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Abstract

Reinforcement Learning (RL) has achieved state-of-the-art performance in station-
ary environments with effective simulators. However, lifelong and open-world RL
applications, such as robotics, stock trading, and recommendation systems, change
over time in adversarial ways. Non-stationary environments pose challenges for
RL agents due to constant distribution shifts from the training data, leading to
deteriorating performance. We propose using a robust Bayesian online detector,
which tracks agent performance to detect non-stationarities in the environment.
Additionally, we propose a new metric called hindsight approximate reward (HAR)
that solely relies on state and action information to detect adversarial changes in the
environment, making it well-suited for real-world settings with missing or delayed
feedback. We demonstrate that the proposed Bayesian detector, combined with
HAR or expected reward as a metric, can detect a range of non-stationary changes
in dynamic control tasks more effectively compared to baseline non-stationary
tests.

1 Introduction and Literature Review

Reinforcement Learning (RL) presents methods for training optimal agents in static Markov Decision
Processes (MDPs). RL solutions are proven to be successful in many applications, including tree-
search board games [1], console video games [2, 3, 4], robotics [5, 6], manufacturing and various
engineering fields. Traditional RL approaches assume that the training environment matches the
eventual deployment environment. However, many open-ended and real-world applications of RL,
such as advertise ranking, content recommendation, bidding, stock trading, and physical robotics,
have either dynamically evolving or adversarial environments [7, 8, 9, 10, 11]. Agents which do not
account for these environments’ constant shifts can suffer unbounded regret over time, inciting a need
to detect and adapt to such differences in their policy.

Non-stationary RL (Non-Sta RL) aims to tackle this problem by training agents in static MDPs
while remaining adaptable to changes in the underlying MDP dynamics. Here, a general design
consists of detection of environment change followed by retraining agent in the new environment.
However, most work done in Non-Sta RL makes further assumptions about the environment such as
tabular MDPs with only discrete actions [12], environment’s switch from a fixed number of MDPs
[13], environment drifting slowly over time [14] or Bandits [15]. These Non-Sta solutions focus
on measuring regret [16], solving for exact optimal policy in a sliding window fashion regardless
of environment change [12], or modeling reward and environment dynamics to predict Non-Sta
points [17]. Such approach can be challenging to apply in practical applications with highly complex
state-action space and delayed or potentially inaccessible reward.

In this work, we propose a robust RL agent that implicitly contains a Non-Sta detector to identify
changes in the environment’s dynamics in the open-world setting or reward structures in real-
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Algorithm 1 Non-Stationarity Measure-Detector Framework
Require: Ntrain, Nadapt, MEASURE(s, a, r, s), DETECTION(x)
πθ - Agent trained on Ntrain environment trajectories.
DETECTION - Detection algorithm fine-tuned on Nadapt environment trajectories.
M ← [ ]
NS ← False
while ¬NS do

Traj ← [ ]
s← s0
while ¬terminal do

a← π(s)
s′, r, terminal← STEP(s, a)
Traj ← Traj + (s, a, r, s′)
s← s′

end while
M ←M + MEASURE(Traj)
NS ← DETECTION(M)

end while

time. Specifically, we focus on black-box non-stationarities in general function-approximation
RL, assuming no additional information about the environment beyond the standard observation
and reward signals. We focus our attention on jump non-stationarity, where the change in the
environment happens suddenly and at an unknown point in time, in contrast to drift non-stationarities
which occur slowly. We present a Non-Sta detector using Bayesian online change-point detection
[18, 19] for regret-free, black-box non-stationarity detection. The detector tracks several metrics
from environment, probing both situations where reward is available during evaluation and when
the reward is available during training-time only. We also propose a new metric called hindsight
approximate reward to track intrinsic non-stationary changes and is useful when explicit reward signal
from environment is unavailable. Finally, we present results evaluating different general signals and
detection techniques on a classical control environments with different sized non-stationarities.

2 Methods

We present a general framework for detecting non-stationarities in black-box environments. Since
individual transitions are very noisy and often ill-informative, we operate on the level of trajectories.
This allows us to more generally determine if a change has occurred between a trajectory boundary.
We assume transitions occur between trajectories and do not occur within a trajectory. This approach
requires defining two components:

• Measure: A (potentially multi-variate) real-valued summary of the agent’s performance,
m(t) ∈ Rn, which can be extracted from a trajectory of transitions (s, a, r, s′). We also
examine the case where we only have access to (s, a, s′) transitions.

• Detection: An algorithm which accepts a time-series of measure values m(t) and determines
if a change has occurred in the previous time-step.

A full description of the non-stationary RL evaluation with detection is presented in Algorithm 1.

2.1 Measures

We define several measures and compare them across several tasks. Measures should be rapidly
computable from a trajectory and noise-free to ensure a reliable detection without false positives.
Each measure calculation is given by a list of transitions [(st, at, rt, s′t)] from a contiguous trajectory.
Additionally, any method should be independent of the base RL agent chosen for the policy. As
such we do not assume the existence of a Q function, probabilistic policy π, or any other aspects of
the base policy. Following these limitations, we present several black-box measures using only this
trajectory data.
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• Reward (R) E[rt]: A simple measure of average reward across a trajectory. This signal will
operate as a baseline, and the simplest black-box measure across environments.

• Approximate Reward (AR) E[r̂t(st, at)]: Train a reward model along-side the RL agent,
which estimates the reward function of the MDP. This will be imperfect but will still allow
us to apply our techniques in environments with no inference-time reward available.

• Hindsight Approximate Reward (HAR) E[r̂t(st, s′t)]: An alternative approximate reward
function which estimates the reward from two consecutive states instead of a state-action.
The main difference in this measure is it can only be calculated in hindsight after an action
has been completed and is suitable when environment feedback is delayed or missing.

• Reward Error (RE) E[rt− r̂t(st, at)]: To remove natural stationary drift in the environment
due to agent action randomness, we propose to track the temporal difference error in the
reward model through time. This also has a benefit of making the signal zero-centered by
default.

• Hindsight Reward Error (HRE) E[rt− r̂t(st, s
′
t)]: Equivalent to RE but with the hindsight

reward model.

Normalization All measures are normalized using the same training trajectory data used for training
the RL agent. We assume that the RL agent is trained during a period of stationarity, and normalize
the measures to have zero mean and unit variance within this data.

Trajectory Aggregation We evaluate change-points on a trajectory level. Therefore, we must
summarize the measure value across the entire trajectory before feeding it to the detectors. We elect
to compute the measures on a step-by-step basis and then find the average value across an entire
trajectory. This gives us an estimate of the expected value of each measure for a given policy.

2.2 Detectors

BOCPD We present using Bayesian online change-point detection (BOCPD) [18] to determine
a non-stationary from a collection of metrics. BOCPD detects if a time-series has drifted out of
distribution by tracking the posterior likelihood of all sub-sequences of the data following a given
exponential family. By leveraging online Bayesian parameter updating, which is possible with
exponential families, and tracking the posterior probabilities of all sequence lengths in an online
fashion, BOCPD is able to process observations in O(n) time, reducible to O(1) time through the
use of pruning [19]. A detailed overview of BOCPD is presented in Appendix A. We elect to use a
multivariate Gaussian family to model our data and evaluate the following variants.

1. (I-BOCPD) A Gaussian likelihood with known unit variance and unknown mean following
a unit Gaussian prior resulting in a Gaussian posterior.

2. (Σ-BOCPD) A Gaussian likelihood with unknown variance following an inverse Wishart
prior and unknown mean following a unit Gaussian. The posterior for this likelihood is a
multivariate Student-t distribution.

3. (Dm-BOCPD) A Dm-Posterior variant of the Gaussian likelihood which uses an alternative
Bayesian Update step to promote a more robust detection which avoids triggering on outliers.
This results in a likelihood with no analytical form, but with a truncated normal posterior on
the variance and normal posterior on the mean [19].

Baseline We also compare these methods with two baselines based on simple threshold detection.

• Threshold: A simple detector tracking if the normalized average measure ever passes a
fixed threshold value: THRESHOLD(M) := |E[M ]| > τ . Effective and historically used for
zero-expectation measures such as regret. The detector tuning phase adjusts the threshold
based on a tuning dataset and observed values.

• Difference: A time-difference approach which measures the change between the current
measure and the previous measure: DIFFERENCE(Mt) := |E[Mt]− E[Mt−1]| > δ. Useful
for tracking sudden changes in performance metrics such as reward. The threshold is
similarly adjust during tuning.
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Mass Scale 0.5 0.75 0.8 0.9 0.95 1.0 1.05 1.1 1.5 2.0 5.0

R 1 0 0 4 14 ∞ 6 2 0 0 0
AR 0 0 0 2 ∞ 27 ∞ 12 -2 ∞ -32
HAR 0 0 0 3 2 ∞ ∞ 1 -22 0 0
RE 0 1 1 9 ∞ 30 ∞ 4 3 1 0
HRE 0 0 1 1 7 ∞ 11 3 0 0 0
RS 0 0 0 1 ∞ 36 ∞ -44 45 ∞ 0

Table 1: Median Detection Latency for the I-BOCPD detector across measures on
cartpole_swingup. Negative Latency implies a false-positive early detection. A value of 0
implies a perfect detection after one episode. A mass scale of 1.0 implies no change actually occurred
at the non-stationarity, and we expect this to be undetectable. The Lowest delay latency for each
environment is bolded.

3 Results and Discussion

Experiment We evaluate our methods on the cartpole_swingup task from the dm-control [20]
suite of classical control robotics problems. Episodes are 1000 steps long, with reward equal to the
shifted angular distance from a fully vertical pole.

Changepoint Experiment Setup We introduce a non-stationarity by modifying the pole mass and
therefore changing the dynamics of the environment. We sweep the pole mass from the original
environment value of 1.0 to selected values in the range 0.1 and 10.0. Each non-stationarity only
changes the mass one time for each experiment, and the new mass remains for the remainder of the
episodes. We set the true change-point time at 100 episodes after starting evaluation, and present the
difference between the detected change-point and the true change-point time. If a detector did not
trigger after all 200 episodes, the latency is set as∞.

Non-stationary Detectors We design a non-stationary detection experiment by collecting 150
episodes from the original environment and 100 more episodes from a modified mass environment.
The first 50 episodes are used for tuning detector parameters, and we then evaluate each measure and
detector on the sampled sequence of 100 + 100 original and modified episodes, determining when
each configuration detects a change-point. Each experiment is repeated 11 times and the median
detection time for each distinct mass is presented.

Detector Tuning We use the same set of base hyper-parameters for all methods and metrics. Most
of our detectors assume a roughly unit Gaussian input distribution on the data. Large input values
could throw off the detectors and cause false positives. To prevent this, detectors are tuned on the 50
initial episodes through a scaling technique. The tuning data is repeatedly scaled by a reduction factor
until the detection method shows no false positives on the entire tuning period. We use a reduction
factor of 1

2 .

RL Agent We use a standard Soft Actor-Critic (SAC) [6] agent as implemented by the TorchRL
library [21]. SAC parameters are provided in the Appendix. The agent is trained for 3.5 Million
environment steps in the original unit mass environment. The inference agent is deterministic, using
the mean of the policy prediction as the action. We add the reward and hindsight reward networks to
the SAC agent, and these are trained along-side the other components from replay buffer samples.

Measure Comparison We present a comparison of measures in Table 1. We notice that the reward
signal is very effective, as expected. We also find that HAR is as effective as the true reward (R),
while the AR model is much noisier and less effective. HAR does not depends on access to the
reward function and estimates reward based only on state st and next state s

′

t distribution change.
Therefore, HAR will be a better metric in delayed or missing feedback settings. We also notice that
when the reward is available, it is also better to use HRE likely because it removes the variance from
the reward in the middle of the episode.
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Mass Scale 0.5 0.75 0.8 0.9 0.95 1.0 1.05 1.1 1.5 2.0 5.0

I-BOCPD 1 0 0 4 14 ∞ 6 2 0 0 0
Σ-BOCPD 2 0 0 3 16 ∞ 0 1 0 0 0
Dm-BOCPD 1 0 1 2 7 ∞ 2 1 0 0 0
Threshold 1 -31 0 6 ∞ ∞ 2 -36 -13 0 0
Difference -12 ∞ 0 ∞ ∞ ∞ -26 20 0 0 0

Table 2: Median Detection Latency for the reward (R) measure across tested detectors on
cartpole_swingup. The remaining table definitions are identical to Table 1. The Lowest de-
lay latency for each environment is bolded.

Detectors Comparison Detectors are compared on the baseline R measure in Table 2. We notice
that all of the Bayesian detectors fared the best, with no early detection and low latencies. The
robust Dm-BOCPD seems to fare the best on this environment, but this may not be a general result.
We found that the baseline methods suffer from the high variance between episodes, and even after
tuning, the Threshold and Difference methods often had false positives. This happens because both
Threshold and Difference use a point estimate to detect environment change with one single trajectory
from the environment at time t, whereas Dm-BOCPD uses all trajectories seen so far (≤ t) to build a
time-series model at multiple granularity to detect change at time t. To reduce this high variance issue
with Threshold and Difference, we would need to sample multiple trajectories from the environment
at time t but this inherently increases sample complexity and latency.

4 Conclusion and Future Work

Overview We present results on detecting discrete non-stationarities in environment dynamics at
unknown time in the general reinforcement learning setting with access to only the reward or an
approximation of the reward. We find that Bayesian change-point detection methods are effective
in detecting RL non-stationarities from these (approximate) reward signals, and are promising on a
practical application. We focus on the black box setting to ensure this method is widely applicable to
a variety of RL tasks. We present experiments on one common environment and plan on applying to
more fundamental non-stationary shifts in the future.

Use in Intrinsic Learning In an adversarial environment, which is commonly observed in open-
world setting, RL agents can quickly find themselves in out-of-distribution states, which must
be detected to remain safe, and the agents can then adapt accordingly. Also, discovering new
phenomenon may present itself as non-stationary changes. In addition, we may use this detection to
assist in adaption to new scenarios. Detection allows us to determine which episodes are from the
new environments and adapt to these new situations in an intelligent manner. We leave this adaption
step to future work, as the focus here is on robust detection of environment non-stationarities.

Limitations We note a limitation of these methods being the inability to capture a change in
sub-optimal action rewards: where actions which the trained agent will not take suddenly receive
very high reward. We believe that comparison to exploration agents, which will eventually execute
all actions, is necessary to capture these types of changes. We leave this modification for future work.
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Algorithm 2 Bayesian Online Changepoint Detection (BOCPD)
1. Define the initial conditions.

P (r0 = 1) = 1, µ0 = 0,Σ0 = I

2. Observe a new datum xt.
3. Compute the data posterior probability:

πt = p(xt) such that xt ∼ N (µt,Σt)

4. Calculate the change in run-length probabilities. For each rt−1:

P (rt = rt−1 + 1, x1:t) = P (rt−1, x1:t−1)πt(1−H(rt−1))

P (rt = 0, x1:t) =
∑
rt−1

P (rt−1, x1:t−1)πtH(rt−1)

5. Calculate the run-length posterior:

p(rt) =
p(rt, x1:t)∑
rt
p(rt, x1:t)

6. Update the data posterior parameters according to the chosen family’s update rule.
7. If there exists a run-length p(rt ̸= t) > p(rt = t) for a specified number of updates (known

as a lag), then we declare a changepoint.

Appendix

A Bayesian Online Change-point Detector

We provide a brief overview of the BOCPD algorithm used in this work. Complete descriptions of
the methods may be found in the original papers [18, 19].

BOCPD requires selecting a base exponential family for describing the data x(t). We use the
multivariate Gaussian family with either known or unknown variance. The full prior distribution for
the time-series is defined as the following system, whereW is the Inverse-Wishart Distribution.

x ∼ N (µ,Σ)

µ ∼ N (0, I)
Σ ∼ W(Ψ, ν)

or
Σ = I

The posterior update rule for the prior distribution may now be defined. We start with the Known
Variance Gaussian. Given an initial prior mean of µ0 = 0 and prior variance of Σ0 = I, after
observing a new datapoint xt, the parameters are updated as:

Σt+1 =
(
Σ−1

t + I
)−1

(1)

µt+1 = Σt+1

(
Σ−1

t µt + Ixt

)
xt+1 ∼ N (µt+1,Σt+1 + I)

Similar update rules may be derived for the multivariate Gaussian family with unknown likelihood
[18] and the robust version of this update rule derived using Dm-divergence in [19].

Once the data distribution has been defined, BOCPD introduces a hazard function for providing a
prior on the run-length distribution of each sub-sequence fit. We choose a constant hazard function of
H(t) = 1

24 Hours.
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Finally, BOCPD provides the full online Bayesian update for tracking the posterior distribution over
run-lengths given the exponential family defined above [18]. The full psuedo-code for BOCPD is
presented in Algorithm 2.
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