑖𝑑 in Eq. (2)) and naive aggregations.

Model Target domain Avg.Art Cartoon Photo Sketch
ERM 78.0±1.3 73.4±0.8 94.1±0.4 73.6±2.2 79.8±0.4

Performances from different KD ideas

∥𝑧− 𝑧𝐸 ∥2 77.8±0.6 73.2±0.7 94.1±0.5 74.3±1.1 79.9±0.2
∥𝑞− 𝑧𝐸 ∥2 76.4±0.7 75.7±1.3 94.0±0.2 72.4±1.4 79.7±0.5
∥𝑞− 𝑞𝐸 ∥2 81.3±1.3 74.8±1.4 94.1±0.5 74.0±2.8 81.1±1.1
H(𝑞, 𝑞𝐸) 82.1±0.8 73.6±0.2 92.6±0.9 73.4±2.1 80.4±0.4

Performances from naive aggregation ideas

Avg_Expt 78.4±1.3 65.0±1.6 92.4±0.3 71.8±0.5 76.9±0.1
MS_Expt 76.8±2.3 63.0±0.6 93.4±0.2 72.6±1.5 76.5±0.6
Conf_Expt 74.8±0.8 64.8±1.8 91.9±0.5 72.6±2.6 76.0±0.8
Dyn_Expt 68.4±1.8 65.1±1.1 92.3±0.5 68.1±1.9 73.5±0.3

Ours 81.0±0.9 76.5±0.9 94.6±0.5 77.4±0.2 82.4±0.1

To examine the effectiveness of LFME,
we compare it with three different vari-
ants that employ all the experts during
inference: (1) Avg_Expt, which aver-
ages the output from all experts for pre-
diction, similar to DAELDG [90]; (2)
Model soup (MS)_EXPT, which uni-
formly combines the weights of differ-
ent experts. This is inspired by the MS
idea in [78]; (3) Conf_Expt that utilizes
the output from the most confident ex-
pert as the final prediction. Inspired by
the finding in [77], the expert with the
output of the smallest entropy value is
regarded as the most confident one in a
test sample; (4) Dyn_Expt, which is a
learning-based approach that estimates
the domain label of each sample and dynamically assigns corresponding weights to the experts via a
weighting module. Results are listed in 6th-9th columns in Tab. 4, where both the designs of handcraft
(i.e. Avg_Expt, MS_Expt, and Conf_Expt) and learning-based (i.e. Dyn_Expt) aggregation skills
fail to improve the baseline model. This is because the hand-craft designs in Avg_Expt, MS_Expt,
and Conf_Expt are rather unrealistic in practice as different models may contribute differently in the
test phase, we thus cannot use a simple average or select the most confident expert for predicting.
Meanwhile, the learning-based Dyn_Expt will inevitably introduce another generalization problem
regarding the weighting module, complicating the setting. In comparison, LFME avoids the nontrivial
aggregation design and can improve ERM in all source domains, further validating its effectiveness.
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Table 5: In-domain evaluations of different models.

Model Source domain in PACS Avg. Source domain in TerraInc Avg.Art Cartoon Photo Sketch L100 L38 L43 L46
ERM 94.8 ± 0.1 96.2 ± 0.2 98.5 ± 0.2 96.0 ± 0.3 96.4 ± 0.2 95.2 ± 0.1 91.1 ± 0.1 89.4 ± 0.2 85.5 ± 0.2 90.3 ± 0.3
Experts 95.4 ± 0.1 96.3 ± 0.1 98.7 ± 0.3 96.4 ± 0.2 96.7 ± 0.1 95.9 ± 0.1 92.0 ± 0.1 90.3 ± 0.2 86.3 ± 0.1 91.1 ± 0.1
Ours 95.7 ± 0.2 96.8 ± 0.3 98.8 ± 0.2 96.4 ± 0.2 96.9 ± 0.1 96.1 ± 0.1 92.6 ± 0.2 90.7 ± 0.2 87.2 ± 0.2 91.6 ± 0.2

Table 6: Sensitivity analysis of LFME regarding the involved weight parameter 𝛼
2 in Eq. (3). LFME

degrades to ERM when 𝛼
2 = 0.

Model Target domain in PACS Avg. Target domain in TerraInc Avg.Art Cartoon Photo Sketch L100 L38 L43 L46
𝛼
2 = 0 78.0 ± 1.3 73.4 ± 0.8 94.1 ± 0.4 73.6 ± 2.2 79.8 ± 0.4 42.1 ± 2.5 30.1 ± 1.2 48.9 ± 0.6 34.0 ± 1.1 38.8 ± 1.0
𝛼
2 = 0.01 82.0 ± 0.4 75.0 ± 0.9 95.2 ± 0.1 75.1 ± 0.9 81.8 ± 0.2 46.9 ± 2.4 40.0 ± 1.2 51.9 ± 0.5 34.4 ± 0.6 43.3 ± 0.7
𝛼
2 = 10 81.5 ± 0.3 75.5 ± 0.5 94.5 ± 0.2 75.6 ± 0.7 81.8 ± 0.1 52.2 ± 0.5 37.5 ± 1.0 54.4 ± 0.5 36.8 ± 0.6 45.2 ± 0.2
𝛼
2 = 100 80.1 ± 0.8 74.3 ± 0.6 93.3 ± 0.5 75.7 ± 1.3 80.9 ± 0.4 49.0 ± 0.7 30.5 ± 0.8 52.9 ± 0.6 36.1 ± 0.6 42.1 ± 0.6
𝛼
2 = 1000 77.1 ± 1.0 72.7 ± 0.9 92.5 ± 0.1 74.7 ± 0.3 79.3 ± 0.1 46.5 ± 0.9 29.1 ± 1.2 49.6 ± 0.8 34.6 ± 1.0 39.9 ± 0.2

6.5 Does the Target Model Become an Expert on All Source Domains?

The training process of LFME aggregates all professional knowledge from the experts into one
target model, aiming to make the target model an expert on all source domains. To examine if the
goal has been achieved, we conduct in-domain validations for the target model and compare the
performances with that of the experts and the ERM model in the PACS and TerraInc datasets. Note
in these experiments, ERM and LFME are trained using the same leave-one-out strategy, and the
performances are averaged over the trials on three different target domains. Results are listed in Tab. 5.
We observe that ERM performs inferior to the experts in the in-domain setting. The results are not
surprising. As stated earlier, when encountering data similar to the source domain, it would be better
to rely mostly on the corresponding expert than the model also contaminated with other patterns. In
comparison, our method obtains the best results in all source domains because it implicitly focuses
more on the hard samples from the experts, which is shown to be an effective way to improve the
performance in many arts [33, 84]. These results validate that the proposed strategy can extract
professional knowledge from different experts, and enable the target model to become an expert in all
source domains.

6.6 Selection of the Hyper-Parameter

Compared with the baseline ERM, our method involves only one additional hyper-parameter (i.e.
𝛼
2 in Eq. 3) which is randomly selected in the range of [0.01,10] in DomainBed. To evaluate the
sensitiveness of LFME regarding this hyper-parameter, we conduct experiments in the PACS and
TerraInc datasets by tuning it in a larger range. As seen in Tab. 6, LFME can obtain relatively better
performance with either 𝛼

2 = 0.01 or 10, and it performs on par with ERM even when 𝛼
2 = 1000.

These results indicate that our method is insensitive w.r.t the hyper-parameter. This is mainly because
a very large 𝛼

2 will enforce the model to only learn from domain experts, given that 𝑞𝐸∗ is mostly
aligned with the label 𝑦 (as seen in Fig. 2 (a)), the model will perform similarly to another form of
the baseline [37] in this case.

7 Conclusion

This paper introduced a simple yet effective method for DG where the professional guidances
of experts specialized in specific domains are leveraged. We achieve the guidance by a logit
regularization term that enforces similarity between logits of the target model and probability of
the corresponding expert. After training, the target model is expected to be an expert on all source
domains, thus thriving in arbitrary test domains. Through deeper analysis, we reveal that the proposed
strategy implicitly enables the target model to use more information for prediction and mine hard
samples from the experts during training. By conducting experiments in related tasks, we show that
our method is consistently beneficial to the baseline and performs favorably against existing arts.

Acknowledgement. This work was supported by the Centre for Augmented Reasoning, an initiative
by the Department of Education, Australian Government.
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Appendix

In this section, we provide

1. Limitations and future works in Section A

2. Pseudocode of LFME in Section B.

3. Explanations of why existing KD ideas perform inferior to our LFME in Section C.

4. More analysis regarding LFME in Section D;

5. Compare with MoE-based methods and other related methods in Section E.

6. Existing Ideas with Same Training Resources in Section F.

7. Detailed settings of the learning-based aggregation method Dyn_Expt in Sec. 6.4 from the
manuscript in Section G;

8. Detailed results of LFME in the unseen domains of the different datasets from DomainBed, and
detailed results of LFME in the different categories from the semantic segmentation task in Section H.

A Limitations and Future Works

Although our method shows competitive results for generalization, there are certain occasions when
it will encounter setbacks. First, LFME is not applicable for the setting where the domain labels are
unavailable in the training data, such as those collected from the internet. Since the training of the
experts requires data grouped by domain labels. Second, LFME cannot handle the situation when
only one source domain is provided, preventing it from performing in a more difficult single-source
generalization task. How to apply LFME to a more general setting will be our primary task in future
works. Besides, as the designs and theoretical supports are built mainly for the classification task,
finding a proper solution to extend them to the regression tasks is also a promising direction in
potential future works.

B Pseudo Code of LFME

This section provides the Pytorch-style pseudocode of our method. As detailed in Alg. 1, the
implementation of our method is embarrassingly simple, introducing only one hyper-parameter upon
the baseline ERM.

C Compare with Current KD Based on the Analysis in Sec. 4.1

As observed in Sec. 6.3, some existing KD ideas, perform inferior to our LFME. Based on our analysis,
we find this is because existing ideas have difficulties achieving the beneficial effect introduced in
Sec. 4.1. As detailed, our logit regularization ensures using more information for the target model by
implicitly regularizing the probability in a much smaller range. This is hard to achieve by H(𝑞, 𝑞𝐸)
and ∥𝑞− 𝑞𝐸 ∥2, where their probability 𝑞 will be in a similar range as that in ERM because the soft
label 𝑞𝐸 is still within the range of [0,1], enforcing similarity between 𝑞 and 𝑞𝐸 will not significantly
change its distribution. Moreover, this effect is also hard to achieve by ∥𝑧− 𝑧𝐸 ∥ and ∥𝑞− 𝑧𝐸 ∥2, which
do not provide a specific range regularization effect for the probability.

D Further Analysis

This section provides more evidence to support the two analyses in Sec. 4 in the manuscript. The
experiments are conducted on the widely-used PACS dataset and the difficult TerraInc dataset unless
mentioned otherwise.

D.1 More Justification for Enabling Target Model to Use More Information

For the baseline model, we infer that the cross-entropy loss alone will enforce the model to only learn
discriminative features that are specific to the label category. Because there are no relevant features to
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Algorithm 1: PyTorch-style pseudocode of LFME.

# M: total domain numbers
# alpha: weight parameter
# lr and weight decay: selected hyper-parameters

# Initialization: experts and the target model
network = [None] * (M + 1) # M experts and 1 target model
params = []
for i in range(M + 1):

network[i] = ResNet()
params.append{"params": network[i].parameters()}

optimizer = Adam(params, lr, weight_decay)

# Training: experts and the target model
def train(minibatches):

loss = 0

# All samples from the M domains
all_x = torch.cat([x for x, y in minibatches])
all_y = torch.cat([y for x, y in minibatches])
for i in range(M): # Training the M experts

# training i-th expert using i-th domain data
xi, yi = minimabtch[i][0], minibatch[i][1] # image-label pair from the i-th domain
z_Ei = network[i](xi) # logit from the i-th expert
# note the softmax function is encoded in crossentropy loss in pytorch
loss += crossentropy(softmax(z_Ei),yi) # Eq. (1) in the manuscript

# Concat probabilities from experts
qE = softmax(z_Ei) if i==0 else torch.cat((qe, softmax(z_Ei)), 0)

z = network[-1](all_x) # logit of target: T(x)
# L_cla + L_guid: Eq. (3) in the manuscript
loss += crossentropy(softmax(z), all_y) + alpha * MSELoss(z, qE.detach())

# Updating the experts and target model
optimizer.zero_grad()
loss.backward()
optimizer.step()

# Test: target model
def test(test_samples):

result = network[-1](test_samples)

interpret the non-label classes in ERM, the confidence for the target class will approach the maximum
during training, and vice versa for other non-label classes. Differently, when the output probability
has a smoother distribution, the model will also learn information that is shared with other classes to
improve the corresponding non-label probabilities. Introducing more information during training
will inevitably cause the phenomenon of low confidence for the label category, as probabilities for
the non-label classes will increase (their summation increases from nearly 0 in Fig. 2 (a) to 0.35
in Fig. 2 (b)). Note that low confidence does not mean low accuracy. Because the label category
corresponds to the largest logit value in both terms, and both the discriminative and newly introduced
information can be used to characterize the label information, exploring more information can also
boost classification. This finding is further validated by the in-domain results in Tab. 5, where LFME
is shown to be able to also improve the in-domain test results compared to ERM, indicating that low
confidence in our case actually leads to higher accuracy.

Visual examples to support the above analysis are shown in Fig. 4. We observe that compared to the
baseline ERM, our method can utilize more regions for prediction. Such as that in the first “horse"
examples, our model utilizes both the head, tail, and body for prediction, while the ERM seems to
focus only on the head region. These visual samples align with our analysis that compared to the
baseline ERM, LFME tends to use more information for prediction.

D.2 Other Alternatives to Enlarge 𝑞𝑐 for ∀𝑐 ≠ ∗

This section provides more evidence to support the first analysis in Sec. 4 by conducting experiments
on two variants that also enlarge 𝑞𝑐 for ∀𝑐 ≠ ∗. (1) we test a model that directly enlarges 𝑞𝑐 for
∀𝑐 ≠ ∗. Specifically, we use the probability from LFME as the label to guide the probability output of
a new target model, i.e. L𝑔𝑢𝑖𝑑 = ∥𝑞− 𝑞𝐿𝐹𝑀𝐸 ∥2 with 𝑞 and 𝑞𝐿𝐹𝑀𝐸 from the new target and LFME
models, respectively. Ideally, this modification (i.e. LFME_Guid) can also improve the baseline
model because it also encourages the model to learn more information shared with other classes
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(a) Input (b) ERM (c) Ours

Figure 4: Grad-CAM visualizations of samples from the unseen “cartoon" domain of the PACS
benchmark, which is the most challenging domain for ERM and our method according to Tab. 3.
Compared to the baseline ERM, highlight regions from our method contain more information related
to the label category. These visualizations can further validate our analysis in Sec. 4 that with the
proposed strategy, the target model can explore more information for prediction.

Table 7: Further evidences to support our deep analyses in Sec. 4. Evaluations are conducted on the
widely-used PACS and difficult TerraInc datasets using settings from the DomainBed benchmark.
Here ERM+ is the free lunch introduced in Sec. 6.1 that replaces 𝑞𝐸 in Eq. (3) with the one-hot
label; LFME_Guid denotes imposing the guidance from LFME to the ERM model by including
L𝑔𝑢𝑖𝑑 = ∥𝑞 − 𝑞𝐿𝐹𝑀𝐸 ∥2 where 𝑞 and 𝑞𝐿𝐹𝑀𝐸 are probabilities from the ERM model and LFME;
Self_Guid is the model that replaces probabilities from the experts in Eq. (3) with that from itself,
i.e. L𝑔𝑢𝑖𝑑 = ∥𝑧− softmax(𝑧)∥2 where softmax(𝑧) is followed with a detach operation; ERM+ w/ expt
denotes explicitly focus more on the hard samples from the experts based on ERM+; ERM+ w/ self
denotes explicitly focus more on the hard samples from the model itself on the basis of ERM+. All
methods are with the same ResNet18 backbone and are examined for 60 trials in each unseen domain.

Model Target domain in PACS Avg. Target domain in TerraInc Avg.Art Cartoon Photo Sketch L100 L38 L43 L46
ERM 78.0 ± 1.3 73.4 ± 0.8 94.1 ± 0.4 73.6 ± 2.2 79.8 ± 0.4 42.1 ± 2.5 30.1 ± 1.2 48.9 ± 0.6 34.0 ± 1.1 38.8 ± 1.0
ERM+ 81.9 ± 0.4 75.1 ± 0.7 94.8 ± 0.7 73.8 ± 2.2 81.4 ± 0.5 46.7 ± 2.6 37.1 ± 1.3 53.2 ± 0.4 34.8 ± 1.3 42.9 ± 0.7

Performances of other alternatives to enlarge 𝑞𝑐 for ∀𝑐 ≠ ∗
LFME_Guid 81.6 ± 1.1 73.4 ± 0.9 94.9 ± 0.6 76.1 ± 0.4 81.5 ± 0.3 48.0 ± 2.1 36.8 ± 1.5 53.2 ± 0.8 35.6 ± 0.4 43.4 ± 0.6
Self_Guid 81.5 ± 1.0 75.1 ± 0.5 95.1 ± 0.3 74.0 ± 1.3 81.4 ± 0.4 48.0 ± 2.7 35.9 ± 0.6 53.9 ± 0.2 36.7 ± 1.9 43.6 ± 0.7

Comparisons between hard samples from different models
ERM+ w/ expt 80.8 ± 0.5 74.2 ± 1.1 95.0 ± 0.5 76.0 ± 0.5 81.5 ± 0.3 51.2 ± 0.5 37.0 ± 3.0 53.5 ± 0.6 36.5 ± 1.1 44.6 ± 1.0
ERM+ w/ self 82.9 ± 0.4 75.2 ± 0.3 94.0 ± 0.4 73.9 ± 2.2 81.5 ± 0.5 50.2 ± 0.9 35.7 ± 2.0 51.1 ± 0.9 34.2 ± 0.8 42.8 ± 0.3
LFME 81.0 ± 0.9 76.5 ± 0.9 94.6 ± 0.5 77.4 ± 0.2 82.4 ± 0.1 53.4 ± 0.4 40.7 ± 2.4 54.9 ± 0.4 36.4 ± 0.7 46.3 ± 0.5

without compromising discrimination; (2) we use the output probability from the target model itself to
replace that from the experts in Eq. (3), which reformulates L𝑔𝑢𝑖𝑑 into ∥𝑧−softmax(𝑧)∥2 (softmax(𝑧)
is followed with a detach operation in updating). According to our analyses in Sec. 4, this alternative
(i.e. Self_Guid) should also boost generalization because it enforces the target model to learn more
information and focus more on the hard sample from itself;

Results are illustrated in Tab. 7. We observe that both the two variants LFME_Guid and Self_Guid
are beneficial to the baseline models, leading ERM in all unseen domains. These results further
validate our first analysis in Sec. 4, and we can conclude that when the basic discrimination is not
compromised, either directly or indirectly enlarging 𝑞𝑐 for ∀𝑐 ≠ ∗ can help the target model learn
more information, and improve generalization accordingly.
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D.3 Hard Samples from the Experts

As analyzed in Sec. 4, LFME not only encourages the target model to learn more information but
also implicitly helps it to focus more on the hard samples from the experts. To examine if the
classifications of hard samples from the experts are indeed improved, we plot the classification ratio
R =

𝑝∗
max(𝑝) , where 𝑝 denotes the normalized probability: 𝑝 = 𝑝−min(𝑝)

max(𝑝)−min(𝑝) , from the target model on
these hard samples. We use the ratio because it can quantify the correct predictions regarding the hard
samples more precisely than the accuracy: the closer R approaches 1, the better the corresponding
model performs on the sample. In this setting, 1/3 samples with larger losses in a training batch are
considered hard samples. We compare R from LFME with that from ERM to highlight the difference.
As can be observed in Fig. 5 (a), most R from LFME is larger than that from ERM over the iterations,
denoting LFME is better at handling these hard samples than ERM. As a comparison, R from these
two models almost overlap in the easy samples as shown in Fig. 5 (b). These results validate our
analysis that LFME implicitly helps the target model to focus more on the hard samples compared
with ERM.

Meanwhile, to validate if the hard samples from experts can indeed help generalization, we conduct
experiments by explicitly putting more weights on the hard samples from the experts on the basis
of the free launch ERM+ (i.e. ERM+w/ expt). Specifically, the target objective based on Eq. (9) is
adjusted into: 𝑤L𝑎𝑙𝑙 , where 𝑤 is the weight for the training samples and is determined based on the
loss of the experts. Basically, the larger the corresponding loss from the experts, the larger the value
of 𝑤 should be, and we use the strategy from [35] to implement this hard sample mining process.
As can be observed in Tab. 7, mining hard samples from the experts can improve the base model of
ERM+, especially in the difficult TerraInc dataset. These results validate that mining hard samples
from experts is beneficial for generalization.

D.4 Comparisons Between Hard Samples from Different Models: Why Experts are Required

We note in Tab. 7, the model Self_Guid performs inferior to LFME in both the two datasets, and
the improvements are also marginal compared with ERM+ on account of variances. These results
indicate the hard samples from the model itself may be less effective for generalization compared
with that from the experts. To validate this hypothesis, we conduct experiments by explicitly focusing
more on the hard samples from the model itself on the basis of ERM+ (i.e. ERM+ w/ self). The
implementation is the same as that in ERM+ w/ expt.

Results listed in the 6th row in Tab. 7 validate this hypothesis, where the hard samples from the model
itself can hardly improve generalization compared with that from the experts. We presume the main
reason is that besides the dominant specific domain information, hard samples from the experts also
contain some out-of-the-domain information that makes it challenging for the corresponding expert.
Examples are shown in Fig. 6. We observe that compared with hard samples from the model itself
(i.e. Fig. 6 (b)), hard samples from the experts (i.e. Fig. 6 (a)) contain more ambiguous data located in
the mixed region or the boundary of two domains than, indicating the experts may be more effective
at revealing samples that with characteristics from different domains. By implicitly emphasizing
these out-of-the-specific-domain samples, can the target model learn domain-agnostic features, thus
improving generalization accordingly. Because the naive training strategies are fed with data from
different domains at the same time, the out-of-the-specific-domain information is difficult to discover
in their framework, explaining why hard samples from other strategies may not contribute. This is
also the reason why the experts must be involved in the overall framework.

E Compare with MoE-Based Ideas and Other Arts

Since our idea involves training multiple experts, one may connect it to the idea of mixture of experts
(MoE) [86]. However, it is noteworthy that our LFME is not a simple implementation of existing
techniques. The introduced logit regularization term is new and can be properly explained for its
effectiveness. Some similar ideas that use MoE have been explored in other works for improving DG.
For example, in DAELDG [90], following a shared feature extractor, each domain corresponds to a
specific classifier (i.e. expert), whose output is enforced to be similar to the average outputs from the
non-expert classifiers. Different from our work, it uses the average outputs from different experts
as the final result. In Meta-DMoE [89], a meta-learning-based framework is employed to enforce

18



0 1000 2000 3000 4000 5000
Iteration steps

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 from LFE
 from ERM

0 1000 2000 3000 4000 5000
Iteration steps

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 from LFE
 from ERM

(a) R from the hard samples (b) R from the easy samples
Figure 5: Classification ratio comparisons of ERM and LFME in the hard and easy samples from the
difficult TerraInc dataset. The closer the ratio R approaches 1, the better the corresponding prediction.
Here the hard samples are specified by the experts: the 1/3 samples in a training batch with larger
losses from the experts, and the easy samples are the leading 1/3 samples with smaller losses. The
two models perform evenly well on the easy samples, while LFME obtains better results than ERM
in the hard samples.
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(a) Hard samples from experts (b) Hard samples from the model itself

Figure 6: T-SNE visualizations of hard samples (larger dots) from different models. Here the data
from different domains are clustered by their styles [91] (i.e. feature statistics from the first layer in
the same ResNet18 model), and 10 percents of samples with larger loss are considered hard samples
in a domain. Hard samples from the experts contain more ambiguous data located in the mixed region
or the boundary of two different domains.

the feature of the target model to be similar to the aggregated features from the experts, which is
different from our logit regularization idea. In Sec. D.1 and 6.3, we implement the basic designs of
these two ideas with the framework of LFME and show their ineffectiveness. Besides the comparison
with Meta-DMoE in Tab. 1, in this section, we further compare LFME with them using their original
settings in the PACS and OfficeHome datasets with the benchmark provided in [90]. We also compare
with several other recent DG methods. Results in Tab. 8 show that LFME performs favorably against
DAELDG, and outperforms Meta-DMoE, further validating the advantages of the logit regularization
term. We also note LFME performs better than other arts with a different benchmark, demonstrating
the effectiveness of the proposed approach.

F Existing Ideas with Same Training Resources

Since LFME requires learning different experts during training, inevitably using more parameters
than existing methods, one may wonder if the effectiveness of LFME derives from using these extra
parameters from the experts. To examine this idea, we conduct experiments by implementing some
leading arts (i.e. CORAL, SD) and the baseline ERM with 𝑀 +1 times of model size (where 𝑀 is the
domain number). Specifically, the feature extractor for the larger method will contain 𝑀 +1 branches,
each with the same pretrained ResNet backbone. We concate the final outputs from the different
branches and use it as input for a classifier to obtain the final result. Note that in this setting, a sample
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Table 8: Out-of-domain evaluations of other related methods with the benchmark provided in [90].

Model Target domain in PACS Avg. Target domain in OfficeHome Avg.Art Cartoon Photo Sketch Art Clipart Product Real

Compared with other recent methods
ERM 77.0 75.9 96.0 69.2 79.5 58.9 49.4 74.3 76.2 64.7
CCSA [52] 80.5 76.9 93.6 66.8 79.4 59.9 49.9 74.1 75.7 64.9
JiGen [7] 79.4 75.3 96.0 71.6 80.5 53.0 47.5 71.5 72.8 61.2
CrossGrad [67] 79.8 76.8 96.0 70.2 80.7 58.4 49.4 73.9 75.8 64.4
Epi-FCR [45] 82.1 77.0 93.9 73.0 81.5 - - - - -
DMG [10] 76.9 80.4 93.4 75.2 81.5 - - - - -

Compared with MoE-based methods
DAELDG [90] 84.6 74.4 95.6 78.9 83.4 59.4 55.1 74.0 75.7 66.1
Meta-DMoE [89] 83.2 76.8 95.4 76.6 83.0 58.9 55.5 73.6 74.4 65.6
Ours 83.4 78.3 96.8 76.1 83.7 60.4 55.7 74.6 75.1 66.5

Table 9: Existing methods with same resources during training. We expand existing ideas by
concatenating 𝑀 +1 branches to ensure they use the same parameters as LFME during training.

Model Target domain Avg.Art Cartoon Photo Sketch
Performances from original designs

ERM 78.0 ± 1.3 73.4 ± 0.8 94.1 ± 0.4 73.6 ± 2.2 79.8 ± 0.4
CORAL 81.5 ± 0.5 75.4 ± 0.7 95.2 ± 0.5 74.8 ± 0.4 81.7 ± 0.0
SD 83.2 ± 0.6 74.6 ± 0.3 94.6 ± 0.1 75.1 ± 1.6 81.9 ± 0.3

Performances from 𝑀 +1 model sizes
ERM 76.6 ± 1.1 75.1 ± 1.3 94.5 ± 0.2 73.1 ± 1.7 79.8 ± 0.4
CORAL 81.2 ± 0.5 75.8± 0.4 95.4 ± 0.2 75.4±0.7 81.9 ± 0.1
SD 81.6 ± 0.8 75.4 ± 0.5 94.7 ± 0.1 76.9 ± 0.8 82.2 ± 0.4
Ours 81.0 ± 0.9 76.5 ± 0.9 94.6 ± 0.5 77.4 ± 0.2 82.4 ± 0.1

will go through 𝑀 +1 times of forward passes for both training and inference, which is more than
that of LFME design. Results are shown in Tab. 9. We note that compared to the results from the
original models, when using the same pretrained knowledge, naively expanding model size cannot
improve the performance. The reason may be that a well-pretrained small backbone can already
saturate on limited training data (as shown in Table 5, ERM can achieve more than 0.96 acc in the
source domains), thus it is unnecessary to use more parameters in these datasets.

G Detailed Settings of Dyn_Expt

Besides the different experts 𝐸𝑖 where 𝑖 denotes the domain label, Dyn_Expt also uses an extra
weighting network𝑊 to estimate the labels of the training data. During the training stage, the experts
are trained the same as that in LFME, and the weighting network is trained using the corresponding
domain labels by minimizing H(𝑊 (𝑥𝑖), 𝑖). During the test phase, Dyn_Expt dynamically combines
the outputs from the experts with the corresponding domain probability: for ∀𝑥 ∈ D𝑀+1, the final
result is

∑𝑀
𝑖 𝑊 (𝑥)𝑖𝐸𝑖 (𝑥). We use the same backbone for both the experts and the weighting module

in this experiment.

H Detailed Results

This section presents the detailed results on the semantic segmentation task in Tab. 10, and detailed
results in the unseen domains from the different unseen domains of DomainBed benchmark in
Tab. 11, 12, 13 14, and 15.
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Table 10: Evaluations on the semantic segmentation task with the metrics of Mean IoU (%) and
per-class IoU (%). Source data is from the synthetic GTAV [63] and Synthia [64] datasets, and the
target data is from the real-world Cityscapes [20], BDD100K [83], and the Mapillary [55] datasets.
All models are with the same backbone: DeepLabV3+ with ResNet50, and results with † are from
[19].
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Baseline† 72.7 36.4 64.9 11.9 2.8 31.0 37.7 20.0 84.9 14.0 71.9 65.3 9.9 84.7 11.6 25.4 0.0 10.6 18.1 35.46
IBN-Net† 68.3 29.5 69.7 17.4 1.8 30.7 36.2 20.2 85.4 18.2 81.8 64.7 12.9 82.7 13.0 16.2 0.0 8.2 22.2 35.55
RobustNet† 82.6 40.1 73.4 17.4 1.4 34.2 38.6 18.5 84.9 16.9 81.9 65.2 11.4 84.7 7.2 23.6 0.0 10.4 23.9 37.69
Baseline 65.4 34.1 64.0 20.8 20.7 28.8 41.3 23.4 83.5 33.7 58.2 64.9 13.9 69.6 23.5 14.7 9.8 17.3 19.4 37.19
PinMem 84.6 43.3 79.0 20.3 7.5 38.1 39.3 23.4 86.0 24.6 69.8 66.5 18.9 82.1 25.6 35.7 3.1 25.8 21.5 41.86

SD 52.9 33.6 55.2 21.3 19.2 29.1 41.2 22.6 83.7 35.0 54.9 64.8 12.3 61.6 23.6 14.3 9.4 14.4 11.7 34.77
Ours 71.9 32.7 69.9 19.4 20.3 30.5 34.5 16.7 84.0 30.0 82.8 67.0 21.7 67.1 30.7 15.4 1.9 16.0 16.7 38.38
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Baseline† 44.6 26.1 34.7 1.8 6.9 29.5 39.1 20.5 64.9 10.8 51.6 50.6 10.2 63.9 1.1 4.8 0.0 5.5 10.1 25.09
IBN-Net† 53.8 25.0 55.4 2.8 14.8 32.9 39.7 26.3 71.7 16.4 85.9 57.4 17.5 56.9 5.3 6.0 0.0 18.5 25.4 32.18
RobustNet† 69.5 35.0 60.9 4.1 13.1 36.6 40.5 27.3 71.6 14.0 83.6 56.0 17.3 61.9 4.4 8.8 0.0 24.3 18.9 34.09
Baseline 57.1 27.3 37.3 2.8 20.5 29.8 36.8 22.1 59.0 23.2 35.1 48.4 9.5 70.6 15.3 8.5 0.0 19.3 8.5 27.95
PinMem 73.4 36.8 56.7 4.7 25.1 32.8 37.5 24.1 71.7 23.2 72.1 53.6 17.4 68.1 9.4 29.1 0.0 16.7 11.6 34.94

SD 56.6 29.6 39.6 2.8 17.4 31.8 37.1 19.6 60.3 23.4 36.6 49.6 10.5 67.1 15.1 9.3 0.0 19.9 5.5 28.00
Ours 72.2 30.5 58.4 8.5 30.1 30.5 32.6 21.5 69.0 23.7 75.7 54.7 18.5 68.1 18.6 26.9 0.0 29.2 9.7 35.70
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Baseline† 62.0 36.3 32.5 9.5 7.7 29.9 40.5 22.5 78.6 40.9 61.0 59.4 6.4 78.3 5.1 5.1 0.1 9.0 21.8 31.94
IBN-Net† 67.4 38.8 51.3 10.2 7.6 36.0 40.1 40.8 80.3 39.9 92.1 61.8 14.0 74.4 10.7 9.4 3.5 15.3 25.4 38.09
RobustNet† 78.0 41.0 56.6 13.1 6.2 39.4 41.3 36.1 79.5 34.7 90.0 61.0 12.0 76.1 10.7 13.1 0.8 16.9 24.8 38.49
Baseline 58.1 31.4 34.7 9.0 18.0 30.8 38.3 15.1 69.8 30.3 54.3 55.7 8.6 77.7 22.9 6.0 7.6 18.3 21.8 32.01
PinMem 76.0 40.8 48.7 14.5 15.3 36.6 38.4 41.8 79.8 33.1 77.3 62.0 17.6 74.2 26.5 19.0 6.0 18.7 22.6 39.41

SD 58.3 31.8 37.8 9.0 12.6 31.5 38.1 9.8 68.7 30.6 56.3 55.5 8.4 72.7 23.6 7.5 7.5 17.3 18.0 31.41
Ours 72.3 36.4 62.0 15.1 26.2 38.5 39.1 45.7 73.4 30.4 91.0 59.3 15.8 74.0 34.2 18.6 7.7 21.6 18.2 41.04

Table 11: Average accuracies on the PACS [43] datasets using the default hyper-parameter settings in
DomainBed [27]. TT denotes the average training time (minutes) for one trial in a target domain.

art cartoon photo sketch Average TT
ERM [75] 78.0 ± 1.3 73.4 ± 0.8 94.1 ± 0.4 73.6 ± 2.2 79.8 ± 0.4 24
IRM [1] 76.9 ± 2.6 75.1 ± 0.7 94.3 ± 0.4 77.4 ± 0.4 80.9 ± 0.5 18
GroupGRO [66] 77.7 ± 2.6 76.4 ± 0.3 94.0 ± 0.3 74.8 ± 1.3 80.7 ± 0.4 24
Mixup [80] 79.3 ± 1.1 74.2 ± 0.3 94.9 ± 0.3 68.3 ± 2.7 79.2 ± 0.9 18
MLDG [44] 78.4 ± 0.7 75.1 ± 0.5 94.8 ± 0.4 76.7 ± 0.8 81.3 ± 0.2 32
CORAL [70] 81.5 ± 0.5 75.4 ± 0.7 95.2 ± 0.5 74.8 ± 0.4 81.7 ± 0.0 24
MMD [46] 81.3 ± 0.6 75.5 ± 1.0 94.0 ± 0.5 74.3 ± 1.5 81.3 ± 0.8 18
DANN [24] 79.0 ± 0.6 72.5 ± 0.7 94.4 ± 0.5 70.8 ± 3.0 79.2 ± 0.3 17
CDANN [49] 80.4 ± 0.8 73.7 ± 0.3 93.1 ± 0.6 74.2 ± 1.7 80.3 ± 0.5 24
MTL [5] 78.7 ± 0.6 73.4 ± 1.0 94.1 ± 0.6 74.4 ± 3.0 80.1 ± 0.8 18
SagNet [54] 82.9 ± 0.4 73.2 ± 1.1 94.6 ± 0.5 76.1 ± 1.8 81.7 ± 0.6 24
ARM [87] 79.4 ± 0.6 75.0 ± 0.7 94.3 ± 0.6 73.8 ± 0.6 80.6 ± 0.5 24
VREx [42] 74.4 ± 0.7 75.0 ± 0.4 93.3 ± 0.3 78.1 ± 0.9 80.2 ± 0.5 17
RSC [36] 78.5 ± 1.1 73.3 ± 0.9 93.6 ± 0.6 76.5 ± 1.4 80.5 ± 0.2 25
Meta-DMoE [89] 78.7 ± 0.5 74.2 ± 1.1 94.4 ± 0.3 76.7 ± 0.9 81.0 ± 0.3 45
SelfReg [39] 82.5 ± 0.8 74.4 ± 1.5 95.4 ± 0.5 74.9 ± 1.3 81.8 ± 0.3 25
MIRO [9] 79.3 ± 0.6 68.1 ± 2.5 95.5 ± 0.3 60.6 ± 3.1 75.9 ± 1.4 31
MixStyle [91] 82.6 ± 1.2 76.3 ± 0.4 94.2 ± 0.3 77.5 ± 1.3 82.6 ± 0.4 25
Fish [69] 80.9 ± 1.0 75.9 ± 0.4 95.0 ± 0.4 76.2 ± 1.0 82.0 ± 0.3 52
SD [60] 83.2 ± 0.6 74.6 ± 0.3 94.6 ± 0.1 75.1 ± 1.6 81.9 ± 0.3 25
CAD [65] 83.9 ± 0.8 74.2 ± 0.4 94.6 ± 0.4 75.0 ± 1.2 81.9 ± 0.3 24
CondCAD [65] 79.7 ± 1.0 74.2 ± 0.9 94.6 ± 0.4 74.8 ± 1.4 80.8 ± 0.5 26
Fishr [62] 81.2 ± 0.4 75.8 ± 0.8 94.3 ± 0.3 73.8 ± 0.6 81.3 ± 0.3 17
ITTA [15] 84.7 ± 0.4 78.0 ± 0.4 94.5 ± 0.4 78.2 ± 0.3 83.8 ± 0.3 62
ERM+ 81.9 ± 0.4 75.1 ± 0.7 94.8 ± 0.7 73.8 ± 2.2 81.4 ± 0.5 24
Ours 81.0 ± 0.9 76.5 ± 0.9 94.6 ± 0.5 77.4 ± 0.2 82.4 ± 0.1 38
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Table 12: Average accuracies on the VLCS [23] datasets using the default hyper-parameter settings
in DomainBed [27].

Caltech LabelMe Sun VOC Average
ERM [75] 97.7 ± 0.3 62.1 ± 0.9 70.3 ± 0.9 73.2 ± 0.7 75.8 ± 0.2
IRM [1] 96.1 ± 0.8 62.5 ± 0.3 69.9 ± 0.7 72.0 ± 1.4 75.1 ± 0.1
GroupGRO [66] 96.7 ± 0.6 61.7 ± 1.5 70.2 ± 1.8 72.9 ± 0.6 75.4 ± 1.0
Mixup [80] 95.6 ± 1.5 62.7 ± 0.4 71.3 ± 0.3 75.4 ± 0.2 76.2 ± 0.3
MLDG [44] 95.8 ± 0.5 63.3 ± 0.8 68.5 ± 0.5 73.1 ± 0.8 75.2 ± 0.3
CORAL [70] 96.5 ± 0.3 62.8 ± 0.1 69.1 ± 0.6 73.8 ± 1.0 75.5 ± 0.4
MMD [46] 96.0 ± 0.8 64.3 ± 0.6 68.5 ± 0.6 70.8 ± 0.1 74.9 ± 0.5
DANN [24] 97.2 ± 0.1 63.3 ± 0.6 70.2 ± 0.9 74.4 ± 0.2 76.3 ± 0.2
CDANN [49] 95.4 ± 1.2 62.6 ± 0.6 69.9 ± 1.3 76.2 ± 0.5 76.0 ± 0.5
MTL [5] 94.4 ± 2.3 65.0 ± 0.6 69.6 ± 0.6 71.7 ± 1.3 75.2 ± 0.3
SagNet [54] 94.9 ± 0.7 61.9 ± 0.7 69.6 ± 1.3 75.2 ± 0.6 75.4 ± 0.8
ARM [87] 96.9 ± 0.5 61.9 ± 0.4 71.6 ± 0.1 73.3 ± 0.4 75.9 ± 0.3
VREx [42] 96.2 ± 0.0 62.5 ± 1.3 69.3 ± 0.9 73.1 ± 1.2 75.3 ± 0.6
RSC [36] 96.2 ± 0.0 63.6 ± 1.3 69.8 ± 1.0 72.0 ± 0.4 75.4 ± 0.3
Meta-DMoE [89] 96.4 ± 0.2 62.5 ± 1.0 70.3 ± 0.3 74.9 ± 1.1 76.0 ± 0.6
SelfReg [39] 95.8 ± 0.6 63.4 ± 1.1 71.1 ± 0.6 75.3 ± 0.6 76.4 ± 0.7
MixStyle [91] 97.3 ± 0.3 61.6 ± 0.1 70.4 ± 0.7 71.3 ± 1.9 75.2 ± 0.7
Fish [69] 97.4 ± 0.2 63.4 ± 0.1 71.5 ± 0.4 75.2 ± 0.7 76.9 ± 0.2
SD [60] 96.5 ± 0.4 62.2 ± 0.0 69.7 ± 0.9 73.6 ± 0.4 75.5 ± 0.4
CAD [65] 94.5 ± 0.9 63.5 ± 0.6 70.4 ± 1.2 72.4 ± 1.3 75.2 ± 0.6
CondCAD [65] 96.5 ± 0.8 62.6 ± 0.4 69.1 ± 0.2 76.0 ± 0.2 76.1 ± 0.3
Fishr [62] 97.2 ± 0.6 63.3 ± 0.7 70.4 ± 0.6 74.0 ± 0.8 76.2 ± 0.3
ITTA [15] 96.9 ± 1.2 63.7 ± 1.1 72.0 ± 0.3 74.9 ± 0.8 76.9 ± 0.6
ERM+ 96.0 ± 0.3 61.9 ± 0.4 71.5 ± 0.4 75.0 ± 1.2 76.1 ± 0.4
Ours 96.4 ± 0.3 62.8 ± 1.1 70.1 ± 0.3 75.4 ± 0.8 76.2 ± 0.4

Table 13: Average accuracies on the OfficeHome [76] datasets using the default hyper-parameter
settings in DomainBed [27].

art clipart product real Average
ERM [75] 52.2 ± 0.2 48.7 ± 0.5 69.9 ± 0.5 71.7 ± 0.5 60.6 ± 0.2
IRM [1] 49.7 ± 0.2 46.8 ± 0.5 67.5 ± 0.4 68.1 ± 0.6 58.0 ± 0.1
GroupGRO [66] 52.6 ± 1.1 48.2 ± 0.9 69.9 ± 0.4 71.5 ± 0.8 60.6 ± 0.3
Mixup [80] 54.0 ± 0.7 49.3 ± 0.7 70.7 ± 0.7 72.6 ± 0.3 61.7 ± 0.5
MLDG [44] 53.1 ± 0.3 48.4 ± 0.3 70.5 ± 0.7 71.7 ± 0.4 60.9 ± 0.2
CORAL [70] 55.1 ± 0.7 49.7 ± 0.9 71.8 ± 0.2 73.1 ± 0.5 62.4 ± 0.4
MMD [46] 50.9 ± 1.0 48.7 ± 0.3 69.3 ± 0.7 70.7 ± 1.3 59.9 ± 0.4
DANN [24] 51.8 ± 0.5 47.1 ± 0.1 69.1 ± 0.7 70.2 ± 0.7 59.5 ± 0.5
CDANN [49] 51.4 ± 0.5 46.9 ± 0.6 68.4 ± 0.5 70.4 ± 0.4 59.3 ± 0.4
MTL [5] 51.6 ± 1.5 47.7 ± 0.5 69.1 ± 0.3 71.0 ± 0.6 59.9 ± 0.5
SagNet [54] 55.3 ± 0.4 49.6 ± 0.2 72.1 ± 0.4 73.2 ± 0.4 62.5 ± 0.3
ARM [87] 51.3 ± 0.9 48.5 ± 0.4 68.0 ± 0.3 70.6 ± 0.1 59.6 ± 0.3
VREx [42] 51.1 ± 0.3 47.4 ± 0.6 69.0 ± 0.4 70.5 ± 0.4 59.5 ± 0.1
RSC [36] 49.0 ± 0.1 46.2 ± 1.5 67.8 ± 0.7 70.6 ± 0.3 58.4 ± 0.6
Meta-DMoE [89] 54.7 ± 0.3 50.4 ± 0.9 71.8 ± 0.3 71.8 ± 0.1 62.2 ± 0.1
SelfReg [39] 55.1 ± 0.8 49.2 ± 0.6 72.2 ± 0.3 73.0 ± 0.3 62.4 ± 0.1
MixStyle [91] 50.8 ± 0.6 51.4 ± 1.1 67.6 ± 1.3 68.8 ± 0.5 59.6 ± 0.8
Fish [69] 54.6 ± 1.0 49.6 ± 1.0 71.3 ± 0.6 72.4 ± 0.2 62.0 ± 0.6
SD [60] 55.0 ± 0.4 51.3 ± 0.5 72.5 ± 0.2 72.7 ± 0.3 62.9 ± 0.2
CAD [65] 52.1 ± 0.6 48.3 ± 0.5 69.7 ± 0.3 71.9 ± 0.4 60.5 ± 0.3
CondCAD [65] 53.3 ± 0.6 48.4 ± 0.2 69.8 ± 0.9 72.6 ± 0.1 61.0 ± 0.4
Fishr [62] 52.6 ± 0.9 48.6 ± 0.3 69.9 ± 0.6 72.4 ± 0.4 60.9 ± 0.3
ITTA [15] 54.4 ± 0.2 52.3 ± 0.8 69.5 ± 0.3 71.7 ± 0.2 62.0 ± 0.2
ERM+ 56.1 ± 0.3 51.0 ± 0.3 73.0 ± 0.3 72.5 ± 0.2 63.2 ± 0.1
Ours 56.4 ± 0.1 51.1 ± 0.5 72.5 ± 0.2 72.8 ± 0.1 63.2 ± 0.1
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Table 14: Average accuracies on the TerraInc [3] datasets using the default hyper-parameter settings
in DomainBed [27].

L100 L38 L43 L46 Average
ERM [75] 42.1 ± 2.5 30.1 ± 1.2 48.9 ± 0.6 34.0 ± 1.1 38.8 ± 1.0
IRM [1] 41.8 ± 1.8 29.0 ± 3.6 49.6 ± 2.1 33.1 ± 1.5 38.4 ± 0.9
GroupGRO [66] 45.3 ± 4.6 36.1 ± 4.4 51.0 ± 0.8 33.7 ± 0.9 41.5 ± 2.0
Mixup [80] 49.4 ± 2.0 35.9 ± 1.8 53.0 ± 0.7 30.0 ± 0.9 42.1 ± 0.7
MLDG [44] 39.6 ± 2.3 33.2 ± 2.7 52.4 ± 0.5 35.1 ± 1.5 40.1 ± 0.9
CORAL [70] 46.7 ± 3.2 36.9 ± 4.3 49.5 ± 1.9 32.5 ± 0.7 41.4 ± 1.8
MMD [46] 49.1 ± 1.2 36.4 ± 4.8 50.4 ± 2.1 32.3 ± 1.5 42.0 ± 1.0
DANN [24] 44.3 ± 3.6 28.0 ± 1.5 47.9 ± 1.0 31.3 ± 0.6 37.9 ± 0.9
CDANN [49] 36.9 ± 6.4 32.7 ± 6.2 51.1 ± 1.3 33.5 ± 0.5 38.6 ± 2.3
MTL [5] 45.2 ± 2.6 31.0 ± 1.6 50.6 ± 1.1 34.9 ± 0.4 40.4 ± 1.0
SagNet [54] 36.3 ± 4.7 40.3 ± 2.0 52.5 ± 0.6 33.3 ± 1.3 40.6 ± 1.5
ARM [87] 41.5 ± 4.5 27.7 ± 2.4 50.9 ± 1.0 29.6 ± 1.5 37.4 ± 1.9
VREx [42] 48.0 ± 1.7 41.1 ± 1.5 51.8 ± 1.5 32.0 ± 1.2 43.2 ± 0.3
RSC [36] 42.8 ± 2.4 32.2 ± 3.8 49.6 ± 0.9 32.9 ± 1.2 39.4 ± 1.3
Meta-DMoE [89] 47.1 ± 2.0 29.2 ± 2.1 47.8 ± 0.8 35.8 ± 1.8 40.0 ± 1.2
SelfReg [39] 46.1 ± 1.5 34.5 ± 1.6 49.8 ± 0.3 34.7 ± 1.5 41.3 ± 0.3
MixStyle [91] 50.6 ± 1.9 28.0 ± 4.5 52.1 ± 0.7 33.0 ± 0.2 40.9 ± 1.1
Fish [69] 46.3 ± 3.0 29.0 ± 1.1 52.7 ± 1.2 32.8 ± 1.0 40.2 ± 0.6
SD [60] 45.5 ± 1.9 33.2 ± 3.1 52.9 ± 0.7 36.4 ± 0.8 42.0 ± 1.0
CAD [65] 43.1 ± 2.6 31.1 ± 1.9 53.1 ± 1.6 34.7 ± 1.3 40.5 ± 0.4
CondCAD [65] 44.4 ± 2.9 32.9 ± 2.5 50.5 ± 1.3 30.8 ± 0.5 39.7 ± 0.4
Fishr [62] 49.9 ± 3.3 36.6 ± 0.9 49.8 ± 0.2 34.2 ± 1.3 42.6 ± 1.0
ITTA [15] 51.7 ± 2.4 37.6 ± 0.6 49.9 ± 0.6 33.6 ± 0.6 43.2 ± 0.5
ERM+ 46.7 ± 2.6 37.1 ± 1.3 53.2 ± 0.4 34.8 ± 1.3 42.9 ± 0.7
Ours 53.4 ± 0.4 40.7 ± 2.4 54.9 ± 0.4 36.4 ± 0.7 46.3 ± 0.5

Table 15: Average accuracies on the DomainNet [59] datasets using the default hyper-parameter
settings in DomainBed [27].

clip info paint quick real sketch Average
ERM [75] 50.4 ± 0.2 14.0 ± 0.2 40.3 ± 0.5 11.7 ± 0.2 52.0 ± 0.2 43.2 ± 0.3 35.3 ± 0.1
IRM [1] 43.2 ± 0.9 12.6 ± 0.3 35.0 ± 1.4 9.9 ± 0.4 43.4 ± 3.0 38.4 ± 0.4 30.4 ± 1.0
GroupGRO [66] 38.2 ± 0.5 13.0 ± 0.3 28.7 ± 0.3 8.2 ± 0.1 43.4 ± 0.5 33.7 ± 0.0 27.5 ± 0.1
Mixup [80] 48.9 ± 0.3 13.6 ± 0.3 39.5 ± 0.5 10.9 ± 0.4 49.9 ± 0.2 41.2 ± 0.2 34.0 ± 0.0
MLDG [44] 51.1 ± 0.3 14.1 ± 0.3 40.7 ± 0.3 11.7 ± 0.1 52.3 ± 0.3 42.7 ± 0.2 35.4 ± 0.0
CORAL [70] 51.2 ± 0.2 15.4 ± 0.2 42.0 ± 0.2 12.7 ± 0.1 52.0 ± 0.3 43.4 ± 0.0 36.1 ± 0.2
MMD [46] 16.6 ± 13.3 0.3 ± 0.0 12.8 ± 10.4 0.3 ± 0.0 17.1 ± 13.7 0.4 ± 0.0 7.9 ± 6.2
DANN [24] 45.0 ± 0.2 12.8 ± 0.2 36.0 ± 0.2 10.4 ± 0.3 46.7 ± 0.3 38.0 ± 0.3 31.5 ± 0.1
CDANN [49] 45.3 ± 0.2 12.6 ± 0.2 36.6 ± 0.2 10.3 ± 0.4 47.5 ± 0.1 38.9 ± 0.4 31.8 ± 0.2
MTL [5] 50.6 ± 0.2 14.0 ± 0.4 39.6 ± 0.3 12.0 ± 0.3 52.1 ± 0.1 41.5 ± 0.0 35.0 ± 0.0
SagNet [54] 51.0 ± 0.1 14.6 ± 0.1 40.2 ± 0.2 12.1 ± 0.2 51.5 ± 0.3 42.4 ± 0.1 35.3 ± 0.1
ARM [87] 43.0 ± 0.2 11.7 ± 0.2 34.6 ± 0.1 9.8 ± 0.4 43.2 ± 0.3 37.0 ± 0.3 29.9 ± 0.1
VREx [42] 39.2 ± 1.6 11.9 ± 0.4 31.2 ± 1.3 10.2 ± 0.4 41.5 ± 1.8 34.8 ± 0.8 28.1 ± 1.0
RSC [36] 39.5 ± 3.7 11.4 ± 0.8 30.5 ± 3.1 10.2 ± 0.8 41.0 ± 1.4 34.7 ± 2.6 27.9 ± 2.0
Meta-DMoE [89] 51.5 ± 0.9 15.4 ± 0.5 42.0 ± 0.6 11.9 ± 0.4 50.9 ± 0.2 44.0 ± 0.3 36.0 ± 0.2
SelfReg [39] 47.9 ± 0.3 15.1 ± 0.3 41.2 ± 0.2 11.7 ± 0.3 48.8 ± 0.0 43.8 ± 0.3 34.7 ± 0.2
MixStyle [91] 49.1 ± 0.4 13.4 ± 0.0 39.3 ± 0.0 11.4 ± 0.4 47.7 ± 0.3 42.7 ± 0.1 33.9 ± 0.1
Fish [69] 51.5 ± 0.3 14.5 ± 0.2 40.4 ± 0.3 11.7 ± 0.5 52.6 ± 0.2 42.1 ± 0.1 35.5 ± 0.0
SD [60] 51.3 ± 0.3 15.5 ± 0.1 41.5 ± 0.3 12.6 ± 0.2 52.9 ± 0.2 44.0 ± 0.4 36.3 ± 0.2
CAD [65] 45.4 ± 1.0 12.1 ± 0.5 34.9 ± 1.1 10.2 ± 0.6 45.1 ± 1.6 38.5 ± 0.6 31.0 ± 0.8
CondCAD [65] 46.1 ± 1.0 13.3 ± 0.4 36.1 ± 1.4 10.7 ± 0.2 46.8 ± 1.3 38.7 ± 0.7 31.9 ± 0.7
Fishr [62] 47.8 ± 0.7 14.6 ± 0.2 40.0 ± 0.3 11.9 ± 0.2 49.2 ± 0.7 41.7 ± 0.1 34.2 ± 0.3
ITTA [15] 50.7 ± 0.7 13.9 ± 0.4 39.4 ± 0.5 11.9 ± 0.2 50.2 ± 0.3 43.5 ± 0.1 34.9 ± 0.1
ERM+ 51.3 ± 0.1 15.8 ± 0.4 42.3 ± 0.1 13.0 ± 0.2 51.4 ± 0.4 44.3± 0.1 36.4 ± 0.1
Ours 50.7 ± 0.7 15.7 ± 0.0 41.5 ± 0.5 12.4 ± 0.2 51.4 ± 0.3 44.8± 0.2 36.1 ± 0.1
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope, which matches our theoretical analyses and experimental findings.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations have been discussed in Sec. A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide our theoretical statements and proof in Sec. 4.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide pseudocode in Sec. B, and our code in the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Code is provided at https://github.com/liangchen527/LFME.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Implementation details are described in our experimental sections.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report error bars for our experiments and detailed how they are computed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: For all experiments, we use a Tesla V100 GPU with 32 GB memory, the actual
running time is detailed in Tab. 11.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm our work does not violate NeurIPS Code of Ethics, in any respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work aims to improve the generalizability of a deep model. There are
many potential societal consequences of our work, none of which we feel must be specifically
highlighted here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not involve such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Benchmarks used in this data are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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