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ABSTRACT

Attention mechanisms are central to the success of large language models (LLMs),
enabling them to capture intricate token dependencies and implicitly assign impor-
tance to each token. Recent studies have revealed the sink token, which receives
disproportionately high attention despite their limited semantic role. In this paper,
we first expand the relationship between the sink token and other tokens, mov-
ing beyond attention to explore their similarity in hidden states, considering the
layer depth. We observe that as the layers get deeper, the cosine similarity be-
tween the normalized hidden states of the sink token and those of other tokens in-
creases, and that the normalized hidden states of the sink token exhibit negligible
changes. These imply that other tokens consistently are directed toward the sink
token throughout the layers. Next, we propose a dynamic token selection method,
called OrthoRank, using these findings to select important tokens. Specifically,
in a certain layer, we define token importance by the speed at which the token
moves toward the sink token. This is converted into orthogonality with the sink
token, meaning that tokens that are more orthogonal to the sink token are assigned
greater importance. Finally, through extensive experiments, we demonstrated that
our method results in lower perplexity and higher zero-shot accuracy compared to
layer pruning methods at the same sparsity ratio with comparable throughput.

1 INTRODUCTION

Large language models (LLMs) have shown remarkable performance across various tasks
(Thirunavukarasu et al.| [2023; Wu et al.| 2024} 2023 |[Labrak et al.|[2024; Nam et al.,|2024) However,
despite this, the computational cost of LLM inference remains a significant challenge, especially for
real-time applications. To address this challenge, many lightweight methods have been proposed
for LLMs. Among the various methods, layer pruning is a simple and effective approach to reduce
computational costs by removing layers that have less impact on the model. The impact is quantified
by either measuring the similarity between the input and output at each layer (Siddiqui et al., [2024;
Men et al., [2024), or by evaluating how the removal of a layer effects the final output (Song et al.,
2024} |[Kim et al.l 2024). |Song et al.| (2024) proposed an iterative pruning method based on these
metrics, while Kim et al.| (2024) introduced a one-shot pruning approach followed by additional tun-
ing using LoRA (Hu et al.| |2022). However, these methods have a limitation. They rely on selecting
layers for pruning based on a calibration set, which statistically determines the layers that can be
bypassed without computation. As a result, they do not effectively reflect the specific characteristics
of the input tokens. For instance, at each layer, certain tokens may require computation while others
do not, but layer pruning is unable to identify and process these tokens accordingly.

Motivated by the need for token level processing, early exit (Schuster et al., 2022} /Chen et al.| [2024)
and mixture of depth (Raposo et al., |2024) have proposed dynamic computation paths based on
token-level characteristics. Early exit determines that a token aligns with the final output, bypassing
the remaining layers. Mixture of depth uses routers at each layer to decide whether a token should
be computed or skipped. While these methods offer viable solutions, they rely on training additional
routers or classifiers, or require the entire model to be trained specifically for early exit. Although
these techniques have contributed to LLM acceleration, such as in speculative decoding, their prac-
tical use is limited because they require additional training across a wide range of existing models.
This paper, therefore, begins by questioning:
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Figure 1: Overview of our approach (OrthoRank). OrthoRank first determines the orthogonality of
tokens to the sink token after normalization at each layer. Based on this, the top K tokens are selected
for computation, while the remaining tokens bypass the layer.

Can we identify which tokens advantageous to compute at each layer without extra training?

To explore this, we analyze the internal workings of LLMs to determine whether each token requires
an update within a layer. Our focus is on one of the most distinctive phenomena in LLM behavior: the
attention sink (Xiao et al., 2024), which was first studied by investigating attention distributions and
identifying the presence of attention sinks. This phenomenon shows that the initial token in an input
sequence receives a disproportionately large share of attention, despite often lacking meaningful
semantic value. This occurs because, in autoregressive models, the initial token is visible to nearly
all subsequent tokens, leading to ‘excessive’ attention scores. Since then, this phenomenon has been
further explored (Sun et al.| 2024} |Canceddal |2024), calibrated (Yu et al.| [2024), and leveraged
in various ways (Son et al.| 2024} Zhang et al.l [2024) to improve LLM efficiency and enhance
understanding of their mechanisms. Through further investigation, we observe that sink tokens and
other tokens exhibit a distinctive cosine similarity pattern (Section [2)).

From this, we propose an importance ranking of tokens, OrthoRank, which leverages Or-
thogonality to Rank tokens based on their relevance to the sink token. We confirm that selecting
tokens with our orthogonal-based importance is effective, as it outperforms the opposite method
in language modeling performance (Section [3.1)). To apply this across multiple layers in the LLM,
we adopt the layer evaluation method from layer pruning. We then replace each layer with a token
selection layer and evaluate them to identify the optimal token selection layers (Section[3.2)). In Fig-
ure [T} we provide an overview of our proposed method, including the selection scheme. The main
idea is to calculate each token’s orthogonality to the sink token to select tokens. Selected tokens
pass through all steps within the layer (e.g., query, key, value, feed forward network, etc.), while
unselected tokens only participate in key and value calculations for the selected tokens without up-
dating their own states, similar to early-exit mechanisms. Many studies (Sun et al., 2024} [Son et al.,
2024 suggest that in certain models, the attention sink phenomenon occurs not only with any token
at the first position but also with specific delimiter tokens (e.g., ., “\n”). However, for simplicity
and consistency, we focus our calculations on the first token. That is, h' represents the input hidden
states of the sink token (i = 0) and other tokens (i > 1) at layer [.

In summary, the key contributions of our paper are as follows:

* We discover that after the layer where the attention sink occurs, the cosine similarity be-
tween the normalized hidden states of the sink token and those of other tokens increases,
as the layers deepen. However, the normalized hidden states of the sink token across the
layers remains largely unchanged. These mean that other tokens are heading toward the
sink token.

* We propose a simple but effective token selection method OrthoRank based on token-
sink orthogonality, prioritizing tokens closer to orthogonality for computation and bypass-
ing others, without the need for additional modules or training.

* We conduct extensive evaluations demonstrating that our method has better performance
compared to the existing layer pruning at the same sparsity with comparable throughput.
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Figure 2: (a, d) Cosine similarity between the normalized hidden states of the sink token (hg) and
other tokens of Llama-2-13B and Mistral-7B. I, is layer 4 and layer 2, respectively. (b-c, e-f)
Conceptual representation of the relationship between the sink token (red line) and other tokens
(blue lines) at layer right after l4;,,; and the final layer. After the attention sink, as layers progress,
the cosine similarity between the sink token and the other tokens increases, indicating that the tokens
are gradually aligning more closely with the sink token.

2 FURTHER ANALYSIS ON ATTENTION SINK BEYOND ATTENTION

In this section, we revisit the concept of the attention sink and introduce new insights based on
further analysis. An attention sink refers to the phenomenon where a particular token receives a
disproportionately high amount of attention from other tokens. This phenomenon is always observed
after a certain early layer, [;,, in the initial token (Xiao et al., 2024} [Sun et al., [2024).

We begin by verifying whether the special relationship between the sink token and the other tokens
appears in states other than attention. To the best of our knowledge, we are the first to analyze the
behavior of the sink token and other tokens through similarity analysis. In fact, the attention map
provides limited information regarding the layers because there is little difference between the layers
after layer l4;,. Therefore, we focus on the hidden states after the pre-attention normalization layer
(i.e., the normalized hidden states), because they are the direct inputs for an attention module in each
layer.

We investigate the cosine similarity between the normalized hidden states of tokens throughout the
layers, using wikittext dataset (Appendix [F). Figures [2(a) and [2{d) describe the cosine similarity
between the normalized hidden states of the sink token (i.e., ho) and those of other tokens (i.e.,
h; (1 <4 < 10)) of Llama-2-13B and Mistral-7B, respectively. For each model, the attention sink
occurs at layer 4 and layer 2. It is observed that the cosine similarity between the sink token and other
tokens decreases drastically right after layer [;, ;. However, after layer /5,1, the cosine similarity
between the sink token and other tokens tends to increase as the layers progress, although the ranges

of cosine similarity vary across models.

These findings are simply illustrated in 3D by Figures 2(b-c) and Pfe-f). We plot each state as a
unit vector on the hypersphere to focus on angles at layer right after [, and the final layer. In the
subfigures, the red line represents the normalized hidden states of the sink token (i.e., hg), while
the blue lines represent those of other tokens (i.e., h; and hip). Additionally, the cosine similarity
between other tokens except for the sink token does not show any consistent trend, presented in
Appendix [B] In summary, our findings offer insights that go beyond the information derived from
the attention map, revealing that as the layers deepen, the angles between the sink token and the
other tokens gradually decrease, after layer lg;,.
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(a) Llama-2-13B (ho). (b) Mistral-7B (ho). (c) Llama-2-13B (hso). (d) Mistral-7B (hso).

Figure 3: (a-b) Cosine similarity between the normalized hidden states of the sink token across
layers. (c-d) Cosine similarity between the normalized hidden states of another token (postiton 50)
across layers. The red boundary represents the layers after layer [5;,,%. The sink token shows similar
values not only with adjacent layers but also with distant layers, as confirmed through (a) and (b).
In contrast, the another token show similarity in adjacent layers, but differences accumulate, leading
to dissimilarity in distant layers, as shown in (c) and (d). These results highlight the static nature
unique to the sink token, in contrast to other tokens.

Obs. (1). For layer Iy, and the final layer L, cos(hy** T hl=ins 1) < cos(hf, hE), Vi.
Moreover, when lg;,r < I3 < Iy < L, it generally holds cos(}_zél , }_Lél) < cos(/_lé?, i_zi.z), Vi.

Next, we explore the cosine similarity between the normalized hidden states of the same token across
different layers. Through this analysis, we can determine whether the sink token and other tokens
are converging towards each other, or if one remains relatively stationary while the other actively
moves towards it.

Figures Eka) andEkb) illustrate the cosine similarity between the normalized hidden states of the sink
token across all layers of Llama-2-13B and Mistral-7B, respectively. The red boundary highlights
the layers ranging from [, to the final layer L. For Llama-2-13B, after passing through layer l4;,,1,
the layers are grouped together, with each group exhibiting a significantly higher degree of similarity
(close to 1). Despite this grouping, layers across different groups still maintain a relatively high level
of similarity, approaching nearly 0.8. For Mistral-7B, all layers following layer l4;, form a single
cohesive group, where the similarity between these different layers is consistently close to 1. These
results suggest that the sink token experiences almost no change in its trajectory in the normalized
hidden states space as it moves through the deeper layers. Therefore, the fixed sink token on the
hypersphere in Figure 2] which simplifies our Observation (1), is nearly accurate. Furthermore, this
observation can be linked to massive activations of the sink token in the hidden states, which appear
in a small number of fixed feature dimensions and are delivered to the next layer via the residual
connection, keeping high cosine similarity across layers.

Figures 3] ) and[3(d)illustrate the cosine similarity between the normalized hidden states of a token,
excluding the sink token, across all layers of Llama-2-13B and Mistral-7B, respectively. As ex-
pected, due to the presence of residual skip connections, there is relatively high similarity between
adjacent layers, especially along the diagonal. However, as the model processes more layers, dif-
ferences between the layers begin to accumulate, and the normalized hidden states at the final layer
eventually exhibit low cosine similarity compared to the normalized hidden states immediately fol-
lowing layer [y

Obs. (2). When Lyipi, < Iy < ly < L, cos(hl}, h2) remains close to 1.
However, cog(ﬁé1 , ﬁiz) decreases as the gap between [ and /5 widens, Vi > 1.

From Obs. (1) and Obs. (2), it is concluded that:

As the layers deepen, other tokens gradually align with the sink token, which remains almost static.
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3  ORTHORANK: DYNAMIC TOKEN SELECTION

In this section, we extend our observations as criteria for selecting tokens at layer [ (Section [3.1)).
Then, we propose a dynamic token selection algorithm, called OrthoRank (Section [3). Our algo-
rithm can be used in conjunction with the layer selection algorithm.

3.1 DYNAMIC TOKEN SELECTION CRITERIA

Attention scores are widely used to identify relationships between tokens and are often employed to
determine token importance. However, we discover that the relationships between tokens can also
be captured through normalized hidden states. Based on this observation, we propose using these
states to define token importance.

Our findings suggest that tokens follow a discrete trajectory in which they align with the sink token
(i.e., they move in a direction that increases cosine similarity). Building on this, we define the im-
portance of token 7 in a certain layer after [y, as the extent to which token ¢ can influence its cosine
similarity with the sink toker| }

9 o
H o cos (ho, hi)

‘. (1)

Starting from the relation hg h; = || ho|[|s]| cos (ho, ki), we compute the gradient of cos (ho, h;)
with respect to h;:

o 1 (ho - hi)
—cos (hg,h;) = —— | —— — cos (hg, h;) — . 2)
or, <% (hohi) = e \ gy — 8 (o hi)

Assuming that normalized hidden states have approximately equal norms except for sink token, we
can simplify the importance of token 7 based on the cosine similarity:

2

Ha cos (710, ﬁi) x1 — cos? (710, 711‘) . 3)

Oh;

Thus, the importance of token i is directly related to how small | cos (ho, h;) | is. As | cos (ho, h;) |
decreases, the importance increases because tokens that are more orthogonal to the sink token are
more likely to be selected, as they have a greater potential to influence the overall cosine similarity.

For implementation convenience, since the norms are approximately equal, we use the absolute
value of the inner product | h;| as a practical proxy for | cos (ho, hi) |. Therefore, to select the top
k important tokens, we rank them based on the smallest |k h;|, which corresponds to selecting the
tokens that are more orthogonal to the sink token.

Select top k tokens with smallest |hg f). “)

To validate the effectiveness of our proposed selection criterion, we performed an experiment using
the WikiText-2 dataset (Merity et al., [2022). In this experiment, we applied token selection one
layer at a time, examining the impact on the model’s language modeling performance. For each
individual layer, we selected the top 33% of tokens for computation based on our proposed metric,
which prioritizes tokens that are more orthogonal to the sink token (i.e., those with the smallest
inner product). We then compared the resulting perplexity (ppl) scores to those obtained using an
alternative method, where instead of selecting the most orthogonal tokens, we selected the bottom
33%—the tokens with the largest inner product—thereby evaluating the inverse of our approach.

"For simplicity, I is omitted in this section.
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Figure [f] shows the perplexity differences for layers af- 93] Diff perplexity (OrthoRank Reverse)
ter the attention sink (layer > 4), comparing our orthog- 2} _ Diff perplexity (OrthoRank,Random)

onal token selection method to both reverse (green) and }
random selection (blue). The results demonstrate that our
method consistently achieves lower perplexity, where a
negative value indicates better performance (lower ppl)
using our selection criterion, except in the final layer. -04
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In summary, our orthogonal token selection criterion
leads to better performance across most layers, confirm-
ing its effectiveness in reducing computation while main-  Figure 4: Layer-wise token selection.
taining accuracy.

3.2 DYNAMIC TOKEN SELECTION WITH SELECTIVE
LAYER

In Section 3.1} we demonstrated that selecting tokens closer to orthogonality at each layer improves
effectiveness while preserving model performance. However, challenges arise when applying this
selection across all layers. First, our selection criteria are less valid before the attention sink occurs.
Second, layers near the output are crucial for maintaining model reliability and require computation
for most tokens. Additionally, inter-layer dependencies must be considered.

Therefore, instead of applying our selection cri-

teria (OrthoRank) across all layers, we pro- (] oxtoken () 33%tokens (D 100% tokens
pose selectively applying it to specific lay- [N ENNNNNNN || DNRNERINNN | I I O PSRN
ers. To implement this, we combine our selec- ! Laver 40
tion criteria with existing layer pruning meth- (a) Layer pruning.

ods. While traditional layer pruning approaches T T e N

measure performance by removing layers one
by one, we measure performance by applying
token selection to layers incrementally. This
strategy enables efficient computation across
both tokens and layers while preserving model
fidelity.

Figure[5|compares layer pruning (Song et al.l 2024) and Ort hoRank with selective layers. In Figure
Bla), Layer pruning is applied to a Llama2-13b model with 40 layers and 20% sparsity, showing the

pruned layers. In Figure [5(b), to maintain the same sparsity, 30% of the layers are modified to
compute only 33% of the tokens, where the top 33% most orthogonal tokens to the sink token are
selected for computation. As shown in Figure [T] only the selected tokens are updated, while the
remaining tokens bypass the computation by passing the output of the previous layer through the
residual path. Specifically, unselected tokens are excluded from query computation, the query input
to the attention mechanism, and the feed-forward network (FFN) computations.

Algorithm 1: OrthoRank Layer in PyTorch

Layer 1 Layer 40

(b) OrthoRank with selective layer.

Figure 5: Comparison under the same sparsity.

def select_token_in_orthorank_layer (block, pruning_ratio):
importance_score = abs(torch.matmul (hidden_states[:, [0], :1,
hidden_states.transpose(l, 2)) .squeeze(l))

# exception handing for sink token
importance_score[:,0] = float(’inf’)

lowk_indices = importance_score.topk (k=int (pruning_ratio =
normalized_hidden_state.size(l), largest=False), dim=-1).indices

#Sorting for attention module
lowk_indices_sorted = torch.sort (lowk_indices) .values

# using except key & value states

selected_hidden_states = torch.gather (hidden_states, 1,
lowk_indices_sorted.unsqueeze (-1) .expand (-1, -1, hidden_states.
size(-1)))
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Table 1: Perplexity results on C4 dataset for various models.

Method Sparsity  Throughput Llama2 Llama3 Llama3.1 Mistral Mixtral
improv. 7B 13B  70B 8B 70B 7B 8x7B
Dense 0% 1.00x 726 673 5.71 9.45 6.77 8.38 7.41
SLEB 10% 1.11x 871 7.80 6.32 12.47 8.77 9.74 8.28
+OrthoRank 10% 1.08x 8.06 7.39 6.13 11.27 8.24 9.31 8.05
SLEB 20% 1.23x 1090 942 17.31 16.49 10.99 12.38 9.46
+OrthoRank 20% 1.18x 10.04 8.74 7.21 1495 10.25 11.54 9.56
Shortened LLaMa  10% 1.11x 879 793 6.34 13.28 - 9.99 8.37
+OrthoRank 10% 1.08x 8.04 7.60 629 11.22 - 9.43 8.47

Table 2: Mean accuracies (%) on zero-shot tasks for various models evaluated on PIQA, Wino-
Grande, HellaSwag, ARC-Challenge, and ARC-Easy.

. Llama2 Llama3 Llama3.1 Mistral Mixtral

Method Sparsity
7B 13B 70B 8B 70B 7B 8x7B
Dense 0% 69.06 71.77 76.56  72.87 80.08 74.14 77.23
SLEB 10% 63.13 66.74 73.13 66.94 76.22 68.82 74.41
+OrthoRank 10% 65.06 69.71 74.56 69.55 76.66 69.78 75.55
SLEB 20% 58.68 6297 70.82 58.10 73.24 61.59 70.84
+OrthoRank 20% 60.35 6699 71.25 60.84 73.96 63.38 72.52
Shortened LLaMa 10% 62.07 69.72 7422 69.87 - 66.63 71.97
+OrthoRank 10% 64.79 70.78 73.67 70.77 - 68.33 73.70

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We conducted experiments comparing layer pruning and OrthoRank with selective layer approaches.
Following the evaluation protocol in (Song et al., 2024), we set target sparsities at 10% and 20%. To
ensure the same sparsity ratio across methods, our algorithm applied 15% and 30 % layer selection,
with only 33% of tokens computed in the selected layers. We compared our method against two
baseline algorithms: the iterative layer pruning method SLEB (Song et al., [2024) and the one-shot
pruning method Shortened LLaMA (Kim et al.,|2024)) without finetuning. Since the one-shot method
suffers a significant performance drop at 20% without fine-tuning, we limited its comparison to 10%
sparsity. We measured throughput on a single A6000 GPU with a batch size of 32 and prompts of
length 2048. The throughput was averaged over 50. To validate the robustness of ours across a wide
range of models, we conducted experiments on various models, including Llama2 (7B, 13B, 70B)
(Touvron et al.,2023), Llama3 (8B), Llama3.1 (70B) (Dubey et al., 2024), Mistral (7B) (Jiang et al.,
2023), Mixtral (8x7B) (Jiang et al.l 2024)). Except for the ablation study on token selection ratio
(Sectionfd.5.4), all experiments were conducted with a ratio of 0.333.

4.2 RESULTS ON PERPLEXITY

Table|l|compares the performance of various models on the language modeling task. Since the lay-
ers were pruned (selected) using the Wikitext-2 dataset, we used the the C4 validation set (Raffel
et al.||2020)) for the performance comparison. Our proposed method, OrthoRank, outperformed other
layer pruning approaches in terms of perplexity in most cases except for some case of Mixtral-8x7B
model. This indicates that by focusing on token orthogonality to the sink token, OrthoRank effec-
tively reduces computational complexity, achieving throughput improvements nearly proportional
to sparsity reductions—1.08x for 10% sparsity and 1.18x for 20%—demonstrating comparable effi-
ciency to layer pruning.

4.3 RESULTS ON ZERO-SHOT TASK

We further evaluated OrthoRank’s performance on several zero-shot tasks, including PIQA (Bisk
et al., [2020), WinoGrande (WG) (Sakaguchi et al., [2021)), HellaSwag (HS) (Zellers et al., |2019),
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Table 3: Ablation study for selection criteria, stage, and KV for unselected token.

Llama2-13B Llama3-8B Mistral-7B Mixtral-8x7B

Criteria Stage KV
ppl; accy | pply  accy | pply acey | pply  acey
Random hi | v | 1083 61.17 | 1623 59.15 | 12.05 62.88 | 9.85 69.45
Orthogonal | hi | v | 11.85 5881 | 18.06 5837 | 13.03 59.47 | 9.76 66.27
Orthogonal hi | v/ | 964 6430 | 1572 60.82 | 11.53 63.87 | 9.55 71.49
Orthogonal hi | X | 977 6470 | 17.72 5876 | 1421 61.34 | 10.94 67.55
Orthogonal hi | v | 874 6699 | 1495 60.84 | 11.54 63.88 | 9.56 72.85

ARC-easy, and ARC-challenge (Clark et al., [2018), using the LM Evaluation Harness. As shown in
Table 2] OrthoRank demonstrated better performance compared to layer pruning in most cases.

4.4 RESULTS ON LONGBENCH

Context length for layer selection ~ Sparsity Method Average acc.
0% Dense 30.93
SLEB 25.10
10%
2048 +OrthoRank 29.61
SLEB 17.85
20% +OrthoRank 25.23
10% SLEB 25.10
4096 +OrthoRank 29.71
SLEB 17.85
20% " LorthoRank  24.52
SLEB 30.42
10%
8192 +OrthoRank 29.77
20% SLEB 21.53

+OrthoRank 23.89

Table 4: Mean accuracies on LongBench for LlaMa-3-8B.

The evaluation results from LongBench (Bai et al.| [2023)) are shown in TableEI For the Longbench
experiments, we tested calibration lengths of 2048, 4096, and 8192 during the iterative layer se-
lection process. As expected, higher context lengths led to improved performance, and OrthoRank
consistently outperformed SLEB in most cases.

4.5 ABLATION STUDY
4.5.1 TOKEN SELECTION CRITERIA

Row 1, 2, and 5 in Table [3]compare the performance of different token selection strategies: random
selection, Orthogonal |, and Orthogonal 1 (Ours). Ours consistently achieves the best results, with
lower perplexity and higher accuracy across all models, followed by random selection, while the
opposite strategy (Orthogonal ) performs the worst. These results confirm that selecting tokens fur-
ther from the sink token (Orthogonal 1) leads to more efficient selection and improved performance
for same computation complexity, validating the token selection criterion introduced in Section 3]

4.5.2 SIMILARITY MEASUREMENT STAGE

Table @compares the use of hidden states (Row 3) and normalized hidden states (Row 5) for token
selection. The results show that using normalized hidden states leads to better performance, with
lower perplexity and higher accuracy. As discussed in Section 2, our findings are based on normal-
ized hidden states, making this result consistent with our expectations and further confirming the
importance of normalization in improving token selection. However, it performs better than some
other components of our approach, suggesting that while the weights within the normalization pro-
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Table 5: Ablation study according to the layer and token selection ratios under the sparsity of 20%.

Layer ratio Token ratio Acc. (%)

0.2 0 62.97
0.3 0.333 66.99
0.4 0.5 65.14
-e- SLEB » 70 -e- SLEB
104 —m— OrthoRank st o —=— OrthoRank

Log perplexity
Accuracy (%)

10 20

30 40 30 40
Sparsity (%) Sparsity (%)

(a) Perplexity (b) Mean of zero-shot accuracies

Figure 6: Performance comparison across varying sparsity levels: (a) Log perplexity (lower is better)
on C4 dataset and (b) Mean of zero-shot accuracies (higher is better) evaluated on PIQA, Wino-
Grande, HellaSwag, ARC-Challenge, and ARC-Easy. OrthoRank demonstrates superior perfor-
mance across all sparsity levels except at 0.4.

cess do affect the cosine similarity, the hidden state similarity still operates in a somewhat similar
manner.

4.5.3 KV CALCULATION FOR UNSELECTED TOKENS

In Table [3] we compare Row 4, where Key and Value (KV) computations for unselected tokens
are skipped, with Row 5, where KV values are computed even for unselected tokens. The results
show that calculating KV values for all tokens, regardless of whether they are selected for updates,
leads to better performance. This is because our token selection strategy focuses on how quickly a
token’s state updates, without considering the influence these tokens exert on others through KV in-
teractions. When KV calculations for unselected tokens are skipped, the reduced interaction among
tokens significantly degrades overall performance. Therefore, while unselected tokens are not up-
dated, it is essential to compute their KV values to maintain model performance. This approach
resembles calculating key-value pairs for tokens that have exited in early exit methods.

4.5.4 SPARSITY TRADE-OFFS IN TOKEN AND LAYER SELECTION

We conducted experiments by varying the ratio of selected layers and selected tokens while main-
taining the same effective sparsity. Based on Table [5] we recommend using a token selection ratio
between 0 and 0.5.

4.5.5 PERFORMANCE COMPARISON ACROSS SPARSITY LEVELS

Figure 6 compares OrthoRank’s performance under varying sparsity levels using log perplexity on
the C4 dataset (Figure 6a) and mean accuracy on zero-shot tasks (Figure 6b). OrthoRank consistently
achieves lower perplexity than SLEB across all sparsity levels except 40%, demonstrating its ability
to optimize token selection while preserving language modeling capabilities.

In zero-shot tasks, OrthoRank also outperforms other methods across most sparsity levels, except
at 40%, where performance parity is observed. These results highlight the effectiveness of token
orthogonality-based selection in balancing computational efficiency and model accuracy across di-
verse tasks.
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5 RELATED WORK

Layer Pruning. Layer pruning has been a prominent approach for reducing the computational
complexity of large language models (LLMs), particularly in transformer architectures (Siddiqui
et al., 2024; Men et al., [2024). Approaches like SLEB (Song et al.| [2024) and Shortened LLaMA
(Kim et al., [2024)) aim to remove entire layers that are deemed less critical for downstream tasks.
These methods often rely on performance metrics or sensitivity analysis to determine which layers
contribute less to overall model accuracy and can be pruned without significant loss of performance.
However, layer pruning may result in abrupt performance degradation, particularly when layers
responsible for essential token transformations are removed. While these methods effectively reduce
model depth, they do not account for token-level variations within layers. In contrast, our approach
integrates token selection within specific layers, maintaining layer depth but reducing the number
of tokens processed in each layer, thus offering a more fine-grained control over computational
efficiency.

Attention Sink. The concept of the attention sink, where certain tokens receive disproportionately
high attention across layers, has gained attention in recent studies. Xiao et al.[(2024) first introduced
the term “attention sink” to describe how the initial token in a sequence tends to dominate attention
scores in autoregressive models. This is attributed to its visibility to all subsequent tokens, causing it
to act as a “sink” for attention. Sun et al.|(2024)) further investigated the attention sink phenomenon,
showing that this behavior persists across multiple layers, leading to a static role for the sink token,
while other tokens move toward it in hidden state space. Building on these observations, our work
explores token-sink orthogonality and uses this metric to inform token selection. By selecting tokens
that are more orthogonal to the sink token, we prioritize tokens with greater potential to contribute to
meaningful computations, leveraging the inherent token dynamics to optimize inference efficiency.

Token Pruning. Token pruning methods have been widely explored as a way to reduce the number
of tokens processed across layers, thus decreasing computational load. Techniques like dynamic to-
ken selection (Lou et al.,2024) and early exit mechanisms (Chen et al.|[2024; Del Corro et al., [2023}
Elhoushi et al.,|2024) progressively drop tokens deemed uninformative as they pass through layers.
These methods rely on criteria such as attention scores or token contribution measures to decide
which tokens to prune. However, one potential downside of token pruning is the loss of potentially
relevant information as tokens are eliminated layer by layer, especially in deeper models where re-
maining tokens may not fully capture the complexity of the input sequence. Our approach differs
significantly in that we do not progressively drop tokens across layers. Instead, we selectively com-
pute a subset of tokens at specific layers based on their orthogonality to the sink token. This ensures
that we preserve the flexibility to compute tokens based on their relevance without completely dis-
carding them, thus mitigating the risk of information loss while still reducing computational costs.

6 CONCLUSION

In this paper, we introduced OrthoRank, a dynamic token selection strategy based on the orthogo-
nality between tokens and the sink token. Our approach was motivated by the observation that as
layers deepen, tokens increasingly align with the sink token in the normalized hidden state space.
By analyzing token-sink similarity, we found that tokens more orthogonal to the sink token play
a greater role in computation. Leveraging this insight, we developed a token selection mechanism
that prioritizes such tokens at specific layers, leading to more efficient computation. By applying
this token selection approach to selective layers, we achieved superior performance compared to
traditional layer pruning methods at the same sparsity level with comparable throughput. Extensive
experiments demonstrated significant improvements, and ablation studies confirmed that our selec-
tion scheme is optimized both theoretically and empirically. Furthermore, our findings on token-sink
similarity offer valuable insights for future research in Efficient LLM inference and Interpretable
LLMs, providing a foundation for further optimizing and understanding large language models.

REPRODUCIBILITY

We provide pseudo code through Algorithm 1 and implementation details in Section

10
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A COSINE SIMILARITY CHANGES OF THE SAME TOKEN ACROSS LAYERS
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Figure 7: Cosine similarity across layers for different models and token positions. Each column cor-
responds to a different model: Llama-2-7B, 13B, 70B; Meta-Llama-3-8B; and Llama-3.1-70B. Each
row represents a token position: 0 (sink), 50, and 100. The red boundary represents the layers after
layer l4;,, ;. The sink token shows similar values not only with adjacent layers but also with distant
layers. In contrast, other tokens show similarity in adjacent layers, but differences accumulate, lead-
ing to dissimilarity in distant layers These results highlight the static nature unique to the sink token,
in contrast to other tokens.
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B COSINE SIMILARITY CHANGES BETWEEN TOKENS ACROSS LAYERS
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Figure 8: Cosine similarity changes between tokens across layers. Each column corresponds to a
different model: Llama-2-7B, 13B, 70B; Meta-Llama-3-8B; and Llama-3.1-70B. Left: Cosine simi-
larity between tokens at position 0 and 91-100. Right: Cosine similarity between tokens at position
50 and 91-100. Results highlight tokens show increasing cosine similarity with the sink token (po-
sition 0) across layers (left), but show no consistent trend with position 50 (right).
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Figure 9: Cosine similarity changes between diverse tokens across layers. Each column corresponds
to a different model: Llama-2-7B, 13B, 70B; and Meta-Llama-3-8B. Left: Cosine similarity between
tokens at position 0 and {1, 10, 100, 1000}. Right: Cosine similarity between tokens at position at
position 50 and {1, 10, 100, 1000}. Results highlight that tokens, even when their positions are far
from each other, show increasing cosine similarity with the sink token (position 0) across layers
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(left), but show no consistent trend with position 50 (right).
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C SUPPLEMENTARY DERIVATION FOR SECTION 3

We begin with the gradient of the cosine similarity between the sink token’s hidden state ho and the
hidden state of token i, h;

o (ho o hi>
— cos (ho, h;) = — —— —cos (hg, h;) — . (&)
ot <% (hohi) = e \ gy~ 28 (o hi)

We are interested in the magnitude of this gradient, specifically its squared norm:

2 2

Hacos(ho,hi) LN B0 o (g, ) ©)

Oh; 1Rl 1ol 1]
As observed in Figure 9, the norms of the hidden states ||k;|| (excluding ||ho||) are approximately
equal. Therefore, we assume:

[[hil| ~ ¢ @)

Substituting ||h;|| ~ c into the gradient norm squared:

d P 1| ho B
— ho, hi)|| ~ = ||— — ho, hi)— 8
Hahz COS( 05 Z) 02 ||hOH COS( (B} l) c ( )
To simplify the expression, we define unit vectors u, v as follows:
ho h;
u=-———, v=— )
1ol c
Substituting u and v into the expression:
o - - * 1
Hahi cos(ho, hy)|| =~ = |u — cos(u, v)v|® (10)
We compute the squared norm:
u — cos(u, v)v|* = [|ul|? = 2cos(u, v)u' v + cos®(u, v)||v||?
~ 1 —2cos?(u,v) + cos?(u, v)
=1—cos*(u,v)
Substituting back:
? cos(hg, h;) 2 ~ ) (1 — cos®(ho, hy)) (11)
8h1 05 g o2 0, It
Since %2 is a constant, the gradient norm squared is proportional to 1 — cos?(hg, h;):
o o -
Hah cos(hg, h;)|| o< 1 —cos?(hg, h;) (12)
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D LAYER-WISE RESULTS

Figure [TT] shows the perplexity differences for layer-wise manner, comparing our orthogonal token
selection method to both reverse (green) and random selection (blue). OrthoRank demonstrated
superior performance compared to both Random and Reverse (opposite) approaches in most models
and across most layers. Rare layers where OrthoRank performs worse are automatically filtered out
during the selection process, so this does not pose a significant issue.

—.— Daff perplexity(OrthoRank, Random) —.— Diff perplexity(OrthoRank, Reverse)
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Figure 11: Layer-wise selection results.
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E RESULTS FOR EACH TASK

In this section, we present the detailed results for each task corresponding to Table [I], Table 2} and
Table[]in the main paper.

Table 6: Zero-shot results (%) for various tasks and models with SLEB and OrthoRank by sparsity.

Model Sparsity Method PIQA WG HS ARC-C ARC-E
10% SLEB 77.15 6338 70.69  38.57 65.87
LLaMA-2 7B +OrthoRank 77.97 65.82 72.22 40.96 69.32
20% SLEB 74.54 59.51 64.71 35.41 59.22
¢ +OrthoRank 76.33 56.51 65.68 37.12 65.95
10% SLEB 79.11 66.85 7433 41.55 71.89
LLaMA-2 13B +OrthoRank 79.82 69.93 75.96 46.59 76.26
20% SLEB 76.67 65.11 70.52  38.23 64.35
¢ +OrthoRank  79.16 64.17 73.00 44.45 74.16
10% SLEB 81.50 75.06 80.00 52.30 76.77
LLaMA-2 70B +OrthoRank 81.34 75.69 81.46 55.72 78.62
20% SLEB 80.14 73.09 7720 48.29 75.38
° +OrthoRank 80.47 73.01 78.42 50.00 76.68
10% SLEB 78.02 67.88 7179 44.37 72.56
LLaMA-3 8B +OrthoRank 79.49 69.30 71.88 47.70 74.62
20% SLEB 75.19 56.59 63.35 35.49 61.11
¢ +OrthoRank 75.52 58.01 65.63 38.40 66.67
10% SLEB 83.35 76.09 81.78 58.19 81.70
LLaMA-3.1 70B +OrthoRank 83.84 71.27 82.84 60.67 84.68
20% SLEB 81.39 74.03 78.00 53.67 79.12
‘ +OrthoRank 82.10 69.77 79.87 56.48 81.56
10% SLEB 79.22 68.59 76.60 45.65 74.03
. +OrthoRank 80.96 70.72 77.49 46.25 74.71
Mistral 7B
20% SLEB 76.88 6275 66.71 37.46 64.14
+OrthoRank 7748 65.27 7091 40.02 65.74
10% SLEB 82.81 72.70 81.35 54.95 80.26
Mixiral-8x7B +OrthoRank 82.97 74.51 82.16 58.79 81.57
20% SLEB 80.47 7120 77.33 48.89 76.35

+OrthoRank 81.94 72.85 79.24  52.05 78.16

Table 7: Longbench performance comparison across tasks with varying context lengths of calibration
and sparsity.

Context Length ~ Sparsity ~ Method Datasets

NrtvQA  Qasper MF-en  HotpotQA  2WikiMQA  Musique GovReport QMSum  MultiNews TREC TriviaQA SAMSum PCount  PRe Lee RB-P

Dense 17.13 14.08 2493 10.09 124 6.77 30.57 23.72 1.6 715 89.9 45.6 1.16 95 7047  65.53

10% SLEB 5.87 6.26 17.93 7.84 8.63 4.73 24.83 19.72 19.58 475 82.94 39.11 314 323 5803 5231

2048 ° +OrthoRank  17.35 1145 2384 9.5 12.67 7.03 28.73 22.62 127 65.5 90.82 43.37 0.29 1092 66.26 63.77
20% SLEB 1.91 5.01 14.27 523 6.87 357 14.14 16.58 7.54 48 46.98 24.42 134 527 4267 4193

el +OrthoRank ~ 11.84 9.05 20.59 8.34 10.54 4.88 19.58 2275 1.69 48.5 86.73 40.42 1.31 4.72 5565 57.15

10% SLEB 5.87 6.26 17.93 7.84 8.63 4.73 24.83 19.72 19.58 475 82.94 39.11 3.14 323 5803 5231

4096 ° +OrthoRank 17.35 1145 23.84 9.5 12.67 7.03 28.73 22.62 127 65.5 90.82 43.37 0.29 1092 66.26 63.77
20% SLEB 1.91 5.01 14.27 523 6.87 3.57 14.14 16.58 7.54 48 46.98 24.42 1.34 527 4267 4193

v +OrthoRank 10.86 8.45 19.07 8.64 10.25 4.76 19.08 22.87 1.3 40.5 86.23 40.9 1.32 49 5631 56.97

10% SLEB 16.98 13.71 24.44 9.16 12.87 6.25 29.59 20.54 15.19 70.5 87.17 42.52 2 7 66.11  62.65

8192 ° +OrthoRank ~ 17.25 11.89  22.64 9.29 12.45 7.23 28.08 23.15 1.54 68 90.98 42.99 0.42 8.88 67.17 64.29
20% SLEB 3.68 7.6 19.96 5 8.6 342 19.27 17.25 8.24 59 75.68 33.16 3.14 3.6 3534 4149

e +OrthoRank  12.54 7.91 19.75 8.76 10.57 5.01 19.45 2145 1.22 305 87.9 39.84 1.1 39 5628 56.09
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F TEXT INPUTS USED FOR FIGURES 2 [B] [7l, AND[8]

This section provides the input text used to generate the plots in Figures 2] 3} [7] and [8] Due to
memory constraints associated with storing token hidden states for visualization, we limited the
context length to 101 tokens. The following text is extracted as the first 101 tokens from the test
split of WikiText-2-raw-v1. For clearer visualization, we excluded \n , which is known to cause

additional attention sink (Sun et al.|[2024)), from the experiments.

= Robert Boulter = Robert Boulter is an English film , television and theatre actor . He had a guest @-@ starring role on the
television series The Bill in 2000 . This was followed by a starring role in the play Herons written by Simon Stephens , which was
performed in 2001 at the Royal Court Theatre . He had a guest role in the television series Judge John Deed in 2002 . In 2004 Boulter
landed a role as ” Craig " in the episode ” Teddy ’s Story ” of the television series The Long Firm ; he starred alongside actors Mark
Strong and Derek Jacobi . He was cast in the 2005 theatre productions of the Philip Ridley play Mercury Fur , which was performed
at the Drum Theatre in Plymouth and the Menier Chocolate Factory in London . He was directed by John Tiffany and starred
alongside Ben Whishaw , Shane Zaza , Harry Kent , Fraser Ayres , Sophie Stanton and Dominic Hall . In 2006 , Boulter starred
alongside Whishaw in the play Citizenship written by Mark Ravenhill . He appeared on a 2006 episode of the television series ,
Doctors , followed by a role in the 2007 theatre production of How to Curse directed by Josie Rourke . How to Curse was performed
at Bush Theatre in the London Borough of Hammersmith and Fulham . Boulter starred in two films in 2008 , Daylight Robbery by
filmmaker Paris Leonti , and Donkey Punch directed by Olly Blackburn . In May 2008 , Boulter made a guest appearance on a two
@-@ part episode arc of the television series Waking the Dead , followed by an appearance on the television series Survivors in
November 2008 . He had a recurring role in ten episodes of the television series Casualty in 2010, as ” Kieron Fletcher . Boulter
starred in the 2011 film Mercenaries directed by Paris Leonti . = = Career = = = = = 2000 — 2005 = = = In 2000 Boulter had a
guest @-@ starring role on the television series The Bill ; he portrayed ” Scott Parry ” in the episode , ” In Safe Hands ” . Boulter
starred as ” Scott ” in the play Herons written by Simon Stephens , which was performed in 2001 at the Royal Court Theatre . A
review of Boulter ’s performance in The Independent on Sunday described him as ” horribly menacing ” in the role , and he received
critical reviews in The Herald , and Evening Standard . He appeared in the television series Judge John Deed in 2002 as ” Addem
Armitage ” in the episode ” Political Expediency ” , and had a role as a different character ” Toby Steele ” on The Bill . He had a
recurring role in 2003 on two episodes of The Bill , as character ” Connor Price ” . In 2004 Boulter landed a role as ” Craig ” in
the episode ” Teddy ’s Story ” of the television series The Long Firm ; he starred alongside actors Mark Strong and Derek Jacobi .
Boulter starred as ”” Darren ” , in the 2005 theatre productions of the Philip Ridley play Mercury Fur . It was performed at the Drum
Theatre in Plymouth , and the Menier Chocolate Factory in London . He was directed by John Tiffany and starred alongside Ben
‘Whishaw , Shane Zaza , Harry Kent , Fraser Ayres , Sophie Stanton and Dominic Hall . Boulter received a favorable review in The
Daily Telegraph : ” The acting is shatteringly intense , with wired performances from Ben Whishaw ( now unrecognisable from his
performance as Trevor Nunn ’s Hamlet ) , Robert Boulter , Shane Zaza and Fraser Ayres . ” The Guardian noted , ” Ben Whishaw
and Robert Boulter offer tenderness amid the savagery . ” = = = 2006 — present = = = In 2006 Boulter starred in the play Citizenship
written by Mark Ravenhill . The play was part of a series which featured different playwrights , titled Burn / Chatroom / Citizenship
. In a 2006 interview , fellow actor Ben Whishaw identified Boulter as one of his favorite co @-@ stars : ” I loved working with a
guy called Robert Boulter , who was in the triple bill of Burn , Chatroom and Citizenship at the National . He played my brother
in Mercury Fur . ” He portrayed ” Jason Tyler ” on the 2006 episode of the television series , Doctors , titled ” Something I Ate ™.
Boulter starred as ” William ” in the 2007 production of How to Curse directed by Josie Rourke . How to Curse was performed at
Bush Theatre in the London Borough of Hammersmith and Fulham . In a review of the production for The Daily Telegraph , theatre
critic Charles Spencer noted , ” Robert Boulter brings a touching vulnerability to the stage as William . ” Boulter starred in two
films in 2008 , Daylight Robbery by filmmaker Paris Leonti , and Donkey Punch directed by Olly Blackburn . Boulter portrayed a
character named ” Sean ” in Donkey Punch , who tags along with character ” Josh ” as the ” quiet brother ... who hits it off with
Tammi ” . Boulter guest starred on a two @-@ part episode arc ” Wounds ” in May 2008 of the television series Waking the Dead
as character ” Jimmy Dearden ” . He appeared on the television series Survivors as ” Neil ” in November 2008 . He had a recurring

role in ten episodes of the television series Casualty in 2010, as ” Kieron Fletcher ” . He portrayed an emergency physician applyi
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G EXPLORING THE TRADE-OFFS BETWEEN THROUGHPUT AND PERPLEXITY

In this section, we investigated the relationship between throughput improvements and perplexity
across varying sparsity levels. Figure [I2] demonstrates how each point corresponds to a specific
sparsity level. A sharp increase in perplexity is observed at the 50% sparsity point, highlighting the
critical threshold for balancing sparsity and preserving model performance while accounting for the
speed tradeoff. Based on this finding, we recommend using OrthoRank with sparsity levels below
40% to maintain an optimal balance.

Each point represents a sparsity level
(10%, 20%, 30%, 40%, 50%)

30%

0 10% 20%

12 13 14 15 16
Throughput Improvements

Figure 12: The relationship between throughput improvements and perplexity (C4). Each point rep-
resents a different sparsity level, showing a sharp increase in perplexity at the 50% sparsity level
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H EXAMPLE OF GENERATION TASK

Table 8: Example of generation task.

Generation using OrthoRank

Prompt for OrthoRank

Struggling with a recent break-up, a person opens up about the intense feelings of
loneliness and sadness. They ask for advice on how to cope with the heartbreak
and move forward in life. They also wonder if they will ever find love again.

OrthorRank

I’'m sorry to hear that you are struggling with loneliness after a recent break-up.
It’s natural to feel sad and lonely after a relationship ends, and it’s not uncommon
to feel like you are the only one experiencing these feelings.

Here are some tips to help you cope with loneliness and move forward:

1. Acknowledge your feelings: It’s okay to feel lonely and sad. Allow yourself to
process your emotions and give yourself time to heal.

2. Connect with friends and family: Reach out to loved ones for emotional support
and companionship.

3. Engage in activities: Try new hobbies or activities that bring joy and help you
feel productive, such as exercising, reading, or cooking.

4. Practice self-care: Take care of your physical and emotional needs. Get enough
sleep, eat well, exercise regularly, and take breaks from screens.

5. Seek professional help: If you find that your feelings of loneliness and sadness
are persistent and affecting your daily life, consider seeking counseling or therapy.
Remember that healing takes time, and it’s important to be patient and compas-
sionate towards yourself. With time and effort, you can move forward in life feel-
ing stronger and happier.

Evaluation using ChatGPT 40

Prompt for ChatGPT 40

Given the following response to the prompt, evaluate its quality on a scale from 1
to 5, considering factors such as relevance, clarity, and accuracy.

ChatGPT 4o

I would rate this response 4 out of 5 based on the following factors:
Strengths:

Relevance: The response directly addresses the emotional struggle of a breakup,
providing practical and empathetic advice tailored to the prompt.

Clarity: The suggestions are well-organized, easy to follow, and actionable,
making them accessible for the reader.

Empathy: The tone is kind and understanding, which is critical in responding to
someone dealing with heartbreak. Accuracy: The advice, including acknowledg-
ing feelings, connecting with loved ones, and seeking professional help, aligns
with well-established coping strategies.

Areas for Improvement:

Depth: While the advice is solid, it could go further in addressing the spe-
cific question of whether they will find love again, which is an integral part of the
prompt.

Personalization: The response is somewhat generic and could feel more tailored
by acknowledging the unique experience of each individual (e.g., "Every breakup
is different, but...”).

Emotional Validation: While it acknowledges loneliness and sadness, it could do
more to validate the fear and uncertainty about the future, such as addressing the
difficulty of imagining a new relationship during heartbreak.

Overall:
The response is thoughtful and helpful but could improve by addressing the

existential question about finding love again and offering more personalized
reassurance.
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