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Abstract
Many real-world datasets are represented as 3D
point clouds – yet they often lack a predefined
reference frame, posing a challenge for machine
learning or general data analysis. Traditional
methods for determining reference frames and
normalizing 3D point clouds often struggle
with specific inputs, lack theoretical guarantees,
or require massive data. We introduce a new
algorithm that overcomes these limitations and
guarantees both universality and compatibility
with any learnable framework for 3D point cloud
analysis. Our algorithm works with any input
point cloud and performs consistently regardless
of input complexities, unlike data-driven methods
that are susceptible to biases or limited training
data. Empirically, our algorithm outperforms
existing methods in effectiveness and gener-
alizability across diverse benchmark datasets.
Code is available at https://github.
com/Utah-Math-Data-Science/
alignment.

1. Introduction
Analyzing 3D point clouds – in applications such as molec-
ular modeling (Thomas et al., 2018; Gebauer et al., 2019;
Batzner et al., 2022), geometric processing (Mitra et al.,
2004; Morell et al., 2014; Wang & Kim, 2019), and robotics
(Pomerleau et al., 2015; Mi et al., 2015; Kim et al., 2018)
– is challenging. The 3D point clouds can have arbitrary
positions and orientations but lack a fixed reference frame.
Despite this, certain features of the objects should exhibit
equivariance or invariance as the frame undergoes transfor-
mations. Understanding and leveraging the equivariance
or invariance properties of the point cloud is crucial for
efficient, accurate, and robust machine learning (ML), as

*Equal contribution 1Department of Mathematics, University
of Utah, Salt Lake City, Utah, USA 2Scientific Computing and
Imaging (SCI) Institute, University of Utah, Salt Lake City, Utah,
USA. Correspondence to: Bao Wang <wangbaonj@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

it significantly boosts the sample efficiency, and promotes
the inductive bias of the learning algorithms (Hinton et al.,
2011; Cohen & Welling, 2017; Romero et al., 2020; van der
Pol et al., 2020; Wang et al., 2024).

Input NH3 Molecule

PCA Normalization (Bellekens et al., 2014)

Learning-based Normalization (Winter et al., 2022)

Asymmetric Unit Normalization (Ours)

Figure 1. Normalized NH3 molecules for a set of rotated input (first
row). PCA result is inconsistent in both rotation and reflection
(second row). Data-driven (learned) normalization is consistent
but introduces error in the positional data quantified by a root mean
square error (RMSE), with respect to the ground truth positional
data, of 0.0924 (third row). Our proposed asymmetric unit normal-
ization is both consistent and error-free (last row).

Shifts in positions of a point cloud can be addressed by
centering the point cloud at the origin. Orientation vari-
ations, however, present a tougher challenge. Two main
categories of approaches have emerged to address orien-
tation variations. The first category approaches incorpo-
rate equivariance and invariance directly into ML models
through architectural (e.g. neural network) constraints, en-
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suring the prediction results demonstrate equivariance or
invariance without capturing the orientation of the refer-
ence frame; see e.g. (Anderson et al., 2019; Fuchs et al.,
2020; Satorras et al., 2021; Dym & Maron, 2021; Passaro &
Zitnick, 2023). The second category approaches focus on
determining frames and normalizing the data to its invariant
representations (Vranic et al., 2001; Chaouch & Verroust-
Blondet, 2008; Winter et al., 2022). More precisely, given
a space X of point clouds acting under the transformation
group G = O(3) or SO(3), we seek a “frame” – a function
F fromX toG that maps each point cloud x ∈ X to a trans-
formation F(x) ∈ G. This transformation, representing x’s
orientation, holds a pivotal property: applying its inverse
to x yields an invariant representation F(x)−1x, effectively
normalizing the point cloud. Further details can be found
in Section 2. Importantly, the second category approaches
are more flexible and compatible with a wider range of data
analysis frameworks; even those without intrinsic equivari-
ance or invariance properties, as highlighted in (Puny et al.,
2021; Kaba et al., 2023). In light of this advantage, our
focus in this paper is specifically on the second category ap-
proaches to eliminate the complicates in data analysis due to
orientation variations. In particular, we focus on construct-
ing frames and utilizing normalization techniques for
3D point clouds with respect to the action of isometries.

The second category approaches – that determining frames
and normalizing data to its invariant representation – can be
further classified into two classes: direct and learning-based
frame construction. Direct construction methods utilize ex-
plicit rules – often relying on principle component analysis
(PCA) – to derive a frame and align a given 3D object to
a canonical representation; see, e.g. (Vranic et al., 2001;
Chaouch & Verroust-Blondet, 2008; Bellekens et al., 2014).
However, PCA-derived frames suffer from non-uniqueness
and potential ambiguity in sign choices. As demonstrated
in Figure 1, PCA is inconsistent in selecting the orienta-
tion for both rotation and reflection. This is particularly
problematic for molecular structures with strong symme-
tries like NH3. While Puny et al. (2021) and Duval et al.
(2023) consider a set of frames that include all choices of
sign changes, it still cannot handle cases when the eigenval-
ues of covariance matrices are not distinct. Learning-based
frame determination methods leverage neural networks to
learn frames that overcome the aforementioned limitations
of direct frame construction. Winter et al. (2022) propose
a framework that simultaneously learns invariant embed-
dings and frames; their framework learns an equivariant
function from the input embedding space to an intermediate
homogeneous space to obtain the reference frame. How-
ever, as demonstrated in (Winter et al., 2022), the stabilizer
of a given input is isomorphic to that of its corresponding
intermediate element in homogeneous space, necessitating
distinct homogeneous spaces for inputs with different sta-

bilizers, significantly complicating framework designs. To
circumvent such challenges, Kaba et al. (2023) introduces
the notion of relaxed equivariance, making learning func-
tion F require only one output space instead of multiple
homogeneous spaces.

However, learning-based frames still exhibit some limita-
tions. As highlighted by Kaba et al. (2023), the function F
may lack continuity. In other words, there is no theoretical
assurance that a continuous parametrized model can effec-
tively approximate such a non-continuous function. We
delve into the inevitability of a non-continuous frame in
our setting in Section 3. Additionally, the presence of test
data featuring inputs with novel symmetries not present in
the training data may compromise the generalizability of
learning methods; empirical support for these observations
is provided in Figure 1. Using the learning-based technique
from (Winter et al., 2022), we observe that the orientation
frame is consistent. However, to data is only consistent up
to the error of the learning-based method, which makes each
of the normalized data in Figure 1 easily distinguishable.

1.1. Our contribution

We tackle the challenge of 3D point cloud analysis by in-
troducing a direct frame construction and normalization
algorithm to overcome limitations of existing methods, as
discussed before. Our contributions are summarized below:

• We show that in our setting, constructing a continuous
frame is impossible. However, even without continu-
ous frames, our proposed frame construction retains
the universal approximation ability of any framework.
See Section 3 for details.

• We present an explicit training-free frame construc-
tion and normalization technique that can seamlessly
handle any 3D point cloud. See Section 4 for details.

• We provide various empirical evidence to validate both
the theoretical findings and the practical effectiveness
of our algorithm. Our method outperforms existing
techniques in accuracy and generalizability across vari-
ous benchmark datasets. See Section 6 for details.

1.2. Organization

We organize this paper as follows: In Section 2, we present
necessary background materials and review some existing
results. In Section 3, we discuss the bottlenecks of the ex-
isting universality of canonicalization and present our new
insights on frames and the corresponding universality re-
sults. We present our explicit alignment construction in
Section 4. We discuss additional related works in Section 5.
We compare our explicitly constructed alignment with exist-
ing algorithms in Section 6. Technical proofs and missing
details are provided in the appendix.
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2. Preliminary
Group theory. While our primary focus is on Euclidean
groups and permutation groups, it is beneficial to provide a
brief overview of fundamental group theory concepts in a
broader context. In a G-space, where group G acts on a vec-
tor spaceX , the group action is defined as a group homomor-
phism mapping each group element to a bijection from X to
itself. This action is denoted by g ·x, where the bijection cor-
responds to g applied to x. We define the G-orbit of x as the
set G ·x := {g · x ∈ X | g ∈ G} ⊆ X , and the stabilizer of
x as the subgroup Gx := {g ∈ G | g · x = x} ⊆ G. Con-
sider two G-spaces, X and Y . A function f : X → Y is
referred to asG-equivariant if it satisfies f(g ·x) = g ·f(x),
and as G-invariant if it satisfies f(g · x) = f(x).

Frame, normalization, and canonicalization. The con-
cept of equivariant moving frames – applicable to any Lie
transformation group G – is introduced in (Olver, 2009).
In this work, an equivariant moving frame on a G-space
X is defined as a G-equivariant smooth function from X
to G. To illustrate why frames can be considered as group
elements, let us delve into physics. In physics, a reference
frame is characterized by a coordinate system established
through an orthonormal basis of R3 and a designated point
serving as the origin. Without loss of generality, let origin be
0 = (0, 0, 0), then each reference frame can be represented
as an orthogonal matrix – a group element g ∈ O(3).

However, the existence of equivariant moving frames neces-
sitates a free action, meaning Gx = {e},∀x ∈ X , where
e is the identity in G. This requirement poses a limitation,
making it impractical for symmetric inputs x with a non-
trivial stabilizer. To overcome this constraint, we relax the
condition and define a frame as a function F : X → G,
without the necessity of smoothness but ensures the relaxed
equivariance condition introduced in (Kaba et al., 2023).
Definition 2.1 (Frame). A frame is defined as a function
F : X → G satisfying the condition that for any x ∈ X
and g1 ∈ G, there exists a g2 ∈ g1Gx such that

F(g1 · x) = g2 · F(x). (1)

For simplicity, we may also refer to F(x) as a frame.

We leave the discussion on the existence of frames in Ap-
pendix A. The relaxed equivariance grants a certain flexi-
bility in output transformations, allowing them to differ by
elements within stabilizers. Importantly, the relaxed equiv-
ariance implies that the function µ : X → X defined by
µ(x) := F(x)−1x ∈ X is group invariant, i.e.,

µ(g1 · x) = F(g1 · x)−1(g1 · x) = F(x)−1g−1
2 (g1 · x)

= F(x)−1(g−1
2 g1 · x) = F(x)−1x = µ(x),

(2)
since g−1

2 g1 ∈ Gx. Such a mapping – sending each input
x to an invariant representation µ(x) within the same orbit

– is commonly referred to as normalization or alignment
(Chaouch & Verroust-Blondet, 2008).

Notice that each input x ∈ X can be represented as the
product of a frame F(x) and its associated normalization
µ(x). This decomposition effectively breaks down the in-
put data into components that remain invariant and com-
ponents that exhibit equivariance. Consequently, employ-
ing this decomposition allows any function to be rendered
G-equivariant through the canonicalization technique intro-
duced in (Kaba et al., 2023). In particular, let f be any func-
tion between finite-dimensional normed G-spaces X and Y .
The canonicalization of f through a frame F : X → G is a
G-equivariant function ϕ : X → Y defined by:

ϕ(x) := F(x) · f(F(x)−1 · x) (3)

We leave the justification of the relaxed G-equivariance of
ϕ(x) in Appendix A. When the group actions are described
by group representations ρX : G→ GL(X) and ρY : G→
GL(Y ), the canonicalization can be written as:

ϕ(x) := ρY (F(x))f(ρX(F(x))−1x) (4)

In (Kaba et al., 2023), ρX(F(x)), ρY (F(x)) are called
canonicalization functions and are directly approximated by
neural networks in their framework.

Point clouds. Point clouds – collections of points in Rn –
are inherently unordered sets. While often represented as
matrices X = [x1, . . . ,xm] ∈ Rn×m where each xi ∈ Rn

represents the coordinates of a point and m denote the to-
tal number of points, these impose an order that can bias
analysis. To address this issue, we consider the action of the
symmetric group Sm that permutes matrix columns, ensur-
ing order-independent analysis. This allows us to explore
the actions of various transformation groups, such as E(n),
SE(n), O(n), or SO(n), on matrix representations of point
clouds without being hindered by order-induced biases. For-
mally, we investigate the group action of Sm × G on the
matrix representations X , whereG denotes any of the afore-
mentioned groups. This action is defined as follows:

(σ, g) ·X 7→
[
g · xσ−1(1), . . . , g · xσ−1(m)

]
for any σ ∈ Sm and g ∈ G.

3. Universality of Canonicalization
We first recall the universality of canonicalization as dis-
cussed in (Winter et al., 2022). Let us consider the functions
between G-spaces X and Y . We say a parameterized func-
tion f is a universal approximator of continuous functions
if for any continuous function ψ, any compact set K ⊂ X
and any ϵ > 0, there is a choice of parameters for function
f such that ∥ψ(x)− f(x)∥ < ϵ for any x ∈ K. Kaba et al.
(2023) shows the following theorem:
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Theorem 3.1 (Kaba et al. (2023)). Let f : X → Y be
a parameterized function. Define ϕ as the G-equivariant
parameterized function given by,

ϕ(x) := h′(x)f(h(x)−1x),

where h(x), h′(x) are canonicalization functions. Suppose
h(x), h′(x) are continuous. Then ϕ is a universal approxi-
mator of G-equivariant continuous functions if f is a uni-
versal approximator of continuous functions.

Lack of continuity. A crucial condition for the expressive-
ness guarantee in Theorem 3.1 is the continuity of canoni-
calization functions. However, as highlighted by Kaba et al.
(2023), achieving continuity can be challenging and could
affect the guarantee. We establish Proposition 3.2 below,
showing the absence of continuity in our particular cases:

Proposition 3.2. For point clouds in Rn×m with m,n ≥ 3,
it is impossible to construct a frame F : Rn×m → G
that is continuous across the entire domain when G =
E(n),SE(n),O(n) or SO(n).

Revisiting the universality of canonicalization. Proposi-
tion 3.2 highlights a crucial constraint: continuity in frames
(canonicalization functions with regular representations) is
not achievable for the groups of our interest. This raises
concerns about the expressivity guarantee in Theorem 3.1,
which relies on continuity. Fortunately, we can circumvent
this obstacle by leveraging the orthogonality of representa-
tions. Our established Theorem 3.3, presented below, offers
an alternative path toward expressiveness guarantees, even
in the absence of continuous canonicalization functions.

Theorem 3.3. LetX , Y be two normedG-spaces where the
group action are defined by the orthogonal representations1

ρX : G → GL(X) and ρY : G → GL(Y ), respectively.
Assume that X is finite-dimensional. Suppose f is a param-
eterized function from X to Y . Define ϕ as the canonical-
ization of f defined in equation (4) through an arbitrary
frame F : X → G. Then ϕ is a universal approximator
of G-equivariant continuous functions as long as f is a
universal approximator of continuous functions.

Leveraging the key insights from Theorem 3.3, we reveal the
universality of canonicalization for the group action of E(n)
or SE(n) on point clouds in Theorem 3.4. This universality
guarantees that canonicalization techniques designed for
these groups ensure any learning framework operating on
point clouds retains its universal approximation capabilities.

The key to this universality lies in the decomposition of
E(n) and SE(n). Indeed, E(n) (respectively, SE(n)) can be
expressed as a semidirect product O(n)⋉T(n) (respectively,
SO(n) ⋉ T(n)), where T(n) is the translational group of

1Orthogonality implies that the image of group representations
consists of orthogonal matrices.

Rn. Importantly, all representations of O(n) and SO(n) are
orthogonal, preserving the desirable properties underlying
Theorem 3.3. Moreover, by representing each group element
g ∈ E(n) as a pair (Q, t) with Q ∈ O(n) and t ∈ T(n),
we may focus on frames that relocate the center of the point
cloud to the origin. These frames take the following form:

F(X) =

(
F ′

(
X − 1

m
X1m1⊤

m

)
,
1

m
X1m

)
∈ E(n)

(5)
where F ′ : Rn×m → O(n) is a frame and 1m =
[1, . . . 1]⊤ ∈ Rm, so that 1

mX1m is the center of the point
cloud. A similar construction applies to SE(n). For this
specific type of frame, we have an expressivity guarantee:

Theorem 3.4. For G = E(n) or SE(n), the function
F : Rn×m → G constructed via equation (5) is a frame.
Moreover, let f : Rn×m → Rn×m be a parameterized
function, and ϕ be its canonicalization through F defined
in equation (3). Then ϕ is a universal approximator of
G-equivariant continuous functions if f is a universal ap-
proximator of continuous functions.

4. Explicit Construction of Frames
Motivation. We have demonstrated the absence of a con-
tinuous frame in our considered scenarios. To address this
limitation, we are intended to manually design a frame
rather than relying on learning models to approximate such
a frame. Inspired by the specific form of frames studied in
Theorem 3.4, we set our sights on explicitly constructing
a frame F : R3×m → G for point clouds centered at the
origin for G = O(3) or SO(3). Specifically, we aim to find
the inverse of F to effectively normalize the point cloud.

Before delving into the specifics of frame construction,
we ask a fundamental question inspired by our intuition:
what intrinsic characteristics of a point cloud – beyond
mere coordinates – make choosing a frame or orienta-
tion tricky? One key challenge arises from the presence
of inherent symmetries within the point cloud. Imagine a
perfectly symmetrical object like a cube. Any rotation that
aligns its edges with a standard coordinate system seems
equally valid, creating an ambiguity in the “correct” ori-
entation. This occurs because multiple rotations (differing
by the cube’s symmetry operations) yield visually identical
results. To address this inherent ambiguity, we need to un-
derstand the intrinsic symmetry of the point cloud. In what
follows, we will elucidate this consideration and propose a
strategy to construct a frame that handles these symmetries.

Let’s briefly revisit the concepts of symmetry operations
and point groups, which describe the inherent symmetries of
point clouds centered at the origin. For an in-depth discus-
sion, refer to (Miller, 1973; McWeeny, 2002). A symmetry
operation is a transformation that leaves the intrinsic geo-
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metric configuration of a point cloud unchanged, revealing
its underlying symmetries. Formally, for a point cloud rep-
resented by matrix X ∈ R3×m, a symmetry operation is
defined by a pair (σ, g) ∈ Sm × O(3) that preserves the
point cloud X unaltered: (σ, g) ·X = X . In other words,
it lies within the stabilizer subgroup of X . Alternatively,
we can consider the action on the unordered (multi-)set
representation {{xi}}mi=1. Here, a symmetry operation is
simply characterized by a group element g ∈ O(3) satisfy-
ing {{xi}} = g · {{xi}} := {{g ·xi}}, meaning the set remains
unchanged after applying the transformation g to each point.

The inherent symmetry of a point cloud is then captured by
its point group, defined as the subgroup of O(3) containing
all symmetry operations that preserve its structure. It is de-
noted as Sym({{xi}}) := {g ∈ O(3) | g · {{xi}} = {{xi}}}.

Objective. While our initial focus was on seeking a frame
F : R3×m → G, our ultimate goal is using this frame
to normalize point cloud {{xi}}. This normalization uses
F(X)−1{{xi}} as an invariant representation of {{xi}}.
However, point clouds, unlike matrices, are unordered sets.
To account for this, we introduce a “slightly adjusted”
relaxed equivariance condition for F : for any g1 ∈ G,
σ ∈ Sm, there exists g2 ∈ g1Sym({{xi}}) such that

F((σ, g1) ·X) = g2F(X). (6)

The condition now explicitly mandates invariance under
point permutations, ensuring the frame’s output is un-
affected by the order of X . Also, the output trans-
formations are permitted to differ by elements within
the point group Sym({{xi}})2. Similarly, one can check
F(X)−1{{xi}} is an invariant representation (notice that
g−1
2 g1 ∈ Sym({{xi}})):

F((σ, g1) ·X)−1{{(σ, g1) · xi}} = F(X)−1g−1
2 g1{{xi}}

= F(X)−1{{xi}}.
(7)

Remark 4.1. While we made an adjustment for relaxed
equivariance, the universality guarantee in Theorem 3.4 re-
mains unaffected, as its proof relies on the orthogonality
of group representations rather than relaxed equivariance.
Moreover, the proof of Proposition 3.2 extends to this ad-
justed setting, as indicated in the last comment in the proof.

Strategy. Now, we outline a strategy to construct a frame
F satisfying equation (6): First, we extract a sequence
of linearly independent vectors within X , denoted as
v1(X), . . . ,vrk(X)(X) where rk(X) denote the rank of
X . In particular, we require these points satisfying the
condition equation (6): for any 1 ≤ i ≤ rk(X), g1 ∈ G,
σ ∈ Sm, there exists a g2 ∈ g1Sym({{xi}}) such that

vi((σ, g1) ·X) = g2vi(X). (8)

2This constraint is slightly broader than the original relaxed
equivariance in equation (1) since GX ⊆ Sym({{xi}})

Simplify the notation by denoting each vi(X) as vi. Then
we construct F through the following process:

Step 1: align v1 with the x-axis via a rotation R1.

Step 2: rotate along the x-axis to place v2 in the x-y plane
with a positive y-component via R2.

Step 3: reflect along xy plane to ensure a positive z-
component for the vector x3 via R3 (skip this
step if G = SO(3))

If the number of steps surpasses rk(X), the process is ter-
minated. Finally, we define the frame as

F(X) := R⊤
1 · · · · ·R⊤

rk(X),

for G = O(3) (as F(X) := R⊤
1 · · · · · R⊤

min{2,rk(X)} for
G = SO(3)). Proposition B.1, demonstrated in Appendix B,
confirms that F constructed in this manner possesses the
desired relaxed equivariance property.

4.1. Asymmetric Unit

To select the sequence of vectors v1, . . . ,vrk(X) – essential
for our frame construction – we employ a well-established
algorithm with a time complexity of O(m logm), outlined
in (Alt et al., 1988). This algorithm is specifically designed
to uncover the inherent symmetries of a point cloud through
a process of graph simplification. While we’ll leverage its
full capabilities, our main focus will be on its graph simpli-
fication technique. This technique allows us to extract an
important component of point clouds known as the asym-
metric unit (Hoffmann, 2020). The reasoning behind this
strategic focus will be elucidated later in the paper. We
briefly recap the three key steps of this approach below:

Step A: Unit-sphere representation. Firstly, we represent
the original point cloud by the set of its corresponding points
on the sphere along with their distances to the origin.

1. Project each point xi onto the unit sphere in R3 via
division by its norm and gather the resulting rescaled
points into a set Z :=

{
xi

∥xi∥

}
, removing duplicates.

2. Define Rj :=
{{

∥xi∥ | zj = xi

∥xi∥

}}
for each zj ∈ Z ,

which captures the original radial distances of points
mapped to zj .

Remark 4.2. Points on the origin are excluded as their ori-
entation is inherently undefined. Rotations and reflections
wouldn’t affect them, making them irrelevant when analyz-
ing orientation-dependent frames. Consequently, omitting
them does not impact the construction of valid frames.
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The unit-sphere representation {zj ,Rj}|Z|
j=1 holds a remark-

able ability: it preserves the core symmetry of a point cloud
while offering a more concise and manageable structure.
This is because the original point cloud can be reconstructed
from this representation using the following formula:

{{xi}} =
⋃

zj∈Z
{{r · zj | r ∈ Rj}} (9)

Therefore, this concise representation retains all the infor-
mation about symmetries. In other words, g ∈ Sym({{xi}})
if and only if {zj ,Rj} = {g ·zj ,Rj}, i.e. there is a permu-
tation σ ∈ S|Z| such that gzσ−1(j) = zj and Rσ−1(j) = Rj

for any 1 ≤ j ≤ |Z|.

Step B: Directed labeled graph construction. Next, we
convert the unit-sphere representation into a directed labeled
graph as follows:

1. Construct the convex hull of Z3 and represent it as a
directed graph G = (V, E), where V := {j | zj ∈ Z}
includes all points in Z as nodes, and E includes both
directions of segments on the convex hull as edges.

2. For each node j, let j1, . . . , jl be the vertices adjacent
to j ordered in clockwise fashion. For 1 ≤ k ≤ l,
compute the distance dk = ∥zj − zjk∥ and the angle
θk on the sphere between zjk , zj and zj(k+1)mod l

.

3. Define vj = ({(θk, dk) | ekj ∈ E},Rj) and construct
the labeled graph G by assigning vj to node j.

As stated in (Alt et al., 1988), the directed labeled graph G
mirrors the symmetry of the unit-sphere representation and,
consequently, the original point cloud {{xi}}. We summarize
the results of Alt et al. (1988) in the following lemma.

Lemma 4.3 (Alt et al. (1988)). A permutation σ ∈ S|Z|
induces a graph automorphism on G, i.e. , vσ−1(j) = vj for
any j and eσ−1(j)σ−1(j′) ∈ E for any ejj′ ∈ E if and only if
there is a g ∈ O(3) s.t. gzσ−1(j) = zj and Rσ−1(j) = Rj .

Step C: Deterministic finite automaton construction and
minimization. In the algorithm’s final stage, the directed
labeled graph G is converted into a specific structure, called
deterministic finite automaton (DFA) (Hopcroft et al., 2001).
This transformation allows us to apply Hopcroft’s algorithm
(Hopcroft, 1971; Aho & Hopcroft, 1974) to identify a unique
minimal DFA (Hopcroft et al., 2001). Basically, Hopcroft’s
algorithm operates by exploiting an equivalence relation
between edges derived from the action of Aut(G) and ter-
minates when no further equivalences exist. The minimal
DFA for the NH3 molecule is shown in Figure 2, while the
original DFA before minimization is provided in Figure 7
in Appendix F. For a thorough exposition of Hopcroft’s

3The convex hull exhibits the same symmetry as Z .

algorithm and its application to this context, see (Hopcroft
& Wong, 1974; Wolter et al., 1985; Alt et al., 1988).

a a

b b

Figure 2. The minimal DFA for the NH3 molecule. Invariant fea-
tures are given by {H,N}, z{H,N}, and v{H,N}, node indices are
given by {0, 1, 2, 3} and state transitions are marked a, b.

z
y

x

z
y

x

z
y

x

Figure 3. Isomorphic asymmetric units (blue) of NH3 with N/H
colored green/black resp. The asymmetric units reconstruct the
polyhedron (grey) generated by the convex hull of the data pro-
jected on the unit sphere.

4.2. Constructing a frame from asymmetric units

The minimal DFA, while utilized for symmetry detection
in (Alt et al., 1988), offers a hidden gem for our frame
construction needs. It encodes all “minimal” (directed) sub-
graphs, called asymmetric unit, that have the remarkable
ability to reconstruct the entire graph G, essentially serving
as fundamental building blocks. These asymmetric units
achieve this reconstruction through the application of graph
automorphisms on G, which correspond to symmetry opera-
tions as established in Lemma 4.3. This relationship echos
the concept of unit cells, where replicating and symmetri-
cally arranging these building blocks generates the complete
structure of a crystal. Notably, asymmetric units are smaller
than unit cells, lacking internal symmetries, yet still capable
of generating the entire graph (Hoffmann, 2020). Figure 3
visualizes three such asymmetric units extracted from the
minimal DFA.

To delve deeper, let’s formally define an asymmetric unit
and unveil its key properties. The group formed by graph au-
tomorphisms on G is denoted by Aut(G). For σ ∈ Aut(G)
and a subgraph H = (VH, EH) ⊂ G, the action of σ on H
is defined as

σ · H :=
(
{σ(k) | k ∈ VH}, {eσ(k)σ(k′) | ekk′ ∈ EH}

)
.

(10)

A subgraph H ⊆ G is said to reconstruct G if the union of
all subgraphs within its orbit Aut(G) · H is the entire graph
G, that is, G =

⋃
σ∈Aut(G) σ · H. Moreover, it is said to be

minimal if there is no proper subgraph H′ ⊂ H that also
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Figure 4. Normalization process of NH3 by aligning N, H, H extracted from the asymmetric unit N→H→H→N (blue): (a) Initial data.
(b) N (green) aligns to the x-axis. (c) H (black) aligns to the xy-plane. (d) H (black) aligns to the positive z-direction.

reconstructs G. Interestingly, the minimality of H is tightly
linked to its stabilizer:
Proposition 4.4. Suppose H ⊆ G is a subgraph that recon-
structs G. If H is minimal then for any σ ∈ Aut(G), we
have σ · H ≠ H.

Proposition 4.4 reveals the inherent asymmetry of the mini-
mal building block H, which we can then identify as asym-
metric units. This asymmetry is characterized by the ab-
sence of automorphism preserving H, implying that there
are no equivalent edges, can further simplify its structure
while preserving its reconstructive power. This explains
why the minimal DFA encodes all asymmetric units. Re-
call that the minimal DFA is constructed by minimizing a
DFA derived from G. During this minimization, equivalent
directed edges are identified based on a relationship drawn
from the graph automorphisms (corresponding to symmetry
operations on the given point cloud). The process terminates
when no further equivalences can be found, resulting in a
minimal DFA that represents the original DFA. To extract
an asymmetric unit, we carefully navigate the equivalence
classes of directed edges, choosing one representative from
each class, and follow transitions within the DFA. For ex-
ample, we could start with N0H1, followed by H1H2, and
then H2N0. This yields the asymmetric unit depicted in
Figure 3. Notably, the extracted asymmetric unit exhibits
no inherent symmetry, echoing Proposition 4.4.

Sm-invariance and uniqueness. Notably, any asymmetric
unit H extracted from the minimal DFA is an ordered4

sequence of distinct directed edges, where consecutive edges
are adjacent. It can be represented as H = {eklkl+1

}|EH|
l=1

where eklkl+1
̸= ekl′kl′+1

for any l ̸= l′. The ordering
of these edges then guarantees independence from index
permutations within the point cloud, ensuring the desired
Sm-invariance.

Furthermore, it’s essential to note that while there might ex-
ist multiple asymmetric units that reconstruct G, the unique-

4This inherent order arises naturally from lexicographical sort
when minimizing DFA.

ness of minimal DFA implies that all asymmetric units cor-
respond to equivalent minimal DFAs and hence are isomor-
phic, i.e., belong to the same orbit under the action of the
automorphism group Aut(G).

We now proceed with the construction of the desired frame
F using the asymmetric unit H, obtained from the algorithm
discussed above. Recall that it suffices to select a sequence
of linearly independent vectors from the point clouds {{xi}},
or equivalently, their unit sphere representation {zj ,Rj},
that satisfy the condition equation (6).

We demonstrate our approach for choosing vectors from
H = {eklkl+1

}|EH|
l=1 and elucidate why it meets the required

conditions: H = {eklkl+1
}|EH|
l=1 is an Sm-invariant sequence

of directed edges. By tracing this directed path, we natu-
rally obtain {zkl

}|EH|
l=1 , an Sm-invariant sequence of points

in Z . This is a direct consequence of the correspondence
between nodes in G and points in the unit-sphere represen-
tation {zj ,Rj}. We can then strategically select linearly
independent vectors from this sequence as demonstrated in
Figure 4(a). Importantly, relaxed equivariance is guaranteed
since these vectors represent points in the unit-sphere repre-
sentation {zj ,Rj} (uniquely determining the original point
clouds), and different asymmetric units are distinguished by
symmetric operations in Sym({{xi}}). Figure 4 illustrates
how these three vectors define a frame and normalize the
NH3 molecule according to the method in our strategy.

4.3. Point clouds with features

In cases where points may possess additional features, de-
noted as fi (e.g., atom features in molecules), our frame
determination remains applicable with a slight adjustment.
Specifically, we treat fis as tokens (playing a role similar to
atomic numbers) and use a hash function to generate unique
indices for these tokens, denoted as ai. The set of radial
distances is redefined as Rj = {{(∥xi∥, ai) | zj = xi

∥xi∥}}
for each j. Clearly, a formula similar to equation (9) holds
for this case, ensuring the applicability of our algorithm to
cases involving additional features.

7



An Explicit Frame Construction for Normalizing 3D Point Clouds

5. Additional Related Works
In this section, we discuss a few representative works revolv-
ing around leveraging frames for symmetry-aware ML. Co-
hen et al. (2019) present a general theory of group equivari-
ant convolutional neural networks on homogeneous spaces.
Zhao et al. (2020) develop a roto-translation equivariant 3D
capsule module on quaternions that receives a sparse set
of local reference frames. The paper (Kofinas et al., 2021)
proposes local coordinate frames per node-object to induce
roto-translation invariance to the geometric graph of the
interacting dynamical system. Puny et al. (2021) develop a
systematic framework for adapting known architectures to
become invariant or equivariant to new symmetry type lever-
aging frame averaging. The idea of frame averaging has
also been used for equivariant shape space learning (Atzmon
et al., 2022). Simeonov et al. (2023) leverage local coordi-
nate frames for SE(3)-equivariant relational rearrangement
with neural descriptor fields. Local frames have also been
used to build efficient and expressive 3D equivariant graph
neural networks (Du et al., 2022; 2023).

6. Experiments
We validate our approach with a comprehensive comparison
of our ASymmetric Unit Normalization (ASUN) with exist-
ing and publicly available methods on benchmark datasets.
Specifically, we compare ASUN against PCA (Bellekens
et al., 2014), the auto-encoder (AE) as described in (Winter
et al., 2022), and frame-averaging (FA) (Puny et al., 2021).
To the best of our knowledge, there are no publicly available
implementations of the methods discussed in (Kaba et al.,
2023). The datasets consist of QM9 (Ramakrishnan et al.,
2014) molecular data, ModelNet40 (Wu et al., 2015) CAD
point cloud data, and n-body (Satorras et al., 2021) point
cloud trajectories5. Several state-of-the-art (SOTA) invari-
ant and equivariant neural networks are used for comparison
on benchmark tasks. These tasks empirically demonstrate
the consistency and generalizability of ASUN.

6.1. QM9 molecular alignment
In this study, we evaluate the consistency and generaliz-
ability of ASUN using QM9. For this task, each model
constructs a normalized baseline from the positional data of
5000 QM9 molecules. Each molecule is then subjected to a
random rotation and translation. The models then normal-
ize the perturbed data. The Wasserstein distance (Villani
et al., 2009), i.e. the earth mover distance (EMD), is used to
compute the loss between the initial normalization and the
normalization after perturbation. Perturbation is applied a to-
tal of 100 times per molecular structure. The learning-based
AE model is trained on the QM9 positional data following
the procedure of Winter et al. (2022). In particular, the

5Due to page limit, we leave experitments on the n-body point
cloud trajectories to Appendix E.

RMSE of the predicted positional data is minimized using
the Adam optimizer. Once trained, the encoder of the model
outputs the learned frame which normalizes the data.

Rank 1 Rank 2 Rank 3

PCA 0.00014 0.01793 0.82758
AE 1.15122 0.037539 0.03178

ASUN 0.00014 0.00008 0.02826

Table 1. Results for QM9 molecular normalization by rank. We
illustrate the best performance for each rank in bold. The ASUN
algorithm falls within the known error range for the QM9 dataset
of 0.1Å (Kim et al., 2019) in all ranks.

C1 C∞,v Cs D6,h Td

PCA 0.853 0.303 0.679 0.244 0.721
AE 0.041 0.240 0.037 0.023 0.028

ASUN 0.018 0.001 0.004 0.001 0.001

Table 2. Results for QM9 molecular normalization by point group.
We illustrate the best performance for each rank in boldface.
ASUN exhibits strongest generalization performance across all
different point groups.

Table 1 compares PCA and AE models to ASUN, highlight-
ing the consistency of ASUN. By separating the results by
rank, one can easily observe the limitations of PCA and
AE. As discussed in Section 1 the PCA model is prone to
failure given rank 3 data with a high degree of symmetry.
By contrast, the AE model has a limitation for rank 1 and 2
data. The efficacy of our ASUN is supported by the results
in Table 1. In particular, PCA performs well for rank 1
data, but significantly underperforms for rank 3 data. We
also observe that AE performs poorly for rank 1 data with
an error of 1.2Å. ASUN performs the best of all methods
across all ranks of the dataset as indicated in boldface.

The advantages of ASUN are illustrated in Fig. 5 for rank
1 and rank 2 data as well as Fig. 1 for rank 3 data. These
figures visually illustrate the normalization of perturbed
data. ASUN is an error-free explicit frame construction.

The generalizability of AE and PCA is compared to the
ASUN method by separating the data based on their point
group classification. The results by point group classifica-
tion are shown in Table 2. In this task, the AE model is
trained in the same manner but data is with-held based on
its symmetry group. This tests the generalizability of AE
to C∞,v , Cs, D6,h and Td – see Table 4 in the appendix for
details of these groups – in comparison to data-free algo-
rithms like PCA and ASUN. AE outperforms PCA, which
is generally incapable of handling data with high degrees of
symmetry. However, it does not have strong generalizations
like the data-free ASUN method.
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Invariant/Equivariant z/SO(3) SO(3)/SO(3) ASUN/ASUN
SchNet (Schütt et al., 2018) 29.74 28.81 28.93
EGNN (Satorras et al., 2021) 22.61 24.63 25.41
MACE (Batatia et al., 2022) 25.36 27.18 27.55
eSCN (Passaro & Zitnick, 2023) OOM OOM OOM
ASUN-Invariant z/SO(3) SO(3)/SO(3) ASUN/ASUN
GCN (Welling & Kipf, 2016) 13.57 11.91 18.19
GCNII (Chen et al., 2020) 21.3 22.97 30.75
SchNet-pos 28.40 36.18 42.79
EGNN-pos 29.94 47.41 53.36

Table 3. Object classification accuracy (%) of ModelNet40 for different train/test augmentations. (OOM – out of memory)

C4H2 (Rank 1) H2O (Rank 2)
PCA

AE (Winter et al., 2022)

ASUN (ours)

Figure 5. A comparison of aligned C4H2 (rank 1) and H2O (rank
2) molecular structures. We observe inconsistencies at rank 1 for
AE and at rank 2 for PCA. ASUN is consistent for all ranks.

6.2. ModelNet40 Shape Classification

Using the ModelNet40 dataset (Wu et al., 2015), we further
demonstrate the versatility and effectiveness of ASUN for
point cloud alignment. The dataset consists of 40 catego-
rized CAD meshes with 9,843 training and 2,468 testing
samples. The nodes and edges of the mesh are used to
represent the data as a graph. ModelNet40 is pre-aligned
in the xy-plane. The baseline data denoted z is then aug-
mented with random z-axis rotation denoted SO(3) or z-axis
alignment denoted ASUN. This benchmark is similar to the
existing benchmark (Qi et al., 2017) used in (Kim et al.,
2020; Luo et al., 2022; Chen & Cong, 2022). However, the
existing benchmark uniformly samples data from the mesh,
breaking the data symmetries. Our benchmark uses the full
point cloud data which is significantly more challenging.

Several SOTA GNNs, categorized as Invariant/Equivariant
and ASUN-Invariant, are trained on each data partition.
ASUN-Invariant architectures utilize positional data as input
node features and are invariant only when ASUN is applied.
We apply this approach to SchNet and EGNN, labeled as
SchNet-pos and EGNN-pos, respectively, while excluding
MACE and eSCN from this modification. Also, we note

that eSCN exceeds the memory capacity of the A100 GPU.

Table 3 reports the classification results for training/testing
augmentations z/SO(3), SO(3)/SO(3) and ASUN/ASUN.
We note that invariant/equivariant models consistently main-
tain accuracy across augmentations, as expected, since the
output remains invariant under transformations, including
the application of ASUN. When positional data is used as
a node feature, ASUN significantly improves the accuracy
of all models, showing the benefit of ASUN – it allows the
positional data to be used directly while maintaining invari-
ance. Additionally, Figure 6 illustrates the application of
our ASUN to the ModeNet40 dataset.

Figure 6. We visualize the application of ASUN on ModeNet40.
The original point cloud (grey) is aligned with the blue one using
our ASUN method before further analysis.

7. Concluding Remarks
This paper presents a new approach for 3D point cloud
normalization, surpassing limitations observed in current
approaches. Our direct frame construction and normaliza-
tion algorithm exhibit robust performance across diverse
3D point cloud datasets, regardless of their complexity or
symmetrical properties. This capability to normalize any 3D
point cloud extends the applicability of our approach to di-
verse application domains beyond ML, encompassing fields
such as medical imaging, geometric processing, computer
vision, and geospatial analysis.
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Impact Statement
This work presents a novel direct frame construction for 3D
point cloud normalization, offering performance guarantees
within the specific machine learning context. Our proposed
normalization outperforms existing algorithms in various
settings, demonstrating its potential for broad application in
3D point cloud analysis. We do not see any potential ethical
issues in our research.
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Appendix for
An Explicit Frame Construction for Normalizing 3D Point Clouds

A. Additional Details for Frame and Normalization
We first show the existence of frames. Notably, there are similarities with certain results presented in (Winter et al., 2022).

Proposition A.1 (Existence of frames). There is a function F : X → G satisfying the G-relaxed equivariance condition
that for any x ∈ X and g1 ∈ G, there exists a g2 ∈ g1Gx such that

F(g1 · x) = g2 · F(x). (11)

Proof. Consider the orbits Gx, forming a partition of the set X where each point resides in a unique orbit. Within each Gx,
a canonical representative can be chosen following the approach outlined in (Winter et al., 2022). This selection induces a
function µ : X → X by mapping each x ∈ X to its canonical representative within its orbit. As the output solely depends
on the input’s orbits, µ is a G-invariant function.

Moreover, since x and µ(x) lie in the same orbit, there exists a group element gx ∈ G such that x = g · µ(x). While
multiple group elements may satisfy this condition, we choose one (by Axiom of Choice). This defines a well-defined
function F : X → G by mapping x to gx. Note that through this construction, we have µ(x) = F(x)−1 · x for any x. To
demonstrate that F is a frame, let g1 ∈ G. Since µ is G-invariant, we have

F(x)−1 · x = µ(x) = µ(g1 · x) = F(g1 · x)−1 · g1 · x.

Then we obtain g−1
1 F(g1 · x)F(x)−1 · x = x, which implies that g−1

1 F(g1 · x)F(x)−1 ∈ Gx. Therefore, we obtain the
desired property as follows:

g−1
1 F(g1 · x)F(x)−1 ∈ Gx ⇔ F(g1 · x)F(x)−1 ∈ g1Gx ⇔ F(g1 · x) = g2 · F(x) for some g2 ∈ g1Gx. (12)

Next, we show that the canonicalization of an arbitrary function f between G-spaces X and Y satisfies relaxed equivariance.
Since this is a well-established result in (Kaba et al., 2023), we provide a very concise proof.

Proposition A.2 (G-relaxed equivariance of the canonicalization of functions). Let X and Y be two G-spaces, and let
F : X → G be a frame. Then the canonicalization of any function f : X → Y through F , defined as: ϕ(x) :=
F(x) · f(F(x)−1 · x), is a G-relaxed equivariant function.

Proof. We observe that F(x)−1 · x is G-invariant. Therefore, f(F(x)−1 · x) must be G-invariant. Then the G-relaxed
equivariance of ϕ is inherited from that of F .

It is evident that if a function is G-equivariant, then its canonicalization remains G-equivariant.

B. Additional Details for Frame Construction
We review and provide a theoretical guarantee of our strategy mentioned in Section 4. First, we extract a sequence of linearly
independent vectors v1(X), . . . ,vrk(X)(X) within the point cloud {{xi}} that satisfy the condition: for any 1 ≤ i ≤ rk(X),
g1 ∈ G, σ ∈ Sm, there exists a g2 ∈ g1Sym({{xi}}) such that

vi((σ, g1) ·X) = g2vi(X). (13)

Then we construct F through the following process:

Step 1: align v1 with the x-axis via a rotation R1.

Step 2: rotate along the x-axis to place v2 in the x-y plane with a positive y-component via R2.
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Step 3: reflect along x-y plane to ensure a positive z-component for the vector x3 via R3 (skip this step if G = SO(3))

If the number of steps surpasses rk(X), the process is terminated. Finally, we define the frame as

F(X) := R⊤
1 · · · · ·R⊤

rk(X),

for G = O(3) (as F(X) := R⊤
1 · · · · ·R⊤

min{2,rk(X)} for G = SO(3)).

Proposition B.1. The function F : R3×m → G defined above satisfies the relaxed equivariance in equation (6).

Proof. We observe that it is enough to show that each column vectors in F(X) satisfy the relaxed equivariance. In particular,
we will see that its columns are generated by the Gram-Schmidt process.

Define R1 to align v1 with the first standard basis vector e1, ensuring ∥v1∥e1 = R1v1. This yields the first column of R⊤
1

as v1

∥v1∥ , which inherently satisfies relaxed equivariance.

Construct the intermediate vector ṽ2 = R1v2 − ⟨R1v2, e1⟩e1. Define R2 to map ṽ2 to the second standard basis vector
while preserving e1. This results in the second column of R⊤

2 R
⊤
1 being v2−⟨v2,v1⟩v1

∥v2−⟨v2,v1⟩v1∥ , which also satisfies relaxed
equivariance.

Define R3 as a reflection along the x − y plane, leaving the first two columns of R⊤
3 R

⊤
2 R

⊤
1 unchanged. Consider

ṽ3 = R2R1v3 − ⟨R2R1v3, e1⟩e1 − ⟨R2R1v3, e2⟩e2. We see that R3ṽ3 = ∥ṽ3∥e3, resulting in the third column being
the normalized projection of v3 onto the orthogonal complement of v1 and v2, i.e. the normalization of v3−⟨v3,v1⟩ v1

∥v1∥ −

⟨v3,v2 − ⟨v2,v1⟩ v1

∥v1∥ ⟩
v2−⟨v2,v1⟩ v1

∥v1∥

∥v2−⟨v2,v1⟩ v1
∥v1∥∥

.

Notice that the last two column vectors of R⊤
1 when rk(X) = 1 (or the last column vector of R⊤

2 R
⊤
1 when rk(X) = 2)

reside outside the space spanned by the vectors xi within the point cloud. These vectors inherently satisfy the relaxed
equivariance property. This is because relaxed equivariance allows for some flexibility in the output transformation,
specifically permitting differences by elements within the stabilizer.

C. Inherent Symmetry
We reference Martin (1982) as a key source for understanding point set symmetries. Specifically, symmetries in two-
dimensional point sets are described by Leonardo’s Theorem C.1, and in three-dimensional point sets by Hessel’s Theo-
rem C.2.

Point Group Symmetry Elements Order of the Group

C1 E 1
Ci i 2
Cs σ 2
Cn Cn n
S†
n Sn n

Cnv Cn, σv 2n
Cnh Cn, σh 2n
Dn Cn,⊥ C2 2n
Dnd Cn,⊥ C2, σd 4n
Dnh Cn,⊥ C2, σh 4n
C∞v rk(X) = 1 without i ∞
D∞h rk(X) = 1, i ∞

Table 4. A list of point groups and their symmetry elements. (Harris & Bertolucci, 1989). †: n must be even or Sn = Cnh

Theorem C.1 (Leonardo’s Theorem). A finite group of isometries for a subset of R2 is either a cyclic group Cn or a dihedral
group Dn.

14



An Explicit Frame Construction for Normalizing 3D Point Clouds

Theorem C.2 (Hessel’s Theorem). A finite grup of isometries on a subset of R3 is one of the following:

• The rotation groups T,C, I of the platonic solids tetrahedron, cube, and icosahedron

• The cyclic groups Cn, n = 1, 2, . . . , and the dihedral groups Dn, n = 2, 3, . . ..

• The groups T̄ , C̄, Ī; C̄1, C̄2, . . . ; D̄1, D̄2, . . . ; where Ḡ means the group generated by G and a reflection at some point
(inversion).

• The groups CT , C2nCn, D2nDn, n = 2, 3, . . . , where GH means H ∪ (G−H)⊙ i where i is an inversion.

D. Missing proofs
Proposition D.1. For point clouds in Rn×m with m,n ≥ 3, it is impossible to construct a frame F : Rn×m → G that is
continuous across the entire domain when G = E(n),SE(n),O(n) or SO(n).

Proof. Without loss of generality, we can narrow our attention to the case of n = m = 3. This is achieved by focusing on
the first 3× 3 minor of any matrix within Rn×m.

Denoting the standard basis vectors of R3 as e1, e2, and e3, let F : R3×3 → G be an abitrary frame. Our goal is to
demonstrate that the discontinuity of F at X0 = [e1,0,0]. To establish the discontinuity, we seek an ϵ > 0 such that for
any δ > 0, there exists a Z ∈ R3×3 satisfying ∥X0 −Z∥F < δ, yet ∥F(X0)−F(Z)∥ > ϵ.

For G = O(3) or SO(3).

Consider Xδ,θ = [e1,
δ
2Rθe2,

δ
3Rθe3] ∈ R3×3 where Rθ ∈ SO(3) denote the rotation matrix with axis e1 and angle θ.

Note that ∥X0 −Xδ,θ∥ < δ.

Denoting F(Xδ,0) as gδ, the equivariance of F and the fact that the stabilizer of Xδ,0 is trivial imply F(Xδ,θ) =
RθF(Xδ,0) = Rθgδ . Therefore,

∥F(X0)−F(Xδ,θ)∥ = ∥F(X0)−Rθgδ∥ = ∥F(X0)g
−1
δ −Rθ∥. (14)

It suffices to find an ϵ > 0 such that for any g ∈ O(3), we have ∥g −Rθ∥ > ϵ for some θ. Fix a θ0 and choose an ϵ > 0
such that ∥R−θ0 −Rθ0∥ = 3ϵ. By the triangle inequality, ∥g −R−θ0∥+ ∥g −Rθ0∥ ≥ ∥R−θ0 −Rθ0∥ = 3ϵ, implying
∥g −R−θ0∥ > ϵ or ∥g −Rθ0∥ > ϵ. Thus, ∥g −Rθ∥ > ϵ for θ = θ0 or −θ0, completing the argument for G = O(3) or
SO(3).

For G = E(3) or SE(3).

Remark that E(3) (resp. SE(3)) has the induced topology from GL(4) through the inclusion E(3) ⊂ GL(4) (resp.
SE(3) ⊂ GL(4)), defined as follows:

(Q, t) ∈ E(3) 7→
[
Q t
0 1

]
. (15)

Consider again the candidate matrix Xδ,θ. Denote F(X0) as (Q0, t0) and F(Xδ,0) as (Qδ, t). Similarly, we obtain
F(Xδ,θ) = (Rθ,0) · F(Xδ,0) = (RθQδ, t). Since ∥F(X0) − F(Xδ,θ)∥ ≥ ∥Q0 − RθQδ∥, an analogous argument
establishes the existence of an ϵ > 0 such that for any δ, there exists a θ satisfying ∥F(X0)−F(Xδ,θ)∥ > ϵ.

Moreover, one can check that the example Xδ,θ employed in this proof does not exhibit any inherent symmetry.

Theorem 3.3. Let X , Y be two normed G-spaces where the group action are defined by the orthogonal representations6

ρX : G→ GL(X) and ρY : G→ GL(Y ), respectively. Assume that X is finite-dimensional. Suppose f is a parameterized
function from X to Y . Define ϕ as the canonicalization of f defined in equation (4) through an arbitrary frame F : X → G.
Then ϕ is a universal approximator of G-equivariant continuous functions as long as f is a universal approximator of
continuous functions.

6Orthogonality implies that the image of group representations consists of orthogonal matrices.
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Proof. The proof draws inspiration from the methodology introduced by (Kaba et al., 2023) but diverges by avoiding
dependence on the continuity of functions. In particular, we utilize the orthogonality of representations to address the
absence of continuity.

First of all, let ψ be an arbitrary G-equivariant function. Through the construction of ϕ and the equivariance of ψ, we have

∥ψ(x)− ϕ(x)∥ =
∥∥ρW (F(x))ψ

(
ρV (F(x))−1x

)
− ρW (F(x))f

(
ρV (F(x))−1x

)∥∥
=

∥∥ρW (F(x))
(
ψ
(
ρV (F(x))−1x

)
− f

(
ρV (F(x))−1x

))∥∥ . (16)

Given that ρW is orthogonal, ρW (F(x)) preserves norms. Consequently, we deduce

∥ψ(x)− ϕ(x)∥ =
∥∥ψ (

ρV (F(x))−1x
)
− f

(
ρV (F(x))−1x

)∥∥ , for any x ∈ X. (17)

Let K ⊂ X be a compact set, and ϵ > 0 be any positive number. Consider the closure of the set {ρV (F(x))−1x | x ∈ K},
denoted by K̃. We assert that K̃ is compact. Evidently, it is clear that K̃ is closed. As K is compact and hence bounded,
there is an r > 0 such that x ∈ Br for any x ∈ K with Br denoting the closed ball centered at the origin with radius r.
Using the orthogonality of ρV , ∥ρV (F(x))−1x∥ = ∥x∥ ≤ r for any x ∈ K. This implies {ρV (F(x))−1x | x ∈ K} ⊂ Br.
As Br is closed, K̃ ⊂ Br, which shows that K̃ is bounded and thus is compact.

Now, employing the assumption on the universality of f , there exists a choice of parameters such that:

∥ψ (x̃)− f (x̃)∥ < ϵ, for any x̃ ∈ K̃. (18)

Combining this with equation (17), we derive the desired result,

∥ψ(x)− ϕ(x)∥ =
∥∥ψ (

ρV (F(x))−1x
)
− f

(
ρV (F(x))−1x

)∥∥ < ϵ, for any x ∈ K. (19)

Theorem 3.4. For G = E(n) or SE(n), the function F : Rn×m → G constructed via equation (5) is a frame. Moreover, let
f : Rn×m → Rn×m be a parameterized function, and ϕ be its canonicalization through F defined in equation (3). Then ϕ
is a universal approximator of G-equivariant continuous functions if f is a universal approximator of continuous functions.

Proof. We first show that F : Rn×m → E(n) is a frame. Observe that for any X ∈ Rn×m, the stabilizer GX of X is a
subgroup of O(n) since the action of translations is free. Now consider g1 ∈ O(n) and t ∈ T(n). We have

F ((g1, t) ·X) = F
(
g1X + t1⊤

m

)
=

(
F ′

(
g1X + t1⊤

m − 1

m

(
g1X + t1⊤

m

)
1m1⊤

m

)
,
1

m

(
g1X + t1⊤

m

)
1m

)
=

(
F ′

(
g1

(
X − 1

m
X1m1⊤

m

))
,
1

m

(
g1X + t1⊤

m

)
1m

)
=

(
g2F ′

(
X − 1

m
X1m1⊤

m

)
, g2

(
1

m
X1m

)
+ t

)
= (g2, t) ·

(
F ′

(
X − 1

m
X1m1⊤

m

)
,
1

m
X1m

)
= (g2, t) · F(X)

(20)

for some g2 ∈ g1GX . This implies that F is a frame.

Next, let ψ be an arbitrary G-equivariant continuous function. Through the construction of ϕ and the equivariance of ψ, we
have

∥ψ(X)− ϕ(X)∥ =
∥∥F(X) · ψ

(
F(X)−1 ·X

)
−F(X) · f

(
F(X)−1 ·X

)∥∥
=

∥∥∥∥F ′(X − 1

m
X1m1⊤

m) · ψ
(
F(X)−1 ·X

)
−F ′(X − 1

m
X1m1⊤

m) · f
(
F(X)−1 ·X

)∥∥∥∥ (21)

Since F ′(X) preserves norms, we deduce

∥ψ(X)− ϕ(X)∥ =
∥∥ψ (

F(X)−1 ·X
)
− f

(
F(X)−1 ·X

)∥∥ , for any X. (22)
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Similar to the proof of Theorem 3.3, it suffices to show that for any compact setK ⊂ Rn×m, the set {F(X)−1·X | X ∈ K}
is bounded. Notice that ∥∥F(X)−1 ·X

∥∥ =

∥∥∥∥∥F ′
(
X − 1

m
X1m1⊤

m

)−1 (
X − 1

m
X1m1⊤

m

)∥∥∥∥∥
=

∥∥∥∥X − 1

m
X1m1⊤

m

∥∥∥∥
=

∥∥∥∥X (
Im − 1

m
1m1⊤

m

)∥∥∥∥ ,
(23)

where Im denotes the m×m identity matrix. The desired result then follows from the fact that Im − 1
m1m1⊤

m is a bounded
operator. Therefore, we conclude that ϕ is a universal approximation of G-equivariant continuous function.

Proposition D.2. Suppose H ⊆ G is a subgraph that reconstructs G. If H is minimal then for any σ ∈ Aut(G), we have
σ · H ≠ H.

Proof. Suppose H is minimal and there is a non-trivial σ in Aut(G) such that σ · H = H. Since σ is non-trivial, it must
map at least one edge ejk in H to a distinct edge eσ(j)σ(k) in H. Create a proper subgraph H′ ⊂ H by removing eσ(j)σ(k)
from H. Notice that σH′ ∪H′ = H, which implies H′ can reconstruct the entire graph since H can. This contradicts the
assumption of H being minimal, as we have found a proper subgraph H′ capable of reconstructing H.

E. n-Body problem
In the following section, we consider the n-body task (Satorras et al., 2021), which uses initial positions and velocities
to predict the trajectory of five charged atomic particles. For this task, we use the architectures, training procedures, and
hyperparameters as described in (Satorras et al., 2021). Different from (Satorras et al., 2021), we construct the 3000 training
trajectories (augmented dataset) by performing six random rotations on 500 trajectories. Then the training is performed on
the 3000 trajectories, with 2000 unique trajectories used for validation and 2000 unique trajectories used for testing. In this
task, we see a direct comparison between the canonicalization technique of ASUN and architecture-dependent models like
TFN, EGNN, and FA. The baseline models also include a linear model and a GNN model adapted from (Satorras et al.,
2021).

Method MSE Forward time (s)

Linear 0.0714 0.0001
TFN (Thomas et al., 2018) 0.0343 0.0343
GNN 0.0165 0.0032
EGNN (Satorras et al., 2021) 0.0141 0.0062
FA (Puny et al., 2021) 0.0177 0.0041
ASUN-GNN 0.0139 0.0032

Table 5. Results for n-body trajectory prediction. We illustrate the best performance in bold.

From Table 5 we observe the benefits of using the data-free and architecture-independent method of ASUN. In particular,
we observe that ASUN – used in the baseline GNN setting (ASUN-GNN) – achieves the best results with no additional
computational overhead per epoch. This is because ASUN is a data-processing step and does not restrict the architectures.
This allows for the use of fast architectures like GNN. ASUN is highly generalizable to real-world datasets that have not
been meticulously cleaned or processed.

In Table 6, we empirically demonstrate that message message-passing neural network (MPNN) does not interfere with
the universality of canonicalization. This task utilizes the same n-body task as described above. However, this data is not
augmented with additional data. We observe that the model performance improves slightly when using ASUN. However,
crucially, it does not decrease the model performance or the computational time. Importantly, this shows that ASUN
preserves the universality of the methods.
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Method MSE Forward time (s)

TFN 0.0155 .0343
GNN 0.0107 .0032
EGNN 0.0071 .0062
FA 0.0057 .0041
ASUN-TFN 0.0135 .0343
ASUN-GNN 0.0102 .0034
ASUN-EGNN 0.0068 .0062

Table 6. Results for n-body trajectory prediction.

F. Additional Results
Figure 7 illustrates the full DFA for the NH3 molecule. In particular, we denote invariant features as ((zH , H), vH) or
((zN , N), vN ) for hydrogen and nitrogen atoms respectively. The node indices are given by {0, 1, 2, 3}. The state transitions
on the DFA are discussed in (Alt et al., 1988) and are denoted a and b.
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Figure 7. The entire DFA for the NH3 molecule. Invariant features are given by {H,N}, z{H,N}, and v{H,N}, node indices are given by
{0, 1, 2, 3} and state transitions are marked a, b.
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