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ABSTRACT

Interactive simulators are becoming powerful tools for training embodied agents,
but existing simulators suffer from limited content diversity, physical interactivity,
and visual fidelity. We address these limitations by introducing InteriorSim, a
photorealistic simulator for embodied AI in the home. To create our simulator, we
worked closely with a team of professional artists for over a year to construct 300
unique virtual indoor environments with 2,566 unique rooms and 17,234 unique
objects that can be manipulated individually. Each of our environments features
detailed geometry, photorealistic materials, and a unique floor plan and object
layout designed by a professional artist, i.e., we do not rely on remixing existing
layouts to create additional content. Our environments are implemented as Unreal
Engine assets, and we provide an OpenAI Gym interface for interacting with the
environments via Python. We demonstrate the utility of our simulator by using it
in a zero-shot sim-to-real transfer scenario, i.e., we train a point-goal navigation
policy entirely in simulation that can successfully navigate through cluttered real-
world environments when deployed on a real robot. We also demonstrate that our
simulator is quantitatively more photorealistic than existing simulators measured
by human comparisons and standard metrics for evaluating generative models.
Finally, we demonstrate that our simulator achieves better sim-to-real performance
than existing simulators on a real-world semantic segmentation task. All of our
assets and code will be made available online.

1 INTRODUCTION

Training embodied agents to act safely and intelligently in the physical world is slow, labor-intensive,
and potentially dangerous. In response to this challenge, the embodied AI community has developed
a variety of interactive simulators, where agents can be trained and validated in simulation prior to
being deployed in the physical world (Anderson et al., 2018; Armeni et al., 2016; 2017; Chang et al.,
2017; Deitke et al., 2020; Dosovitskiy et al., 2017; Ehsani et al., 2021; Gan et al., 2021a;b; Kadian
et al., 2020; Kolve et al., 2017; Li et al., 2021; Puig et al., 2018; Ramakrishnan et al., 2021; Savva
et al., 2019; Shah et al., 2017; Shen et al., 2021; Straub et al., 2019; Szot et al., 2021; Xia et al.,
2018; 2020; Xiang et al., 2020; Yan et al., 2018). These simulators have enabled rapid progress on
increasingly complex and open-ended real-world tasks (e.g., point-goal navigation (Kadian et al.,
2020; Xia et al., 2018; 2020), object navigation (Deitke et al., 2020), object manipulation (OpenAI
et al., 2019), and autonomous driving (Codevilla et al., 2018)).

However, existing simulators have important limitations (see Table 1). Simulators that use artist-
created environments typically provide a limited selection of scenes (e.g., a few dozen homes, or a
few hundred isolated rooms), which can lead to severe over-fitting and poor sim-to-real transfer per-
formance. To work around this limitation, simulators often provide remixed variants of each scene
(e.g., where objects have been arranged in different configurations), but this approach is limited by
the diversity of scenes prior to remixing. On the other hand, simulators that use scanned 3D envi-
ronments provide larger collections of scenes, but offer little or no interactivity with objects, and are
therefore not suitable for tasks that involve rearranging the environment to achieve a particular goal
(e.g., loading a dishwasher) (Batra et al., 2020).

Additionally, both types of simulator offer limited visual fidelity, but for different reasons. Simula-
tors that use artist-created environments are often forced to provide simplified assets, because it is
too labor-intensive to author high-resolution geometry and complex materials at scale. Simulators
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Figure 1: Example scenes in InteriorSim. We show one scene from each of the following styles
(top to bottom, row-major): American, Chinese, European, European (simple), Japanese, Modern.

that use scanned environments avoid this issue, but exhibit pronounced 3D mesh reconstruction ar-
tifacts, and bake view-dependent lighting effects (e.g., glossy surfaces and specular highlights) onto
meshes in a way that is incorrect at most viewing angles.

In this work, we introduce InteriorSim, a photorealistic simulator for embodied AI that addresses all
of the limitations described above (see Figure 1). To create our simulator, we worked closely with a
team of professional artists for over a year to construct 300 unique virtual indoor environments with
2,566 unique rooms and 17,234 unique objects that can be manipulated individually. Each of our
environments features detailed geometry, photorealistic materials, and a unique floor plan and object
layout designed by a professional artist, i.e., we do not rely on remixing existing layouts to create
additional content. Our environments are implemented as Unreal Engine assets, and we provide an
OpenAI Gym interface for interacting with the environments via Python. Together, these features
make our simulator well-suited for embodied AI tasks that involve rearranging the environment (e.g.,
(Batra et al., 2020)) and deploying agents in the physical world (e.g., (Codevilla et al., 2018; Deitke
et al., 2020; Kadian et al., 2020; Xia et al., 2018; 2020)).

We demonstrate the utility of our simulator by using it in a zero-shot sim-to-real transfer scenario,
i.e., we train a point-goal navigation policy entirely in simulation that can successfully navigate
through cluttered real-world environments when deployed on a real robot. We train our navigation
policy with imitation learning, and we compare simulated demonstrations obtained automatically
via global path planning in our simulator, to real-world demonstrations obtained via human pilots
controlling a physical robot. Remarkably, we find that our simulated demonstrations outperform
real-world demonstrations, suggesting that the sim-to-real gap can be overcome by using simulation-
only privileged information, alongside high-fidelity rendering and physics. We demonstrate that our
simulator is quantitatively more photorealistic than existing simulators measured by human com-
parisons and standard metrics for evaluating generative models. Finally, we demonstrate that our
simulator achieves better sim-to-real transfer performance than existing simulators on a real-world
semantic segmentation task. InteriorSim’s code will be made available for the community under an
open-source MIT license, and all assets will be free to use for academic purposes.
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Num. scenes

Simulator Before After Num. Num. Phys. Photo-
remixing remixing rooms objects realism realism

CHALET 10 – 58 330 ⋆ ⋆
VirtualHome 6 – – 308 ⋆ ⋆⋆
SAPIEN – – – 2,346 ⋆⋆⋆ ⋆⋆⋆
ThreeDWorld 15 – ~120 ~2,500 ⋆⋆⋆ ⋆⋆⋆
AI2-THOR 120 – – ~2,000 ⋆⋆ ⋆⋆
iGibson 2.0 15 12,015 108 570 ⋆⋆⋆ ⋆⋆
Habitat 2.0 6 105 – 92 ⋆⋆ ⋆⋆
InteriorSim (ours) 300 – 2,566 17,234 ⋆⋆⋆ ⋆⋆⋆

Table 1: Comparison to existing interactive simulators. We limit our comparison to indoor sim-
ulators providing collections of scenes and objects that can be manipulated individually, and we
sort chronologically by latest release. For each simulator, we show the number of scenes before
remixing and after remixing (e.g., rearranging objects, combining with previous datasets), as well
as the number of rooms prior to remixing (– indicates quantities that are not specified in a simula-
tor’s publications or documentation). We show the level of physical realism available when agents
are interacting with objects (⋆ indicates that only high-level interactions are possible; ⋆⋆ indicates
that an articulated robot arm can be controlled; ⋆⋆⋆ indicates that both a robot arm and a gripper
can be controlled). We also show the level of photorealism (⋆ indicates flat shading; ⋆⋆ indicates
physically-based shading; ⋆⋆⋆ indicates more advanced rendering effects, e.g., path tracing).

2 RELATED WORK

Learning with synthetic data Synthetic datasets and simulation environments play a critical role
in computer vision, machine learning, and robotics. See the recent survey by Nikolenko (2019).

Realistic simulators for embodied AI We discuss realistic indoor simulators for mobile agents in
Section 1. Realistic simulators have also been developed for outdoor tasks (e.g., drone navigation
(Shah et al., 2017), autonomous driving (Dosovitskiy et al., 2017)), and indoor tasks that involve a
robot arm on a fixed base (e.g., opening doors (Urakami et al., 2019), object manipulation (James
et al., 2020; Yu et al., 2019; Zhu et al., 2020), assistive care (Erickson et al., 2020), furniture
assembly (Lee et al., 2021)). Additionally, standalone physics engines (Bullet, 2022; Lee et al.,
2018; Todorov et al., 2012) and game engines (Epic Games, 2022; NVIDIA, 2022; Makoviychuk
et al., 2021; Unity, 2022) can be used as simulators to train embodied agents, when combined with
an appropriate learning objective, art assets, and a model of the agent dynamics. However, these
simulators do not include ready-made collections of indoor environments, and are therefore not
directly applicable to household tasks. In contrast, our simulator includes a large collection of
photorealistic indoor environments, and is applicable to a wide range of household navigation and
manipulation tasks.

Sim-to-real transfer for robotics Training perception models and control policies entirely in sim-
ulation, and subsequently deploying them on real-world robots, has been successfully demonstrated
for wide range of tasks (e.g., grasping (Tobin et al., 2017), obstacle avoidance (Sadeghi & Levine,
2017) and aerobatic maneuvering (Kaufmann et al., 2020) on drones, following high-level user com-
mands on ground vehicles (Codevilla et al., 2018), quadruped locomotion (Tan et al., 2018)). In a
similar spirit to (Kadian et al., 2020; Xia et al., 2018; 2020), we demonstrate sim-to-real transfer
on a point-goal navigation task, but we use a significantly less expensive robot platform with fewer
on-board sensors, and therefore our sim-to-real experiments are easier to reproduce.

Metrics for evaluating generative models Quantitative metrics for evaluating generative models
(Binkowski et al., 2018; Heusel et al., 2017) have been used to assess the photorealism of scanned
indoor scenes (Ramakrishnan et al., 2021) and data-driven rendering methods (Richter et al., 2021).
We use these same metrics to evaluate the photorealism of our simulator.

3 INTERIORSIM

We designed InteriorSim according to three main desiderata. First, we wanted to support a collection
of environments that is as large, diverse, and high-quality as possible. Second, we wanted sufficient
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Figure 2: Highlighted functionality in InteriorSim. InteriorSim supports a high-quality path-tracing
rendering mode (left), a real-time rendering mode (middle-top), and multiple lighting configurations
for each scene (middle-bottom). To illustrate that our scenes are cluttered with dynamic objects, we
show this scene after a simulated earthquake (right).

physical realism to support realistic interactions with a wide range of household objects. Third, we
wanted as much photorealism as possible, while still maintaining enough rendering speed to support
training complex embodied agent behaviors.

Motivated by these desiderata, we chose to implement InteriorSim on top of the Unreal Engine
(Epic Games, 2022), which is an industrial-strength open-source game engine. Unreal Engine has
a vibrant community of developers and artists, a rich ecosystem of plugins, a large marketplace of
photorealistic assets, and it is free for non-commercial use. Additionally, Unreal Engine features
state-of-the-art physical simulation and real-time rendering functionality, and it is constantly
improving. By building on top of the Unreal Engine, we can expect to benefit as new engine
features are introduced and optimized to take advantage of evolving hardware (e.g., (Epic Games,
2021; Karis et al., 2021)). We highlight the functionality of InteriorSim in Figure 2, and we provide
additional implementation details in the supplementary material.

Environments In this subsection, we describe our pipeline for generating interactive Unreal Engine
environments. We provide summary statistics for our environments in Figure 3.

Objects: Our artists modeled, textured, and semantically labeled 26,019 unique household objects
from scratch using commercial and in-house geometric modeling tools. Our artists marked 17,234
of these objects as movable, and the remaining 8,785 as static. The semantic label applied to each
object comes from a set of 100 common household semantic categories.

Physical properties: We assigned physical properties (e.g., mass, density, friction) to each object
using a supervised learning approach that takes the object’s rendering data as input. Once an object
has been modeled by an artist, it consists of one or more rendering meshes, each rendering mesh
has exactly one rendering material, and each rendering material has a set of parameters (e.g.,
roughness, glossiness, etc). Using this data as input, our supervised learning approach consists of
the following steps. First, for each rendering mesh, we compute a simplified closed collision mesh
using the V-HACD library (V-HACD, 2022). Second, we define a set of 78 physical materials
with known friction and density coefficients. Third, we construct a training set of 1,000 rendering
materials, and we manually assign a physical material to each rendering material in the training
set. Fourth, we train a random forest classifier (Breiman, 2001) to automatically assign a physical
material to each of our remaining rendering materials, using the values of the rendering material’s
parameters as features. Fifth, we assign a mass to each collision mesh based on its volume and the
density of its assigned physical material. Using this approach, we automatically assigned physical
materials to 42,723 unique rendering materials, achieving a top-1 classification accuracy of 80% on
a small held-out validation set.

Scenes: Using our collection of unique objects as a starting point, our artists designed and assembled
300 unique indoor scenes (2,566 unique rooms) using in-house modeling tools, and exported them
as Unreal Engine assets using an in-house conversion pipeline. Each scene features a unique floor
plan and object layout, i.e., we do not rely on remixing existing layouts to create additional content.
In total, our scenes contain 100,165 object instances (56,971 are movable, 43,194 are static).

Data cleaning: As a final data cleaning step, we loaded each scene into the Unreal Engine editor, and
manually corrected any content problems that were introduced earlier in our pipeline (e.g., objects
that are grouped together incorrectly, objects that are missing semantic information, collision meshes
that are slightly interpenetrating, etc).
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Figure 3: Environment statistics at the granularity of scenes (a,b,c), rooms (d), and objects (e).

Gym interface We provide a complete OpenAI Gym (Brockman et al., 2016) interface for inter-
acting with our environments via Python. InteriorSim is therefore compatible with any high-level
reinforcement learning framework that expects a Gym interface (e.g., (Liang et al., 2018; Plappert,
2016; Raffin et al., 2021; Weng et al., 2021)). We verified the correctness of our interface by training
a variety of point-goal navigation policies in our environments using RLLib (Liang et al., 2018).

In order to provide a well-behaved Gym interface (i.e., fixed time-steps, synchronous execution) on
top of the Unreal Engine, we must carefully coordinate the execution of the engine’s game-loop via
Python, and access internal engine data at specific points within the game-loop’s control flow. We
perform this coordination via a custom Unreal Engine plugin written in C++. Our plugin also makes
it easy for other researchers to extend InteriorSim by implementing new agents, sensors, and tasks.

Agents InteriorSim currently supports four distinct embodied agents. Our OpenBot Agent provides
identical image observations to a real-world OpenBot (Müller & Koltun, 2021), implements an
identical control interface, and has been modeled with accurate geometry and physical parameters. It
is therefore well-suited for sim-to-real experiments (see Section 4.1). Our Fetch Agent and LoCoBot
Agent have also been modeled using accurate geometry and physical parameters (LoCoBot, 2022;
Wise et al., 2016), and each features a physically realistic gripper. These agents are therefore well-
suited for rearrangement tasks (Batra et al., 2020). Our Camera Agent can be teleported anywhere,
and is useful for collecting static datasets (see Section 4.2).

Sensors By default, our agents return photorealistic egocentric observations from camera sensors,
as well as wheel encoder states and joint encoder states. Additionally, our agents can optionally
return several types of privileged information. First, our agents can return a sequence of waypoints
representing the shortest path to a goal location, as well as perfect GPS and compass observations
that point directly to the goal, both of which can be useful when defining navigation tasks (see
Section 4.1). Second, our agents can return pixel-perfect semantic segmentation and depth images,
which can be useful when controlling for the effects of imperfect perception in downstream embod-
ied tasks, and collecting static datasets (see Section 4.2).

Tasks InteriorSim currently supports two distinct tasks. Our Point-Goal Navigation Task randomly
selects a goal position in the scene’s reachable space, computes a reward based on the agent’s dis-
tance to the goal, and triggers the end of an episode when the agent hits an obstacle or the goal. Our
Freeform Task is an empty placeholder task that is useful for collecting static datasets.

Rendering quality and performance InteriorSim supports a high-quality path-tracing rendering
mode that is suitable for generating static datasets, and a real-time mode that is suitable for interac-
tive training (see Figure 2 for a quality comparison). Our high-quality mode takes multiple minutes
per frame, and our real-time mode runs at roughly 30–60 frames per second on a typical gaming PC.
We use our real-time rendering mode in all of the experiments in this paper.
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Figure 4: Our pipeline for zero-shot navigation policy transfer. Left: to generate training data
in simulation, we compute a sequence of collision-free waypoints (green dots) to a goal (red
marker) via global path planning, and a virtual OpenBot agent tracks these waypoints with a PID
controller (forming a trajectory to the goal shown in blue). Center: we evaluate trained policies in
simulation without using any privileged waypoint information, but using ground-truth localization
information. Right: we evaluate trained policies on a real-world OpenBot without using any
privileged information.

4 EXPERIMENTS

In order to evaluate the usefulness of InteriorSim for downstream tasks, we perform three ex-
periments. First, we train navigation policies in InteriorSim and deploy them in the real world.
Second, we compare the photorealism of InteriorSim to existing simulators. Third, we evaluate the
sim-to-real transfer performance of InteriorSim on a real-world semantic segmentation task.

4.1 ZERO-SHOT NAVIGATION POLICY TRANSFER

In this subsection, we demonstrate that it is possible to train a point-goal navigation policy with
simulated observations from InteriorSim, and successfully transfer it to the real world. The trained
navigation policy runs in real-time on a smartphone, enabling anyone with a smartphone and a $50
robot (Müller & Koltun, 2021) to reproduce our results. We also investigate the influence of data
quantity, diversity, and realism on downstream task performance by training policies with varying
amounts of simulated data, and comparing the real-world performance of each policy to a baseline
policy that has been trained with real data. We summarize our policy transfer pipeline in Figure 4, we
summarize our results in Table 2, and we provide additional details in the supplementary material.

Point-goal navigation using the OpenBot framework To conduct our sim-to-real experiments,
we use the OpenBot framework (Müller & Koltun, 2021), which leverages the capabilities of
modern smartphones to deploy navigation policies on small ground vehicles. The OpenBot frame-
work includes an imitation learning pipeline that takes driving demonstrations as input (typically
provided by a user manually piloting a vehicle), and produces a learned control policy as output.
This learning pipeline ingests egocentric visual observations captured by the smartphone camera
and high-level navigation commands (e.g., turn signal, goal vector) as input data; and corresponding
low-level control outputs as target data. Once this data has been used to train a control policy, the
policy can be deployed on a smartphone as a TensorFlow Lite model (Ignatov et al., 2019), and
used to autonomously control an OpenBot vehicle.

The policy network architecture used in the OpenBot framework is a straightforward variant of
PilotNet (Bojarski et al., 2016), which maps egocentric RGB observations (160×90 resolution) and
high-level navigation inputs to low-level control outputs. In our case, the navigation input vector is
three-dimensional, and consists of the distance between the agent and its goal, concatenated with
a two-dimensional heading vector that points towards the goal. When deployed on a real-world
OpenBot vehicle, we use odometry data from ARCore (Google, 2022) running on the smartphone
to estimate the navigation input vector. The control output vector is two-dimensional, and consists
of normalized motor voltages to be applied to the left and right wheels of the vehicle. Differences
between these two voltage values cause the vehicle to turn, and positive voltage values cause the
vehicle to move forwards.
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Evaluated in simulation Evaluated in the real world

Policy Success (% ↑) Collision (% ↓) Success (% ↑) Collision (% ↓)

Trained with 2% of sim data 10.9 87.3 2.5 86.6
Trained with 10% of sim data 44.9 54.9 45.7 43.3
Trained with 50% of sim data 53.0 46.5 58.5 34.7
Trained with 100% of sim data 54.3 43.1 63.7 29.4

Trained with real data 35.5 63.9 44.8 38.9

Table 2: Navigation policy transfer results. Policies trained with 50% or more of our simulated data
outperform a policy trained with real data across all metrics. Even a policy trained with 10% of our
simulated data achieves comparable performance to a policy trained with real data, despite having
access to roughly half as many data samples (~260K samples versus ~424K samples).

Data collection We use InteriorSim to automatically collect demonstrations for the OpenBot imita-
tion learning pipeline. More specifically, we use the virtual OpenBot agent included in InteriorSim,
which can access ground-truth localization information, and can obtain an obstacle-free path to any
reachable point in an environment. Building on this functionality, our data collection procedure
consists of randomly sampling a start and goal position in an InteriorSim environment, obtaining
a collision-free path to the goal, and tracking the path to the goal with a PID controller. We repeat
this procedure in different environments to automatically collect a large dataset of demonstrations.
In total, we collect data along 5,000 trajectories in 50 InteriorSim environments, resulting in ~2.6M
data samples consisting of {image, high-level navigation input, low-level control output} triplets.
We also construct 3 subsets containing 2%, 10%, and 50% of the data respectively.

Additionally, we collect a real-world dataset using crowd workers, each of whom is tasked with
piloting a real-world OpenBot. We filter the raw data in our real-world dataset to discard very
short (<30 frames) and very long (>300 frames) trajectories. Our final real-world dataset consists of
10,475 trajectories (~424K data samples) collected in 70 unique environments by novice pilots.

Training details We train policies with the same hyperparameters on each of the aforementioned
datasets. We train all polices to regress from an image and navigation input vector to a control
output vector, using the training recipe and loss from Müller & Koltun (2021), with a batch size of
512 and a learning rate of 0.001 for 200 epochs.

Evaluation in simulation When evaluating in simulation, we deploy our policies on a virtual
OpenBot agent in 3 distinct InteriorSim environments that have not been seen during training. For
each policy, and for a total of 100 runs per test environment, the policy is tasked with navigating
from a predefined set of initial locations to a predefined set of goal locations while avoiding
obstacles. The same initial and goal locations are used for all policies. For this evaluation, the
policies do not have access to any privileged waypoint information, but do have access to perfect
localization information.

Evaluation in the real world When evaluating in the real world, we deploy our policies on a
real-world OpenBot in 5 distinct real-world environments that have not been seen during training.
For each policy and environment, the policy is tasked with navigating to a goal location in 4 distinct
configurations: a diagonal trajectory with no obstacles, a U-turn trajectory, an L-turn trajectory, and
a straight trajectory with an obstacle. We conduct 10 repeated trials for each configuration. This
protocol results in 20 distinct trajectories (5 environments × 4 trajectories per environment), with
10 repeated trials per trajectory, for each of our 5 policies. For this evaluation, the policies do not
have access to any privileged information.

Results and discussion We find that policies trained with automatically generated InteriorSim
demonstrations outperform those trained with real-world human demonstrations. For example,
the policy trained with 10% of our simulated data achieves a better success rate than our policy
trained with real data when evaluated in the real world (46% versus 45%), despite having access
to roughly half as many training samples (~260K samples versus ~424K samples). This finding
suggests that the sim-to-real gap can be overcome by using simulation-only privileged information,
alongside high-fidelity rendering and physics. We attribute this finding to the improved quality and
consistency of demonstrations that can be obtained from InteriorSim, i.e., InteriorSim automatically
generates close-to-optimal trajectories to use as demonstrations, whereas our crowd workers were
not able to produce high-quality trajectories as consistently).
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Images Patches

Simulator Humans prefer InteriorSim (%) FID (↓) KID (×102 ↓) FID (↓) KID (×102 ↓)

Matterport3D 72.5 ± 1.3 59.6 4.0 ± 0.1 54.5 4.0 ± 0.1
Replica 63.5 ± 1.4 77.4 4.1 ± 0.1 59.7 3.1 ± 0.1
HM3D 65.9 ± 1.3 51.7 3.7 ± 0.2 49.6 3.9 ± 0.1

ThreeDWorld 67.3 ± 1.3 107.1 9.2 ± 0.2 97.2 7.2 ± 0.1
AI2-THOR 60.7 ± 1.4 64.0 4.3 ± 0.2 53.2 3.3 ± 0.1
ReplicaCAD 60.3 ± 1.4 106.1 9.0 ± 0.2 90.0 4.8 ± 0.1
InteriorSim (ours) – 52.4 4.2 ± 0.2 47.3 3.2 ± 0.1

Table 3: Photorealism results. We show how often humans consider InteriorSim images to be more
realistic than images from existing simulators in pairwise comparisons, as well as other quantitative
metrics for evaluating generative models. Humans consider InteriorSim to be more realistic than
existing interactive simulators between 60% and 67% of the time, and InteriorSim is quantitatively
more photorealistic across all metrics. Bold values indicate the best-performing interactive simula-
tor, underlined values indicate the best-performing non-interactive scanned dataset.

4.2 EVALUATING PHOTOREALISM

In this subsection, we quantitatively evaluate the photorealism of InteriorSim. At a high level, our
methodology is to generate images using InteriorSim and other baseline simulators. We compare
InteriorSim images to the images from other simulators in a set of pairwise human comparisons.
We also compare simulator images to real-world images using standard quantitative metrics for
evaluating generative models: Frèchet Inception Distance (FID) (Heusel et al., 2017) and Kernel
Inception Distance (KID) (Binkowski et al., 2018). These metrics are well-suited to compare
simulators, because they measure a simulator’s ability to generate images that are high-quality
(i.e., near the manifold of real-world images) and diverse (i.e., sufficient to cover the manifold of
real-world images). We summarize our results in Table 3, and we provide additional methodological
details in the supplementary material.

Real-world dataset We use RealEstate10K (Zhou et al., 2018) as our real-world dataset, which
contains roughly 10M images of indoor homes gathered from roughly 10K YouTube videos. We
chose RealEstate10K because it depicts a wide variety of indoor scenes that are semantically similar
to InteriorSim and the baseline simulators we use.

Baseline simulators We use ThreeDWorld (Gan et al., 2021a;b), AI2-THOR (Deitke et al.,
2020; Ehsani et al., 2021; Kolve et al., 2017), and ReplicaCAD (Szot et al., 2021) as our baseline
simulators, because they provide a level of photorealism that is representative of existing interactive
indoor simulators (see Table 1). For additional context, we also include several non-interactive
scanned datasets in our experiments: Matterport3D (Chang et al., 2017), Replica (Straub et al.,
2019), and HM3D (Habitat-Matterport, 2022; Ramakrishnan et al., 2021). We chose these scanned
datasets because they include semantic segmentation information (which we use to automatically
select appropriate rendered images, see the supplementary material for details), and they are the
most semantically similar to RealEstate10K. To facilitate fair comparisons, we set the rendering
quality parameters in each simulator to be as high as possible, and we set InteriorSim to use its
real-time rendering mode.

Comparing simulator images using pairwise human comparisons When performing our pair-
wise human comparisons, we follow the same experimental protocol as Chen & Koltun (2017).
Specifically, we randomly sample 500 images from each simulator, and we perform untimed pair-
wise comparisons between InteriorSim and each simulator using crowd workers. We ask each
worker, “which image is more realistic, A or B?” We repeat each image comparison 10 times,
leading to a total of 30,000 pairwise comparisons.

Comparing simulator images to real-world images using metrics for generative models As
noted in (Richter et al., 2021), the metrics we use are sensitive to the spatial layouts of simulator
images and real-world images (i.e., the spatial layout of a simulator image must roughly match a
real-world image to be considered photorealistic). In order to isolate this potential confounding
effect, we randomly sample 6 patches per image at 256×256 resolution (we perform comparisons
of entire images at 852×480 resolution), and we include comparisons of these patches in Table 3
alongside comparisons of entire images.
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4.3 EVALUATING SIM-TO-REAL SEMANTIC SEGMENTATION PERFORMANCE

Pre-training mIoU (↑)

None 39.8

Matterport3D 41.1
Replica 42.4
HM3D 42.4

AI2-THOR 43.2
ReplicaCAD 42.0
InteriorSim (ours) 43.7

Table 4: Sim-to-real trans-
fer results on 40-class RGB-
only NYUv2 semantic segmenta-
tion. Pre-training on InteriorSim
achieves better sim-to-real transfer
performance than existing interac-
tive simulators and non-interactive
scanned datasets.

In this subsection, we evaluate the sim-to-real transfer
performance of InteriorSim on a real-world semantic
segmentation task. At a high level, our methodology is
to pre-train several semantic segmentation models using
images from InteriorSim and other baseline simulators.
We then fine-tune each model on an appropriate real-world
training set, and evaluate the task performance of each
model on a real-world validation set.

We evaluate 40-class RGB-only segmentation performance
on the NYUv2 dataset (Gupta et al., 2013; Silberman et al.,
2012), and we report mean intersection-over-union (mIoU)
as the evaluation metric. We chose NYUv2 as our real-
world dataset in order to facilitate comparisons with existing
synthetic datasets (Li et al., 2020; McCormac et al., 2017;
Roberts et al., 2021; Song et al., 2017; Zhang et al., 2017).

For this experiment, we use the same images that we col-
lected from each simulator in Section 4.2, and we man-
ually map the category labels available in each simulator
to NYU40 labels. We use DeepLabv3 (Chen et al., 2017)
as our model architecture with a ResNet-101 encoder (He
et al., 2016) initialized using ImageNet weights (Russakovsky et al., 2015). We follow the training
recipe provided in the PyTorch documentation exactly (PyTorch, 2022) during our pre-training and
fine-tuning phases, and we train for 100 epochs during the pre-training phase, and 40 epochs dur-
ing the fine-tuning phase. We encountered numerical instabilities when training on ThreeDWorld
images, and therefore we do not report results for ThreeDWorld.

5 CONCLUSIONS

We introduced InteriorSim, a photorealistic simulator for embodied AI in the home. InteriorSim
provides a wider variety of fully interactive scenes (300) and objects (17,000+) than existing inter-
active simulators, and achieves an unprecedented level of visual fidelity. We leveraged these features
to train a point-goal navigation policy entirely in simulation that can successfully navigate through
cluttered real-world environments, and we found that automatically generated demonstrations from
our simulator outperform real-world human demonstrations. We also found that InteriorSim im-
proves sim-to-real transfer performance on a real-world semantic segmentation task.

We believe InteriorSim can enable progress on a wide range of embodied AI tasks, especially those
that involve traversing and rearranging densely cluttered indoor environments. InteriorSim also has
the potential to enable new grasping and manipulation behaviors that generalize across objects and
scenes, and ultimately across the sim-to-real gap. Additionally, InteriorSim could be used to actively
render photorealistic synthetic datasets, generating the right data at the right time for a perception
model as it is being trained. Moving beyond InteriorSim, we see abundant opportunities to co-design
game engines and learning algorithms to amortize rendering costs, extend simulation capabilities in
ways that assist training, and ultimately increase the spatial intelligence of embodied agents.
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