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Contrary to common sense

Noise image

No semantic meanings

Coherence

Semantics

No semantic meanings

Contrary to common sense Noise image

Note: The holes in the sky 
and blurry upon the 
building contradict
common sense.

Note: Sharks should have 
eyes but it not always the 
case in AI generated 
images.

Note: Images 
generated with 

complex, 
symmetrical pattern 
but lack meaningful 
semantic content.

Note: From the perspective 
of noise, the details in this 
image are grainy. However, 
as a whole, the image still 
clearly presents the 
semantics of an orange 
kitten, giving people a hazy 
and artistic feeling

Note: The image has a lot of 
blurriness, and the most 
crucial facial area has 
become completely 
unrecognizable, which 
severely affects the viewing 
experience. The blurriness 
in this image makes the 
overall impression quite 
disharmonious.

Figure 1: The quality of AI-generated images is greatly influenced by the semantic content, i.e., the coherence and existence of
semantic content. The coherence of a picture’s semantic content is crucial for providing a logically sound visual experience for
human viewers, and images lacking semantic content fail to effectively communicate their intended design, reducing viewer
engagement and satisfaction. This article primarily focuses on "Contrary to common sense" (CCS), "Noise image" (NI) and
"No semantic meanings" (NSM). We categorize "CCS" and "NI" under the coherence of semantics, while "NSM" falls under the
existence of semantics.

ABSTRACT
Traditional deep neural network (DNN)-based image quality as-
sessment (IQA) models leverage convolutional neural networks
(CNN) or Transformer to learn the quality-aware feature repre-
sentation, achieving commendable performance on natural scene
images. However, when applied to AI-Generated images (AGIs),
these DNN-based IQA models exhibit subpar performance. This
situation is largely due to the semantic inaccuracies inherent in cer-
tain AGIs caused by uncontrollable nature of the generation process.
Thus, the capability to discern semantic content becomes crucial for
assessing the quality of AGIs. Traditional DNN-based IQA models,
constrained by limited parameter complexity and training data,
struggle to capture complex fine-grained semantic features, making
it challenging to grasp the existence and coherence of semantic
content of the entire image. To address the shortfall in semantic con-
tent perception of current IQA models, we introduce a large Multi-
modality model Assisted AI-Generated Image Quality Assessment
(MA-AGIQA) model, which utilizes semantically informed guid-
ance to sense semantic information and extract semantic vectors
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through carefully designed text prompts. Moreover, it employs a
mixture of experts (MoE) structure to dynamically integrate the
semantic information with the quality-aware features extracted by
traditional DNN-based IQA models. Comprehensive experiments
conducted on two AI-generated content datasets, AIGCQA-20k and
AGIQA-3k show that MA-AGIQA achieves state-of-the-art perfor-
mance, and demonstrate its superior generalization capabilities on
assessing the quality of AGIs. The code will be available.

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks.

KEYWORDS
ImageQuality Assessment, AI-Generated Image, LargeMulti-modality
Model, Mixture of Experts

1 INTRODUCTION
The rapid advancement of artificial intelligence (AI) has led to a pro-
liferation of AI-generated images (AGIs) on the Internet. However,
current AI-driven image generation systems often produce multi-
ple images, necessitating manual selection by users to identify the
best ones. This labor-intensive process is not only time-consuming
but also a significant barrier to fully automating image processing
pipelines. Visual quality, as an important factor to select attrac-
tive AGIs, has gained lots of attention in recent years [17, 20]. In
this paper, we focus on how to evaluate the visual quality of AGIs,
which on the one hand can be used to filter high-quality images

1
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from generation systems and on the other hand, can sever as re-
ward function to optimize image generation models [2], propelling
progress in the field of AI-based image generation techniques.

While a substantial number of deep neural network (DNN)-based
image quality assessment (IQA) models, such as HyperIQA [39],
MANIQA [49], DBCNN [55], etc., have been developed, these mod-
els were specifically designed for and trained on natural scene
images. When applied directly to AGIs, these models often exhibit
poor performance. This is due to the fact that quality assessment
of natural images primarily targets issues such as blur, noise, and
other forms of degradation caused by photography equipment or
techniques, which are not applicable to AGIs as they do not un-
dergo such degradation during the generation process. Therefore,
overemphasizing factors like blur or noise during the evaluation of
AGIs is inappropriate.

As shown in Figure 1, AI-generated images, derived from ad-
vanced image generative models such as generative adversarial net-
works (GANs) [23], diffision [10] and related variant [4, 6, 11, 29, 32–
34, 48], often exhibit issues not commonly found in naturally cap-
tured images. Visual quality of AGIs depends not only on basic
visual features such as noise, blur [18, 38, 58], etc., but also on more
intricate semantic perception [17], such as existence of reasonable
semantic content, scene plausibility, and the coherence among ob-
jects [19, 43, 44, 46, 57]. Although re-training existing IQA models
on AGIs datasets leads to improved outcomes, it fails to achieve
optimal performance. One reason is that traditional DNN models,
especially early convolutional neural networks (CNNs), despite
their notable achievements in tasks like image recognition and clas-
sification [9, 37, 41], still struggle to grasp the fine-grained semantic
content of images [56]. What’s more, traditional DNN-based IQA
models fail to capture the intrinsic characteristics essential for as-
sessing image quality and thus exhibit poor generalization abilities.
Hence, we argue that the quality assessment models of AGIs are
still in their infancy and need further exploration.

To address the issue of semantic awareness, we resort to large
multi-modality models (LMMs). Because LMMs is typically pre-
trained on large-scale datasets and has already learned a rich set
of joint visual and language knowledge, it can effectively capture
the fine-grained semantic features relevant to input prompts. How-
ever, LMMs perform excellently in high-level visual understanding
tasks [1, 16], yet they do not perform well on tasks that are rela-
tively simple for humans, such as identifying structural and textural
distortions, color differences, and geometric transformations [47].
In contrast, traditional deep learning networks excel at perceiving
low-dimensional features and can fit better to the data distribution
of specific task [12]. Therefore, the idea of combining LMMs with
traditional deep learning networks is a natural progression.

In this paper, we introduce a largeMulti-modalitymodelAssisted
AI-Generated ImageQualityAssessment (MA-AGIQA) framework,
which enhances the capacity of traditional DNN-based IQA mod-
els to understand semantic content by incorporating LMM. Our
approach initially repurposes a DNN, MANIQA [49], as an extrac-
tor for quality-aware features and establishes it as the training
backbone for the MA-AGIQA framework. Subsequently, we guide a
LMM, mPLUG-Owl2 [50], to focus on fine-grained semantic infor-
mation through meticulously crafted prompts. We then extract and
store the last-layer hidden vector from mPLUG-Owl2, merging it

Grainy Images Subset
SRCC: 0.2545 – MANIQA

SRCC: 0.8364 – Ours

Whole AIGCQA-20k
SRCC: 0.8507 – MANIQA

SRCC: 0.8644 – Ours

Figure 2: For the subset of grainy images (extracted from
prompts containing “digital” and generated by LCM_Pixart
in AIGCQA-20k) that include semantic content, MANIQA
achieves an SRCC of 0.2545, which is 70.0% lower than the
overall SRCC of 0.8507. In contrast, our MA-AGIQA model
achieves an SRCC of 0.8364. It demonstrates that our model
possesses a significantly enhanced understanding of AGIs,
particularly those whose quality is deeply intertwined with
semantic elements.

with features extracted by MANIQA to infuse the model with rich
semantic insights. Finally, we employ a MoE to dynamically inte-
grate quality-aware features with fine-grained semantic features,
catering to the unique focal points of different images. As demon-
strated in Figure 2, our approach surpasses MANIQA in terms of
SRCC, particularly within subsets comprising semantically rich
images overflowing with graininess, indicating that our methodol-
ogy shows remarkable congruence with the human visual system’s
(HVS) perceptual capabilities. MA-AGIQA achieves SRCC values
of 0.8939 and 0.8644 on the AGIQA-3k and AIGCQA-20k datasets,
respectively, exceeding the state-of-the-art models by 2.03% and
1.37%, and also demonstrates superior cross-dataset performance.

Our contributions are three-fold:

• We systematically analyze the issue of traditional DNN-
based IQA lacking the ability to understand the semantic
content of AGIs, emphasizing the importance of incorporat-
ing semantic information into traditional DNN-based IQA
models.

• We introduce the MA-AGIQA model, which incorporates
LMM to extract fine-grained semantic features and dynam-
ically integrates these features with traditional DNN-based
IQA models.

• We evaluate the MA-AGIQA model on two AI-generated
IQA datasets. Experimental results demonstrate that our

2
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model surpasses current state-of-the-art methods with-
out extra training data and also showcases superior cross-
dataset performance. Extensive ablation studies further val-
idate the effectiveness of each component.

2 RELATEDWORK
Traditional IQAmodels. In the field of No-Reference Image Qual-
ity Assessment (NR-IQA) [53], traditional models primarily fall into
two categories: handcrafted feature-based and DNN-based.

Models based on handcrafted features, such as BRISQUE [24],
ILNIQE [54], and NIQE [25], primarily utilize natural scene sta-
tistics (NSS) [24, 25] derived from natural images. These models
are adept at detecting domain variations introduced by synthetic
distortions, including spatial [24, 25, 54], gradient [24], discrete
cosine transform (DCT) [36], and wavelet-based distortions [26].
However, despite their effectiveness on datasets with type-specific
distortions, these handcrafted feature-based approaches exhibit
limited capabilities in modeling real-world distortions.

With the advent of deep learning, CNNs have revolutionized
many tasks in computer vision. [13] is pioneer in applying deep
convolutional neural networks to NR-IQA. Its methodology em-
ploys CNNs to directly learn representations of image quality from
raw image patches, bypassing the need for handcrafted features
or a reference image. Following this, DBCNN [55] introduces a
deep bilinear CNN for blind image quality assessment (BIQA) [53],
innovatively merging two CNN streams to address both synthetic
and authentic image distortions separately. Furthermore, Hyper-
IQA [39], a self-adaptive hyper network, evaluates the quality of
authentically distorted images through a novel three-stage pro-
cess: content understanding, perception rule learning, and quality
prediction.

The success of Vision Transformers (ViT) [5] in various computer
vision tasks has led to significant advancements. In the realm of
IQA, IQT [52] leverages the combination of reference and distorted
image features, extracted by CNNs, as inputs for a Transformer-
based quality prediction task. MUSIQ [14] utilizes a Transformer to
encode distortion image features across three scales, addressing the
challenge of varying input image sizes during training and testing.
TReS introduces relative ranking and self-consistency loss to capital-
ize on the abundant self-supervisory information available, aiming
to decrease the network’s sensitivity. What’s more, MANIQA [49]
explored multi-dimensional feature interaction, utilizing spatial
and channel structural information to calculate a non-local rep-
resentation of the image, enhancing the model’s ability to assess
image quality comprehensively.

LMMs for IQA. Recent methodologies employing LMMs for
IQA either utilize LMMs in isolation or combine them with DNNs
as feature extractors to enhance performance. [30] introduces an
innovative image-prompt fusion module, along with a specially
designed quality assessment token, aiming to learn comprehensive
representations for AGIs, providing insights from image-prompt
alignment. However, the evaluation of AGIs in practical scenarios
often does not involve prompts and image-prompt alignment is
more significant for assessing the capabilities of generative mod-
els rather than images quality. CLIPIQA [42] signifies a break-
through in assessing image quality and perception by harnessing

the strengths of CLIP [31] models. This method bridges the divide
between measurable image quality attributes and subjective per-
ceptions of quality without necessitating extensive labeling efforts.
Nonetheless, their [30, 42] dependence on visual-text similarity
for quality score prediction often constrains their performance,
rendering it marginally less effective compared to methods that
exclusively focus on visual analysis. What’s more, Q-Bench [43]
innovates with a softmax strategy, allowing LMMs to deduce quan-
tifiable quality scores. This is achieved by extracting results from
softmax pooling on logits corresponding to five quality-related to-
kens. And Q-Align [45] employs strategic alignment techniques
to foster accuracy. Expanding further, [47] delves into enhancing
the assessment of AGIs by focusing on optimizing individual text
prompts to leverage the intrinsic capabilities of LMMs, aiming to
provide a more nuanced understanding and evaluation of image
quality of AGIs. However, these methods, while notable, fall short
of achieving satisfying efficacy, leaving considerable room for im-
provement.

3 METHOD
As depicted in Figure 3, framework of MA-AGIQA is structured
into three sections. Section 3.1 introduces our adoption of a DNN,
specifically MANIQA [49], tailored for the AGIs quality assessment
task, serving as our primary training backbone. In Section 3.2, we
incorporate the LMMmPLUG-Owl2 [50] as a feature extractor. This
component is crucial for acquiring fine-grained semantic features
via carefully crafted text prompts. Lastly, Section 3.3 addresses the
variability in focal points across different images. To adaptively
integrate the feature vectors during training, we utilizes a MoE
structure for feature fusion. This approach ensures that the most
salient features are emphasized. Further details are elaborated be-
low.

3.1 Quality-aware Feature Extraction
To leverage the capability of DNNs to adapt to the data distribution
of specific tasks, we employ MANIQA [49] as a quality-aware fea-
ture extractor. MANIQA enhances the evaluation of image quality
by applying attention mechanisms across both the channel and spa-
tial dimensions, thereby increasing the interaction among various
regions of the image, both globally and locally. This approach gen-
erates projections𝑤𝑒𝑖𝑔ℎ𝑡 (W ) and 𝑠𝑐𝑜𝑟𝑒 (S ) for a given image, and
the final rating of the whole image is determined through the sum
of multiplication of S byW , which can be illustrated as Equation (1)
:

(S,W ) = T ([𝑖𝑚𝑎𝑔𝑒]),

rating =

∑
S ×W∑
W

,
(1)

where S andW are one dimensional vectors.
However, directly applying MANIQA to the quality assessment

of AGIs presents challenges, as illustrated in Figure 4. Image (a)
displays a complex, symmetrical pattern, devoid of meaningful se-
mantic content. Image (b) features incoherent areas, such as two
grey holes in the sky that are inconsistent with the common sense.
The blurriness and fuzziness of the man’s face in image (c) along
the edges significantly impair human perception. Conversely, im-
age (d), despite its severe graininess, retains its semantic integrity,

3
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Evaluate if the image quality is com-
promised due to violations of coherence.
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Block 1
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Block 2
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Learning
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Figure 3: Overview of our proposed MA-AGIQA framework. Initially, MANIQA is repurposed as the foundational training
backbone, whose structure is modified to generate quality-aware features. Second, a parameter fixed LMM, mPLUG-Owl2,
serves as a fine-grained semantic feature extractor. This module utilizes carefully crafted prompts to capture the desired
semantic information. Finally, the AFMmodule acts as an organic feature integrator, dynamically combining these features for
enhanced performance.

(a) GT: 2.684
Prediction: 3.632

(b) GT: 3.145
Prediction: 3.762

(c) GT: 1.823
Prediction: 3.118

(d) GT: 3.606
Prediction: 2.994

Figure 4: Four types of image display with strong correlation
between image quality and semantics. The ground truth and
model predication of the relevant images are presented below
each image, showing a significant difference between the
model predication and the ground truth, indicating that the
model’s understanding of semantics is not sufficient.

representing an appealing artistic form. Traditional DNN-based
models like MANIQA, lacking the capacity to comprehend seman-
tic content, tend to overestimate the quality of images (a), (b), and
(c), resulting in scores much higher than the ground truth. However,
these images should be rated as low quality due to the poor viewing
experience they offer. For image (d), traditional DNN-based models
focus excessively on the graininess, mistaking it for a flaw, and
assign a score significantly lower than the ground truth. This high-
lights the critical need for incorporating semantic information into
the quality assessment of AGIs by traditional DNN-based models.

To address this issue, modifications were made so that the gen-
erated S and W no longer produce a rating. Instead, they yield a
quality-aware feature f1, setting the stage for the subsequent fusion
with features extracted by LMM. f1 is generated as:

f1 = S ×W . (2)

During the training phase, the parameters of modified MANIQA
are continuously updated. This refinement process ensures that
MANIQA can extract features more relevant to the quality of AGIs.
Furthermore, the training process facilitates a more seamless inte-
gration between MANIQA and LMM, leading to superior outcomes.

3.2 Fine-grained Semantic Feature Extraction
LMMs are capable of understanding and analyzing the semantic
content of images and their relationship with human cognition.
They assess whether different parts of an image form a cohesive
whole and evaluate whether the elements within the picture are
semantically coherent [7, 21, 28]. mPLUG-Owl2 [50] employs a
modality-adaptive language decoder to handle different modalities

4
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within distinct modules, which mitigates the issue of modality in-
terference. Given the importance of effectively guiding the model
through textual prompts to elicit the desired output, we have se-
lected mPLUG-Owl2 as our feature extractor.

We consider the application of mPLUG-Owl2 in the following
aspects of semantic content:

• Existence of Semantic Content. The importance of se-
mantic content in an image lies in its ability to convey
a clear and meaningful message to the viewer. An image
lacking in semantic content may be difficult to understand,
fail to effectively convey its intended message, reducing
audience engagement and satisfaction.

• Coherence of Semantic Content. The coherence of se-
mantic content in an image relates to whether the generated
image can provide a coherent, logically sound visual ex-
perience for human viewers. When the various parts of
an image are semantically consistent, it is better able to
convey a clear story, emotion, or message. In contrast, any
inconsistency in the primary focus of images will greatly de-
tract from their quality and convey a significantly negative
impression.

Consequently, we try to propose the rational design of prompts
leading LMMs to obtain those image semantic content. mPLUG-
Owl2 possess the ability to understand fine-grained semantic con-
tents, but without carefully designed input prompts, some prompts,
such as "Please evaluate if the image quality is compromised due to vi-
olations of common human sense or logic?" although it expresses the
desire for the model to assess whether the semantic content of the
image contradicts human perception, would lead to unsatisfactory
results. To better utilize mPLUG-Owl2 for the task of evaluating
AGIs, we meticulously designed prompts to guide the LMM. Specif-
ically, we designed two prompts, denoted as 𝑝𝑟𝑜𝑚𝑝𝑡𝑎 and 𝑝𝑟𝑜𝑚𝑝𝑡𝑏
respctively,

• "Evaluate the input image to determine if its quality is
compromised due to a lack of meaningful semantic content."

• "Evaluate if the image quality is compromised due to viola-
tions of coherence."

corresponding to the existence of semantic content and the coher-
ence of semantic content in images, respectively. Test results, as
shown in Figure 5 using the mPLUG-Owl2 official demo1, have
proven these questions to be effective.

However, the textual output from mPLUG-Owl2 is not immedi-
ately conducive to being utilized by MANIQA to impart semantic
insights. To bridge this gap, it’s essential to obtain the information
provided by mPLUG-Owl2 into a format that MANIQA can easily
leverage. SO we extract features from the final layer of mPLUG-
Owl2’s hidden layers, achieving an accessible embedded represen-
tation of the LMM’s output. This output is a tensor with dimensions
of [token_length, hidden_size], where "token_length" represents
the number of output tokens, and "hidden_size" denotes the di-
mensionality of the hidden layer representations associated with
each token. For mPLUG-Owl2, the hidden_size is set to 4096. Sub-
sequently, we conduct an averaging operation across the token
dimension, yielding a vector with dimensions 1x4096. This vector

1https://modelscope.cn/studios/iic/mPLUG-Owl2/summary

Evaluate if the 
image quality is 
compromised 
due to violations 

of coherence.

Coherence of Semantic Content

Yes, the image quality is compromised due to the violations of coherence. 
The image features a blurry cityscape with a ghostly appearance, but the 
blurriness and the presence of ghostly elements make it difficult to discern the 
actual details of the cityscape. The image is not clear, and the ghostly 
appearance might be distracting or confusing for the viewer.

Evaluate the input 
image to determine 
if its quality is com-
promised due to a 
lack of meaningful 

semantic content. 

Existence of Semantic Content

The input image is a close-up of a patterned surface, possibly a tiled floor or a 
decorative piece, The pattern is intricate and features a combination of blue, 

green, and yellow colors. However, the image lacks meaningful semantic 
content, as it does not depict any recognizable objects, people, or scenes. 
The focus is solely on the pattern, which might be visually appealing, but does 
not provide any context or information.

Figure 5: Presentation of mPLUG-Owl2’s answers to two
prompts.

then serves as the basis for further feature fusion procedures. The
process can be represented as Equation (3) :

(m1
𝑖 ,m

2
𝑖 , · · · ,m

𝑛
𝑖 ) = M([𝑖𝑚𝑎𝑔𝑒], [𝑝𝑟𝑜𝑚𝑝𝑡𝑖 ]) [−1],

𝑓𝑖 = Average(m1
𝑖 ,m

2
𝑖 , ·,m

𝑛
𝑖 ), where 𝑖 ∈ {𝑎, 𝑏},

(3)

where m𝑘
𝑖
represents a hidden vector of token 𝑘 corresponding to

𝑝𝑟𝑜𝑚𝑝𝑡𝑖 , andM denotes mPLUG-Owl2.
It is important to note that throughout the entire training and

testing process, the parameters of mPLUG-Owl2 are fixed. Because
mPLUG-Owl2 is typically pre-trained on large-scale datasets and
has already learned a rich set of joint visual and language knowl-
edge, it can effectively capture the fine-grained semantic informa-
tion relevant to input prompts, even with fixed parameters. Addi-
tionally, fine-tuning LMMs in every training iteration would signif-
icantly increase training time. Using it solely as a feature extractor
significantly reduces computational costs, making the training pro-
cess more efficient. So, we pre-obtain and save the semantic content
features of each image in advance.
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3.3 Adaptive Fusion Module
Given the complex influence of color, composition, details, semantic
content, and other factors on image quality, simply concatenating
the extracted features may not always yield the best results. To
dynamically fuse a variety of complementary features, we propose
the adaptive fusion module (AFM) for organic feature integration.
This process can be divided into two main parts. The first part
involves transforming the extracted features into a unified vector
space of the same dimension, allowing for vector fusion operations.
Specifically, for features extracted by MANIQA, this transformation
block applies a fully connected (Fc) layer, transforming them to
the same dimension as the original features (1x784) to provide a
richer combination. For features derived frommPLUG-Owl2, it uses
a Fc layer to project them onto a 1x784 dimension, followed by a
relu activation layer and a dropout layer to enhance the network’s
expressive power and generalization. The second part employs
a MoE to dynamically fuse the three features. The MoE’s gating
network takes the transformed three features as input and outputs
dynamic weights 𝜶 , corresponding to the three features’ contribu-
tions to image quality. Structurally, this gating network comprises a
Fc layer and a sigmoid layer. The final image quality representation
vector g can be obtained through a weighted sum of the three fea-
ture vectors. Following the denotation which sign the three features
as 𝑓1, 𝑓𝑎 , 𝑓𝑏 , this process can be represented as:

𝑓 ′𝑖 = F 𝑡𝑟𝑎𝑛𝑠
𝑖 (f𝑖 ), where f ′𝑖 ∈ R𝑑 ,

𝜶 = F 𝑔𝑎𝑡𝑒 (Concat(f ′1 , f
′
𝑎 , f

′
𝑏
)), where 𝜶 ∈ R3,

g =
∑︁3

𝑖=1
f ′𝑖 · 𝛼𝑖 , where g ∈ R𝑑 , 𝑖 ∈ {1, 𝑎, 𝑏},

(4)

where F 𝑡𝑟𝑎𝑛𝑠
𝑖

is the transformation block of feature 𝑖 , and F 𝑔𝑎𝑡𝑒 is
the gating network’s mapping function, 𝑓𝑖 is the original extracted
feature and 𝑓 ′

𝑖
is the transformed feature. R𝑑 is the dimension space

of 𝑓 ′
𝑖
. Finally, we obtain the final image quality score output through

a simple regression layer, consisting of a Fc layer.

4 EXPERIMENTS
4.1 Dataset and Evaluation Metrics
Dataset.Ourmodel is evaluated on twoAI-Generated image datasets,
includingAIGCQA-20k [17] andAGIQA-3k [20]. Specifically, AIGCQA-
20k contains 20k images, but at the time of writing, only 14k images
have been published. Our experiments are conducted on these
14k images. The MOS for AIGCQA-20k images are distributed
between 0-5, with higher scores indicating better image quality.
Images in AIGCQA-20k are generated by 15 models, including
DALLE2 [32], DALLE3 [32], Dream [6], IF [4], LCM Pixart [22],
LCM SD1.5 [22], LCM SDXL [22], Midjourney [11], Pixart 𝛼 [3],
Playground [29], SD1.4 [34], SD1.5 [34], SDXL [35] and SSD1B [8].
AGIQA-3k includes 2982 images, with MOS also distributed be-
tween 0-5, where higher values represent better quality. Images
in AGIQA-3k are derived from six models, including GLIDE [27],
Stable Diffusion V-1.5 [34], Stable Diffusion XL-2.2 [35], Midjour-
ney [11], AttnGAN [48], and DALLE2 [32]. During training, we
split the entire dataset into 70% for training, 10% for validation, and
20% for testing. To ensure the same set of images in each subset

when testing across different models, we set the same random seed
during the split to control variables and ensure reproducibility.

Evaluation Metric. Spearman’s Rank-Order Correlation Co-
efficient (SRCC), Pearson’s Linear Correlation Coefficient (PLCC),
the Kullback-Leibler Correlation Coefficient (KLCC), and the Root
Mean Square Error (RMSE) are selected as metrics to measure mono-
tonicity and accuracy. SRCC, PLCC, and KLCC range from -1.0 to
1.0, with larger values indicating better results. In our experiments,
we employ the sum of SRCC and PLCC as the criterion for selecting
the optimal validation case, and emphasize SRCC for comparing
model performance.

4.2 Implementation Details
Our method is implemented based on PyTorch, and all experiments
are conducted on 4 NVIDIA 3090 GPUs. For all datasets, we opt
for handcrafted feature-based BRISQUE [24], NIQE [25] and IL-
NIQE [54], deep learning (DL)-based HyperIQA [39], MANIQA [49],
MUSIQ [14], DBCNN [55], StairIQA [40], BAID [51], and LMM-
based CLIPIQA [42], CLIPIQA+ [42] and Q-Align [45]. During the
training process of deep learning models, we use the Adam opti-
mizer [15] with a weight decay of 1e-5, and the initial learning
rate is 1e-5. The batch size is 8 during training, validation, and
testing. All DL-based models are trained for 30 epochs using MSE
loss and validated after each training process. The checkpoint with
the highest sum of SRCC and PLCC during validation is used for
testing. Handcrafted feature-based and LMM based models are used
directly without training.

4.3 Comparison with SOTA methods
Table 1 lists the results of MA-AGIQA and 12 other models on the
AGIQA-3k and AIGCQA-20k dataset. It has been observed that
LMM-based models significantly outperform those that rely on
handcrafted features. This superior performance is attributed to
LMMs being trained on extensive datasets, which provides them
with a robust understanding of images and enhances their gener-
alizability. However, trained DL-based models generally perform
far better than the LMM-based models because DL-based models
tend to fit the data distribution of specific tasks better, thereby
resulting in improved performance. Among these twelve models,
the ViT-based MANIQA outperforms the other eleven models, and
our method still significantly surpasses it on the same training and
testing split with large margins (+3.72% of SRCC, +1.73% of PLCC
and +5.43% of KRCC in AGIQA-3k & +1.61% of SRCC, +2.02% of
PLCC and +2.90% of KRCC in AIGCQA-20k). This demonstrates
the superiority of integrating features extracted by LMM into tradi-
tional DNN, significantly improving the accuracy and consistency
of prediction results.

To evaluate the generalization capability of our MA-AGIQA
model, we conducted cross-dataset evaluations. Table 2 shows that
MA-AGIQA significantly outperforms the other two models, Hyper-
IQA and StairIQA, which performed best on single datasets, with
large margins. This superior performance can largely be attributed
to the robust generalization capability of the LMM and the bene-
fits of the MoE architecture, which excels in dynamically fusing
features.
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Table 1: Comparisons with SOTA (State-Of-The-Art) methods on AGIQA-3k and AIGCQA-20K-Image datasets. The up arrow "↑"
means that a larger value indicates better performance. The best and second best performances are bolded and underlined,
respectively. MA-AGIQA outperforms existing SOTA methods on both datasets by large margins. Note: to ensure fair compar-
isons, we trained and tested all deep learning based models and ours with the same dataset splitting method.

Type Method AGIQA-3k AIGCQA-20K-Image
SRCC↑ PLCC↑ KRCC↑ RMSE↓ SRCC↑ PLCC↑ KRCC↑ RMSE↓

Handcrafted
feature-based

BRISQUE [24] 0.4726 0.5612 0.3227 0.8299 0.1663 0.3580 0.1112 0.6813
NIQE [25] 0.5236 0.5668 0.3637 0.8260 0.2085 0.3378 0.1394 0.6868
ILNIQE [54] 0.6097 0.6551 0.4318 0.7576 0.3359 0.4551 0.2290 0.6497

LMM-based
CLIPIQA [42] 0.6524 0.6968 0.4632 0.7191 0.4147 0.6459 0.2861 0.5570
CLIPIQA+ [42] 0.6933 0.7493 0.4957 0.664 0.4553 0.6682 0.3169 0.5428
Q-Align [45] 0.6728 0.6910 0.4728 0.7204 0.6743 0.6815 0.4808 0.5199

Traditional
DNN-based

HyperIQA [39] 0.8509 0.9049 0.6685 0.4134 0.8162 0.8329 0.6207 0.3902
MANIQA [49] 0.8618 0.9115 0.6839 0.4111 0.8507 0.8870 0.6612 0.3273
DBCNN [55] 0.8263 0.8900 0.6393 0.4533 0.8054 0.8483 0.6121 0.3726
StairIQA [40] 0.8343 0.8933 0.6485 0.4510 0.7899 0.8428 0.6053 0.3927
BAID [51] 0.1304 0.2030 0.0854 0.9487 0.1652 0.1483 0.1279 0.7297
MUSIQ [14] 0.8261 0.8657 0.6400 0.4907 0.8329 0.8646 0.6403 0.3634

DL with LMM MA-AGIQA 0.8939 0.9273 0.7211 0.3756 0.8644 0.9050 0.6804 0.3104

Table 2: Cross-dataset performance comparison for M-AIGQ-
QA, HyperIQA, and StairIQA. “Direction” from A to B means
training with train subset of dataset A and testing on test
subset of dataset B. The best result is bolded.

direction SRCC ↑ PLCC ↑ KRCC ↑ RMSE ↓

MA-AGIQA 20k→3k 0.8053 0.8430 0.6083 0.5399
3k→20k 0.7722 0.8314 0.5777 0.4055

HyperIQA 20k→3k 0.6820 0.6806 0.4806 0.7352
3k→20k 0.6374 0.6547 0.4577 0.5414

StairIQA 20k→3k 0.4335 0.5234 0.3294 0.8549
3k→20k 0.6495 0.6895 0.4644 0.5285

4.4 Ablation Study
Necessity of Fine-grained Semantic Features. To assess the
benefits of integrating features extracted by mPLUG-Owl2 [50]
into MANIQA [49], we carried out comprehensive ablation studies
on each component and their various combinations, as detailed in
Tables 3 and 4. Our findings indicate that using either the features
extracted by the LMM alone or solely relying on a traditional net-
work does not yield the best outcomes. In contrast, integrating one
fine-grained semantic feature with the original MANIQA network
can enhance the network’s performance. However, the optimal
results were achieved by combining two features extracted by the
LMM with MANIQA, which led to significant improvements on the
AGIQA-3k dataset (increases of 1.57%, 0.83%, and 2.56% in SRCC,
PLCC, and KRCC, respectively) and on the AIGCQA-20k dataset
(enhancements of 2.72%, 1.94%, and 4.35%).

The marked enhancements achieved by incorporating two fine-
grained semantic features suggest that LMM is adept at capturing

Table 3: Ablation studies of different component combina-
tions in the MA-AGIQA model on AGIQA-3k. SRCC, PLCC
and KRCC are reported. The best result is bolded. Note: "se-
mantic feature" and "coherence feature" denote features ex-
tracted by mPLUG-Owl2 through 𝑝𝑟𝑜𝑚𝑝𝑡𝑎 and 𝑝𝑟𝑜𝑚𝑝𝑡𝑏 re-
spectively.

MANIQA Semantic
Feature

Coherence
Feature SRCC↑ PLCC↑ KRCC↑

✓ 0.8800 0.9196 0.7031
✓ 0.8662 0.9082 0.6823

✓ 0.8661 0.9084 0.6821

✓ ✓ 0.8685 0.9108 0.6853
✓ ✓ 0.8820 0.9197 0.7090

✓ ✓ 0.8699 0.9102 0.6867

✓ ✓ ✓ 0.8939 0.9273 0.7211

nuanced, complex features that traditional models might overlook,
fostering a more thorough understanding and assessment of AGIs
quality. The results from these ablation experiments highlight the
significant contribution of fine-grained semantic features.

Contribution of MoE. Table 5 demonstrates that incorporating
the MoE structure, rather than simply concatenating three vec-
tors, does indeed improve network performance, albeit marginally.
Specifically, on the AGIQA-3k dataset, we observed increases of
0.20%, 0.17%, and 0.16% in SRCC, PLCC, and KRCC, respectively.
For the AIGCQA-20k dataset, the improvements were 0.67%, 0.95%,
and 1.37%. The gains, although seemingly modest, highlight the
potential of MoE structure in complex systems where integrating
diverse expertise can yield better decision-making and predictive
outcomes.
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Table 4: Ablation studies of different component combina-
tions in the MA-AGIQAmodel on AIGCQA-20k. SRCC, PLCC
and KRCC are reported. The best result is bolded. Note: "se-
mantic feature" and "coherence feature" denote features ex-
tracted by mPLUG-Owl2 through 𝑝𝑟𝑜𝑚𝑝𝑡𝑎 and 𝑝𝑟𝑜𝑚𝑝𝑡𝑏 re-
spectively.

MANIQA Semantic
Feature

Coherence
Feature SRCC↑ PLCC↑ KRCC↑

✓ 0.8415 0.8877 0.6520
✓ 0.8184 0.8345 0.6323

✓ 0.8181 0.8343 0.6320

✓ ✓ 0.8540 0.8975 0.6671
✓ ✓ 0.8596 0.9016 0.6738

✓ ✓ 0.8180 0.8323 0.6312

✓ ✓ ✓ 0.8644 0.9050 0.6804

Table 5: Ablation studies on the MoE structure in the AFM
demonstrate that compositions integrating MoE yield supe-
rior results on both AGIQA-3k and AIGCQA-20k datasets.The
better result is bolded.

dataset MoE SRCC ↑ PLCC ↑ KRCC ↑ RMSE ↓

3k ✗ 0.8921 0.9257 0.7199 0.3797
✓ 0.8939 0.9273 0.7211 0.3756

20k ✗ 0.8586 0.8964 0.6712 0.3234
✓ 0.8644 0.9050 0.6804 0.3104

Absolute Difference

D
en
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ty

Absolute Difference

Lower Absolute Difference

Figure 6: Comparative Density Distributions of Absolute
Differences for MANQA and MA-AGIQA on AGIQA-3k and
AIGQA-20k Datasets

4.5 Visualization
To vividly demonstrate the efficacy of the MA-AGIQA framework,
we selected 300 images from the AIGCQA-20k and AGIQA-3k
datasets where MANIQA had the poorest performance. These im-
ages primarily exhibit issues in semantic content. We computed
the absolute values of the differences between the model scores
and the image ground truth, and illustrated these differences in
Figure 6, using 0.1 as the bin size for plotting the quality score dis-
tribution. The results clearly show that our MA-AGIQA model are
more closely aligned with human perception, with a noticeable shift

MANIQA

MA-AGIQA

Ground 
Truth

3.50 2.97 3.09 3.73

2.98 2.41 2.49 3.43

1.50 1.621.45 2.32

MANIQA

MA-AGIQA

Ground 
Truth

1.43 2.85 2.13 2.28

1.84 2.65 1.79 2.19

2.83 0.881.49 1.12

Figure 7: Comparative Analysis of Image Quality Assessment
Models: Evaluating MANIQA versus MA-AGIQA Against
Ground Truth Scores

in the difference distribution toward zero and a marked reduction
in peak values.

Figure 7 presents a collection of images where the assessments
from the MANIQAmodel were mostly off the mark. Scores assigned
by MANIQA alongside those given by the proposed MA-AGIQA
model and the ground truth are listed, which reveal that the MA-
AGIQA model markedly enhances alignment with the ground truth
in contrast to MANIQA. For instance, in the first image of the top
row, MANIQA’s score is 3.50, which diverging substantially from
the ground truth score of 1.50. However, MA-AGIQA’s score is
2.98, demonstrating a much closer approximation to the ground
truth. This pattern is consistent across the images shown, with MA-
AGIQA consistently producing scores that are closer to the ground
truth, reflecting a more accurate assessment of image quality.

5 CONCLUSION
To mitigate the shortcomings of traditional DNNs in capturing se-
mantic content in AGIs, this study explored the integration of LMMs
with traditional DNNs and introduced the MA-AGIQA network.
Leveraging mPLUG-Owl2 [50], our network efficiently extracts se-
mantic features to enhance MANIQA [49] for quality assessment.
The MA-AGIQA network’s ability to dynamically integrate fine-
grained semantic features with quality-aware features enables it to
effectively handle the varied quality aspects of AGIs. Experiment
results across two prominent AGIs datasets confirm our model’s
superior performance. Through thorough ablation studies, the in-
dispensable role of each component within our framework has been
validated. This research aspires to catalyze further exploration into
the fusion of LMMswithin AI-generated content quality assessment
and envisions broader application potentials for such methodology.
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