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Abstract

Industrial Anomaly Detection (IAD) is an indispensable quality control technology
in modern production processes. Recently, on account of the outstanding visual
comprehension and cross-domain knowledge transfer capabilities of Multimodal
Large Language Models (MLLMs), existing studies have explored the application
of MLLMs in the IAD domain and established some multimodal IAD datasets.
However, although the latest datasets contain various fundamental IAD tasks, they
formulate tasks in a general question-and-answer format lacking a rigorous rea-
soning process, and they are relatively limited in the diversity of scenarios, which
restricts their reliability in practical applications. In this paper, we propose Anoma-
lyCoT, a multimodal Chain-of-Thought (CoT) dataset for multi-scenario IAD tasks.
It consists of 37,565 IAD samples with the CoT data and is defined by challenging
composite IAD tasks. Meanwhile, the CoT data for each sample provides pre-
cise coordinates of anomaly regions, thereby improving visual comprehension of
defects across different types. AnomalyCoT is constructed through a systematic
pipeline and involves multiple manual operations. Based on AnomalyCoT, we con-
ducted a comprehensive evaluation of various mainstream MLLMs and fine-tuned
representative models in different ways. The final results show that Gemini-2.0-
flash achieved the best performance in the direct evaluation with an accuracy rate
of 59.6%, while Llama 3.2-Vision achieves the best performance after LoRA fine-
tuning with an accuracy rate of 94.0%. Among all the fine-tuned models, the
average accuracy improvement reaches 36.5%, demonstrating the potential of inte-
grating CoT datasets in future applications within the IAD field. The source code
and data are available at https://github. com/Zhaolutuan/AnomalyCoT.

1 Introduction

Industrial Anomaly Detection (IAD) has emerged as a crucial requirement in the modern industrial
production processes. IAD facilitates the real-time monitoring and identification of product anomalies
using automated techniques, thereby enabling timely intervention to prevent the propagation of errors
and maintain product quality. Existing [AD methods exhibit high real-time performance and accuracy,
effectively mitigating economic losses in industrial production and facilitating the transition towards
unmanned operations [1, 2]]. With the rise of Multimodal Large Language Models (MLLMs) , i.e.
GPT-4 [3] and Gemini [4], which can undertake various human tasks, recent research has also
attempted to apply MLLMs to IAD tasks. AnomalyGPT [3]], as the first method to use MLLM:s to
solve TAD tasks, overcomes the limitation of most past IAD methods that require manual threshold
setting for anomaly detection and is directly fine-tuned on IAD datasets. Furthermore, some studies
utilize the joint modeling capacity of MLLMs and combine instruction fine-tuning methods [6} (7]
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Figure 1: Left: The outermost layer shows the datasets that make up AnomalyCoT and the corre-
sponding objects, the middle layer shows the number of different defects, and the innermost layer
shows the division of the training set and the test set. Right: The performances of different MLLM:s,
including pre-trained, LoRA fine-tuned, and full fine-tuned models, are shown in this figure.

to solve TAD tasks using the visual question-answering paradigm, demonstrating the flexibility of
MLLMs in task adaptation [8],9].

In recent years, significant progress has been achieved in applying MLLMs to Industrial Anomaly
Detection (IAD) tasks, concurrent with the development of a series of high-quality IAD datasets.
MVTec AD is one of the most influential datasets in the IAD field, not only containing over
5,300 high-resolution images of multiple objects exhibiting diverse defect types, but also providing
pixel-precise annotations for all anomalies. This facilitates its application in both binary classification
and anomaly detection tasks, thereby significantly advancing the development of IAD methods.
MIAD [[11] is a brand-new large-scale outdoor IAD dataset, containing over 100K high-resolution
images and covering various types of structural and logical anomalies, providing strong support
for the application of IAD tasks in outdoor scenarios and addressing the previous scarcity of
outdoor anomaly samples. Other studies, such as MMAD [[12]], have proposed the first benchmark
for evaluating the comprehensive performance of MLLM in IAD tasks. By designing multiple key
subtasks of MLLM in anomaly detection and collecting public IAD datasets, a multimodal benchmark
dataset in the form of Q/A for IAD was constructed. This benchmark specifically addresses the
limited availability of dedicated resources for applying MLLMs within the industrial domain.

While the aforementioned datasets have made significant contributions to IAD research and ap-
plication, they are subject to certain limitations. Firstly, MVTec AD and MIAD concentrate on
manufacturing and maintenance inspection scenarios, respectively. This domain-specific focus and
limited data diversity restrict their generalizability and direct applicability to broader real-world
environments. Secondly, MMAD provides multi-angle IAD QA and general anomaly localization
information, enabling the determination of sample status (normal/anomalous). Nevertheless, it
does not offer a systematic analysis explaining the reasons for the observed normal or anomalous
states. Additionally, since MMAD only employs a simple question-and-answer format, which lacks
interpretability in the decision-making process and logical reasoning in intuitive representation, it
becomes difficult to determine its reliability in practical applications. Overall, existing IAD datasets
exhibit significant potential for expansion and require further refinement to enhance their applicability
to real-world scenarios. Therefore, developing a systematic Chain-of-Thought (CoT) dataset is of
particular importance, as it can facilitate the deployment of MLLM in IAD tasks within complex,
dynamic environments.

In this paper, we introduce AnomalyCoT, the first multimodal CoT dataset for IAD tasks. To address
the limitations of the current IAD datasets and facilitate the application of MLLM in real-world
IAD tasks, our dataset offers three significant advantages. (i) The first advantage of the dataset
lies in its extensive coverage of IAD scenarios. As illustrated in the left panel of Figure |1} we
achieve substantial growth in both data scale and scenario diversity by systematically integrating and



performing unified preprocessing on a wide range of publicly available IAD datasets, all anomaly-
related CoT annotations were newly constructed and manually verified by us. Moreover, we uniformly
re-labeled anomalous regions instead of reusing original annotations to ensure consistency. In addition,
our newly collected Self dataset contributes 8,466 images, which further enlarges the dataset scale;
(i) Another advantage of the dataset is that it unifies the two core tasks of IAD, namely anomaly
discrimination and defect classification, to define an end-to-end detection task. Meanwhile, it
includes the analysis process of a large number of normal or anomalous samples. We design the
dataset with a question-reasoning-answer structure and provide no defect options in each sample’s
question options, enabling a complete analysis of normal or anomalous samples based on anomaly
judgment; (iii) Finally, the most significant advantage of our dataset is its interpretable reasoning
process, which provides precise coordinates of anomalous regions for anomalous samples to assist
in analysis. To effectively address the ambiguity of decision-making basis in the simple question-
and-answer form, we design and generate rigorous reasoning processes by combining accurate visual
information of anomalous regions and the rich knowledge contained in large models, ensuring the
reliability of the dataset in practical applications.

To fully manifest the aforementioned advantages of the dataset and exert the comprehensive capabili-
ties of MLLM in addressing IAD tasks, we constructed a novel pipeline. Firstly, we collected the
public datasets dedicated to studying different IAD tasks, forming a comprehensive IAD scenario.
Subsequently, we designed a composite IAD task encompassing no defect options and distractors to
achieve the synergetic completion of anomaly discrimination and defect classification. By manually
annotating a large amount of data and precisely locating anomalous regions in the form of coordinate
pairs, we have also designed a general semantic prompt embedded with rich visual information.
Combined with QwenVL-Max, we generate a clear and logically rigorous reasoning process to
establish a complete CoT data. Specifically, we combined the coordinates of the anomalous area, the
defect type, and a reasoning template as prompts to guide QwenVL-Max in generating initial CoT.
Additionally, we carried out rule-based filtering and iterative updates on the CoT data. On this basis,
all the data were manually verified to ensure the accuracy and rationality of the CoT. Our approach is
consistent with Diff-Prompt[13] in terms of prompt/CoT construction, which uses a diffusion model
to generate fine-grained prompt representations, thereby improving the performance of complex
tasks. The MultiModal Conditional Retrieval[[14] proposed in KDD 2025 studied how to perform
highly controllable reasoning under multimodal conditions, which has reference significance for the
design of cross-modal prompts in this method. Finally, we collected 37,565 samples from 59 types of
scenarios in 13 public datasets.

In the experiment, we first conducted a comprehensive evaluation of various mainstream MLLMs
using AnomalyCoT, such as the open-source models Qwen2.5-VL [15]] and InternVL3 [16]], commer-
cial models GPT-4o [17] and Gemini-2.0-flash, and the IAD model AnomalyGPT. We also perform
different types of fine-tuning training on representative MLLMs like Qwen2.5-VL and choose Inter-
section over Union (IoU [18])) as the inference evaluation metric due to the post-training inference
processes mostly including the coordinates of anomaly regions. The experimental results indicate
that by adopting different fine-tuning methods on the major MLLMs, both the accuracy and IoU of
the models are significantly improved compared to the case of direct evaluation, as shown in the right
panel of Figure[I] This reflects the effectiveness of our dataset in the IAD task. Additionally, we have
conducted thorough ablation experiments under various settings. Specifically, we compared models
trained without CoT annotations and without coordinate information to highlight the necessity of both
components. Overall, our dataset has played a significant role in challenging major IAD tasks and
demonstrates great potential for application in future IAD tasks with high-precision requirements.

Our contributions are summarized as follows:

* We construct AnomalyCoT, a new dataset for testing the comprehensive reasoning capabilities
of mainstream MLLMs in the IAD task. To the best of our knowledge, our proposed dataset is
the first multimodal CoT dataset in the IAD task. This dataset sets new requirements for the
application logic of MLLMs in the industrial field.

* We have significantly expanded the scenarios of the IAD task and introduced a new pipeline for
generating accurate and rigorous reasoning processes for anomaly detection tasks.

* We adopt structured CoT data and conduct fine-tuning experiments on representative MLLMs to
comprehensively evaluate the performance of MLLMs on AnomalyCoT and achieve normative
analysis of MLLMs in specific tasks.



2 Related Work

2.1 Industrial Anomaly Detection

Industrial anomaly detection plays a crucial role in ensuring product quality and production safety,
which makes the development of more generalizable and explainable methods especially valuable.
Traditional IAD research have primarily focused on locating and classifying defects in novel envi-
ronments. Common IAD methods include reconstruction-based methods [[19}20], synthesis-based
methods [21]], and feature embedding-based methods [22} 23| 24]. Reconstruction-based methods
learn the reconstruction capability of normal samples and calculate the reconstruction error to detect
anomalies. Synthesis-based methods employ data augmentation techniques to synthesize anomalous
samples, transforming the original problem into a binary classification task distinguishing between
normal and synthesized anomalous instances. Feature embedding-based methods model the feature
distribution of normal samples and quantify the feature deviation of test samples. These methods typ-
ically require learning the distribution of a large number of samples of existing categories, making it
difficult to learn new category instances in dynamic environments. Recent research has predominantly
focused on performing IAD tasks with few-shot learning. Several studies integrated visual language
models like CLIP, such as InCTRL [235]], which employs a few positive samples as contextual prompts
to learn the residual between test samples and prompts based on CLIP. AnomalyCLIP [26] learns
object-agnostic textual prompts to capture different features within samples, focusing on anomalous
regions. However, these models overemphasize predefined anomaly concepts, resulting in limited
generalization in new scenarios. Given the flexibility of MLLMs in handling complex visual and
textual inputs, addressing the aforementioned limitations becomes possible.

Some recent studies have focused on applying MLLMs to IAD tasks and yielding promising outcomes.
MMAD has established an MLLM benchmark test encompassing seven key sub-tasks of IAD,
conducting a comprehensive evaluation of various mainstream MLLMs. Other studies directly fine-
tune MLLMs using public IAD datasets, such as AnomalyGPT and FabGPT [27]], but the performance
of such models is often influenced by their expert models. Moreover, models like AnomalyGPT not
only are susceptible to overfitting due to the limited scale of IAD data but also have rough anomaly
localization and lack rigorous reasoning processes to substantiate detection results, hindering their
applicability in real-world scenarios. Consequently, proposing the first multimodal chain-of-thought
dataset based on IAD tasks is of great significance. Traditional IAD methods such as SPADE,
PaDiM, and PatchCore rely on pixel reconstruction or feature embedding distance, which makes
them effective in detecting surface or texture anomalies under controlled settings. Recently, FUSION
has adopted a text-guided unified visual encoding and recursive alignment decoding mechanism
to achieve tighter cross-modal fusion. However, they struggle to address logical anomalies and
often require separate models for each object type. In contrast, VLLM-based approaches leverage
cross-modal reasoning and can simultaneously handle anomaly detection and defect classification,
demonstrating stronger adaptability in multi-scenario industrial environments.

2.2 Multimodal Large Language Model

MLLM integrates multiple modalities, including vision, into LL.Ms to form large models endowed
with visual understanding capabilities. The cross-modal information input to MLLM is initially
mapped to the text modality and subsequently processed by LLM. This modeling paradigm has
demonstrated robust performance in a series of visual tasks. Early research such as BLIP2 [2§]]
and Flamingo [29] adopted the frozen visual encoder paradigm, achieving end-to-end visual ques-
tion answering capabilities through alignment with LLM. Subsequently, the LLaVA series [30]
and MiniGPT-4 [31]] introduced visual instruction fine-tuning methods, significantly enhancing the
ability to follow intricate instructions. Models like Qwen-VL series [32], VisionLLM [33]], and
KOSMOS?2 [34] integrate regional visual features to bolster the visual foundation capabilities of
MLLM, enabling it to perform tasks such as regional semantic localization. InternVL [35]] expands
the visual encoder and optimizes cross-modal attention to align with LLM semantics. Addition-
ally, Gemini exhibits cross-domain general visual understanding capabilities through large-scale
multimodal pre-training. Models such as DeepSeek-VL2 [36] and Uni-MoE [37]] employ a mixture-
of-experts architecture to enhance multimodal understanding capabilities. Recently, in the field of
multimodal fusion, AudioVSR[38] improves performance by injecting audio information into visual
models and OmniCam [39] integrates diffusion-based video generation with large language models
through camera control explored unifying multimodal generation and reasoning under controllable
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Figure 2: Data generation process of AnomalyCoT. The construction of AnomalyCoT mainly
conserns three parts: the collection of image data and manual labeling, the generation of questions
and CoT, the filtering and recycling of CoT data.

frameworks. However, existing MLLMs still struggle to reason as naturally as humans, which limits
their effectiveness in real-world complex environments. Therefore, fine-tuning training on a large
amount of chain-of-thought data from multiple scenarios on mainstream MLLMs can enable them to
acquire good reasoning abilities to handle challenging visual tasks.

3 Dataset

3.1 Data Collection

Anomaly detection tasks in real-world settings are typically complex and variable, and various types
of defects can occur in different products. Therefore, the datasets we construct are required to cover
multiple scenarios and defect types of anomaly detection. We initially acquired and sampled from
nine publicly available IAD datasets. To further expand the scenarios, we also manually gathered
data from four scenarios applicable to IAD tasks to form several independent datasets and eliminated
low-quality data through manual examination. MVTec AD is one of the most renowned IAD datasets,
containing high-resolution images of various objects and corresponding to different types of defects.
The VisA [40] dataset further enhances the complexity of scenarios and the data scale, including
different instances of the same type of objects. GoodsAD [41] offers the possibility for intelligent
applications of anomaly detection by establishing the first IAD commodity dataset. MVTec LOCO
AD [42] is dedicated to exploring logical anomalies and constructs a novel dataset covering both
structural and logical anomalies. We also adopted Defect Spectrum [43]], which effectively optimizes
based on multiple key IAD datasets.

In industrial fields with less attention, MPDD [44]] and NanoTwice [45] are respectively designed for
anomaly detection tasks in the production processes of painted metal parts and nanofiber materials.
MSD [46] is a potential dataset for surface defect detection of smartphone screens. MIAD is the
largest component of the dataset in this paper, containing over 100K high-resolution outdoor IAD
images. The large-scale, high-quality data make a significant contribution to the application of IAD
tasks in practical environments. Additionally, we collected IAD data related to wood, fabric, car,
and road cracks, screened them for high-quality samples, and then manually classified the unlabeled
data to build four independent datasets. These independent datasets fill the voids in certain scenarios
of the current task. We integrated the aforementioned processed datasets, precisely located all
anomalous regions, and classified the defects within them through manual annotation, then verified
the correctness of the labels through manual inspection, and finally manually corrected the incorrect
labels. A total of 10 individuals participated in this labeling process, which accumulated to 230
hours. Although the dataset integrates multiple public sources, we recognize that differences in
source data distributions may introduce potential biases toward certain industrial sectors. To mitigate



this, we balanced the sampling ratios across sub-datasets and further evaluated the fine-tuned model
on held-out datasets (MVTec AD, MVTec LOCO AD, VisA, and GoodsAD), where the model still
maintained strong performance. These results suggest that the learned representations are robust to
distributional shifts.

3.2 Question Construction

In the actual production process, operators typically focus on whether there are anomalous situations
in the products and the possible types of defects. When necessary, they also need to understand the
scale and specific location information of the anomalies to analyze the causes and prevent subsequent
influences. Thus, we designed a key task integrating anomaly discrimination and defect classification,
generating a reasoning process that combines anomalous region information with cause analysis
grounded in the framework of this task. We presented the task in the form of single-choice questions
to evaluate the output of MLLM. Previous work [47, 48] has also demonstrated the rationality of
this approach. To effectively implement this complex task and avoid the inherent biases in MLLM,
we first defined the no defect option and manually designed strong distractors with high semantic
similarity to the corresponding answer items of the samples. Subsequently, we manually constructed
defect type libraries for different scenarios and randomly selected other defect types from them as
supplementary options, ultimately forming a difficult task with five options.

3.3 Data Generation

The existing public IAD datasets lack the reasoning process from task to result, which makes it
difficult for MLLMs to conduct rigorous evaluations of IAD tasks directly. Therefore, we have
constructed a systematic pipeline to generate complete CoT for IAD samples. Our process utilizes
the outstanding visual perception and text reasoning capabilities of QwenVL-Max, combined with
manual annotation, semantic prompts, and rule-based filtering mechanisms, as depicted in Figure 2.
Firstly, we design challenging questions for IAD samples. Since most MLLMs provide rough anomaly
localization in text descriptions when performing IAD tasks and have difficulty forming reasoning
processes that conform to the thinking patterns of professionals, we further design comprehensive
task prompts. The task prompts for samples not only include precise visual prompts such as the
coordinates of the annotated anomalous regions but also semantic prompts like defect type labels
and standardized reasoning guidance. By learning the rich prompt content, QwenVL-Max generates
a rigorous reasoning process consisting of important components such as the analysis of incorrect
options, analysis based on anomaly localization, analysis of the causes of anomalies, and the answer.
This reasoning process is then combined with the task to form complete CoT data, effectively
simulating the cognitive patterns humans employ when addressing analogous problems.

To ensure the accuracy and rationality of the generated CoT, we have developed a two-step filtering
approach. In the first stage, since QwenVL-Max may cause problems such as Chinese characters, the
CoT data undergoes Chinese character detection and missing coordinate detection to separate data
with obvious format errors. Subsequently, the data undergoes logical error filtering in the second step.
We integrate LLMs with superior natural language comprehension to filter data samples exhibiting
both analysis-answer misalignment and disordered logical architectures (such as reversed cause and
effect), with representative examples demonstrated in Appendix [E] We also re-collected samples
corresponding to the erroneous data to minimize data loss. Finally, all the data that have passed
through the two-step filtering are manually inspected, and low-quality data are discarded to form our
dataset AnomalyCoT. This inspection process involved 5 individuals and took a cumulative 10 hours.
Figure 3]illustrates the four CoT data types in AnomalyCoT. While our dataset construction currently
involves a certain amount of manual annotation for CoT verification, our experiments demonstrate
that models fine-tuned on the existing dataset can generalize to unseen domains (e.g. MVTec AD,
MVTec LOCO AD, VisA, GoodsAD) without requiring additional annotations. This suggests that
the dataset can be feasibly extended to new domains with reduced annotation overhead in the future.

4 [Experiments

4.1 Settings

To understand the effectiveness of AnomalyCoT, we conducted comprehensive evaluation on a series
of MLLMs. For each question, the model is required to choose the correct option and identify
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Figure 3: Samples of different defects. In AnomalyCoT, there are samples with different defects
including normal image without any defect, single defect, multiple defects and logical defect.

the coordinates of the anomalous region, which not only reflect the model’s ability to classify and
locate anomalies, but also avoid the confabulations[49]] introduced by LLM. According to these, we
report two aspects of metrics: accuracy and different types of IoU. The test set was constructed by
proportionally sampling from each sub-dataset. Larger-scale sub-datasets were assigned a relatively
lower ratio of test samples, while smaller sub-datasets received proportionally higher allocations,
thereby maintaining an overall balanced train-test split. The scene distribution and defect type ratios
are summarized in Table ] of Appendix [A]

Baselines. Though many MLLMs have strong capability in vision-text comprehension, they may
not generalize well in IAD tasks. Therefore, to understand the basic capabilities of MLLMs in this
specific domain, we conduct evaluation on both commerical and open-source models. For commercial
models, we tested GPT-40 and Gemini-2.0-flash. For open-source models, we tested and adapted
AnomalyGPT, InternVL3, LLaVA-1.5 [50], Llama 3.2—Visiorﬂ Qwen2-VL [51], Qwen2.5-VL [15]]
and Gemma3 [52].

Comparison. We further compared AnomalyCoT with representative traditional IAD methods,
including SPADE, PaDiM, and PatchCore, on the MVTec AD dataset. Since these methods mainly
focus on anomaly detection and cannot perform fine-grained defect classification, Image-AUC was
adopted as their primary evaluation metric, while MLLM-based approaches were evaluated using
classification accuracy. Results show that traditional methods achieve strong anomaly detection
ability but are limited in handling classification tasks, whereas fine-tuning on AnomalyCoT enables
MLLMs to achieve competitive performance across both anomaly detection and defect classification.
In addition, we compared against recently proposed anomaly generation methods that support
classification, namely AnomalyDiffusion[53]] and DualAnoDiff [54]. As shown in Table@ these
methods achieve accuracy below 80% on MVTec AD, while our fine-tuned Llama 3.2-Vision model
significantly outperforms them, reaching 87.65%. This highlights the reliability of our approach in
practical scenarios and its advantage in addressing complex multimodal IAD tasks. For MLLM-based
methods, we adopt accuracy as the primary evaluation metric since the models can directly output
defect categories in addition to anomaly detection. For traditional IAD methods, which mainly detect
the presence of anomalies without classification, we follow prior work and report Image-AUC. While
these differences limit direct metric-level comparisons, together they provide a comprehensive view
of detection versus classification capabilities.

Fine-tuning. We conduct both LoRA and full fine-tuning for selected models on AnomalyCoT. The
tuning experiments are relied on LLaMA-Factory [55] and the samples are organized by standardized
sharegpt format as shown in Appendix [C] We train both models with batch size 32 by 3 epochs and
more detailed configuration is recorded in Appendix |D| In addition, the system prompt used for
questioning is shown in Appendix [B]

3https ://github. com/worldart/meta-1lama_llama-models/tree/main/models/1lama3_2
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Table 1: Overall evaluation results.

Model | Scale | Type | Accuracy ToU GloU DIoU
GPT-40 ‘ - ‘ Pre-trained ‘ 49.19% 0.0364 -0.2529 -0.102
Gemini-2.0-flash | - | Pre-trained | 59.64% 0.0413 -0.1923 -0.057
AnomalyGPT | 7B | Pre-trained | 19.17% 0.0000 -0.0414 -0.0306
Pre-trained 57.33% 0.0405 -0.1159 -0.0272
InternVL 3 8B LoRA 91.27%(+33.94%) 0.2667(+0.2262) 0.0153(+0.1312) 0.1747(+0.2019)
Full 04.48%(+37.15%)  0.4045(+0.3640)  0.2154(+03313)  0.3532(+0.3804)
Pre-trained 28.84% 0.0000 0.0000 0.0000
LLaVA-1.5 7B LoRA 59.12%(+30.28%) 0.2123(+0.2123) -0.0772(+-0.0772) 0.0999(+0.0999)
Full 96.94%(+68.10%) 0.3155(+0.3155) 0.1139(+0.1139) 0.2540(+0.2540)
Pre-trained 55.07% 0.0001 -0.0110 -0.0054
Llama 3.2-Vision 11B LoRA 94.02%(+38.95%) 0.2483(+0.2482) 0.0194(+0.0304) 0.1635(+0.1689)
Full 97.07%(+42.00%) 0.2784(+0.2783) 0.0566(+0.0676) 0.2059(+0.2113)
Pre-trained 51.61% 0.0268 -0.0409 -0.0023
Qwen2-VL 7B LoRA 86.92%(+35.31%) 0.3201(+0.2933) 0.1063(+0.1472) 0.2496(+0.2519)
Full 97.44%(+45.83%)  0.4252(+03984)  0.2076(+0.2485)  0.3642(+0.3665)
Pre-trained 45.53% 0.0939 0.0751 0.0864
Qwen2.5-VL 7B LoRA 01.94%(+46.41%)  0.3225(+0.2286)  0.1069(+0.0318)  0.2562(+0.1698)
Full 97.46%(+51.93%)  0.3655(+0.2716)  0.1462(+0.0711)  0.3029(+0.2165)
Pre-trained 22.15% 0.0003 -0.0238 -0.0141
Gemma 3 4B LoRA 64.33%(+42.18%)  0.1000(+0.0997)  -0.2447(+-0.2209)  -0.0316(+-0.0175)
Full 77.23%(+55.08%)  03015(+0.3012)  0.1329(+0.1567)  0.2556(+0.2697)
Pre-trained 39.12% 0.0002 -0.0149 -0.0085
Gemma 3 12B LoRA 67.48%(+28.36%) 0.1232(+0.1230) -0.1434(+-0.1285) 0.0142(+0.0227)
Full 79.42%(+40.30%)  0.3257(+0.3255)  0.1070(+0.1219)  0.2652(+0.2737)
Human(expert) | - | - | 62.67% -

4.2 Experimental results

As shown in Table[I] we compare the performance over a series of MLLMs by metrics including
accuracy, loU [18], GIoU [56] and DIoU [57]]. The results indicate a general performance bottleneck
for MLLMs on IAD tasks, characterized by accuracy rates typically ranging from 20% to 60% and
significantly low IoU scores. Specifically, the commercial MLLMs GPT-40 and Gemini-2.0-flash
achieve accuracy rates of only 49.19% and 59.64% respectively, while the average accuracy of
pre-trained open-source models is even lower, at only 45.55%. Critically, the IoU scores for these
MLLMs are near zero. These deficiencies suggest that MLLMs, when relying solely on their general
visual capabilities, exhibit limitations in accurately identifying the defect types and the precise
coordinates of anomalous regions.

However, there are significant performance improvement when trained on AnomalyCoT. Following
LoRA fine-tuning, Llama 3.2-Vision achieves the highest accuracy of 94.02%, while Qwen2.5-VL
attains the highest IoU score of 0.3225. Compared to baseline models, the average accuracy rate and
IoU score increase by 36.49% and 0.20 respectively. Furthermore, full fine-tuning results in even
greater enhancements, with the highest accuracy reaching 97.46% and the highest IoU score reaching
0.4252. These results suggest that MLLMs can effectively learn the diverse scenarios represented in
AnomalyCoT, leading to great performance of anomaly detection and location. Moreover, compared
with LoRA, the further performance improvement observed through full fine-tuning indicates that the
diversity of our dataset scenarios do not lead to overfitting issues. The comprehension ability of the
visual model is the basis of multimodal tasks, and the addition of reasoning ability of the language
model has made a great contribution to the outstanding performance in IAD tasks. To contextualize
the achieved accuracy, we further conducted a human evaluation by inviting an industrial anomaly
detection researcher to answer 7,916 test questions, choosing the corresponding options according
to our pictures and questions, just like MLLM, and then calculate the accuracy. This process took
us 4 hours. As shown in Table[T} the human expert achieved 62.67% accuracy, outperforming pre-
trained models but still lower than the best fine-tuned model (97.46%). This result highlights while
human experts remain strong at zero-shot reasoning, the fine-tuned MLLMs surpass human-level
performance after learning CoT reasoning, demonstrating the practical value of our dataset.

To further evaluate the generalization ability of our dataset, we conducted a cross-dataset validation
where specific datasets were held out during training. Specifically, we excluded MVTec AD, MVTec



Table 2:

Ablation experiment results.

Model | saale | A ot wo. o oo oo
InternVL 3 8B | 90.42%(+33.09%)  62.25%(+4.92%)  0.2653(+0.2248)  0.0329(+0.1488)  0.1778(+0.2050)
LLaVA-1.5 7B | 5935%(+30.51%)  64.45%(+35.61%)  0.2631(+0.2631)  0.027(+0.0270)  0.1792(+0.1792)

Llama3.2-Vision | 11B | 93.24%(+37.17%)  86.27%(+30.20%)  0.2528(+0.2527)  0.0833(+0.0943)  0.1982(+0.2036)
Qwen2-VL TB | 86.66%(+35.05%)  80.99%(+29.38%)  0.3652(+0.3384)  0.1779(+0.2188)  0.3102(+0.3125)
Qwen2.5-VL TB | 89.70%(+44.17%)  82.71%(+37.18%)  0.3164(+0.2225)  0.1701(+0.0950)  0.2929(+0.2065)

Gemma 3 4B | 64.42%(+42.27%)  53.15%(+31.00%)  0.1147(+0.1144)  -0.1228(-0.0990)  0.0417(+0.0558)

Gemma 3 12B | 5351%(+14.39%)  62.12%(+22.00%)  0.2088(+0.2086)  -0.0178(-0.0029)  0.1274(+0.1359)

Notations: w.o. stands for without.

LOCO AD, VisA, and GoodsAD respectively, and the model was fine-tuned exclusively on the
remaining datasets and tested during inference on these previously unseen scenarios. The results
demonstrate that the model fine-tuned with CoT annotations consistently maintained strong perfor-
mance on unseen datasets, significantly outperforming fine-tuning without CoT. LLMs unlearning
method[58]] give us inspiration. Detailed results are reported in Appendix [H]

4.3 Ablation Study

The responses in AnomalyCoT consist of CoT reasoning and the coordinates of defects. To compre-
hensively understand the contributions to the great performance of MLLMs, we conduct ablation
experiments for these two factors. Based on AnomalyCoT, we construct two ablation datasets. One
has no coordinate in analysis process and the other has no specific reasoning but only answers and
coordinates. We conduct LoRA fine-tuning for open-sources MLLMs in these two datasets and the
results are recorded in Table 2l

Fine-tuning without CoT. In this study, we investigate the effect of natural language reasoning in
combination with visual features in anomaly detection. When removing specific reasoning process,
MLLMs can only learn from the direct mapping from the original image and question to the correct
option and coordinates. The performances of MLLMs are all greatly improved compared to baselines,
but they are still much lower than the results of models fine-tuned on AnomalyCoT. This suggusts
that through the correct option and the coordinates of anomaly regions, MLLMs can learn effective
knowledge of anomaly detection tasks while the CoT reasoning can provide further comprehension
of the question and image.

Fine-tuning without coordinate. In the ablation of coordinates, we reconstruct the related sentences
or provide general orientation to ensure there is only a difference in location information compared
with AnomalyCoT. This dataset can still guide MLLMs to reason based on the question and the image.
The performance of each model have declined on the whole compared to AnomalyCoT, but the results
vary according to the different models. For MLLMs including LLaVA-1.5-7B and Gemma3-4B,
the performances of the ablation experiment are a little higher than AnomalyCoT. This indicates
that different models have different sensitivity to textual interpretation and numerical coordinates
and learning and fitting capabilities. We innovatively introduced CoT reasoning in the multimodal
anomaly detection task and provided the accurate coordinates of the anomaly region in CoT, which is
of great benefit to the performance of the anomaly detection task.

4.4 Multi-scenario Analysis

The unbalanced number of samples has always been an important problem in the training of deep
learning models [59]], and it may lead to overfitting and low confidence. Since AnomalyCoT consists
of images with different sample numbers from different industrial scenarios, we verify whether it
has this problem. Table [3]shows the performance of Llama 3.2-Vision in 5 main scenarios, and the
results of all scenarios are recorded in Appendix

Firstly, the trend in fine-tuning efficacy across individual scenarios aligns consistently with the
overall results, with full fine-tuning outperforming LoRA fine-tuning and in turn outperforming the
pre-trained model performance. This consistency demonstrates that the results of our experiment



Table 3: Results of Llama 3.2-Vision in 5 main scenarios.

Scenario \ Type Accuracy IoU GIoU DIoU

GoodsAp | Pre-rained 5421% 0.0000 0.0000 0.0000
v LoRA | 90.07%(+3586%)  00184(+0.0184)  0.0174+0.0174)  0.0178+0.0178)
Full 07.31%(+43.10%)  0.0339(+0.0339)  0.0318(+0.0318)  0.0321(+0.0321)

MIAD Pre-trained 49.03% 0.0000 -0.8973 204190
s LoRA | 9623%(+47.20%)  03473(+03473)  0.0030(+0.9003)  0.2190(+0.6380)
Full | 97.73%(+48.70%)  0.3907(+03907)  0.0682(+09655)  0.2834(+0.7024)

Pre-trained 73.08% 0.0000 0.0000 0.0000
MVTeeLOCO 1 LoRA | 92.66%(+19.58%)  0.0393(+0.0393)  -0.0031(0.0031)  0.0046(+0.0046)
Full 04.06%(+20.98%)  0.0497(+0.0497)  0.0171(+0.0171)  0.0235(+0.0235)

MVTeeap | Prerained 68.95% 0.0000 -0.2702 0.1222
oo LoRA | 87.65%(+18.70%)  02068(+02068)  0.1455(+0.4157)  0.1717(+0.2939)
Full | 9726%(+2831%) 02223(+02223)  0.1661(+04363)  0.1931(+0.3153)

ViA Pre-trained 64.50% 0.0000 0.0000 0.0000
o LoRA | 89.50%(+25.00%)  0.0110+0.0110)  -0.0353(-0.0353)  -0.0230(-0.0230)
: Full 04.33%(+29.83%)  0.0216(+0.0216)  -0.0175(:0.0175)  -0.0033(-0.0033)

are universal in each scenario, and resolves concerns about potential biases caused by the imbalance
of samples in the sub-datasets. Notably, the accuracy rates of the pre-trained model on MIAD
and MVTec-LOCO are 49.03% and 73.08% respectively, with a gap of 24.05%. However, after
fine-tuning, the accuracy rates on both sets reach over 90%, with a gap of less than 4%. Besides,
Figure 14| visualizes the responses of Llama 3.2-Vision in two scenarios, showing that the model can
extract different features for different objects and conduct different analyses.

Furthermore, from the result data of the ablation experiments in various scenarios, we found that after
removing the thought chain, the accuracy of some scenarios decreased significantly (such as VisA),
and after removing the regional coordinates, the accuracy of some scenarios decreased significantly
(such as Nanotwice), and most scenarios belonged to the former. This indicates that in multiple
scenarios of actual industrial anomaly detection, it is necessary to provide both language and text
explanations as well as the coordinates of the anomaly regions simultaneously in the training corpus.

5 Conclusion

In this paper, we briefly analyze the various limitations of previous anomaly detection datasets,
particularly the lack of rigorous reasoning processes with precise visual information. To address these
issues, we introduce AnomalyCoT, the first multimodal CoT dataset for the IAD task, which contains
diverse scenarios and challenging tasks, providing strong support for the application of MLLMs in
real-world environments to perform IAD tasks. In addition, we conduct different types of fine-tuning
training on representative MLLMs, leveraging the CoT data to effectively learn professional thinking
patterns across different scenarios. The experimental results demonstrate the reliability of the dataset,
and all trained models achieve significant improvements in key metrics. Our results further confirm
that incorporating CoT reasoning not only enhances interpretability but also substantially improves
the generalization capability of fine-tuned models in cross-domain anomaly detection scenarios.
Our contributions significantly advance the application of MLLMs in real-scene anomaly detection,
establishing a solid foundation for future related studies.

One limitation of our dataset is that the initial CoT annotations were primarily generated using
QwenVL-Max, which may introduce a subtle bias toward the reasoning style of this model family.
Although manual verification and the strong performance of fine-tuned Llama-based models miti-
gate this concern, a broader exploration of diverse CoT generation sources would further improve
robustness. We leave this as an interesting direction for future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims presented in the abstract and introduction of our paper pre-
cisely mirror its contributions and scope. Specifically, we have made three key contributions,
and experiments we conducted on the dataset were elaborated in detail.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: There is a "Limitation" section in our paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Our dataset has proved its validity and generalization through relevant experi-
ments.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our relevant datasets, experimental codes and checkpoint have all been open-
sourced, and others can reproduce them easily.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our paper provide open access to the data and code, with sufficient documents
and scripts to faithfully reproduce the main experimental results. The related link is https
//github.com/Zhaolutuan/AnomalyCoT.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The script in the code link we provided presents the relevant Settings in detail.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the limitations of the parameter quantity and computing resources of
the large model, it is very difficult for us to conduct multiple experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The introduction of relevant computing resources is in Appendix [D}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research in all aspects of our paper strictly complies with the NeurIPS
Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In the introduction section of our paper, we pointed out the positive impact of
our research on IAD and MLLM.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., Pre-Trained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The dataset and checkpoint we released are related to the IAD domain and do
not involve such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In our research, relevant detailed information and documentation are provided
along with the new assets.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in our paper include datasets, codes and related
checkpoints, all of which have detailed documentation and scripts for use.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Our paper elaborates in detail on the participation of the large model in the
dataset, including the processing of the data and related benchmark experiments.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A AnomalyImage

Table ] presents the information of AnomalyCoT in more detail, including the objects contained in
each sub-dataset and the corresponding defect types. It also records the specific number of samples
corresponding to different objects and different numbers of defects.

Table 4: Construction of AnomalyImage.

Sample

Dataset Object Number Defect types
single multiple no
bottle 174 63 - 111 broken, contamination
cable 231 80 10 141 bent wire, cable swap, cut, missing, poke insulation
capsule 229 109 - 120 crack, faulty imprint, poke, scratch, squeeze
carpet 231 80 - 151 color, cut, metal contamination, thread
hazelnut 212 58 - 154 crack, cut, hole, print
leather 226 85 - 141 color, cut, fold, glue, poke
M\/ZE%%AD metal nut 211 90 - 121 bent, color, flip, scratch
pill 284 123 16 145 color, contamination, crack, faulty imprint, type, scratch
screw 296 115 - 181 manipulated front, scratch, thread
tile 213 83 - 130 crack, glue strip, gray stroke, oil, rough
transistor 179 38 - 141 bent lead, cut lead, damaged case, misplaced
wood 185 46 9 130 color, hole, liquid, scratch
zipper 235 102 13 120 broken, fabric, rough, split, squeezed
breakfast box 260 158 - 102 logic, structure
5 juice bottle 283 189 - 94 logic, structure
MVTTZZI;OCO pushpins 308 170 - 138 logic, structure
screw bag 340 218 - 122 logic, structure
splicing connectors 236 117 - 119 logic, structure
MSD phone 1220 1200 - 20 oil, scratch, stain
bracket black 73 47 - 26 hole, scratch
bracket brown 82 50 - 32 parts mismatch
MPDD bracket white 60 30 - 30 defective printing, scratch
434 connector 22 13 - 9 parts mismatch
metal plate 96 70 - 26 rust, scratch
tubes 101 69 - 32 color, crush-bend cutting, cut, deformation, flat crush,
catenary dropper 3054 2426 - 628 broken, looseness, miss
electrical insulator 2868 2025 - 843 broken
MIAD nut and bolt d 2272 1592 - 680 missnut, looseness
16725 photovoltaic module 3473 2051 - 1422 broken, foreign body, miss
wind turbine 1994 1501 - 493 crack
witness mark 3064 1993 - 1071 looseness
cigarette box 426 243 - 183 opened
drink bottle 772 417 - 355 cup half open, cup open, surface damage
GoodsAD drink can 292 146 - 146 deformation, strew missing, surface damage
2962 food bottle 599 356 - 243 deformation, opened, surface damage
food box 391 247 - 144 deformation, opened, surface damage
food package 482 229 - 253 broken, surface anomaly
DS-Cotton-Fabric 102 86 - 16 bubble, texture
Defect Spectrum DS-DAGM 330 266 - 64 color, crush, dirty, scratch, texture
1197 DS-VISION 765 589 20 156 scraFch, crack, crush, bump, dlrty,'
gap, friction, texture, color, fiber, point
candle 197 94 3 100 bump, dent, deposit, scratch, uneven edge, wick
capsules 199 99 - 100 blister, flattening, inclusion, leakage, scratch
cashew 187 9 ) 95 adh6519n, cogtlng rﬁ:mdue, discoloration, edge chip,
hole, inclusion, pinhole, scratch, surface damage
chewinggum 199 99 - 100 contamination, corner chip, scratch, surface damage
fryum 200 80 20 100 break, deposit, scratch
VisA macaronil 200 100 - 100 chip, crack, discoloration, hole, scratch, stain
2381 macaroni2 200 100 - 100 chip, crack, discoloration, hole, scratch, stain
pebl 200 100 - 100 lead bend, miss, scratch, solder residue
peb2 205 100 - 105 lead bend, miss, scratch, solder residue
pcb3 198 98 - 100 lead bend, miss, scratch, solder residue
pebd 197 97 ) 100 compone.nt‘ dan'lage., foreign material,
miss, oxidation, scratch
pipe_fryum 199 99 - 100 break, deposit, overlap, scratchm, stain
NanoTwice NanoTwice 49 35 - 14 dust
Car 2979 2008 8 963 break, crack, dent, surface damage
Self Road 2247 2162 - 85 crack
8466 Wood 194 194 - - crack, scratch
Fabric 3046 2272 280 494 color deviation, crease, hole, seam mark,

stain, watermark, weaving defect
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B Prompt

Prompt for CoT generation

# role definition

You are an Al model for anomaly detection. You should provide a reasoning process for the following
question as instructed.

# correct answer

The correct answer is <option> and the anomaly region coordinates <boxes>.

# reasoning

Please analyze the entire image to support the correct choice. For each incorrect option, provide a
rejection reason citing specific missing features. If the answer is \"no defect\", please provide a brief
analysis; If notimmediately specify the anomaly region coordinates and analyse this region in detail.
Then state \"The defect type is <type>\", appending \"Likely cause:\" with a explanation. Finally,
conclude your response with \"The answer is <option>.\". The coordinates are given in pixels, the
anomaly region is defined by its top-left and bottom-right corners.

Figure 4: Prompt for CoT generation. In the generation of CoT, we provide Qwen-VL-MAX with
the correct choice and the anomaly region coordinates if existing. For different questions, these
information will be replaced with the corresponding ones, that is, <\option> and <\boxes> in the
figure.

Prompt for training and evaluation
# role definition
You are an Al model for anomaly detection. You should answer the following question as instructed.
# reasoning
Please analyze the entire image to support your judgment. For each incorrect option, provide a
rejection reason citing specific missing features. If your answer is \"no defect\", please provide a brief
analysis; If not, immediately specify the anomaly region coordinates in the format of [[(x1, y1),(x2,
y2)], ... ] and analyse this region in detail to identify the defect type. Finally, conclude your response
with \"The answer is <option>.\".

Figure 5: Prompt for training and evaluation. This prompt is used in the fine-tuning on AnomalyCoT
and the evaluation of MLLMs, and it guides MLLMs to reason out the defect types and coordinates.

Prompt for ablation of coordinate

# role definition

You are an Al model for anomaly detection. You should answer the following question as instructed.
# reasoning

Please analyze the entire image to support your judgment. For each incorrect option, provide a
rejection reason citing specific missing features. If the answer is \"no defect\", please provide a brief
analysis; If not, analyse the anomaly region in detail to identify the defect type. Finally, conclude your
response with \"The answer is <option>.\".

Figure 6: Prompt for ablation of coordinate. This prompt is used to fine-tune MLLMs in the ablation
study for coordinate.

Prompt for ablation of CoT

# role definition
You are an Al model for anomaly detection. You should answer the following question and identify
the anomaly region coordinates if existing.

Figure 7: Prompt for ablation of CoT. This prompt is used to fine-tune MLLM:s in the ablation study
for reasoning process.
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C Data Structure

Each sample in AnomalyCoT is organized in the structure shown Figure[§] It contains two main

part, messages and images. In messages there are system prompt, user query and model response. In
images there are input images.

{
"messages": [
"content": "You are an Al model for anomaly detection. You should......",
"role": "system"
h
{
"content": "<image>Which of the following options correctly identifies the defects in the image? ...... "
"role": "user"
h
{
"content": "My analysis based on this image is as follows: ......
"role": "assistant"
}
1,
"images": [
"AnomalyCOT/MIAD/wind_turbine/crack/0000.jpg"
]
}

Figure 8: Data structure of AnomalyCoT.

D Fine-Tuning Configuration

We conducted LoRA and full-parameter fine-tuning on diverse MLLMs using 8 NVIDIA A100 GPUs,
and the hyperparameter settings used during the fine-tuning process are detailed in Table [5]

Table 5: Hyperparameter Settings for Fine-tuning.

Hyperparameter Value / Strategy
Batch size 32

Cutoff length 8192

Optimizer AdamW

Initial learning rate le-4

Learning rate scheduler Cosine decay
Warmup ratio 0.1

Precision BF16

Number of epochs 3
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E Sample of logical error

The filtering of CoT consists of two steps. The first is the filtering of the format and the second is the
filtering of the logic. Logic error includes various forms such as causal transposition and semantic
contradictions, Fig[9]is a specific sample of causal transposition.

Which of the following options correctly identifies the defects in the image?

(A) bulge

(B) no defect

(C) break

(D) surface damage

i : . (E) dent

Causal transposition

The answer is (E). The anomaly region coordinates [[(131,244),(219,307)1,[(235,237),(376,285)]] The defect type is dent.
The front bumper shows an inward deformation consistent with a dent impact damage not linear or sharp to be a crack
no elevation for bulge continuous surface no separation for break. Likely cause: low-speed collision or object impact.
Correct

My analysis based on this image is as follows: Not linear or sharp to be a crack no elevation for bulge continuous surface
no separation for break. The front bumper shows an inward deformation consistent with a dent impact damage. The
anomaly region coordinates [[(131,244),(219,307)],[(235,237),(376,285)]]. Likely cause: low-speed collision or object
impact. The defect type is dent. The answer is (E).

Figure 9: Sample of causal transposition. The reversal and effect is a typical error of the generated
CoT data. To guarantee the quality of AnomalyCoT, we filter and recycle these erroneous data. This
figure shows the original CoT with logic error and the correct CoT after recycling.

F Case Study

We demonstrate the responses of different models in this section. Figure[TO[TT|[T2]report the responses
of different fine-tuned models based on Qwen2.5-VL-7B of questions of different difficulties. Figure
[[3]reports the responses of different MLLMs after LoRA fine-tuning on AnomalyCoT.

Which of the following options correctly identifies the defects in the image?
(A) color

(B) fold

(C) adhesive smear

(D) glue True coordinate: [(5671,512),(708,621)]
(E)no defect

Full

My analysis based on this image is as follows:Color option (A) is incorrect as the color variation is due to the reflective property of the
glue and not a color defect: fold (B) is incorrect as there are no creases or disruptions in the texture pattern; adhesive smear (C) is
incorrect because smears typically show spread marks which are absent here; no defect (E) is incorrect as the presence of the glue
spot clearly indicates a defect. The anomaly region coordinates [[(659,574),(838,697)]] and the defect type is glue. The defect appears
as a glossy, raised spot that disrupts the uniform texture of the material indicating an adhesive substance. Likely cause: accidental spill
or application of adhesive during manufacturing or handling. The answer is (D).

LoRA

My analysis based on this image is as follows:Rejection reasons: (A) color - no significant color deviation; (B) fold - no creases or folds
present; (C) adhesive smear - while similar, the shape and texture suggest a more defined substance; (E) no defect - the anomaly clearly
deviates from the uniform texture. The anomaly region coordinates [[(618,535),(787,663)]] and the defect type is glue. The defect
appears as an irregularly shaped, glossy spot inconsistent with the surrounding texture indicating adhesive residue. Likely cause:
accidental spill or application of adhesive during manufacturing or handling. The answer is (D).

Without detection boxes

My analysis based on this image is as follows:Rejection reason for (A): No significant color variation observed. Rejection reason for (B):
No evidence of folding or creasing. Rejection reason for (C): Absence of adhesive smear characteristics such as smeared texture or
color change. Rejection reason for (E): Presence of glue indicates a defect. The anomaly region coordinates are identified, and the
defect type is glue. The defect appears as a shiny, irregularly shaped substance inconsistent with the texture of the surrounding
material indicating adhesive properties. Likely cause: Excess adhesive applied during manufacturing or handling. The answer is (D).
Without CoT

The answer is (D) glue. The anomaly region coordinates are [[(908, 785), (1169, 963)]1.

Pre-train

The anomaly region coordinates are [[(0.45, 0.37), (0.55, 0.43)]]. This image shows a small, circular or oval-shaped mark on the surface
of a brown leather material. The mark is shiny and reflective, indicating that it may be made of a smooth, glossy material. The shape
and size of the mark suggest that it could be a smear of glue, which is often used to bond leather together. The location of the mark in
the center of the image, surrounded by the textured pattern of the leather, further supports this conclusion. Overall, the presence of
this shiny, circular mark on the leather surface suggests that the correct answer is (D) glue.

Figure 10: Comparison between different fine-tuned models based on Qwen2.5-VL-7B. The photo

shows a leather surface with glue. All the fine-tuned models can select the correct defect type and
identify the coordinates of the defect.

26



Which of the following options correctly identifies the defects in the image?
(A) no defect

(B) bump

(C) crush

(D) shade

(E) color True coordinate: [(310,417),(351,458)]

Full

My analysis based on this image is as follows:For option (A), no defect is incorrect as there is a visible anomaly. Option (B), bump, is
rejected because there is no evidence of a raised surface; the texture remains consistent except for the color variation. Option (C),
crush, is incorrect as there are no signs of compression or distortion in the texture. Option (D), shade, is rejected because the anomaly
is not a shadow but a change in color. The defect type is color. The anomaly region coordinates [[(317,415),(349,444)]] show a noticeable
variation in color compared to the surrounding area indicating a color defect. Likely cause: The color variation could be due to a material
impurity or a manufacturing defect affecting the dyeing process. The answer is (E).

LoRA

My analysis based on this image is as follows:Option (A) no defect rejected because there is visible irregularity. Option (B) bump
rejected because there is no raised area. Option (C) crush rejected because there is no indentation or compression. Option (D) shade
rejected because lighting variations are consistent across the image. The anomaly region coordinates [[(329,416),(378,459)]] show a
lighter spot compared to the surrounding area indicating an inconsistency in color. Likely cause: uneven dye application or material
inconsistency. The answer is (E). The defect type is color.

Without detection boxes

My analysis based on this image is as follows:Option (A) rejected as there are visible defects. Option (B) rejected as there's no raised
surface indicative of a bump. Option (C) rejected as there's no compression or deformation suggesting a crush. Option (E) rejected as
the color variation is consistent with the texture and doesn't indicate a defect. The anomaly region coordinates are identified in the
image. The defect type is shade. The specified area shows a darker patch compared to the surrounding uniform texture indicating a
shading issue. Likely cause: uneven lighting or shadowing during capture. The answer is (D).

Without CoT
The answer is (C)crush. The anomaly region coordinates are [[(345, 416), (378, 452)]].

Pre-train

Analysis: The image appears to be uniformly gray without any visible defects such as bumps, crushes, shadows, or color variations. It
seems to be a consistent background pattern with no anomalies detected. The answer is (A) no defect.

Figure 11: Comparison between different fine-tuned models based on Qwen2.5-VL-7B. The photo
shows a textile surface with color inconsistence. Only the models fine-tuned on complete CoT data
can select the correct defect type and identify the coordinates of the defect.

Which of the following options correctly identifies the defects in the image?
(A) break

(B)dent  True coordinate: [[(347,178),(284,301)]/(284,257),(233,369)]]
(C) bulge

(D) no defect

(E) surface damage

Full

My analysis based on this image is as follows:Rejection reasons: (A) break - no visible cracks or separation of material; (C) bulge - the
deformation is inward not outward:; (D) no defect - the dent is clearly visible; (E) surface damage - while present, it's secondary to the
dent and not the primary defect. Anomaly region coordinates [[(194,295),(268,372)]1,[(276,216),(345,303)]] indicate a noticeable inward
deformation on the car's front left side consistent with a dent. Likely cause: impact from another object causing the metal to deform
inward without breaking. The answer is (B). The defect type is dent.

LoRA

My analysis based on this image is as follows:For option (A), there's no visible break as the surface continuity is intact without any
cracks or separations. Option (C) is incorrect because a bulge would show an outward deformation which isn't observed here. Option (D)
is rejected as the presence of a dent indicates a defect. Option (E) is not accurate since surface damage typically refers to scratches
or paint issues rather than structural deformations. The anomaly region coordinates [[(345,165),(257,303)]] and the defect type is dent.
The front left side of the car shows a noticeable inward deformation consistent with a dent which disrupts the smooth contour of the
vehicle's bodywork. Likely cause: impact from another object causing the metal to deform inwardly. The answer is (B).

Without detection boxes

My analysis based on this image is as follows:Rejection reasons: (A) break - no visible cracks or separation; (C) bulge - no outward
protrusion; (D) no defect - clear presence of deformation; (E) surface damage - no scratches or paint disruption. The anomaly region
coordinates correspond to the identified area and the defect type is dent. The front left side of the car shows an inward deformation
consistent with a dent likely caused by a low-speed impact or object strike. Likely cause: accidental collision or contact with another
object. The answer is (B).

Without CoT
The answer is (B)dent. The anomaly region coordinates are [[(270, 235), (318, 348)]].

Pre-train

The answer is (D) no defect. There are no visible signs of break, dent, bulge, or surface damage in the image of the vehicle. The vehicle
appears to be in good condition without any noticeable anomalies.

Figure 12: Comparison between different fine-tuned models based on Qwen2.5-VL-7B. The photo
shows a car with dents. All the fine-tuned models can select the correct defect type, but only full-
parameters fine-tuned model identify the coordinates of the defect in an expected degree of detail.
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Which of the following options correctly identifies the defects in the image?
(A) paint defect

(B) no defect

(C) broken True coordinate: [(128,119),(201,416)]
(D) deformation

(E) miss

InternVL3-8B

My analysis based on this image is as follows:Rejection reasons: (A) paint defect - no paint present
on the wire; (B) no defect - the break is evident; (D) deformation - the wire is not bent or
deformed but broken; (E) miss - the defect is clearly visible. The anomaly region coordinates
[[(129,114),(198,419)]] and the defect type is broken. The wire shows a clear break with separated
ends indicating discontinuity in the cable structure. Likely cause: mechanical stress or material
fatigue leading to failure. The answer is (C).

LLaVA-1.5-7B

My analysis based on this image is as follows:Rejection reasons: (A) paint defect - no visible paint on
wires; (B) no defect - clear visual evidence of breakage; (D) deformation - the wire is not bent or
deformed but severed; (E) miss - the defect is present and identifiable. The anomaly region
coordinates [[(121,105),(216,424)]] and the defect type is broken. The wire shows a clear break
with separated ends indicating discontinuity in the line. Likely cause: mechanical stress or damage
leading to snapping of the wire. The answer is (C).

Llama 3.2 Vision-11B

My analysis based on this image is as follows:Option (A) paint defect rejected as there are no signs
of paint on the wire. Option (B) no defect rejected because the break is evident. Option (D)
deformation rejected as the wire shows a clean break rather than a bent or twisted shape. Option
(E) miss rejected since the defect is present and identifiable. The anomaly region coordinates
[[(119,123),(210,453)]] and the defect type is broken. The wire shows a clear break with separated
ends indicating discontinuity in the line. Likely cause: mechanical stress or damage leading to
snapping of the wire. The answer is (C).

Qwen2-VL-7B

My analysis based on this image is as follows:Rejection reasons: (A) paint defect - no visible paint on
the wire; (B) no defect - the break is evident; (D) deformation - the wire is not bent or deformed
but broken; (E) miss - the defect is present and identifiable. The anomaly region coordinates
[[(131,113),(191,416)]] and the defect type is broken. The wire shows a clear break with separated

ends indicating discontinuity in the structure. Likely cause: mechanical stress or material fatigue
leading to failure. The answer is (C).

Qwen2.5-VL-7B

My analysis based on this image is as follows:Rejection reasons: (A) paint defect - no paint visible
on wires; (B) no defect - the break is evident; (D) deformation - the wire is not bent or twisted but
severed; (E) miss - there is a clear defect present. The anomaly region coordinates
[[(132,108),(196,419)]] and the defect type is broken. The wire shows a clear break with separated
ends indicating discontinuity in the line. Likely cause: mechanical stress or material fatigue leading
to failure at this point. The answer is (C).

Gemma 3-12B

The wire shows a clear break with separated ends indicating discontinuity in the line. Likely cause:
mechanical stress or material fatigue leading to fracture. The answer is (C)broken. Anomaly region
coordinates [(175,200),(38,465)].

Gemma 3-12B

(A) paint defect - no visible paint on the cable; (B) no defect - the break is evident; (D)
deformation - the shape of the cable is not altered except at the break; (E) miss - the defect is
present and identifiable. The anomaly region coordinates [[(113,124),(193,424)]] show a clear break
in the cable with frayed edges indicating separation. Likely cause: mechanical stress or material
fatigue leading to failure. The answer is (C).The defect type is broken.

Figure 13: Comparison between different MLLMs. The phote shows a broken wire. Almost all the
fine-tuned MLLMs can select the correct defect type and identify the coordinates of the defect.

G Muti-scenario Results

Table[6] shows the complete performance of Llama 3.2-Vision, containing all the fine-tuning methods,
in all the scenarios (or sub-datasets). After fine-tuned on AnomalyCoT, the MLLM achieves great
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performance on every scenario regardless of the number of corresponding samples in training set,

which strongly proving the generalization ability of AnomalyCoT.

Table 6: Results of Llama 3.2-Vision in all scenarios

Scene | Type Accuracy IoU GIoU DIoU
Pre-trained 42.62% 0.0000 -0.8873 -0.4237
Defect Spectrum LoRA 85.65%(+43.03%) 0.1166(+0.1166) -0.0913(+0.7960) 0.0383(+0.4620)
Full 92.83%(+50.21%) 0.1851(+0.1851) -0.0168(+0.8705) 0.1270(+0.5507)
samples: 237 w.0. CoT 71.78%(+29.16%) 0.1536(+0.1536) -0.0544(+0.8329) 0.0781(+0.5018)
w.0. coordinate | 86.50%(+43.88%) - - -
Pre-trained 54.21% 0.0000 0.0000 0.0000
GoodsAD LoRA 90.07%(+35.86%) 0.0184(+0.0184) 0.0174(+0.0174) 0.0178(+0.0178)
Full 97.31%(+43.10%) 0.0339(+0.0339) 0.0318(+0.0318) 0.0321(+0.0321)
samples: 594 w.0. CoT 85.32%(+31.11%) 0.0000(+0.0000) 0.0000(+0.0000) 0.0000(+0.0000)
w.0. coordinate | 90.40%(+36.19%) - - -
Pre-trained 49.03% 0.0000 -0.8973 -0.4190
MIAD LoRA 96.23%(+47.20%) 0.3473(+0.3473) 0.0030(+0.9003) 0.2190(+0.6380)
Full 97.73%(+48.70%) 0.3907(+0.3907) 0.0682(+0.9655) 0.2834(+0.7024)
samples: 3345 w.o0. CoT 89.57%(+40.54%) 0.3997(+0.3997) 0.1083(+1.0056) 0.3050(+0.7240)
w.0. coordinate | 95.87%(+46.84%) - - -
Pre-trained 59.65% 0.0000 -0.4992 -0.3656
MPDD LoRA 78.39%(+18.74%) 0.1137(+0.1137) -0.0201(+0.4791) 0.0395(+0.4051)
Full 87.90%(+28.25%) 0.1340(+0.1340) 0.0208(+0.5200) 0.0642(+0.4298)
samples: 347 w.0. CoT 70.89%(+11.24%) 0.1064(+0.1064) -0.0425(+0.4567) 0.0296(+0.3952)
w.0. coordinate | 75.22%(+15.57%) - - -
Pre-trained 41.80% 0.0000 0.0000 0.0000
MSD LoRA 100.00% (+58.20%) 0.0388(+0.0388) -0.1101(-0.1101) -0.0337(-0.0337)
Full 99.59%(+57.79%) 0.0562(+0.0562) -0.0707(-0.0707) 0.0064(+0.0064)
samples: 244 w.0. CoT 99.18%(+57.38%) 0.0817(+0.0817) -0.0121(-0.0121) 0.0518(+0.0518)
w.0. coordinate | 98.77%(+56.97%) - - -
Pre-trained 73.08% 0.0000 0.0000 0.0000
MVTec-LOCO LoRA 92.66%(+19.58%) 0.0393(+0.0393) -0.0031(-0.0031) 0.0046(+0.0046)
Full 94.06%(+20.98%) 0.0497(+0.0497) 0.0171(+0.0171) 0.0235(+0.0235)
samples: 286 w.o. CoT 86.71%(+13.63%) 0.0656(+0.0656) 0.0398(+0.0398) 0.0465(+0.0465)
w.0. coordinate | 92.31%(+19.23%) - - -
Pre-trained 68.95% 0.0000 -0.2702 -0.1222
MVTecAD LoRA 87.65%(+18.70%) 0.2068(+0.2068) 0.1455(+0.4157) 0.1717(+0.2939)
Full 97.26%(+28.31%) 0.2223(+0.2223) 0.1661(+0.4363) 0.1931(+0.3153)
samples: 583 w.0. CoT 85.47%(+16.52%) 0.3554(+0.3554) 0.1683(+0.4385) 0.3040(+0.4262)
w.0. coordinate | 89.54%(+20.59%) - - -
Pre-trained 33.33% 0.0097 -0.4297 -0.1082
NanoTwice LoRA 94.44%(+61.11%) 0.0764(+0.0667) -0.1915(+0.2382) 0.0404(+0.1486)
Full 97.22%(+63.89%) 0.2090(+0.1993) -0.1016(+0.3281) 0.1576(+0.2658)
samples: 36 w.0. CoT 100.00%(+66.67%) 0.0952(+0.0855) -0.0959(+0.3338) 0.0597(+0.1679)
w.0. coordinate | 83.33%(+50.00%) - - -
Pre-trained 64.50% 0.0000 0.0000 0.0000
VisA LoRA 89.50%(+25.00%) 0.0110(+0.0110) -0.0353(-0.0353) -0.0230(-0.0230)
Full 94.33%(+29.83%) 0.0216(+0.0216) -0.0175(-0.0175) -0.0033(-0.0033)
samples: 476 w.0. CoT 77.31%(+12.81%) 0.0220(+0.0220) 0.0086(+0.0086) 0.0113(+0.0113)
w.0. coordinate | 86.76%(+22.26%) - - -
Pre-trained 59.79% 0.0228 -0.6799 -0.3205
Self LoRA 97.45%(+37.66%) 0.2786(+0.2558) 0.0658(+0.7457) 0.2168(+0.5373)
Full 98.87%(+39.08%) 0.2959(+0.2731) 0.0642(+0.7441) 0.2359(+0.5564)
samples: 1768 w.0. CoT 85.47%(+25.68%) 0.3554(+0.3326) 0.1683(+0.8482) 0.3040(+0.6245)
w.0. coordinate | 96.21%(+36.42%) - - -

29



Which of the following options correctly
identifies the defects in the image?

(A) miss

(B) scratch

(C) dent

(D) lead bend

(E) no defect

True coordinate: [(641,751),(690,888)]

Llama 3.2 Vision-11B

My analysis based on this image is as follows:Rejection reason for (A):
no missing components or solder points visible. Rejection reason for
(B): no linear marks indicative of scratching. Rejection reason for (C):
no inward deformation suggesting a dent. Rejection reason for (E): the

Which of the following options correctly
identifies the defects in the image?

(A) surface damage

(B) no defect

(C) opened

(D) cap half open

(E) surface anomaly

True coordinate: [(1160,1996),(1696,2428)]

Llama 3.2 Vision-11B

My analysis based on this image is as follows:Rejection reasons: (B) no
defect - the image clearly shows an anomaly; (C) opened - the cap is
fully sealed; (D) cap half open - the cap is fully closed; (E) surface
anomaly - while there is a surface issue, it is specifically damage. The

defect type is surface damage. Anomaly region coordinates
[[(1485,1808),(1641,1932)]] indicate a visible scratch or abrasion on
the bottle's surface disrupting the label's integrity. This anomaly is
characterized by a disruption in the label's continuity and color
uniformity. Likely cause: mechanical impact or friction during handling
or packaging causing superficial damage to the label. The answer is (A).

bent lead is a clear defect. The defect type is lead bend at
coordinates [[(570,736),(700,895)]] as the lead appears bent and not
in its original straight position. Likely cause: mechanical stress or
improper handling during assembly or testing. The answer is (D).

Figure 14: Comparison of responses in different scenarios. MLLMs can make corresponding analyses
for different image scenarios, and we present the responses from Llama 3.2-Vision (LoRA fine-tuned)
in sub-datasets VisA and GoodsAD.

H Cross-validation

Table [7) presents the result of the result of our cross-validation process for fine-tuning.

Table 7: Result of cross-validation.

| CoT w.o. CoT

Pre-trained 46.18 35.75
Pre-trained + dm | 38.12  29.32
LoRA 70.37  62.97
LoRA+dm 75.78  50.76

Notations: dm stands for domain knowledge.

I Comparison

Table 8] compares the results of our AnomolyCoT method with the traditional IAD method and other
anomaly detection methods that support classification.

Table 8: Result of different anomoly detection methods.

Method MVTec-AD
Image-AUC Accuracy

SPADE 85.42 -

PaDiM 90.56 -

PatchCore 98.81 -
AnomalyDiffusion - 72.36
Dual AnoDiff - 78.81
Llama 3.2-Vision (Pre-trained) - 68.95
Llama 3.2-Vision (LoRA) - 87.65
Llama 3.2-Vision (Full) - 97.26
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