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ABSTRACT

Prompt Tuning adapts frozen models to new tasks by prepending a few learnable
embeddings to the input. However, it struggles with tasks that suffer from data
scarcity. To address this, we explore Cross-Modality Prompt Transfer, leveraging
prompts pretrained on a data-rich modality to improve performance on data-scarce
tasks in another modality. As a pioneering study, we first verify the feasibility of
cross-modality prompt transfer by directly applying frozen source prompts (trained
on the source modality) to the target modality task. To empirically study cross-
modality prompt transferability, we train a linear layer to adapt source prompts
to the target modality, thereby boosting performance and providing ground-truth
transfer results. Regarding estimating prompt transferability, existing methods show
ineffectiveness in cross-modality scenarios where the gap between source and target
tasks is larger. We address this by decomposing the gap into the modality gap and
the task gap, which we measure separately to autonomously select the best source
prompt for a target task. Additionally, we propose Attention Transfer to further
reduce the gaps by injecting target knowledge into the prompt and reorganizing
a top-transferable source prompt using an attention block. We conduct extensive
experiments involving prompt transfer from 13 source language tasks to 19 target
vision tasks under three settings. Our findings demonstrate that: (i) cross-modality
prompt transfer is feasible, supported by in-depth analysis; (ii) measuring both the
modality and task gaps is crucial for accurate prompt transferability estimation,
a factor overlooked by previous studies; (iii) cross-modality prompt transfer can
significantly release the powers of prompt tuning on data-scarce tasks, as evidenced
by comparisons with a newly released prompt-based benchmark.

1 INTRODUCTION

As pretrained Transformers (Vaswani et al., 2017) become larger, the demand for transferring them
to new tasks in a parameter-efficient way grows heavier (Peng et al., 2024). Prompt Tuning (Lester
et al., 2021) emerges as a leading Parameter-Efficient Transfer Learning (PETL) method, updating
only the learnable vectors prepended to model inputs. It makes the least modifications to the model’s
architecture compared to other PETL approaches (Guo et al., 2022), making it particularly compatible
with complex or blackbox Transformer models, thereby warranting increasing popularity. However,
some modalities struggle to benefit from prompt tuning. Data-scarce modalities, for example, lack
sufficient training samples to fully optimize the prompt (Su et al., 2022).

Our research seeks to tackle the challenges by exploring Cross-Modality Prompt Transfer, aiming
to release the powers of prompt tuning on data-scarce tasks by transferring prompts pretrained on
Natural Language Processing (NLP) tasks, which are well-suited for prompt tuning due to their
data-rich nature (Lu et al., 2022). Such exploration can greatly benefit data-scarce modalities by
leveraging the rich data resources and well-established frameworks of the text modality through the
transfer of text-pretrained prompts, thereby unlocking the power of pretrained models and mitigating
the challenges these modalities face.
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In the literature, prompt transfer has been proven effective between NLP tasks (Vu et al., 2022; Su
et al., 2022). We hypothesize that such practice can be safely extended to cross-modality scenarios
and conduct extensive studies to verify our hypothesis. We start with proving the feasibility of
cross-modality prompt transfer and empirically studying the prompt transferability in cross-modality
scenarios by designing two transfer settings: Frozen Prompt Transfer and Projection Transfer. Frozen
prompt transfer directly applies text-pretrained prompts (source prompts) to non-text tasks without
modification, testing whether any transferability exists. For projection transfer, it enhances the
performance of the frozen source prompts and obtains the ground-truth transfer results by training a
linear layer to adapt to the target tasks that linguistic knowledge stored in the frozen source prompts.

With the ground-truth transfer results, we further study what determines the prompt transferability
in cross-modality scenarios by analyzing the gap between source and target tasks. Observing that
existing methods for in-modality scenarios encounter limitations, we hypothesize that the gap between
the source and target task is more complex in cross-modality scenarios. In response, we identify two
gaps a source prompt must overcome to be employed on a different modality task: (i) the modality gap
formed by the differences in data distributions and models between the source and target modalities,
and (ii) the task gap formed by the differing nature of the tasks themselves. By measuring these gaps,
we propose a novel prompt transferability estimation approach that autonomously select the best
source prompt more accurately compared to current methods designed for in-modality scenarios.

Based on the analysis of the modality gap and task gap, we further explore whether the performance
of prompt tuning can be further boosted by bridging these gaps. In response, Attention Transfer is
proposed. It reduces the gaps by injecting target knowledge into a highly transferable source prompt
and by an attention block that adapts the source prompt more effectively. As a result, attention
transfer can boost prompt tuning to a level comparable to or even better than the newest prompt
tuning benchmark, demonstrating the potential of cross-modality prompt transfer. In summary, our
contributions can be summarized as:

• We explore cross-modality prompt transfer as an effective approach for boosting prompt tun-
ing and verify the feasibility through extensive experiments and in-depth analysis, addressing
a critical research gap and opening new possibilities for data-scarce modalities.

• We introduce a novel method for estimating prompt transferability by quantifying the
modality and task gaps, which the existing in-modality methods have overlooked, as the
gaps are enlarged in the cross-modality scenario. As a result, our method offers a more
accurate solution compared to existing in-modality methods.

• We further demonstrate the powers of cross-modality prompt transfer through Attention
Transfer, which eases the modality gap and task gap by injecting target knowledge into
the prompt and utilizing a top-transferable source prompt more effectively. As a result,
attention transfer enables prompt tuning to perform comparably or even better than the best
prompt-based benchmark.

2 RELATED WORK

Parameter-Efficient Transfer Learning. As model size increases, finetuning becomes infeasible
for adapting pretrained models to new tasks. Therefore, PETL approaches that steer a pretrained
model by tuning only a small amount of weights are favored, as they help avoid storing different
model instances for individually varied tasks (Ding et al., 2023). Most PETL methods are built upon
three baselines: (i) Adapter (Houlsby et al., 2019) that inserts learnable projectors between layers,
(ii) Low-Rank Adaptation (LoRA) (Hu et al., 2021) that trains rank decomposition matrices as the
update matrices for model weights, and (iii) Prompt Tuning (Lester et al., 2021) that concatenates
learnable embeddings with input embeddings. Among these baselines, prompt tuning acquired many
of popularity and had been extended to various pretrained models (Wang et al., 2024a) due to its
ability to steer architecturally complex or black-box models, as it makes the least modifications
to the model architecture. As an influential follow-up study, Jia et al. (2022) extended prompt
tuning to the Computer Vision (CV) domain and proposed Visual Prompt Tuning (VPT), integrating
prompt tuning with Vision Transformers (Dosovitskiy et al., 2020). Following VPT, Wang et al.
(2024b) explored the influence of prompt initialization to VPT: after empirical verification that the
mutual information between prompt and image patch embeddings tends to increase as prompt tuning
proceeds, they proposed Self-Prompt Tuning (SPT) that initializes the prompts with sampled image
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Figure 1: (a) Source Prompt Tuning: Perform prompt tuning on NLP tasks with RoBERTa to get
the source prompts. (b) Frozen Prompt Transfer: Source prompts are used as-is on target vision
tasks to verify the feasibility of cross-modality prompt transfer. (c) Projection Transfer: Source
prompts are projected and prepended to the patch embeddings, to adapt the source knowledge.

patch embeddings. SPT demonstrated that VPT can be boosted significantly if properly initialized
and achieved a new benchmark for prompt-based PETL methods. Our investigated cross-modality
prompt transfer can be regarded as initializing the prompt with adapted NLP-pretrained prompt.
It and SPT both focus on prompt initialization but are from different perspectives. Therefore, to
demonstrate the effectiveness of cross-modality prompt transfer, SPT is chosen for comparison.

Prompt Transfer. Although parameter-efficient, prompt tuning still falls below full-finetuning.
Moreover, training a prompt is often slower than finetuning and prompts tend to be less stable
during optimization (Li & Liang, 2021). Therefore, researchers resort to prompt transfer to boost
the performance and promote stable optimization for prompt tuning. Prompt transfer first trains a
source prompt on a source task, before it initializes the target prompt with the trained source prompt
for a target task. Vu et al. (2022) first explored prompt transfer between different NLP tasks and
used the similarity between prompts to measure the prompt transferability the different tasks share.
In addition, Su et al. (2022) explored prompt transfer between different language models and used
a projection module to mitigate the discrepancy resulting from different language models. They
also used the overlapping rate of activated neurons in the language model to measure the prompt
transferability, which is more effective than the similarity measurement. Vu et al. (2022) and Su et al.
(2022) both verified that prompt tuning can benefit from pretraining the prompts on an intermediate
task. However, whether the conclusion still holds if the intermediate task comes from a different
modality remains underexplored. In response, we explore the prompt transfer between not only
different models but also different modalities, filling the gaps left by previous studies.

3 METHODS

3.1 CROSS-MODALITY PROMPT TRANSFER

Visual Prompt Tuning. Before diving into cross-modality prompt transfer, the basic concept of
VPT needs to be introduced. VPT extends the concept of prompt tuning (Lester et al., 2021) from
language to vision and serves as a representative PETL method for ViT (Dosovitskiy et al., 2020).
VPT requires a target vision task Tt = {xt, yt} and a pretrained ViT consisting of an image embedder
Ev and a backbone Bv . The goal of VPT is to minimize the empirical error on the target vision task:

argmin
p,Hv

L [Hv ◦Bv(p ∥ Ev(xt)), yt] (1)

Where p represents the prompt embeddings, Hv represents the classification head, ◦ and ∥ stand for
function and vector concatenation, respectively. Learnable modules are colored in orange.

Frozen Prompt Transfer. To verify the feasibility of cross-modality prompt transfer, frozen source
prompts ps are prepended to the patch embeddings and fed to the ViT (Figure 1b). Linear probing
(Oord et al., 2018) is performed on top of the [CLS] features to see if a frozen source prompt can help
ViT form improved feature clusters, compared to a randomly initialized prompt and vanilla linear
probing where no prompts are included. In frozen prompt transfer, the only trainable module is the
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output predictor Hv , leaving the learning objective in Equation 1 to be reformulated into:

argmin
Hv

L [Hv ◦Bv(ps ∥ Ev(xt)), yt)] (2)

Projection Transfer. To adapt the linguistic knowledge stored in the source prompt to CV tasks,
source prompts are kept frozen but passed to a learnable one-layer linear projector P before being
prepended to the image embeddings (Figure 1c). During the transfer, only the output predictor Hv

and the projector P are trainable, reformulating objective 1 into:

argmin
Hv,P

L [Hv ◦Bv(P (ps) ∥ Ev(xt)), yt] (3)

In the literature, Merullo et al. (2022) verify that the semantic spaces of language and vision can
be channeled simply through a linear projector. It, therefore, becomes interesting to explore in
cross-modality prompt transfer, whether the source and target prompt spaces can be connected via
a linear layer, the use of which can also be regarded as helping source prompts overcome both the
modality and task gaps: smaller gaps would generally yield better performance. Therefore, projection
transfer is investigated to study cross-modality prompt transferability.

3.2 PROMPT TRANSFERABILITY ESTIMATION

Prompt transferability estimation aims to select the best source prompt for a given target task without
going through repetitive prompt tuning processes with all the source prompts. Existing methods
achieve this by calculating the cosine similarity (Vu et al., 2022) or model activation similarity
(Su et al., 2022) between the source and target prompts. However, these methods are designed
for the in-modality scenario, where the modality gap is negligible and the task gap introduces the
main discrepancy between source and target tasks. Their effectiveness encounters limitations in the
cross-modality scenario as the modality gap is enlarged. Therefore, in estimating the cross-modality
prompt transferability, the key lies in measuring the modality gap and task gap.

Modality Gap. The modality gap is interpreted as the distribution difference between source and
target data that comes from different data types. The difference between source and target models
and modalities causes it. In practice, directly estimating the distribution gap between source and
target data is non-realistic because: (i) it is computationally inefficient as some tasks might contain
tons of samples, and (ii) different source datasets have similar data embeddings because they are
sampled from the token embeddings of the same language model, leading to insufficiently distinct
distributional differences between all the source datasets and a particular target dataset. The source
prompts, on the other hand, can effectively exploit and condense information from the source data as
stated by Lester et al. (2021), and Zhong et al. (2021). Therefore, the source prompt is treated as an
abstraction of the source data which it will replace to participate in calculating the modality gap. As
a result, the modality gap GM between a source NLP task s and a target CV task t is estimated as the
Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) between the source prompt and target
image patch embeddings (more details can be found in the Appendix):

GM (s, t) = MMD(ps, Ev(xt)) (4)

Task Gap. Existing prompt transferability estimation methods (Vu et al., 2022; Su et al., 2022)
are designed for in-modality scenarios where the modality gap is negligible. Therefore, they can be
regarded as estimating the task gap by measuring the similarity among prompts trained on different
tasks, treating the trained prompts as task embeddings. However, in cross-modality scenarios, directly
measuring the similarity between source and target prompts could lead to poor estimation of the task
gap, as the source and target prompts lie in different semantic spaces. To this end, we propose a
simple yet effective method that trains a universal linear projector to cast the source prompts to the
target prompt space, enabling existing methods to function under the cross-modality scenario.

Specifically, given a target CV task, we first perform vanilla VPT to obtain the target prompt. Then,
source prompts trained on different NLP tasks are shuffled with each other, after which they are sent
to the universal projector Pu which consists of a single linear layer. Pu is learned by minimizing
the Euclidean distance between the shuffle-then-projected source prompts and the target prompt
(more details can be found in the Appendix). Note that, although they share the same architecture,
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the universal projector Pu used here is functionally different from the linear projector P used in
projection transfer. P is learned from scratch in every source-target pair (works only on this pair)
and its goal is to minimize the target error, but Pu is learned from every target task (works on every
source prompt) to minimize the vector distance.

After Pu is trained, the task gap GT between an NLP task s and the given CV task t is measured by:

GT (s, t) = −cos(
1

l

l∑
i

[Pu(p
i
s)],

1

l

l∑
i

pit) (5)

Where cos(·, ·) represents the cosine similarity between two vectors, pis and pit are the i-th vector
of the source and target prompt respectively, and l is the number of vectors in the source and target
prompt.

Prompt Transferability. With the modality gap GM and task gap GT defined, the cross-modality
prompt transferability between a source NLP task s and a target CV task t is then estimated by
combining GM and GT :

T (s, t) = −(GM (s, t) + GT (s, t)) (6)

3.3 ATTENTION TRANSFER

Frozen Source Prompt: 

Prompt Concentrator: 

Patch Embeddings

Image Embedder: 

ViT Backbone: 

Output Predictor: 

Image Patches

Figure 2: Attention Transfer.

To further help the source prompts overcome both the modal-
ity and task gaps, we propose a novel cross-modality prompt
transfer scheme named attention transfer (Figure 2). It eases
the modality gap by selecting a source prompt with a small
MMD value to the target data, and by injecting target knowl-
edge into the final prompt. For the task gap, it uses a Prompt
Concentrator (C) to elicit the source knowledge from the
source prompts in a more complex but effective way.

The prompt concentrator takes the frozen source prompt ps
(length l) as input and outputs a concentrated and adapted
source prompt of length ls (ls < l) by the attention mecha-
nism. It has three key components: (i) the query Q ∈ Rls×dv

hs that decides the importance of each
vector in the source prompt, (ii) the key projection matrix Wk that projects the source prompt to
the space of Q for query operation, and (iii) the value projection matrix Wv that adapts the source
prompt to the target task. Wk and Wv are in Rdl

hs×dv
hs , where Rd

l/v
hs is the hidden dimension of the

language/vision model. The output is obtained by the conventional attention operation:

C(ps) = softmax(Q× (ps ×Wk)
T )× (ps ×Wv) (7)

The prompt concentrator not only better arranges the source prompt, but also makes space for target
knowledge. After the source prompt is concentrated, it is concatenated with a sequence of learnable
prompts (randomly initialized, termed the target prompt) to form the final prompt for the target task.
These target prompts aim at learning pure target knowledge, with a length of lt (lt = l − ls).

In attention transfer, the trainable modules are the prompt concentrator, target prompt, and output
predictor, with the following learning objectives:

argmin
Hv,C,pt

L [Hv ◦Bv(C(ps) ∥ pt ∥ Ev(xt)), yt] (8)

In the literature, Wang et al. (2023) verified that prompt tuning the query, key, and value in an
attention block can help a pretrained model learn new attention patterns required by a target task. Our
attention block has similar aims but differs in detail: it also adapts pretrained modules to target tasks
through learning new attention patterns. But it only involves the query prompt, as its key and value
matrices are not frozen, enabling new attention patterns to be grasped without key and value prompts.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To study cross-modality prompt transfer thoroughly, a wide range of NLP tasks and CV tasks are
involved. Source prompts are trained using a pretrained language model RoBERTa (Liu et al., 2019)
on each NLP task with a uniform length of 100. On target CV tasks, a pretrained ViT is used. The
final prompt length is kept at 100 for all transfer scenarios and vanilla VPT.

ViT is a classic and representative Transformer-based vision model, and VPT was initially exper-
imented on ViT. Therefore, ViT is selected as the target vision model. RoBERTa is an encoder
language model that shares nearly the same architecture to ViT. Thus, it might share a similar prompt
space to ViT. Therefore, RoBERTa is chosen as the source language model. Note: (i) Only the
base-model sizes are explored (e.g. RoBERTa-base and ViT-base which all have a weight amount of
∼125M). (ii) For ViT, the vit-base-patch16-224-in21k pretrained checkpoint is explored.
This ViT checkpoint is pretrained in a supervised manner on ImageNet-21k (Deng et al., 2009), with
an image size of 224× 224 and a patch size of 16× 16. The exploration of different model sizes,
different source language models, and diverse ViT pretraining schemes will be left to future work.

Source NLP Tasks. In total, 13 investigated NLP tasks are selected as the source tasks to train
the source prompt. These tasks can be categorized into four groups: (i) Sentiment Analysis (SA)
tasks, including IMDB (Maas et al., 2011), SST-2 (Socher et al., 2013), laptop (Pontiki et al., 2016),
restaurant (Pontiki et al., 2016), Movie Rationales (Movie, Zaidan et al. (2008)), and TweetEval
(Tweet, Barbieri et al. (2020)). (ii) Natural Language Inference (NLI) tasks, including MNLI
(Williams et al., 2017), QNLI (Wang et al., 2018), and SNLI (Bowman et al., 2015). (iii) Ethical
Judgment (EJ) tasks, including deontology and justice (Hendrycks et al., 2020). (iv) Paraphrase
Identification (PI) tasks, including QQP (Sharma et al., 2019) and MRPC (Dolan & Brockett, 2005).

Target Vision Tasks. The VTAB-1K (Zhai et al., 2019) image classification tasks are chosen as
the target tasks. VTAB-1K consists of 19 diverse image classification tasks, each with a training set
of 1000 images. These tasks can be divided into three main categories: (i) Natural tasks (including
CIFAR100 (Krizhevsky et al., 2009), Caltech101 (Li et al., 2004), DTD (Cimpoi et al., 2014),
Flowers102 (Nilsback & Zisserman, 2006), Pets (Parkhi et al., 2012), SVHN (Netzer et al., 2011),
and SUN397 (Xiao et al., 2010)) that contain natural images captured using standard cameras; (ii)
Specialized- tasks (including Patch Camelyon (Veeling et al., 2018), EuroSAT (Helber et al., 2018),
Resisc45 (Cheng et al., 2017), and Retinopathy (Dugas et al., 2015)) that contain images captured
via specialized equipment; and (iii) Structured tasks (including Clevr (Johnson et al., 2017), DMLab
(Zhai et al., 2019), KITTI (Geiger et al., 2012), dSprites (Matthey et al., 2017), and SmallNORB
(LeCun et al., 2004)) that require geometric comprehension like object counting.

Implementation Details. For vanilla linear probing and frozen prompt transfer, the original VPT
repository released a set of linear probing hyperparameters that were carefully grid-searched on each
CV task. The same hyperparameters are adopted for vanilla linear probing and frozen prompt transfer,
as the nature of the frozen prompt transfer is identical to that of linear probing.

For vanilla VPT, we follow the procedure of Jia et al. (2022) performing grid-search on learning
rates {0.01, 0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, 10} and weight decay values {0, 0.0001, 0.001, 0.01}, with
a batch size of 64, warm-up steps of 10, cosine learning rate scheduler, and an SGD optimizer
with a momentum of 0.9. Note that following Jia et al. (2022), the learning rate is multiplied by
(Batch Size/256) before training starts. We use the official 800-200 split released by Zhai et al.
(2019) to perform the grid-search, training on 800 images and validating using the remaining 200.

For projection transfer, a batch size of 64, a learning rate of 0.005, and a weight decay of 0.001 are
used. For the optimizer, Adam (Kingma & Ba, 2014) is adopted.

For attention transfer, we first perform a grid-search to find the potentially best source prompt and
its concentrated length ls. Note that the source prompt is searched only from the top-transferable
ones and the hyperparameters of projection transfer are adopted during this stage. Then, we perform
another round of grid-search using the potentially best source prompt and ls to find the potentially
best learning rate from {1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005} and weight decay value from
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(a.1) Relative Performance of Frozen Prompt Transfer w.r.t 
a Randomly Initialized Prompt

(a.2) Relative Performance of Frozen Prompt Transfer w.r.t 
Vanilla Linear Probing

(b.1) Relative Performance of Projection Transfer w.r.t a 
Randomly Initialized Prompt  

(b.2) Relative Performance of Projection Transfer w.r.t 
Vanilla Visual Prompt Tuning

Figure 3: (a) Relative Performance of Frozen Prompt Transfer concerning (1) a random prompt,
and (2) vanilla linear probing. (b) Relative Performance of Projection Transfer concerning (1)
a random prompt, and (2) vanilla VPT. The vertical axis shows the NLP tasks on which the source
prompts are trained, while the horizontal shows the CV tasks the source prompts are transferred
to. xavier means the prompt is not trained on an NLP task but randomly initialized using Xavier
initialization (Glorot & Bengio, 2010) and also kept frozen during transfer. The relative performance
is calculated by (Performance−B)/B×100%, where B is the performance of transferring a random
prompt, conducting vanilla linear probing or VPT, depending on the situations stated in the figure.

{0, 0.0001, 0.001, 0.01}, with a batch size of 64, warm-up steps of 10, cosine learning rate scheduler,
and an Adam optimizer. The complete set of hyperparameters of different scenarios on each CV task
is listed in the Appendix.

4.2 CROSS-MODALITY PROMPT TRANSFER

In this section, frozen prompt transfer is first carried out to verify the feasibility of transferring
prompts across modalities. The results are reported in Figure 3a, where the relative performance
compared with two different baselines is reported: (i) frozen prompt transfer using a randomly
initialized prompt, and (ii) vanilla linear probing (re-ran by us).

Later on, to adapt the linguistic knowledge stored in the source prompts to CV tasks and study the
cross-modality prompt transferability, projection transfer is carried out, with the results reported in
Figure 3b. Similarly, the performance is reported in two different formats: (i) the relative performance
concerning projection transfer with a randomly initialized prompt. (ii) the relative performance
pertaining to vanilla VPT (with a fixed prompt length of 100, re-ran by us). The exact accuracy
of linear probing, VPT, and projection transfer (only the accuracy with the best source prompt) is
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reported in Table 1. All other accuracy results are left in the Appendix. Based on Figure 3 and Table
1, the following key conclusions are drawn:

(i) Source prompts pretrained on text data can be safely transferred to tasks in a different
modality. This claim is supported by the fact that the trained prompts can help a pretrained ViT
achieve better linear probing performance compared to a random prompt and vanilla linear probing
(Figure 3a), inferring that the feature clusters extracted by the ViT model will benefit from simply
prepending the frozen source prompts to the image embeddings. When compared with a random
prompt, 150 out of 247 transfer pairs (61.5%) achieve better performance. This number decreases
when compared with vanilla linear probing, but still holds a value of 78 (31.6%), demonstrating the
potential for transferring NLP prompts across modalities.

(ii) The linguistic knowledge stored in the source prompt is helpful on a different modality task
after adaptation. In Figure 3b.1, 86.2% of the transfer pairs (213 out of 247) can achieve better
performance compared to conducting projection transfer using a random prompt. This demonstrates
the importance of the linguistic knowledge stored in the source prompts, which is obtained through
pretraining the source prompts on NLP tasks. In Figure 3b.2, 64% of the transfer pairs (158 out
of 247) are better than vanilla VPT, with the largest boost observed on SNLI-to-Dsprites/loc. This
demonstrates that the linguistic knowledge learned by the source prompts can be of great help on a
different modality task after adaptation. Additionally, the improvements observed in Figure 3b.2 are
proven to be statistically significant: they are caused by transferring the source prompts, instead of
error or random chances (the prove can be found in our appendix).

(iii) More source data should yield better transfer performance, but this is not always the case.
Normally, in transfer learning, more source data would bring better performance on the target task.
This pattern also holds on projection transfer: performant source prompts (best first: SNLI, MNLI,
QQP, and QNLI) tend to have been pretrained on a vast amount of text data: 549K sentence pairs
for SNLI; 392k sentence pairs for MNLI; 363k sentence pairs for QQP; and 104k sentence pairs for
QNLI. The opposite also runs true: the worst source prompts (laptop, restaurant, and movie) are only
pretrained on less than 3k sentences. This general pattern holds basically for every target CV task.
However, the volume of pretraining data does not solely determine the transferability of the source
prompts, as plenty of counterexamples can be found in Figure 3b (SNLI does not always achieve the
best performance on the target CV task). To this end, we take a different perspective that measures
both the modality and task gaps as the cross-modality prompt transferability indicator.
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 / 

V
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Figure 4: Scatter plot of V/L gain
vs P/V gain. The values are log-
scaled for better visualization.

(iv) Prompt tuning performance on target tasks that already
benefit a lot from prompt tuning is likely to be further
boosted by cross-modality prompt transfer. This claim is
drawn from the relation between rows V/L and P/V in Table 1.
V/L shows the relative performance gain of VPT over linear
probing (V/L gain). P/V shows the relative performance gain
of projection transfer over VPT (P/V gain). To visualize the
relation more intuitively, we plot the values of V/L gain and
P/V gain in Figure 4, which shows a clear positive relation
between V/L gain and P/V gain. Looking deeper into the values
in Table 1: tasks with a V/L gain lower than 3% have an average
P/V gain of only 1.7%, while those with a V/L gain greater
than 3% come with an average P/V gain of 14.1%. Although
counterexamples or outliers (such as dSprites/loc) can be found,
the overall trend still informs us that, if a task benefits a lot from prompt tuning, then its prompt
tuning performance is likely to be further boosted by cross-modality prompt transfer.

4.3 PROMPT TRANSFERABILITY ESTIMATION

For a target CV task, we obtain the transferability scores for each source prompt by two steps: (i)
Train the target prompt (with random initialization) on the target task using vanilla VPT and (ii)
Perform Equation 6 to obtain the transferability score for each source prompt. Note: when training
the universal projector for measuring the task gap, a learning rate of 1e-4, weight decay of 0.1, batch
size of 13 (all source prompts are loaded in the same batch), and the Adam optimizer are used. This
set of hyperparameters is grid-searched on CIFAR100 and extended to every target task. The universal
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Table 1: Accuracy of linear probing (Linear), visual prompt tuning (VPT), and projection transfer
(Proj.). V/L = (VPT − Linear)/Linear × 100% shows the relative gain of VPT over Linear. P/V =
(Proj. − VPT)/VPT × 100% shows the relative gain of Proj. over VPT. Note: (i) The VPT re-ran by
us uses a uniform prompt length of 100 on all tasks. (ii) For Proj., only the result obtained by the best
source prompt is reported.
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Linear 86.3 65.3 64.4 97.3 86.6 51.2 36.3 79.0 69.5 89.3 74.3 33.8 60.1 11.9 20.9 12.7 21.0 31.2 36.3

VPT 88.7 78.0 65.7 97.8 87.9 50.2 71.3 80.8 75.7 92.9 74.0 39.8 72.2 17.4 22.8 72.9 30.9 57.6 50.0
V/L +2.9% +19.6% +2.1% +0.5% +1.6% −2.0% +96.6% +2.3% +8.9% +4.0% −0.5% +17.7% +20.0% +45.6% +9.2% +475.7% +47.4% +84.5% +37.7%

Proj. 89.0 81.0 68.4 98.2 89.0 52.6 82.6 81.0 82.0 95.8 74.8 43.6 77.0 23.6 28.3 72.5 42.4 58.4 62.6
P/V +0.3% +3.8% +4.1% +0.4% +1.3% +4.8% +15.8% +0.2% +8.3% +3.1% +1.1% +9.5% +6.6% +35.6% +24.1% −0.5% +37.2% +1.4% +25.2%

projector is trained for 100 epochs and only the last-epoch universal projector is used. More training
details can be found in the Appendix.

After the transferability scores of all the source prompts are obtained for a target task, the scores
are ranked from highest to lowest. The ranking results are compared with the ranked projection
transfer results on the target task with Kendall’s coefficient (Kendall, 1938) as the evaluation metric.
Kendall’s coefficient is often used to determine the strength and direction of the relationship between
two ranked variables. It ranges from -1 to 1. Greater values indicate better transferability estimation
results. The Kendall’s coefficient for the investigated target tasks is listed in Table 2, which involves
the following methods:

• Average cosine similarity (Avg Cos) that average-pools the source prompt vectors into one
vector and calculates the cosine similarity between the average-pooled source and target
prompts. This method is investigated by Vu et al. (2022) and Su et al. (2022).

• Model stimulation similarity (ON, introduced by Su et al. (2022)) that feeds the source and
target prompts to the language model separately and calculates the overlapping rate between
the attention block’s activation patterns of the source and target prompts. In our case, since
the source prompt will become part of ViT’s input, we feed the source and target prompts
to ViT and obtain the activation map of the last three attention layers of ViT to calculate
the overlapping rate, given that Su et al. (2022) had verified that using the last three layers
would give the best result.

• Vdata that ranks the source prompts according to the data amount they were pretrained on.
This simple method is involved as a support for a former claim that "more source data would
yield better transfer performance", showing the high relevancy between the amount of
pretraining data and cross-modality prompt transferability. Despite the high relevance, Vdata

cannot serve as a reliable prompt transferability estimation method, as the ranking results
are determined purely by the attributes of source prompts, leaving no target information
taken into consideration. Therefore, Vdata will not be involved in the comparison.

• GM Only and GT Only use the modality gap GM or task gap GT as the transferability metric.
We apply these two baselines to verify our hypothesis and show the importance of estimating
the modality gap and task gap concurrently.

From the results in Table 2, it is clear that by measuring both the modality and task gaps at the same
time the cross-modality prompt transferability can be well estimated. Looking deeper, we can observe
that measuring only GM can obtain a result much better than measuring only GT and is very close
to GM & GT . We hypothesize that in cross-modality scenarios, the modality gap would normally
be more influential to the transfer performance than the task gap. Moreover, it’s interesting to note
that the only difference between Avg Cos and GT Only is the involvement of the universal projector,
without which the cosine similarity cannot serve as a solid approach for estimating cross-modality
prompt transferability. This verifies that source and target prompts lie in different semantic spaces
and direct similarity calculation will not be meaningful. For the baseline method ON, it achieves
relatively good results on most of the target tasks, even if the source and target prompts lie in different
semantic spaces, demonstrating that it’s a promising direction for diving deeper in the future.
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Table 2: Kendall’s coefficient (scaled to −100 ∼ 100) calculated on each target task by different
prompt transferability estimation methods. Combining the modality and task gaps yields the best
transferability estimation result. The best results are bold while the best but equal results are
underlined (Vdata that ranks the source prompts based on pretrained data volumes will not be
included for comparison). The exact ranking results can be found in the Appendix.
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Mean

Avg Cos 1.28 -33.33 12.82 19.23 0.00 6.41 -11.54 0.00 10.26 -30.77 -32.05 -51.28 -66.67 46.15 -23.08 -20.51 -28.21 -35.90 30.77 -10.86
ON 6.41 61.54 7.69 62.82 17.95 21.79 24.36 23.08 -58.97 -53.85 -39.74 2.56 47.44 0.00 46.15 12.82 -17.95 58.97 46.15 14.17

Vdata 73.08 87.18 82.05 80.77 64.10 70.51 85.90 71.79 92.31 87.18 55.13 76.92 71.79 64.10 84.62 64.10 82.05 87.18 89.74 77.39

GM Only 75.64 92.31 89.74 78.21 64.10 78.21 80.77 74.36 87.18 79.49 65.38 89.74 84.62 66.67 87.18 56.41 84.62 89.74 92.31 79.83
GT Only 62.82 79.49 71.79 65.38 64.10 70.51 78.21 61.54 71.79 89.74 57.69 87.18 79.49 61.54 87.18 53.85 82.05 82.05 71.79 72.54

GM & GT 78.21 94.87 87.18 75.64 66.67 75.64 83.33 69.23 87.18 89.74 62.82 89.74 84.62 69.23 89.74 58.97 84.62 89.74 94.87 80.63

Table 3: Accuracy of Self-Prompt Tuning (SPT) and attention transfer (Attn.). Note: (i) ∗: the
accuracy of the baseline SPT is obtained from its original paper. (ii) The best accuracy is bolded.

Natural Specialized Structured
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SPT∗ 91.2 78.9 71.2 99.4 90.7 52.3 86.4 81.44 82.5 82.6 94.9 74.6 83.65 48.0 68.8 24.4 37.4 72.6 41.9 61.2 68.6 52.86

Attn. 90.1 81.7 68.9 98.4 89.4 52.6 82.8 80.55 82.1 82.9 96.2 75.3 84.12 44.9 77.4 24.3 36.3 73.1 43.2 60.8 67.9 53.47

4.4 ATTENTION TRANSFER

To further demonstrate the effectiveness of cross-modality prompt transfer, attention transfer is
compared with the newest prompt-based benchmark: Self-Prompt Tuning (SPT, Wang et al. (2024b)).
SPT focuses on prompt initialization for boosting prompt tuning: it initializes the prompts with
sampled image patch embeddings, which can be regarded as injecting prior target data knowledge
into the prompt. Similarly, attention transfer can also be regarded as injecting knowledge into the
prompt: the final prompt of attention transfer contains knowledge not only from the source NLP
task but also from the target CV task. Due to this similarity and the timeliness, SPT is chosen as the
comparison baseline. The results are reported in Table 3.

From the results: attention transfer can achieve a comparable average performance on Natural tasks
and better average performance on Specialized and Structured tasks. This serves as strong evidence
for cross-modality prompt transfer being able to boost prompt tuning. Note that SPT is not a baseline
focusing on prompt transfer. Instead, it focuses on the prompt initialization strategy. Yet, attention
transfer largely depends on the source prompt, whose ability on the target task is further restricted
by the modality and task gaps, which, do not appear in SPT. Therefore, attention transfer functions
under a more challenging setup, but still achieves an average performance comparable to or even
better than SPT. Given that SPT and attention transfer can be regarded as two different perspectives
for prompt initialization, even though attention transfer falls below SPT on some tasks, the results
still demonstrate the potential of cross-modality prompt transfer.

5 CONCLUSIONS

In this paper, we conducted extensive experiments to verify the feasibility and study the prompt trans-
ferability for cross-modality prompt transfer. We also proposed a prompt transferability estimation
method based on gap analysis. Lastly, we further demonstrated the potential and effectiveness of
cross-modality prompt transfer through our proposed attention transfer, boosting prompt tuning to a
level that matches and even outperforms the newest prompt-based PETL benchmark. Our research
opened a new path to benefiting data-scarce tasks with the rich resources of the text modality. We
hope our research can serve as a solid foundation for the topic of cross-modality prompt transfer and
provide new directions and inspirations to mitigating challenges faced by data-scare tasks.
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A INFLUENTIAL PRIOR STUDIES

Our work is built upon a series of prior studies, which offered great help to the conceptualization,
implementation, and conclusion of our work. We list these influential prior studies in Table 1, along
with their contributions to our study. Here we wish to express our sincere thanks to the authors for
their great and reproducible works, without which there will be no begins of our work.

Table 1: Influential prior studies that are of great help to our work.
Title & Author(s) Venue How they help our research

Visual Prompt Tuning (Jia et al., 2022) ECCV2022 The conceptualization of VPT & the publicly available training receipes
Sensitivity-Aware Visual Parameter-Efficient Tuning (He et al., 2023) ICCV2023 The publicly available dataset processing script of VTAB-1K
SPoT: Better Frozen Model Adaptation through Soft Prompt Transfer (Vu et al., 2022) ACL2022 The conceptualization of prompt transfer
On Transferability of Prompt Tuning for Natural Language Processing (Su et al., 2022) NAACL2022 The publicly available codes and trained prompts

B PRELIMINARIES

B.1 MAXIMUM MEAN DISCREPANCY

Maximum Mean Discrepancy (MMD) is a non-parametric method used to measure the difference
between two probability distributions P and Q based on samples drawn from these distributions. The
MMD is particularly useful in two-sample hypothesis testing to determine whether P = Q.

Given two sets of samples {x1, . . . , xm} drawn from distribution P and {y1, . . . , yn} drawn from
distribution Q, MMD is defined as the distance between the mean embeddings of the two distributions
in a reproducing kernel Hilbert space (RKHS). Mathematically, the MMD is computed as:

MMD2(P,Q;H) = ∥EP [ϕ(x)]− EQ[ϕ(y)]∥2H (1)

where ϕ is a feature map into the RKHS H. Expanding the square norm gives the following
expression:

MMD2(P,Q;H) = Ex,x′∼P [k(x, x
′)] + Ey,y′∼Q[k(y, y

′)]− 2Ex∼P,y∼Q[k(x, y)] (2)

Here, k(x, y) is a positive-definite kernel function, such as the Gaussian or linear kernel, which
defines the inner product in the RKHS.

Intuitively, the MMD measures how well the mean of the samples from P and Q match in the RKHS.
If the distributions are identical, the MMD will be zero.

B.2 PROMPT TRANSFERABILITY ESTIMATION: MODEL STIMULATION SIMILARITY

The prompt transferability estimation method proposed by Su et al. (2022) is chosen as our baseline.
However, due to page limitation, their method (named ON) is not introduced in detail. Therefore in
this section, we provide a brief but detailed introduction on their proposed method.

On measures the prompt transferability between two NLP tasks s1 and s2 by the following steps:
(i) feed the prompt ps1 (trained on s1) solely to RoBERTa and record its activation map A1. The
activation map of a single feed-forward layer is a binary vector obtained by setting the activation
values greater than zero to 1 and 0 otherwise. The final activation map is the concatenation of the
single-layer activation maps of the last three attention blocks. (ii) perform step (i) on the prompt ps2
(trained on s2) to obtain its activation map A2. (iii) calculate the cosine similarity between A1 and
A2 as the final transferability score between s1 and s2:

ON(ps1 , ps2) =
A1 ×A2

||A1|| × ||A2||
(3)

In our re-implementation, since the source prompts are transferred to CV tasks and will be used on a
pretrained ViT model, we use ViT instead of RoBERTa to calculate the model stimulation similarity
between a source prompt and a target prompt trained on a CV task.
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C TECHNICAL DETAILS

C.1 IMAGE PROCESSING AND AUGMENTATION

For the VTAB-1K (Zhai et al., 2019) dataset, we use the scripts provided by He et al. (2023)1 to
download and convert the dataset into PNG images. To load the images into our codes, we use the
Dataset class provided by PyTorch (Paszke et al., 2019).

Regarding the image augmentation strategies for VTAB-1K, we follow the default settings in VTAB-
1K and do not use any augmentation tricks except the following:

1. Resizing the images to a size of 224× 224;

2. Converting the images to PyTorch tensors and re-scaling them to 0 ∼ 1;

3. Normalizing the images using the mean and standard deviation values calculated from
ImageNet (mean = (0.485, 0.456, 0.406), std = (0.229, 0.224, 0.225)).

C.2 TRAINING PROMPTS ON NLP TASKS

The source prompts trained with RoBERTa on different NLP tasks are directly adopted from the
official code repository of Su et al. (2022)2. Below we show some crucial information for training the
source prompts:

Input Embedding Structures. For NLP tasks that input one sentence at a time (such as sentiment
analysis), the input embedding structure in Table 2 is adopted. While for NLP tasks that input two
sentences at the same time (such as natural language inference, ethical judgment, and paraphrase
identification), the input embedding structure in Table 3 is adopted.

In the tables, the top row shows the order of different tokens. The Length row indicates the length of
each token. The Learnable? row indicates whether the corresponding tokens are learnable or not.
Finally, the Positional? row indicates whether the positional embeddings of the pretrained RoBERTa
are added to the corresponding token.

Table 2: The input embedding structure for training prompts on single-sentence NLP tasks.
[MASK] [Prompt] [CLS] [Input Sentence] [SEP]

Length 1 99 1 1

Learnable?
√ √

× × ×
Positional? × ×

√ √ √

Table 3: The input embedding structure for training prompts on dual-sentence NLP tasks.
[MASK] [Prompt] [CLS] [Input Sentence 1] [SEP] [Input Sentence 2] [SEP]

Length 1 99 1 1 1

Learnable?
√ √

× × × × ×
Positional? × ×

√ √ √ √ √

Hyperparameters. In fact, the hyperparameters used to train the prompts on different NLP tasks
will be omitted here. The complete training recipes on each NLP task, including the hyperparameters,
optimizer, learning rate scheduler, and so on, can be found in the original code repository of Su et al.
(2022). This link shall direct you to their training recipes.

1https://github.com/ziplab/SPT
2https://github.com/thunlp/Prompt-Transferability
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C.3 TRANSFERRING PROMPTS TO CV TASKS

Input Embedding Structures. In all of our transfer settings, as long as there is prompt prepended
to the image patch embeddings, no matter how the prompt is obtained, the prompt length will always
be 100 and the input embedding structure demonstrated in Table 4 is adopted. This applies to not
only cross-modality prompt transfer scenarios, but also to vanilla visual prompt tuning scenarios.

Table 4: The input embedding structure for ViT.
[Prompt] [CLS] [Image Patch Embedding]

Length 100 1 196

Learnable?
√

× ×
Positional? ×

√ √

Frozen Prompt Transfer. Frozen Prompt Transfer simply prepends the trained but frozen source
prompts to the image patch embeddings and only learns an output predictor on top of the [CLS]
features. The only thing that needs attention is the output predictor: it consists of a linear layer (with
bias) whose input dimension is the hidden dimension of ViT (768 in our case) and output dimension
is the number of classes of the target CV task. The same output predictor is used across every settings
in our paper.

Projection Transfer. The core module in projection transfer is the linear projector, which is a
simple linear layer (with bias) with an input dimension of 768 (hidden dimension of RoBERTa) and
output dimension of 768 (hidden dimension of ViT).

C.4 CROSS-MODALITY PROMPT TRANSFERABILITY ESTIMATION

C.4.1 MODALITY GAP

In this paper, the modality gap between a source NLP task and a target CV task is measured as the
Maximum Mean Discrepancy (MMD, Gretton et al. (2012)) between source prompts and target image
patch embeddings. This section will explain on how to calculate the MMD between a source prompt
(100 vectors, each with a dimension of 768) and the target image patch embeddings (1000 × 196
vectors, each with a dimension of 768). Note that we use the training set of each target task for MMD
calculation. This means that for every target task, we only use 1000 images for MMD calculation.
Since an image will be converted into 196 patch embeddings, we would have 1000× 196 vectors in
each target CV task for MMD calculation. The procedure of measuring the modality gap is illustrated
in Algorithm 1.

Algorithm 1 Measuring modality gap via MMD
Input: Source prompt ps with dimension (l, dhs); Vision task Tt; ViT’s image embedder Ev

Output: Measured modalit gap between ps and Tt
1: Extract patch embeddings: ei = Ev(Tt) (dimension: (|Tt|, Np, dhs), Np is the # of patches)
2: Reshape ei to (|Tt| ×Np, dhs); Then shuffle ei along the 0-th axis
3: (Mtotal, Nsteps) = (0, 0)
4: for epoch in range(5) do
5: while ei is not sampled out do
6: Sample l embeddings from ei, denoted as êi
7: Calculate the MMD between ps and êi: Mcurrent = MMD(ps, êi)
8: Mtotal+ = Mcurrent

9: Nsteps+ = 1
10: end while
11: end for
12: return Mtotal/Nsteps
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C.4.2 TASK GAP

IMDB SST2 MRPC

……

Source Prompts: Universal
Projector

Euclidean Distance

Mean

Target
Prompt

Mean

Projected
Prompt

Shuffle & Mix

……

Figure 1: Training the universal projector for estimating the task gap.

In this paper, the task gap between a source NLP task and a target CV task is measured as the cosine
similarity between the projected source prompt and the target prompt obtained through vanilla visual
prompt tuning on the target CV task. The core module here is the universal projector that projects
all the source prompts to the space of the target prompt. The universal projector itself is a simple
linear projector (with bias) with an input dimension of 768 (the hidden dimension of RoBERTa)
and an output dimension of 768 (the hidden dimension of ViT). Given a target CV task, Figure 1
demonstrates the procedure for training the universal prompt projector:

Step 0 Perform vanilla visual prompt tuning on the target CV task with a pretrained ViT to obtain
the target prompt pt.

Step 1 Shuffle all the source prompts trained on each NLP task and mix them with each other. In
total there are 13 source tasks, which means that if we gather all the source prompts, we
would have 13× 100 vectors, each with a dimension of 768. To shuffle and mix them, we
simply rearrange the (13, 100, 768) vectors into (1300, 768) vectors, shuffle them along the
0-th axis and rearrange them back to the shape of (13, 100, 768).

Step 2 Pass the shuffled-and-mixed source prompts to the universal projector Pu. Let’s denote the
projected source prompts as Pu(p

all
s ), the universal projector Pu is updated by the Euclidean

distance between Pu(p
all
s ) and pt:

argmin
Pu

||mean(Pu(p
all
s ))−mean(pt)||2 (4)

In practical, mean(Pu(p
all
s )) has a shape of (13, 768) while mean(pt) has a shape of

(1, 768), the final Euclidean distance is calculated by averaging the total Euclidean dis-
tance obtained by summing up the distance between mean(pt) and the 13 vectors from
mean(Pu(p

all
s )).

After the universal projector is trained, the task gap between a source task and the target CV task can
be measured by the cosine similarity between the projected source prompt and the target prompt. The
reason why the source prompts are shuffled and mixed is two-fold: (i) To avoid overfitting and reduce
susceptibility on hyperparameters, as in practical, we will not have ground-truth results to tune the
hyperparameters. (ii) To further boost the prompt transferability estimation performance. The effects
of the shuffling and mixing operations will be demonstrated in Section C.5.4.

C.5 PER-TASK TRAINING HYPER-PARAMETERS

C.5.1 LINEAR PROBING

The complete set of hyperparameters for linear probing with respect to each target task can be
viewed in Table 5. The total number of epochs is 100. Note: (i) For linear probing, we did not
perform hyper-parameter grid-search on any of the target tasks, the hyper-parameters in the table
is released by Jia et al. (2022) and we simply follow. (ii) The Base LR column indicates the
base learning rate for each target task. This base learning rate will be scaled according to batch
size: Final LR = (Base LR ∗ batch size)/256, before the training starts. (iii) The linear probing
performance reported in our main paper is obtained by our re-implementation, with is nearly identical
to that reported by Jia et al. (2022). Therefore, we did not question this set of hyper-parameters at all.
(iv) The set of hyper-parameters is also applied to frozen prompt transfer, regardless of the source

5



prompts used. It would be highly unrealistic for us to perform grid-search on frozen prompt transfer
whenever the source prompt is changed.

Table 5: Hyper-parameters for linear probing and frozen prompt transfer.
Task Optimizer Momentum Base LR LR Warm-Up LR Decay Weight Decay Batch Size

Caltech101 SGD 0.9 2.5 10 Cosine 0.001 2048
CIFAR100 SGD 0.9 0.1 10 Cosine 0 2048

DTD SGD 0.9 1 10 Cosine 0 2048
Flowers102 SGD 0.9 0.1 10 Cosine 0.001 2048

Pets SGD 0.9 0.25 10 Cosine 0.001 2048
Sun397 SGD 0.9 0.5 10 Cosine 0 2048
SVHN SGD 0.9 0.25 10 Cosine 0.01 2048

Patch Camelyon SGD 0.9 0.05 10 Cosine 0.01 2048
Resisc45 SGD 0.9 0.5 10 Cosine 0 2048
EuroSat SGD 0.9 10 10 Cosine 0.0001 2048

Retinopathy SGD 0.9 0.1 10 Cosine 0.01 2048
DMLab SGD 0.9 0.5 10 Cosine 0 2048

Kitti SGD 0.9 5 10 Cosine 0 2048
SmallNORB/azi SGD 0.9 2.5 10 Cosine 0.01 2048
SmallNORB/ele SGD 0.9 2.5 10 Cosine 0.01 2048

dSprites/loc SGD 0.9 5 10 Cosine 0 2048
dSprites/ori SGD 0.9 0.1 10 Cosine 0 2048
Clevr/dist SGD 0.9 0.5 10 Cosine 0.001 2048

Clevr/count SGD 0.9 0.1 10 Cosine 0 2048

C.5.2 VANILLA VISUAL PROMPT TUNING

The complete set of hyperparameters for vanilla visual prompt tuning with respect to each target task
can be viewed in Table 6. The total number of epochs is 100. Note: (i) The original VPT repository
also has a set of carefully grid-searched hyperparameters for VPT. However, the original VPT adopt
different prompt lengths on different target CV tasks, while in our experiments we fix the prompt
length to 100 on every target task. Therefore, their hyperparameters may not be suitable for our
re-implementation. The hyperparameters in the table are obtained by our grid-search results. (ii)
However, the original VPT uses a prompt length of 100 on the following tasks: CIFAR100, DMLab,
Kitti, DSprites/loc, dSprites/ori, and Clevr/count. For these tasks, we also perform grid search to
find a presumably best combination of base learning rate and weight decay values. We later perform
VPT using this set of values and compare the test accuracy with that obtained by the original set of
hyperparameters. Finally, we take the set of hyperparameters that gives the best test accuracy. Among
the tasks with a prompt length of 100, CIFAR100, DMLab, Kitti, and dSprites/ori keep using the
original set of hyperparameters. While DSprites/loc and Clevr/count use the set of hyperparameters
grid-searched by us. (iii) Similar to linear probing, the base learning rate will be scaled according to
batch size: Final LR = (Base LR ∗ batch size)/256, before the training starts.

C.5.3 CROSS-MODALITY PROMPT TRANSFER

For frozen prompt transfer, the set of hyperparameters is exactly the same to linear probing regardless
of the source prompt prepended, as depicted in Table 5. The total number of epochs is also 100. It is
worth mentioning that for some of the target tasks (particulary SmallNORB/azi, SmallNORB/ele,
dSprites/loc, and dSprites/ori), we observed extremely big loss values (> 1000) when using some
specific source prompts (particularly MNLI, QNLI, SNLI, and QQP prompts that are performant in
projection transfer). We suspect that the hyperparameters used in linear probing is not the optimal
hyperparameters for these transfer tasks. However, as mentioned before, its impossible for us the
search for the best set of hyperparameters for every source-target pair, given the fact that there are 247
pairs in total. What we can hope is an universal set of hyperparameters that can highlight the relative
competency of the source prompts. Therefore, we did not try to draw any other conclusions but
"whether prompts trained on NLP tasks can be safely transferred to CV tasks" from the experimental
results of frozen prompt transfer.

For projection transfer, the Adam (Kingma & Ba, 2014) optimizer is used, with a learning rate of
0.005, a weight decay of 0.001, and a batch size of 64. No warm up steps or learning rate scheduler are
adopted. The total number of training epochs is also 100. This set of hyperparameters is grid-searched
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Table 6: Hyper-parameters for vanilla visual prompt tuning.
Task Optimizer Momentum Base LR LR Warm-Up LR Decay Weight Decay Batch Size

Caltech101 SGD 0.9 10 10 Cosine 0.001 64
CIFAR100 SGD 0.9 10 10 Cosine 0.001 64

DTD SGD 0.9 5 10 Cosine 0.001 64
Flowers102 SGD 0.9 2.5 10 Cosine 0.001 64

Pets SGD 0.9 2.5 10 Cosine 0.001 64
Sun397 SGD 0.9 10 10 Cosine 0.001 64
SVHN SGD 0.9 0.5 10 Cosine 0.01 64

Patch Camelyon SGD 0.9 0.5 10 Cosine 0.01 64
Resisc45 SGD 0.9 10 10 Cosine 0.001 64
EuroSat SGD 0.9 5 10 Cosine 0.0001 64

Retinopathy SGD 0.9 2.5 10 Cosine 0.01 64
DMLab SGD 0.9 500 10 Cosine 0 64

Kitti SGD 0.9 250 10 Cosine 0 64
SmallNORB/azi SGD 0.9 10 10 Cosine 0.001 64
SmallNORB/ele SGD 0.9 10 10 Cosine 0.001 64

dSprites/loc SGD 0.9 0.5 10 Cosine 0.01 64
dSprites/ori SGD 0.9 0.5 10 Cosine 0.01 64
Clevr/dist SGD 0.9 0.1 10 Cosine 0.01 64

Clevr/count SGD 0.9 0.5 10 Cosine 0.01 64

on some of the target tasks with a source prompt trained on IMDB. We found that multiple target
tasks give similar grid-search results. Therefore we ceased searching on the rest of the tasks and
extend the set of hyperparameters to every source-target pair.

C.5.4 TRAINING THE UNIVERSAL PROJECTOR FOR MEASURING TASK GAP

Given a target CV task, to measure the task gap between it and all the source NLP tasks, the universal
projector needs to be trained. The function of the universal projector is to project all the source
prompts to the space of target prompt. It is optimized by an Adam optimizer with the following
hyperparameters: a learning rate of 1e-4, a weight decay of 0.1, a batch size of 13 (all source
prompts are passed to the universal projector at once), with no warm up steps and no learning rate
scheduler. This set of hyperparameters is grid-searched on CIFAR100 and extended as-is to all of
the target tasks. Specifically, after training the universal projector with a LR-WD value pair, we
evaluate the Kendall’s coefficient between the ground-truth projection transfer rank and the rank of
cosine-similarity between the target prompt and the projected source prompts. We train the universal
projector on three different random seeds: [42, 44, 100] and report the grid-search results in Table 7.

Table 7: Grid-search results on CIFAR100 for the hyperparameters of the universal projector.
↓LR | WD→ 0 0.1 0.01 0.001 0.0001

0.001 52.14±10.33 36.75±1.21 36.75±1.21 50.43±6.04 52.14±10.33
0.0005 80.34±8.46 45.30±1.21 73.50±8.46 80.34±8.46 80.34±8.46
0.0001 81.20±4.36 82.91±1.21 81.20±3.20 82.05±4.19 81.20±4.36

0.00005 76.92±0.00 75.21±1.21 76.92±0.00 76.92±0.00 76.92±0.00
0.00001 50.43±14.85 38.46±26.73 50.43±14.85 50.43±14.85 50.43±14.85

When the learning rate is set as 0.0001 and weight decay is set as 0.1, the universal projector gives
the best cross-modality prompt transferability ranking score. Therefore, this set of hyperparameters is
used on every target task. We need to emphasize that although performing grid-search on every target
task would give better ranking scores, it is not right to do that on every task. As in practical, we need
to know the transferability ranking scores before knowing the ground-truth transfer performance.
Using the ground-truth transfer performance as the reference for conducting grid-search is paradoxical
in practical scenarios: if we already have the ground-truth transfer performance, why would we even
need to estimate the transferability.
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D DETAILED RESULTS

D.1 CROSS-MODALITY PROMPT TRANSFER

D.1.1 FROZEN PROMPT TRANSFER & PROJECTION TRANSFER

The detailed results are in Table 14. Note that all source-target pairs are ran on three random seeds:
[42, 44, 100], and their best results are reported in the format of mean±std.

D.1.2 ATTENTION TRANSFER

For attention transfer, we release the training recipe and best accuracy in the format of mean±std on
each target CV task in Table 8. Similarly, all experiments are ran on three random seeds: [42, 44, 100].

Table 8: Hyper-parameters for attention transfer. The Source column shows the source prompt used
for transfer while ls indicates the concentrated source prompt length. Note that on each target task,
the Adam optimizer with a batch size of 64 is adopted. The target prompt length is always set as
(100− ls) on every target task.

Task Source ls LR LR Warm-Up LR Decay Weight Decay Accuracy

Caltech101 SNLI 80 0.005 - - 0.001 90.09±0.28
CIFAR100 QQP 60 0.005 - - 0.001 81.72±0.34

DTD MNLI 90 0.005 - - 0.001 68.92±0.24
Flowers102 MNLI 60 0.01 10 Cosine 0.001 98.37±0.12

Pets MNLI 90 0.01 10 Cosine 0.001 89.42±0.08
Sun397 SNLI 50 0.005 - - 0.001 52.57±0.31
SVHN SNLI 60 0.01 10 Cosine 0.001 82.76±0.24

Patch Camelyon SNLI 80 0.1 10 Cosine 0.0001 82.08±1.42
Resisc45 MNLI 100 0.01 10 Cosine 0.001 82.92±0.33
EuroSat SNLI 100 0.01 10 Cosine 0.001 96.17±0.16

Retinopathy QNLI 20 1 10 Cosine 0 75.30±0.44

DMLab QQP 80 0.005 10 Cosine 0.01 44.85±0.31
Kitti QNLI 70 0.005 - - 0.001 77.37±0.40

SmallNORB/azi QQP 100 0.001 10 Cosine 0.0001 24.34±1.82
SmallNORB/ele SNLI 100 0.0005 10 Cosine 0 36.26±1.04

dSprites/loc SNLI 80 0.005 10 Cosine 0.01 73.13±0.40
dSprites/ori SNLI 90 0.005 10 Cosine 0.001 43.16±1.60
Clevr/dist MNLI 90 0.001 10 Cosine 0 60.75±0.24

Clevr/count SNLI 100 0.001 10 Cosine 0 67.92±0.51

D.2 CROSS-MODALITY PROMPT TRANSFERABILITY ESTIMATION

D.2.1 BASELINE METHOD: COSINE SIMILARITY BETWEEN AVERAGE PROMPTS

We show the best (SmallNORB/azi) and worst (Kitti) ranking results of the baseline method: Avg
Cos in Table 9.

D.2.2 BASELINE METHOD: ON

Similarly, the best (Flowers102) and worst (Resisc45) ranking results of ON are shown in Table 10.

D.2.3 BASELINE METHOD: PRETRAINING DATA VOLUME

For this method, we simply list the volume of pretraining data of each source task in Table 11

D.2.4 MODALITY AND TASK GAP

The best (Clevr/count) and worst (Retinopathy) ranking results are shown in Table 12.
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Table 9: The cross-modality prompt transferability ranking results of Avg Cos on SmallNORB/azi
(left) and Kitti (Right). T Score is the corresponding transferability score of each source prompt,
predicted by the prompt transferability estimation method.

SmallNORB/azi Kitti

Rank Estimated T Score Ground Truth Accuracy Estimated T Score Ground Truth Accuracy

1 sst2 0.042 qqp 23.61 laptop 0.033 qnli 76.98
2 tweet 0.040 qnli 23.36 deontology 0.027 mnli 76.84
3 qnli 0.039 sst2 22.72 movie 0.010 qqp 76.56
4 mrpc 0.037 deontology 22.51 imdb 0.007 snli 76.47
5 mnli 0.036 snli 21.72 restaurant 0.001 sst2 75.86
6 qqp 0.033 tweet 21.63 sst2 -0.001 tweet 75.25
7 deontology 0.029 imdb 21.50 mrpc -0.006 deontology 74.31
8 justice 0.006 mnli 21.05 justice -0.014 justice 72.53
9 imdb -0.002 justice 20.74 snli -0.032 mrpc 71.73

10 snli -0.003 mrpc 19.80 mnli -0.035 imdb 71.68
11 laptop -0.019 restaurant 18.62 qqp -0.039 restaurant 69.81
12 restaurant -0.046 laptop 16.82 tweet -0.046 movie 66.62
13 movie -0.049 movie 16.35 qnli -0.077 laptop 65.92

Table 10: The cross-modality prompt transferability ranking results of ON on Flowers102 (left) and
Resisc45 (Right).

Flowers102 Resisc45

Rank Estimated T Score Ground Truth Accuracy Estimated T Score Ground Truth Accuracy

1 snli 0.429 mnli 98.22 deontology 0.448 snli 82.01
2 qqp 0.429 qqp 98.20 laptop 0.392 mnli 81.92
3 qnli 0.407 snli 98.19 movie 0.382 qqp 81.54
4 mnli 0.390 qnli 98.04 mrpc 0.373 qnli 81.16
5 sst2 0.376 imdb 97.99 tweet 0.366 sst2 80.86
6 imdb 0.372 tweet 97.94 sst2 0.359 tweet 80.07
7 deontology 0.364 sst2 97.93 justice 0.340 imdb 79.63
8 tweet 0.352 justice 97.82 qnli 0.312 justice 79.04
9 justice 0.329 deontology 97.69 imdb 0.312 deontology 78.08

10 movie 0.328 restaurant 97.69 restaurant 0.307 mrpc 77.00
11 laptop 0.311 mrpc 97.59 qqp 0.303 movie 76.95
12 mrpc 0.299 laptop 97.48 mnli 0.283 restaurant 76.78
13 restaurant 0.292 movie 97.45 snli 0.278 laptop 76.16

Table 11: Pretraining data volume of each source NLP task.
Source Task imdb sst2 laptop restaurant movie tweet mnli qnli snli deontology justice qqp mrpc

Data Volume 25000 67349 3045 3041 1600 45389 392702 104743 549367 18164 21791 363846 3668

Table 12: The cross-modality prompt transferability ranking results of our method (GM & GT ) on
Clevr/count (left) and Retinopathy (Right).

Clevr/count Retinopathy

Rank Estimated T Score Ground Truth Accuracy Estimated T Score Ground Truth Accuracy

1 snli -0.619 snli 62.60 qqp -0.213 qnli 74.76
2 mnli -0.675 mnli 58.52 snli -0.269 qqp 74.76
3 qqp -0.698 qnli 57.67 qnli -0.311 snli 74.55
4 qnli -0.744 qqp 56.14 mnli -0.313 sst2 74.53
5 sst2 -0.776 sst2 55.24 sst2 -0.659 mnli 74.49
6 tweet -0.980 tweet 55.01 tweet -0.820 tweet 74.42
7 deontology -1.021 deontology 53.02 deontology -0.935 laptop 74.40
8 justice -1.291 imdb 52.77 justice -1.122 deontology 74.37
9 imdb -1.355 justice 52.27 imdb -1.144 movie 74.37

10 mrpc -1.463 mrpc 51.75 mrpc -1.258 imdb 74.36
11 restaurant -1.844 restaurant 48.72 restaurant -1.425 mrpc 74.29
12 laptop -1.916 laptop 45.34 laptop -1.460 justice 74.24
13 movie -1.962 movie 44.38 movie -1.476 restaurant 74.24
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D.2.5 GROUND-TRUTH GAP VALUES

The ground-truth values of the combined modality and task gaps are in Table 13.

Table 13: The ground-truth values of the combined modality and task gap.
IMDB SST2 Laptop Restaurant Movie Tweet MNLI QNLI SNLI Deontology Justice QQP MRPC

Caltech101 1.116 0.759 1.284 1.269 1.320 0.900 -0.141 0.239 -0.180 1.053 1.110 0.082 1.121
CIFAR100 1.455 0.721 1.925 1.878 1.958 0.988 0.120 0.118 0.077 1.088 1.391 0.074 1.553

DTD 1.344 1.061 1.472 1.464 1.485 1.179 0.101 0.538 0.063 1.249 1.311 0.393 1.375
Flowers102 1.412 1.094 1.561 1.551 1.579 1.224 0.128 0.561 0.127 1.300 1.390 0.374 1.450

Pets 1.302 0.868 1.545 1.519 1.572 1.011 -0.008 0.264 -0.025 1.146 1.316 0.077 1.375
Sun397 1.286 0.881 1.454 1.440 1.488 1.050 -0.073 0.347 -0.109 1.176 1.283 0.124 1.329
SVHN 1.640 0.801 2.599 2.462 2.650 1.032 0.663 0.591 0.657 1.214 1.546 0.671 1.859

Patch Camelyon 1.962 1.685 2.058 2.064 2.080 1.788 0.513 1.164 0.497 1.857 1.928 0.904 1.995
Resisc45 1.310 0.836 1.553 1.530 1.583 0.974 0.003 0.223 -0.032 1.125 1.287 0.074 1.364
EuroSAT 1.753 0.873 2.525 2.415 2.565 1.160 0.396 0.447 0.393 1.309 1.660 0.464 1.972

Retinopathy 1.144 0.659 1.460 1.425 1.476 0.820 0.313 0.311 0.269 0.935 1.122 0.213 1.258

DMLab 0.924 0.520 1.227 1.152 1.387 0.659 -0.474 -0.045 -0.463 0.752 0.899 -0.271 0.975
KITTI 0.479 0.214 0.713 0.639 0.874 0.304 -0.608 -0.187 -0.602 0.377 0.470 -0.390 0.512

SmallNORB/azi 2.784 1.870 3.546 3.466 3.607 2.132 0.721 1.185 0.715 2.307 2.697 1.084 2.951
SmallNORB/ele 2.695 1.702 3.514 3.414 3.587 1.981 0.527 1.002 0.523 2.185 2.583 0.896 2.882

dSprites/loc 3.445 2.750 3.907 3.853 3.930 3.011 1.128 2.024 1.127 3.125 3.428 1.766 3.586
dSprites/ori 3.439 2.725 3.895 3.838 3.922 2.997 1.107 1.998 1.152 3.144 3.420 1.707 3.568
Clevr/dist 1.309 0.737 1.915 1.834 1.944 0.907 0.579 0.665 0.591 1.059 1.287 0.661 1.475

Clevr/count 1.355 0.776 1.916 1.844 1.962 0.980 0.675 0.744 0.619 1.021 1.291 0.698 1.463
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Table 14: The detailed results of Frozen Prompt Transfer (gray) and Projection Transfer (Blue). The accuracy marked in red
indicates the best source prompts for each target task.
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Linear 86.25±0.03 65.26±0.06 64.40±0.13 97.27±0.01 86.55±0.03 51.22±0.01 36.25±0.09 69.60 79.02±0.36 69.54±0.08 89.34±0.32 74.31±0.13 78.05 33.83±0.20 60.10±0.45 11.92±0.07 20.90±0.35 12.67±0.52 20.99±0.01 31.21±0.16 36.29±0.04 28.49

Xavier 82.31±0.27 61.60±0.89 59.41±0.44 95.51±0.27 84.16±0.39 45.98±0.41 37.62±0.18 66.66 80.34±0.20 66.62±0.64 90.13±0.76 74.12±0.08 77.80 33.09±0.85 59.54±0.65 11.84±0.12 18.40±0.72 10.50±0.37 15.98±0.19 33.11±0.31 37.45±0.07 27.49
IMDB 82.37±0.13 62.38±0.02 59.82±0.05 96.01±0.05 84.22±0.10 46.94±0.13 37.31±0.09 67.01 79.73±0.11 67.15±0.09 90.52±0.54 74.02±0.01 77.86 33.16±0.22 58.09±0.20 11.65±0.33 19.86±0.56 11.66±0.14 16.41±0.01 31.66±0.57 37.12±0.08 27.45
SST2 83.63±0.05 61.85±0.04 60.64±0.12 96.09±0.03 84.73±0.09 47.94±0.14 37.18±0.03 67.44 79.22±0.08 69.05±0.07 90.10±0.36 73.99±0.16 78.09 33.54±0.10 59.92±0.58 11.35±0.26 20.01±0.41 13.13±0.12 15.73±0.02 32.00±0.26 35.93±0.07 27.70

Laptop 82.31±0.06 62.38±0.05 59.20±0.04 95.72±0.01 84.20±0.07 46.24±0.14 38.12±0.06 66.88 80.22±0.14 65.87±0.00 89.62±0.78 73.92±0.14 77.41 33.14±0.13 59.26±0.29 11.70±0.11 19.72±0.65 10.78±0.13 15.67±0.05 32.28±0.75 37.25±0.07 27.48
Restaurant 82.44±0.13 62.66±0.03 59.98±0.18 95.97±0.03 84.73±0.04 46.32±0.11 37.80±0.07 67.13 80.33±0.11 66.91±0.15 90.82±0.51 74.04±0.02 78.03 33.96±0.43 59.68±0.58 11.68±0.20 20.16±0.67 9.57±0.19 15.77±0.03 32.08±0.19 37.42±0.05 27.54

Movie 82.28±0.05 62.24±0.06 59.63±0.24 95.80±0.02 84.22±0.00 46.41±0.07 37.94±0.04 66.93 80.28±0.12 66.73±0.08 90.40±0.63 73.75±0.09 77.79 33.41±0.15 61.13±0.37 11.59±0.16 19.98±1.16 10.41±0.13 16.17±0.01 31.36±0.60 37.73±0.03 27.72
Tweet 83.06±0.19 62.83±0.07 60.20±0.05 96.29±0.02 84.70±0.03 48.20±0.14 37.32±0.11 67.51 79.06±0.20 68.84±0.04 90.38±0.41 74.10±0.07 78.10 33.80±0.12 60.57±0.63 11.52±0.12 20.15±0.51 14.14±0.17 17.17±0.03 32.73±0.20 36.33±0.04 28.30
MNLI 84.56±0.32 64.92±0.17 63.14±0.24 96.29±0.03 86.20±0.15 48.94±0.07 37.65±0.45 68.81 80.36±0.13 72.08±0.02 90.79±0.44 74.14±0.06 79.34 34.80±0.30 58.09±0.41 9.98±0.29 18.57±0.41 12.91±0.16 13.64±0.02 32.66±0.22 35.96±0.03 27.08
QNLI 84.27±0.09 63.93±0.12 60.62±0.05 96.33±0.03 85.75±0.11 48.75±0.02 37.66±0.08 68.19 79.93±0.13 71.04±0.09 90.83±0.73 74.01±0.20 78.95 33.64±0.14 60.52±0.86 11.02±0.11 19.97±0.76 11.80±0.25 14.76±0.02 31.66±0.39 35.92±0.04 27.41
SNLI 84.75±0.08 65.56±0.02 62.59±0.10 96.55±0.01 86.20±0.10 49.46±0.05 37.16±0.40 68.90 80.32±0.08 71.32±0.09 90.00±0.66 73.94±0.20 78.90 34.82±0.13 58.60±0.80 10.85±0.42 18.64±0.20 11.58±0.28 14.30±0.00 31.53±0.34 36.68±0.04 27.13

Deontology 82.97±0.16 62.21±0.06 59.33±0.02 95.84±0.05 84.48±0.05 48.10±0.11 37.83±0.10 67.25 78.90±0.15 68.30±0.04 90.24±0.15 74.10±0.02 77.89 33.32±0.23 60.80±1.33 11.43±0.16 19.68±0.41 13.90±0.33 16.89±0.01 32.18±0.56 36.46±0.01 28.08
Justice 82.47±0.08 62.52±0.04 59.04±0.09 95.54±0.05 84.53±0.05 47.17±0.13 37.21±0.05 66.93 79.35±0.07 67.23±0.10 90.06±0.53 73.99±0.08 77.66 33.06±0.38 59.54±0.75 11.78±0.20 19.57±0.45 15.41±0.21 16.69±0.02 31.86±0.29 37.02±0.01 28.12
QQP 84.28±0.12 64.90±0.06 62.39±0.19 96.45±0.01 86.08±0.16 49.08±0.09 38.39±0.03 68.80 79.66±0.15 71.41±0.08 90.62±0.36 74.05±0.13 78.94 34.21±0.13 58.13±1.15 11.19±0.04 19.87±0.69 10.86±0.10 15.03±0.00 32.07±0.53 35.76±0.11 27.14

MRPC 82.50±0.13 62.49±0.03 58.48±0.15 95.09±0.05 84.14±0.19 46.34±0.11 38.04±0.08 66.73 78.86±0.11 66.27±0.10 88.90±0.05 73.96±0.17 77.00 33.46±0.15 61.04±0.30 12.07±0.70 19.33±0.92 11.81±0.04 16.72±0.00 31.97±0.81 37.30±0.05 27.96

VPT 88.73±0.17 78.03±0.17 65.73±0.11 97.75±0.11 87.93±0.25 50.21±0.09 71.26±1.15 77.09 80.84±0.58 75.70±0.08 92.90±0.42 73.95±0.07 80.85 39.81±1.20 72.15±2.81 17.36±0.06 22.83±0.37 72.94±1.37 30.94±2.25 57.59±0.29 49.96±0.58 45.45

Xavier 87.66±0.05 74.28±0.57 65.12±0.52 97.58±0.06 87.67±0.19 51.02±0.19 66.47±1.52 75.69 79.62±0.44 76.66±0.15 93.33±0.13 74.24±0.05 80.96 37.59±0.39 66.95±1.80 16.47±0.17 23.21±0.35 62.25±1.43 30.25±1.60 53.04±0.15 45.62±0.72 41.92
IMDB 88.31±0.20 78.18±0.24 64.97±0.11 97.99±0.04 88.42±0.13 51.70±0.20 75.04±1.58 77.80 80.09±0.92 79.63±0.94 94.11±0.09 74.36±0.05 82.05 40.04±0.25 71.68±1.40 21.50±0.25 24.87±0.51 68.55±0.58 38.42±1.70 56.38±0.53 52.77±0.57 46.78
SST2 88.40±0.05 79.52±0.58 66.60±0.08 97.93±0.09 88.57±0.17 52.14±0.07 78.35±0.55 78.79 79.73±0.26 80.86±0.50 95.22±0.23 74.53±0.10 82.59 41.95±0.68 75.86±0.26 22.72±0.86 26.12±0.78 66.98±0.75 39.74±0.43 57.20±0.21 55.24±0.58 48.23

Laptop 87.78±0.14 75.61±0.73 64.54±0.13 97.48±0.04 87.64±0.14 50.91±0.16 63.63±0.99 75.37 79.39±0.46 76.16±0.60 93.32±0.43 74.40±0.11 80.82 37.22±0.42 65.92±0.85 16.82±0.52 23.98±0.47 57.97±5.36 30.62±2.36 52.46±3.55 45.34±1.59 41.29
Restaurant 88.02±0.17 76.20±0.72 64.91±0.17 97.69±0.14 87.86±0.08 51.10±0.10 68.12±0.09 76.27 79.44±0.93 76.78±0.17 93.46±0.20 74.24±0.05 80.98 37.86±0.21 69.81±1.79 18.62±1.02 23.86±0.45 60.73±5.62 36.51±0.84 53.58±0.91 48.72±0.73 43.71

Movie 87.54±0.32 75.49±0.58 64.58±0.08 97.45±0.13 87.47±0.18 51.12±0.19 64.30±1.04 75.42 78.95±0.43 76.95±0.39 93.22±0.37 74.37±0.03 80.87 36.88±0.31 66.62±0.24 16.35±0.20 23.40±0.61 62.74±3.49 32.72±2.06 53.93±0.64 44.38±0.21 42.13
Tweet 88.28±0.05 78.94±0.44 66.24±0.17 97.94±0.05 88.64±0.23 52.15±0.18 78.35±0.77 78.65 80.17±0.71 80.07±0.45 95.17±0.29 74.42±0.11 82.46 41.53±0.54 75.25±0.58 21.63±0.49 26.26±0.82 63.91±2.16 41.32±2.81 56.55±1.14 55.01±0.99 47.68
MNLI 88.67±0.09 80.49±0.12 68.44±0.14 98.22±0.02 89.02±0.02 52.64±0.03 82.04±0.65 79.93 80.91±0.44 81.92±0.55 95.66±0.10 74.49±0.20 83.25 43.37±0.92 76.84±0.35 21.05±0.65 26.49±0.23 70.33±1.77 41.72±1.34 58.44±0.58 58.52±0.55 49.60
QNLI 88.37±0.04 80.12±0.38 67.27±0.29 98.04±0.01 88.46±0.23 52.18±0.34 81.01±1.07 79.35 79.75±0.63 81.16±0.71 95.77±0.08 74.76±0.12 82.86 43.45±0.75 76.98±0.58 23.36±0.65 26.33±0.82 65.70±0.28 41.55±0.27 57.21±0.56 57.67±0.77 49.03
SNLI 89.04±0.05 80.77±0.19 68.33±0.52 98.19±0.07 88.62±0.19 52.27±0.15 82.58±0.73 79.97 80.60±0.69 82.01±0.12 95.75±0.04 74.55±0.30 83.23 43.11±0.57 76.47±1.03 21.72±0.73 26.81±0.86 72.46±2.48 42.35±0.47 57.91±0.98 62.60±3.09 50.43

Deontology 88.40±0.06 78.26±0.36 65.32±0.23 97.69±0.07 87.85±0.27 51.81±0.11 76.50±0.55 77.98 79.61±0.66 78.08±0.54 94.01±0.22 74.37±0.07 81.52 41.43±0.53 74.31±0.66 22.51±0.53 26.04±0.39 63.31±3.86 39.11±0.39 56.36±1.35 53.02±2.01 47.01
Justice 88.42±0.50 77.87±0.11 64.86±0.07 97.82±0.12 87.82±0.27 51.08±0.36 76.56±0.77 77.78 79.59±0.32 79.04±1.42 94.28±0.34 74.24±0.16 81.79 40.69±1.25 72.53±2.26 20.74±0.25 25.44±1.33 67.06±2.04 38.11±1.17 56.00±1.07 52.27±0.84 46.61
QQP 88.66±0.20 80.98±0.18 67.91±0.22 98.20±0.03 88.41±0.30 52.27±0.07 82.45±1.10 79.84 80.98±0.18 81.54±0.04 95.54±0.27 74.76±0.19 83.21 43.61±0.24 76.56±0.40 23.61±1.37 28.27±0.69 70.73±1.80 40.85±2.08 57.57±0.96 56.14±2.47 49.67

MRPC 88.26±0.27 76.92±0.31 64.63±0.23 97.59±0.06 87.67±0.07 50.93±0.36 73.16±0.90 77.02 79.12±1.21 77.00±0.24 93.53±0.23 74.29±0.06 80.99 38.59±1.16 71.73±0.94 19.80±0.43 24.72±0.53 66.23±0.98 37.99±1.24 55.69±0.38 51.75±2.23 45.81



E DISCUSSIONS

Discussion on our choice of ViT pretrained checkpoint. We discuss our choice on the supervised
ImageNet-21k ViT checkpoint (ViT-IN21k for short) from two perspectives:

• Why not a checkpoint pretrained on a different dataset or by a different pretraining
objective: we need to demonstrate how significantly can cross-modality prompt transfer
boost prompt tuning. In the meantime, visual prompt tuning was initially experimented on
the ViT-IN21k. Therefore, to make the comparison meaningful, we select the ViT-IN21k
checkpoint.

• Why not a language-aligned ViT checkpoint: we need to first demonstrate that a model,
even pretrained without any textual knowledge (e.g. the ViT-IN21k checkpoint), can benefit
from transferring prompts pretrained on pure textual data. Second, the source prompts are
trained with language models on language tasks. The language models are not aligned with
any variations of ViT checkpoint and the language tasks are not aligned with any image
tasks. We believe that a language-aligned ViT checkpoint should be applied to a situation
where there are connections across modalities. However in our cases, the two modalities are
isolated. Therefore, we choose the ViT-IN21k checkpoint instead of a language-aligned ViT
checkpoint.

Real-world applications of cross-modality prompt transfer. In terms of real-world scenarios,
cross-modality prompt transfer can be of help from two aspects: (i) improve the prompt tuning
performance on data-scarce tasks or privacy sensitive tasks (for example, medical diagnosis or
business analysis), as it transfers abundant source knowledge without depending on the source data.
(ii) improve the prompt tuning performance on tasks that would benefit from combining knowledge
across text and vision domains, especially when one modality has abundant labelled data or provides
complementary insights. For example, it can enhance medical image analysis by transferring prompts
pretrained on text-based medical knowledge, support vision systems used in autonomous vehicles by
transferring prompts trained on traffic rule texts, etc.

Why would the source prompts pretrained on NLP tasks transferable to other modality tasks?
We analysis this problem through two perspectives: the source prompts themselves, and the language
model used to produce the source prompts. (i) Transferable source prompts are typically pretrained
on a huge volume of NLP data. As a result, these prompts should contain valuable semantics
that are high-level enough to be extendable to other modalities. Moreover, they should also have
a generalizability powerful enough to generalize to an unseen modality. (ii) On the other hand,
language models trained on large and diverse datasets, learn representations that capture concepts,
relationships, and structures beyond text alone. These abstract features may generalize well to other
modalities, where the prompts can act as conceptual "anchors" that “carry” the representations across
modalities.

Which target tasks are more likely to benefit from cross-modality prompt transfer? In our
main paper, Section 4.2, we draw a conclusion that "Prompt tuning performance on target tasks that
already benefit a lot from prompt tuning is likely to be further boosted by cross-modality prompt
transfer". Here we discuss the intuition behind this conclusion: If a target task benefits a lot from
prompt tuning (i.e. has a higher prompt tuning performance than linear probing), this indicates that
this target task requires the pretrained model to learn new features, because simple linear probing
on its original features does not help much. In another word, such a target task would require the
pretrained model to learn extra knowledge. Therefore, why cross-modality prompt transfer excels
on such a target task is easy to understand: it introduces more knowledge to the target task than
vanilla prompt tuning. As vanilla prompt tuning only learns target knowledge while cross-modality
prompt transfer learns both the source and target knowledge. In conclusion, if a target task requires
the pretrained model to grasp a lot of new features, then it would be a more transferable target task,
and vice versa.

The improvements made by projection transfer is proven to be statistically significant. We
prove this statistical significance following the below steps: (i) Define our null hypothesis: the
improvements are not introduced by transferring the source prompts. (ii) We choose one-sided test as
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the effects will be in one direction (i.e. contribute to the increase of the improvements) (iii) Collect
data: Group 1 (Conducting projection transfer on all 19 target tasks with a randomly initialized
prompt): In this case, we have only one “source” prompt and 19 target tasks, which makes the total
number of observations to be 19. Among these 19 observations, only 5 show improvements over
vanilla prompt tuning, resulting in a percentage of 26.32%. (The data comes from the first row of
Figure 3b.2) Group 2 (Conducting projection transfer on all 19 target tasks with all 13 source tasks):
In this case, we have 13 source prompts and 19 target tasks, resulting in a total number of 19*13=247
observations. Among these 247 observations, 158 show improvements over vanilla prompt tuning,
with a percentage of 63.97%. (The data comes from the remaining rows of Figure 3b.2) (iv) Calculate
p-value: The final p-value is calculated to be 0.02%. That is, given the results we observed, there’s
only a chance of 0.02% that the improvements are not introduced by cross-modality prompt transfer.
In another word, we are 99.98% certain that the improvements are statistical significant: they are
caused by cross-modality prompt transfer, instead of error or random chances.

Limitations and future works. Our work contributes to the field by the verification of the feasibility
of cross-modality prompt transfer, the conceptualization of the transferability estimation metric and a
more effective cross-modality prompt transfer method. Besides its contributions, it also comes with
the following limitations in the current stage: (i) The scope: only one model from each modality
was involved in our experiments. Moreover, different prompt tuning variants (i.e. prefix-tuning)
were not covered in our explorations. (ii) The dependence on trainable parameter of the proposed
transferability estimation metric: this dependence could slightly increase the computation complexity
of the metric. Given the current development of prompt transfer and the fact that we are the first work
on the topic of cross-modality prompt transfer, these limitations are hard to avoid in the current stage.
However, we are confident that these limitations will not affect the conclusions drawn in this paper.

In the future, besides breaking the limitations discussed above (i.e. extending the scope and reducing
the complexity of the transferability estimation metric), it would be interesting to explore multi-source
prompt fusion methods for cross-modality prompt transfer: how to fuse multiple text-pretrained
prompts to make better utilization of the linguistic knowledge stored in the prompts. Our future work
aims to further solidify our findings about cross-modality prompt transfer and further release the
powers of the source prompts on data-scarce modalities.

13



REFERENCES

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

Haoyu He, Jianfei Cai, Jing Zhang, Dacheng Tao, and Bohan Zhuang. Sensitivity-aware visual
parameter-efficient fine-tuning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 11825–11835, 2023.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In European Conference on Computer Vision, pp. 709–727.
Springer, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan, Yankai Lin, Huadong Wang, Kaiyue Wen,
Zhiyuan Liu, Peng Li, Juanzi Li, et al. On transferability of prompt tuning for natural language pro-
cessing. In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 3949–3969, 2022.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and Daniel Cer. Spot: Better frozen model
adaptation through soft prompt transfer. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 5039–5059, 2022.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
large-scale study of representation learning with the visual task adaptation benchmark. arXiv
preprint arXiv:1910.04867, 2019.

14


