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Abstract

Existing single image super-resolution methods are ei-

ther designed for synthetic data, or for real data but in the

RGB-to-RGB or the RAW-to-RGB domain. This paper pro-

poses to zoom an image from RAW to RAW inside the camera

imaging pipeline. The RAW-to-RAW domain closes the gap

between the ideal and the real degradation models. It also

excludes the image signal processing pipeline, which refo-

cuses the model learning onto the super-resolution. To these

ends, we design a method that receives a low-resolution

RAW as the input and estimates the desired higher-resolution

RAW jointly with the degradation model. In our method,

two convolutional neural networks are learned to constrain

the high-resolution image and the degradation model in

lower-dimensional subspaces. This subspace constraint con-

verts the ill-posed SISR problem to a well-posed one. To

demonstrate the superiority of the proposed method and the

RAW-to-RAW domain, we conduct evaluations on the RealSR

and the SR-RAW datasets. The results show that our method

performs superiorly over the state-of-the-arts both qualita-

tively and quantitatively, and it also generalizes well and

enables zero-shot transfer across different sensors.

1. Introduction

Digital zoom is necessary for devices with limited op-

tical zoom capability such as smart phones or consumer

level cameras. The digital zoom can be implemented either

as built-in functionality in the camera preview, where se-

lected distant image areas are enlarged in real-time, or as

post-processing in the editing software, where a single input

image is up-sampled into higher-resolution for more details.

In the past few decades, numerous works [3, 8, 12, 18, 24,

33, 37, 38, 43, 52] have been done on single image super-

resolution (SISR) because it is less demanding on the input.

Some of these works, especially the learning based ones [39],

assume the degradation kernel follows a manually defined

formulation such as a Gaussian distribution or a Bicubic
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interpolation, and synthesize paired low-resolution (LR) and

high-resolution (HR) image pairs to design and evaluate the

methods. However, the degradation model on real data is

more complicated than the made assumptions. This domain

gap limits the performances of these methods on real data.

Recently, some works start to explore the SISR problem

on real data and have pushed this field forward by several

progresses. Real datasets such as RealSR [5], SR-RAW [51]

and ImagePairs [19], have been proposed, where a LR-HR

pair is captured towards the same scene either with varying

camera focal lengths or with a beam splitter. These datasets

bridge the domain gap and enable to train a model on real

RGB pairs [5, 40, 46]. X. Zhang et al. [51] and Z. Zhang et

al. [53] even take a step further by designing models that

output a higher-resolution RGB image but receive a RAW

image as the input. These models not only zoom an input

image into higher resolution but also serve as implicit image

signal processing (ISP) pipelines to convert a RAW image

to RGB, which could complicate the learning by involving

ISP units and bias the learned model to specific cameras.

In this paper, we also work on SISR for real data but

in the RAW-to-RAW domain. We design a digital Zoom

component that can be built Into a Camera imaging pipeline,

namely ZIC. ZIC excludes the ISP and only focuses on zoom-

ing an image with increased details from RAW to RAW. The

superiority of working in RAW-to-RAW domain is threefold.

First, the degradation kernels from RAW-HR to RAW-LR

images are closer to ideal distributions, which potentially

contributes to better results. Second, RAW images are in-

dependent of the ISP, so the model trained focuses on the

resolution enhancement and is less biased to specific cameras.

Third, RAW images are more flexible during post-processing,

because they contain the original information from sensors.

To the best of our knowledge, ZIC is the first SISR method

in the RAW-to-RAW domain for real data. To that end, ZIC

solves the following minimization problem:

min
x,k
‖y − (k ⊗ x) ↓ ‖, s.t. x ∈ X and k ∈ K, (1)

where y is the input RAW image, x is the desired higher-

resolution output along with a pixel-adaptive degradation

kernel map k, ⊗ denotes the convolution operator, and ↓



denotes the down-sampling operator which is omitted for

simplicity in the following content of the paper.

Minimizing the objective function only in Eq. (1) is an ill-

posed inverse problem where multiple x correspond to the

same observation y, and it becomes even more challenging

when jointly estimating k. Inspired by the recent progress

made in other low-level vision tasks [35], we assume the out-

put x and the kernel map k belong to two latent subspaces X
and K respectively. This subspace constraint regularizes the

solution space and reformulates an ill-posed SISR problem

into a better posed one. In order to generate the two sub-

space X and K, we feed y to two standalone convolutional

networks, and they are trained in a supervised manner with

RAW LR-HR pairs from existing datasets [5, 51].

To evaluate the proposed method ZIC, we made com-

parisons against existing SISR methods on RealSR [5] and

SR-RAW [51]. Since our output is in RAW format, we con-

verted it into RGB by the official software of each camera.

Therefore, fair comparisons were made quantitatively with

SSIM, PSNR, and the learned perceptual metric LPIPS [50].

We also made qualitative comparisons and demonstrated

the superiority of our method in visual quality. Both the

quantitative and the qualitative results indicate the proposed

method is superior than previous ones by a large margin,

and the contribution of each component was also verified

in ablation studies. Furthermore, ZIC generalizes well and

enables zero-shot transfer across different sensors.

2. Related Works

Single image super-resolution(SISR) is an ill-posed in-

verse problem, where the desired higher-resolution image

has infinite solutions when the degradation model is un-

known, or can be recovered only up to a limit [21, 27]

with a given degradation model. To deal with this prob-

lem, numerous earlier works have been proposed such as

the example-based methods [2, 10, 12, 16, 34, 36] and the

sparse-coding-based methods [20, 43, 47].

SISR on Synthetic Data: More recent researches have been

done on learning deep neural networks for SISR. Beginning

from SRCNN [8], where a convolution neural network(CNN)

is trained on Bicubic downsampled LR-HR pairs, various

following up works have been done in this direction. First,

improved network architectures have been explored for ei-

ther RGB images [24, 52] or multi-spectral images [29, 30].

Second, advanced learning strategies such as the perceptual

loss [18] and the generative-adversarial-network [23, 38, 44]

are applied during training. Third, some works decouple

the degradation model from the neural network, and require

an external kernel as the input. This kernel can be either

manually given [48, 49] or estimated from the internal stat-

ics within a single image [4, 28]. Most of these methods

are trained and evaluated on synthetic data [1, 42], where a

LR image is synthesized from the HR image with manually

defined degradation.

SISR on Real Data: However, the degradation models on

real data are more complicated. This domain gap moti-

vates the recent works to explore the SISR problem on real

LR-HR pairs. Cai et al. [5] capture a benchmark data that

contains aligned LR-HR image pairs in RGB, and design

a network that estimates the per-pixel kernels at multiple-

scales. Zamir et al. [46] also use this dataset and learn

enriched multi-scale features for SISR on real RGB images.

Inspired by the recent learning based RAW image process-

ing [7, 11, 17, 41, 45], X.Zhang et al. [51] propose a SISR

method that zooms a RAW image into a higher-resolution

RGB image, where a contextual bilateral loss is designed

to deal with misaligned training pairs. Instead, Z.Zhang et

al. [53] directly reduce the misalignment during training by

guiding the joint learning of the ISP network and the global

color mapping with a pre-trained optical flow model [32].

We recommend [39] for a more comprehensive survey

about the aforementioned methods, especially the deep

learning-based ones. Different from the previous learning-

based methods, our method minimizes the objective function

in Eq. (1) with learned subspace constraints. We do not

engineer network architectures or training strategies to learn

the subspaces, but adopt standard networks and loss func-

tions. Another equally important difference is that we work

in the RAW-to-RAW data domain where the ISP is excluded.

Therefore, our method is relieved from learning the ISP and

refocused onto the SISR problem.

3. The Method

3.1. Overview

Fig. 1 gives an overview of the proposed ZIC frame-

work, where we receive a RAW image y as the input and

send it to the image basis generator as well as the kernel

basis generator in parallel. The image basis X contains dx
basis images for each Bayer pattern channel but with higher-

resolution, while the kernel basis K contains dk degradation

basis kernels at each input pixel coordinate. Then the higher-

resolution RAW x and the corresponding degradation kernel

map k are jointly estimated by Eq. (1). Finally, x is sent to

an existing ISP for further processing into RGB format.

3.2. Why RAW?

As shown in Fig. 2a, a typical ISP receives the original

RAW image from an image sensor, and then post-processes

the input through several ISP stages, including black level

correction, white balancing, demosaicing, noise reduction,

etc. Before introducing ZIC in detail, we explain why to

exclude the ISP and work in the RAW-to-RAW domain.

We investigate the degradation kernel between a LR im-

age y and its ground-truth HR counterpart x∗ because the

kernel estimation is critical for the quality of the output.



Figure 1. The framework of the proposed learning to Zoom Inside Camera pipeline.

Once the kernel has been decided, we can directly recover

the high-resolution image by Fast Fourier Transform (FFT)

or variational methods [37]. Ideally, the degradation kernel

follows a Gaussian distribution depends on the depth at each

pixel and the focal length of the camera [6]:

g(p, q) =
1

2πσ2(dp, f)
exp(−

‖p− q‖22
2σ2(dp, f)

), (2)

where p is a pixel, q is one of its neighbors, σ2(dp, f) is a

function about the depth dp of p and the focal length f .

(a) The output of each ISP unit of an example

(b) The mean degradation kernels of all examples.

(c) The mean Gaussian fitting error of all examples.

Figure 2. Kernel statistics on the output of each ISP stage.

However, the above assumption is violated on real RGB

images because of the ISP. For ease of explanation, we only

consider planar scenes parallel to the camera plane, where

the scene captured has a uniform depth. Therefore, a uniform

kernel can be estimated from the x∗,y pair by the following

constrained quadratic minimization:

min
k
‖y − k ⊗ x∗‖, s.t. kij > 0, and

∑
kij = 1, (3)

where the estimated kernel k is expected to be close to the

distribution in Eq. (2). As shown in Fig. 2b, the estimated

kernel starts to diverge and deviate after demosaicing, while

it is more compact and centralized before that. We also fit

each kernel to a Gaussian distribution and average the fitting

error at each kernel element in Fig. 2c. The mean fitting

error has also increased by 8× after demosaicing. This

observation indicates the kernel assumption Eq. (2) is well

satisfied until demosaicing, which motivates our method to

not only receive RAW images as inputs but also produce

RAW images as outputs.

The insight behind this observation is that there are two

groups of processing units inside an ISP: first are the ones

that operate pixel-wisely such as the black level correction

and the white balancing, while second are the ones that oper-

ate in a local neighborhood such as the demosaicing and the

noise reduction. The neighborhood information involved in

the second group of units complicates the kernel estimation,

which violates the assumption in Eq. (2). Please refer to

the supplementary for detailed explanation. In practice, we

preserve the black level correction and the white balancing

as our data normalization, because they do not complicate

the kernel assumption while remap pixel values to [0, 1] with

balanced color.

3.3. How to Zoom?

Now we have explained the reason for working on the

SISR problem in the RAW-to-RAW domain. Next, we will

introduce the technical details of the proposed ZIC method.

Kernel Estimation: Although the underlying degradation

kernels become closer to Gaussian distributions on RAW

images, they are still spatially-variant because each pixel has

a different distance to the camera in a 3D scene. Given an

existing input-output pair {x,y}, the kernel kp at a pixel

coordinate p satisfies the following equation:

yp = kp · xNp
, (4)

whereNp represents the neighborhood around p and has the

same spatial size with kp, so the convolution operator can

be implemented as dot product between flattened vectors.

However, Eq. (4) is under-determined to decide the kernel kp.

Inspired by recent works on other low-level vision tasks [35],

we parameterize the kernel map k as a linear combination

of dk basis kernel maps K = {k1,k2, · · ·kdk} and estimate

the combination coefficients ck = [c1k, c
2

k, · · · c
dk

k ] via:



min
ck

∑

p

‖yp −
dk∑

i=1

cik(k
i
p · xNp

)‖. (5)

These kernel basis maps are generated from a ResNet [15]

with 16 ResBlocks, where no stride is applied to generate

basis kernel maps in the same resolution as the input.

Image Estimation: Meanwhile, once k is given, we can

recover the desired high-resolution image x by:

min
x

∑

p

‖yp − kp · xNp
‖. (6)

Although Eq. (6) is over-determined, estimating x pixel-

wisely usually introduce artifacts [13]. To achieve better

regularization, we also parameterize x as a linear combina-

tion of dx basis images X = {x1,x2, · · ·xdx} and estimate

the combination coefficients cx = [c1x, c
2
x, · · · c

dx
x ] via:

min
cx

∑

p

‖yp −
dx∑

j=1

cjx(kp · x
j
Np

)‖. (7)

These basis images are generated from a similar network as

the basis kernel maps. The main difference is that we further

up-sample the output from the final convolutional layer by

transposed convolutions, which converts the basis images to

the desired higher-resolution. Besides regularization, these

basis images also reduce the number of variables to dx for

an image, which achieves better efficiency and makes the

following joint minimization possible.

Joint Minimization: Now, we have the basis kernel maps

{k1,k2, · · ·kdk} and the basis images {x1,x2, · · ·xdx}.
The combination coefficients ck and cx are estimated via:

min
ck,cx

∑

p

‖yp −
dk∑

i=1

dx∑

j=1

cikc
j
xz

ij
p ‖, (8)

where zijp = ki
p ·x

j
Np

. Instead of alternating between Eq. (5)

and Eq. (7), we solve Eq. (8) jointly as follows:

• Let e = c⊤k cx, i.e., eij = cikc
j
x, we first mini-

mize Eq. (8) as a linear problem respect to e. To get

the initial ck and cx, we decompose the rank-1 matrix

e by a single iteration of the power method [25].

• Second, we iteratively update ck and cx as ck ← ck +
∆ck and cx ← cx + ∆cx. The incremental updates

∆ck and ∆cx are solved as follows at each iteration:

min
∆ck,∆cx

∑

p

‖yp−
dk∑

i=1

dx∑

j=1

(cik+∆cik)(c
j
x+∆cjx)z

ij
p ‖,

(9)

where (cik + ∆cik)(c
j
x + ∆cjx) ≈ cikc

j
x + cik∆cjx +

∆cikc
j
x by omitting the second-order term ∆cik∆cjx,

which makes Eq. (9) linear respect to [∆ck,∆cx].

• Finally, we compose the desired high-resolution image

as x =
∑dx

j=1
cjxx

j and align the color space of the

output x with the input y.

3.4. Training

We use Eq. (8) for inference but utilize the underly proper-

ties of the basis kernel maps and the basis images to achieve

direct supervision during training.

Kernel Basis: Given the ground-truth high-resolution im-

age x∗, we estimate the combination coefficients of basis

kernel maps by Eq. (5). Then we compose the kernel map

k =
∑dk

i=1
cikk

i and generate the degraded ground-truth y∗

by Eq. (4) at each pixel. The training loss is applied between

y∗ and the input y.

Image Basis: Since x∗ is given during training, we estimate

the combination coefficients cx as:

min
cx

∑

p

‖x∗
p −

dx∑

j=1

cjxx
j
p‖, (10)

and apply the loss between the ground-truth x∗ and the

composed output x =
∑dx

j=1
cjxx

j .

Training Loss: We apply the same loss functions for both

the kernel basis generator and the image basis generator. We

follow previous works [18, 51] and measure the L1 distance

between x∗ and x as well as the corresponding VGG-19

features f(x∗) and f(x). To send x∗ and x to a pre-trained

VGG-19 network [31], we convert the single-channel Bayer

data into a 3-channel image by interpolating the missing

values in a Bayer pattern image from its closest 2 or 4 neigh-

bors, and then align the color space of x∗ and x with the

RGB version of x∗. We also use a confidence map w to

compensate misalignment and will describe it further in the

next section. In summary, the loss to train the image basis

generator is:

L =
∑

p

wp(|x
∗
p − xp|+ |fp(x

∗)− fp(x)|), (11)

which is the same for y∗ and y in kernel basis training.

4. Experiments

4.1. Datasets

In order to make fair comparisons with previous methods,

we train our model and made evaluations on two existing

datasets which are captured with RAW images.

RealSR: RealSR [5] captures real-world LR-HR image pairs

by adjusting the focal-length of a camera towards the same

scene. RealSR captures both the indoor and the outdoor im-

ages with one Nikon and one Canon camera. These images

are carefully captured with small parallax and further aligned

with photometric error in the RGB domain. The number of

training pairs for scale factors 2×, 3× and 4× are 183, 234

and 178, respectively. While 30 testing pairs are provided

for each scale.

SR-RAW: SR-RAW [51] captures a dataset of 500 scenes

with a Sony camera, where the focal-lengths are also ad-

justed to generate image pairs with ×4 and ×8 scale fac-

tors. However, SR-RAW is more challenging than RealSR



RealSR SR-RAW

x2 x4 x2 x4Types Method

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Bicubic 30.56 0.884 0.248 26.04 0.756 0.406 29.32 0.835 0.269 26.12 0.775 0.360

Class A

LapSRN [22] 30.79 0.888 0.246 26.31 0.768 0.400 29.49 0.852 0.259 26.20 0.781 0.357

EDSR [24] 30.87 0.890 0.244 26.38 0.770 0.399 29.51 0.853 0.258 26.24 0.781 0.356

RCAN [52] 30.88 0.889 0.245 26.42 0.771 0.399 29.52 0.853 0.257 26.25 0.782 0.354

ESRGAN [38] - - - 26.30 0.764 0.409 - - - 26.19 0.776 0.363

IKC [14] - - - 26.32 0.771 0.405 - - - 26.16 0.779 0.358

Class B

SRMD [49] 29.52 0.899 0.285 26.50 0.779 0.407 29.43 0.854 0.253 25.82 0.775 0.347

ZSSR [28] 30.93 0.899 0.243 24.72 0.733 0.416 27.72 0.811 0.270 24.30 0.739 0.381

ZIC(Ours) 35.64 0.956 0.189 32.58 0.926 0.212 36.66 0.976 0.141 32.89 0.927 0.190

Table 1. Quantitative comparisons with methods designed on synthetic data. The models of the other methods are officially released and can

be categorized into Class A which only receive an LR image as the input, and Class B which require additional degradation kernels. While

ours was trained on RealSR [5] and SR-RAW [51] simultaneously. The best and the second best are marked in red and blue at each column.

‘-’ indicates there is no released model for such a test.

because of larger perspective change, illumination change,

inconsistency between the input and the output caused by

lens distortion, etc. Although alignment has been done by

ECC [9], the produced RAW-to-RGB pairs still contain mild

but non-negligible misalignment.

RAW-to-RAW Alignment: The above two datasets are de-

signed for SISR in the RGB-to-RGB or the RAW-to-RGB do-

main, so aligned RAW-to-RAW data are unavailable. There-

fore, we post-process RealSR and SR-RAW by aligning the

LR-HR pairs from RAW to RAW, and the processed data

are only used during training. In general, we first fit an initial

global motion model from sparse feature matching [26] in

RGB images, and then refine this model via the photometric

alignment from RealSR [5], but on demosaiced RAW im-

ages. Finally, we produce a confidence map that measures

the quality of the global alignment. The confidence map is

calculated from the photometric difference and the residual

optical flow fields between globally aligned images, and is

used to reduce the weights of the misaligned pixels during

training. Please refer to the supplementary for more details

of our data alignment, and we will release the processed

dataset to encourage further researches.

4.2. Comparisons with Other Methods

To demonstrate the superiority of our method on real

data, we made comparisons with the officially released mod-

els from several representative deep learning based methods.

These methods are categorized into the ones that are designed

for real data including LP-KPN [5], MIRNet [46], RAW-to-

sRGB [53], Zoom-learn-Zoom [51], as well as the ones that

are trained on synthetic data with manually defined degra-

dation including LapSRN [22], EDSR [24], RCAN [52],

ESRGAN [38], and IKC [14]. In addition, we also compare

with SRMD [49] and ZSSR [28] which requires external ker-

nels as inputs for inference. Quantitative Evaluation: To

Dataset Method PSNR↑ SSIM↑ LPIPS↓

RealSR

LP-KPN [5] 27.89 0.819 0.349

MIRNet [46] 27.58 0.805 0.370

Ours 32.58 0.926 0.212

SR-RAW

Zoom-learn-Zoom [51] 27.37 0.809 0.336

RAW-to-sRGB [53] 27.56 0.813 0.326

Ours 32.89 0.927 0.190

Table 2. Comparisons with methods trained on RealSR [5] and

SR-RAW [51] datasets under 4× scale ratio.

quantitatively evaluate the proposed method, we use standard

metrics including SSIM, PSNR, and the learned perceptual

measurement LPIPS [50] to measure the difference between

the prediction x and the ground-truth x∗. To reduce the neg-

ative impact caused by the misalignment, we also estimate

confidence maps for the original RealSR and the SR-RAW

datasets, and exclude the pixels with low confidence from

evaluation. Our method performs significantly better than

previous models trained either in RGB-to-RGB or in RAW-

to-RGB domain. In Tab. 1, the models trained on synthetic

RGB data consistently perform worse than ours, and this

disadvantage is also significant for the models that require

external kernel inputs, both of which indicate that the degra-

dation model is oversimplified in synthetic data. In Tab. 2,

our method is still superior to the other models trained on real

data but in the RGB-to-RGB or the RAW-to-RGB domain

by a large margin.

Qualitative Evaluation: Since the quantitative metrics are

not always consistent with human judgment [50], we also

made qualitative comparisons against other methods under

4× scale ratio. Our method achieves better visual quality

in Fig. 3a and Fig. 3b. The models trained on synthetic data,

such as EDSR [24] and RCAN [52], give results close to

Bicubic upsampling, which has also been observed by [5].



(a)

(b)

Figure 3. Qualitative comparisons on (a) RealSR [5] and (b) SR-RAW [51]



Figure 4. Qualitative zero-shot transfer comparison, where ∗ denote the model is trained on SR-RAW [51] and then zero-shot transferred to

RealSR [5], otherwise the model is trained on RealSR [5].

While the models require external kernels either hallucinate

textures in ZSSR [28] or give piece-wise smoothed results

in SMRD [49]. Meanwhile, the models trained on real data

such as LP-KPN [5] and Zoom-learn-zoom [51] achieve

better results than the synthetic ones, but their results are

visually less plausible than ours because they are designed

either for the RGB-to-RGB domain or the RAW-to-RGB

domain. Please refer to the supplementary for more results.

4.3. Zero-shot Transfer to Unseen Sensors

Method PSNR↑ SSIM↑ LPIPS↓
Zoom-learn-Zoom [51] 26.57 0.832 0.393

RAW-to-sRGB [53] 26.11 0.826 0.410

Ours 32.07 0.920 0.238

Table 3. Quantitative comparison for models trained on SR-

RAW [51] and zero-shot transferred to RealSR [5].

Different image sensors have different characteristics [51],

the proposed ZIC method is robust to this difference be-

cause it explicitly minimizes the objective function defined

in Eq. (8), so the output is estimated to fit the statistics of

each input sample individually. To demonstrate the zero-

shot transferability of ZIC, we train our model with the

same settings as for Sec. 4.2, but only with the SR-RAW

dataset. Then we made comparisons on the RealSR [5]

with Zoom-learn-Zoom [51] and RAW-to-sRGB [53]. The

additional quantitative results are listed in Tab. 3, and the

qualitative results are shown in Fig. 4. The results indicate

that the proposed ZIC model generalizes to unseen sensors

in zero-shot while the methods designed for RAW-to-RGB

domain [51, 53] are biased to the sensors of the training data.

Our zero-shot transferred model even performs better than

the methods [5, 46] both trained and evaluated on RealSR.

4.4. Ablation Studies

In this paper, we proposed ZIC——the first method that

zooms an image into higher-resolution from RAW to RAW.

We conduct ablation studies to further verify the effective-

ness of each individual component and give some insights

behind the designs.

Global v.s. Local Kernel: The first question is whether

we can replace the basis kernel maps with a single uniform

kernel? To answer this question, we estimate the kernel in

the original form along with the image basis coefficients,

which gives worse results quantitatively in Tab. 4. Fig. 5

shows that a global kernel can not handle the pixels around

image boundaries well and produces color artifacts. It is

because the degradation kernels are spatially-variant and

depend on the depth at pixel as introduced in Sec. 3.2.

Joint v.s. Alternating Minimization: The second question

is whether the joint minimization is necessary. The alternat-

ing minimization is a popular strategy applied by both the

conventional [37] and the learning based methods [14,48,54].

To initialize the alternating minimization, we apply Bicubic

up-sampling to get x from y, and estimate the kernel map

k with Eq. (5). Then we update x by Eq. (7) and repeat the

alternating procedure between Eq. (5) and Eq. (7) until the

solutions converge. As shown in Tab. 4, the alternating mini-

mization performs worse quantitatively, and it also produces

color artifacts on the letters and the numbers in Fig. 5.

RAW v.s. RGB: The third question is whether it is neces-

sary to zoom an image in the RAW-to-RAW domain? As

observed in Sec. 3.2, the Gaussian assumption about degra-

dation kernels does not hold on real RGB images because

some ISP units complicate the problem. To demonstrate the

benefits brought in RAW-to-RAW domain only, we train our

model on real RGB images with the same settings. The RGB-

to-RGB ZIC performs qualitatively worse in Fig. 5, where

the repetitive vertical textures are not recovered. Tab. 4 also

shows the poorer performance of this RGB version quantita-

tively. However, our RGB version still performs better than

Variations
RealSR SR-RAW

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Global Kernel 31.63 0.912 0.256 32.24 0.911 0.211

RGB 31.91 0.917 0.241 32.38 0.914 0.205

Alternating 32.10 0.923 0.215 32.65 0.924 0.195

Full 32.58 0.926 0.212 32.89 0.927 0.190

Table 4. Quantitative comparisons with different model variations

on RealSR [5] and SR-RAW [51] datasets under 4× scale ratio.



Figure 5. Qualitative comparisons with different model variations.

Figure 6. Qualitative comparisons with the RGB-to-RGB and the RAW-to-RGB methods when dx = 0 in our method.

the other comparative methods in Sec. 4.2, which demon-

strates the technical strength of the algorithm itself.
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0.249
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Figure 7. SSIM and LPIPS for different dk and dx.

Subspace Dimensions: Lastly, we investigate the impact

of the dimensionality of the two generated subspaces, and

search for the optimal trade-off between the performance and

the efficiency. We alternate the dimensional dx of the image

subspace from {0, 4, 8, 12, 16, 24} and the dimensional dk
of the kernel subspace from {0, 4, 8, 12, 16}, where dk = 0
means the output of the kernel basis generator is directly the

kernel which is fixed during the minimization, and dx = 0
means the output of the image basis generator is directly

the output x, and no further minimization is required. Fig. 7

shows that the best performance is achieved when dk = 4
and dx = 8. So we choose it as the default setting through

the paper. When dx = 0, our method degenerates to a

similar network to [51] but still performs better than the

RGB-to-RGB and the RAW-to-RGB methods, both quanti-

tatively in Fig. 7 and qualitatively in Fig. 6. Together with

the observation in Sec. 3.2, this advantage of dx = 0 also

validates our claims because it is only contributed by the

RAW-to-RAW domain.

5. Conclusion and Discussion

In this work, we proposed the ZIC that zooms an image

inside the camera imaging pipeline from RAW to RAW. Pre-

vious methods adopt either the RGB-to-RGB domain, or the

RAW-to-RGB domain which does not fully take advantage

of the RAW format. We have shown that the degradation

model between HR-LR images is closer to ideal distribu-

tions in RAW, which reduces the difficulty of the kernel

estimation. Based on this observation, we estimate the high-

resolution output along with the degradation kernel map,

which is constrained with learned subspaces. The subspace

constrained minimization reformulates the ill-posed SISR

problem into a well-posed one. Experiments have shown that

our method outperforms previous approaches both in metrics

and in visual quality, and have also verified the respective

contributions of the minimization and the RAW-to-RAW

data domain in ablation studies.

Limitations: Since our model is trained in a supervised

manner, its final performance is still limited by the training

data, especially the alignment accuracy. However, precise

image alignment is difficult for general scenes, and the RAW

pixel arrangement of the Bayer pattern even further compli-

cates the problem. We reduce this difficulty in Sec. 4.1 but

not fully solve it. Therefore, future works on data capturing,

such as using a beam splitter and multiple image sensors, are

worth exploring to solve this limitation from the root.
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