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ABSTRACT

As the methods evolve, inversion is mainly divided into two steps. The first step is
Image Embedding, in which an encoder or optimization process embeds images to
get the corresponding latent codes. Afterward, the second step aims to refine the
inversion and editing results, which we named Result Refinement. Although the
second step significantly improves fidelity, perception and editability are almost
unchanged, deeply dependent on inverse latent codes attained in the first step.
Therefore, a crucial problem is gaining the latent codes with better perception and
editability while retaining the reconstruction fidelity. In this work, we first point
out that these two characteristics are related to the degree of alignment (or dis-
alignment) of the inverse codes with the synthetic distribution. Then, we propose
Latent Space Alignment Inversion Paradigm (LSAP), which consists of evalua-
tion metric and solution for this problem. Specifically, we introduce Normalized
Style Space (SN space) and SN Cosine Distance (SNCD) to measure disalign-
ment of inversion methods. Since our proposed SNCD is differentiable, it can be
optimized in both encoder-based and optimization-based embedding methods to
conduct a uniform solution. Extensive experiments in various domains demon-
strate that SNCD effectively reflects perception and editability, and our alignment
paradigm archives the state-of-the-art in both two steps.

1 INTRODUCTION
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Figure 1: Inversion and editing results from LSAP and SAMLSAP (Parmar et al., 2022). Our
method improves image quality and editability while retaining fidelity. It is compatible with the
hybrid method and achieves better performance.

In recent years, Generative Adversarial Networks (GANs)(Goodfellow et al., 2014) are used in
various tasks(Ledig et al., 2017; Yang et al., 2021b) and have dramatically improved image synthesis
ability. Style-based generative models(Karras et al., 2019; 2020; 2021) further enhance the realism
and resolution of image generation, achieving state-of-the-art. The intermediate latent space W
space in StyleGAN encodes high-semantic information. As a strong prior, well-trained generator
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has demonstrated powerful capabilities and improved multiple tasks from traditional approaches,
e.g., neural talking head(Prajwal et al., 2020; Yin et al., 2022), face parsing(Yang et al., 2021a;
Zhang et al., 2021), and style transfer(Li et al., 2020; Yang et al., 2022b).

These applications require latent codes, which are inherently available for synthetic images but can-
not be applied directly to real images. To this end, inversion methods are designed to embed images
into GAN’s latent space via various approaches. Existing works can be mainly divided into two
steps. The first step aims to attain latent codes, usually achieved by training an encoder or optimiz-
ing the reconstruction error, which we named Image Embedding. In the second step, researchers
employ diversiform strategies to improve inversion and editing results, e.g., predicting generator
weights(Alaluf et al., 2022; Dinh et al., 2022), and finetuning the generator(Roich et al., 2021; Feng
et al., 2022), which we named Result Refinement. Previous worksTov et al. (2021) illustrate that
fidelity, perception, and editability are three essential characteristics of inversion. However, in Re-
sult Refinement, more attention has been paid to improve fidelity, maintaining visual details like the
background, hat, and eyeglasses while inheriting editability and perception from the inverse codes
in the first step. Hence, in order to achieve superior performance in fidelity, perception, and editabil-
ity, a robust latent code embedding technique which compatible with refinement mechanisms is still
necessary.

The latent space from random sampling and transformation possesses a particular distribution, which
we named synthetic distribution. Intuitively, latent codes from this distribution have better perfor-
mance. Supervision from the discriminator constrains the sampled latent codes to generate photo-
realistic images. Moreover, editing directions are gained by sampling(Shen et al., 2020) and an-
alyzing(Härkönen et al., 2020) in synthetic latent space. Hence, the key point of perception and
editability is the alignment between inverse codes and synthetic distribution. An existing method
(Tov et al., 2021) solves this problem by latent code discriminator and achieves more reasonable
perception and editability. However, there are two significant shortcomings. Firstly, it limits the
reconstruction performance since introducing a discriminator makes training unstable. Secondly,
this approach cannot be applied to the optimization-based inversion methods. Therefore, our key
motivation is the idea of constructing an alignment paradigm between embedding latent space and
synthetic latent space which can be applied to both encoder-based and optimization-based inversion
methods and retains reconstruction ability.

In this work, we thoroughly analyze the disalignment in inversion and propose the Latent Space
Alignment Inversion Paradigm (LSAP). Specifically, we first introduce the Normalized Style Space
(SN space). We prove that SN space is more suitable and efficient for measuring disalignment
than Z/W/S space. Moreover, we introduce a metric SN Cosine Distance (SNCD) to evaluate the
inversion methods at latent code level, which have shown experimentally reflecting perception and
editability. Then, we conduct the alignment solution in encoder-based and optimization-based meth-
ods, employing an alignment loss based on SNCD. We present extensive experiments to demonstrate
the effects and generality of our alignment paradigm. We achieve the best trade-offs in encoder-
based methods and drastically improve the perception and editability in the optimization-based
method. Besides, we reach the state-of-the-art with HFGI(Wang et al., 2022) and SAM(Parmar
et al., 2022), which further demonstrates the potential of our method. As shown in Figure 1, our vi-
sual results are natural and faithful. The key contributions of this work are summarized as follows:

• We rethink the fidelity, perception and editability in inversion task. As dividing inversion
process into Image Embedding and Result Refinement, we point out that fidelity is enhanced
in the second step while perception and fidelity are related to alignment between inverse
codes and synthetic distribution.

• We propose an effective and generalized Latent Space Alignment Inversion Paradigm
(LSAP), including measurement (i.e., SNCD) and improvement solutions (i.e., LSAPE

and LSAPO) of perception and editability.

• To demonstrate the effect of our aligning paradigm, we take extensive experiments in vari-
ous domains. SNCD reflects the perception and editability in a numerical way. Our align-
ment paradigm reaches better trade-offs between fidelity-perception and fidelity-editability.
Applying to hybrid methods, LSAPE achieves state-of-the-art.
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2 RELATED WORK

GAN Inversion. Generally, the inversion process can be divided into two steps. Firstly, an initial
latent code is gained by optimization or encoder from a given image. Optimizing reconstruction
error typically reach better fidelity, while it requires several minutes per image (Karras et al., 2020;
Creswell & Bharath, 2018; Abdal et al., 2019; 2020). Training an encoder(Tov et al., 2021; Richard-
son et al., 2021; Wei et al., 2022; Guan et al., 2020; Creswell & Bharath, 2018) to invert images
is efficient during inference but achieves inferior reconstruction results. The second step aims to
refine the inversion and editing results, using various strategies. Some methods(Alaluf et al., 2022;
Dinh et al., 2022) adjust the convolution weights of the generator by hypernetwork(Ha et al., 2016).
ReStyle(Alaluf et al., 2021) introduces an iterative refinement mechanism, refining the latent code
by a residual-based encoder. HFGI(Wang et al., 2022) proposes a distortion consultation approach
for high-fidelity reconstruction. SAM(Parmar et al., 2022) inverses the different segments of image
into different intermediate layer by predicting ”invertibility”. Generator tuning (Roich et al., 2021;
Feng et al., 2022) can get the best inversion performance but is considerably time-consuming.

GAN-based Manipulation. Thanks to the rich semantic information of GAN’s(Karras et al., 2019;
2020; 2021) latent space, many works have proposed various methods to control generated results by
manipulating latent representation. Some methods(Denton et al., 2019; Goetschalckx et al., 2019;
Spingarn-Eliezer et al., 2020; Shen et al., 2020) find editing directions of attributes (e.g., smile,
gender, age, and pose) by semantic labels. Others find meaningful directions in an unsupervised
(Härkönen et al., 2020; Shen & Zhou, 2021; Voynov & Babenko, 2020; Wang & Ponce, 2021) or
self-supervised(Jahanian et al., 2019; Plumerault et al., 2020) way. Moreover, language-image mod-
els are explored to edit images by back-propagating the gradient of objective text(Patashnik et al.,
2021). Some works(Sun et al., 2021; Kim et al., 2022) further introduce segmentation information
to gain better performance, which may be extended to the human body by body GANs(Frühstück
et al., 2022; Fu et al., 2022) and human parsing techniques(Yang et al., 2019; 2020; 2021a; 2022a)
in the future. Since those manipulation approaches are almost built on latent codes, editability is
also a crucial characteristic of inversion.

3 DISALIGNMENT IN LATENT SPACE

In this section, we first rethink the source of fidelity, perception and editability, and we point out that
the latter two are deeply related to the alignment between inverse codes and synthetic distribution. To
illustrate the alignment (or disalignment) in existing inversion methods, we further formulate it and
introduce a new latent space Normalized Style Space (SN space) to better measure the discrepancy
between latent codes.

3.1 FIDELITY, PERCEPTION AND EDITABILITY

As first mentioned in Tov et al. (2021), fidelity1, perception and editability are three characteristics
of inversion methods. Fidelity measures the reconstruction ability, requiring methods embedding
image into latent space which can reconstruct images similar to given images. Perception evaluates
the reconstructed images’ perceptual quality, which consists of sharpness and naturalness in practice,
which we illustrate in Appendix E. Besides, editability represents editing capability of inverse codes,
which is a comprehensive measurement, including editing effects, attributes disentanglement, etc.

Inversion process can be divided into two stages: Image Embedding and Result Refinement. The
latent codes are first attained by an encoder or optimized by minimizing image distortion. In this
phase, reconstruction error is slightly large. In Result Refinement step, methods focus on recovering
visual details (e.g., background, cloths) by adjusting weights(Alaluf et al., 2022) or intermediate
features(Wang et al., 2022) of generator. This stage further improves the fidelity and even can
invert the out-of-distribution images(Roich et al., 2021; Feng et al., 2022). However, perception
and editability are inherited from the first step, by inverse codes specifically. In other words, these
two properties are not enhanced in this step and are even damaged. In practice, if the inverse codes
cannot be edited or generate images with good perceptual quality, the refined results still show the

1Tov et al. (2021) originally uses the words image distortion. To represents the ability of inversion methods,
we use fidelity instead of it.
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same effect. Hence, a essential problem is obtaining latent codes with better performance. In this
work, we focus on the first step to study fidelity, perception, and editability of latent codes.

Let us start by tracing these characteristics. Minimizing image distortion is a significant objective
function applied in all inversion methods. It gives the algorithm the ability to reconstruct given im-
ages faithfully. Perception is gained by the powerful generating capability of GANs, since generator
is trained to generate the photorealistic results with high resolution by a discriminator. Editability
benefits from the highly semantic latent space of GANs. Given the editing direction, we can modify
the latent codes to edit corresponding attribute. However, the ability of perception and editability
is conditional. Specifically, under the constraint from the discriminator, latent space in GANs is
required to fit dataset distribution, from which latent code can generate high-quality images. The
generator may not generate good results from out-of-distribution latent code. That is also verified
by latent code truncation, that codes near to mean code can generate high-quality results. Moreover,
editing directions are obtained by sampling latent codes(Shen et al., 2020) or analyzing generator
weights(Shen & Zhou, 2021). That is also built on a specific latent space in GAN.

We name the latent space distribution in GAN as synthetic distribution, which is converted by pre-
trained networks from multivariant normal standard distribution. As we analyzed, latent codes align-
ing with synthetic distribution have better perception and editability. In practice, Tov et al. (2021)
introduces a latent code discriminator to solve this problem. However, it is worth mentioning that
there are trade-offs between fidelity and perception/editability. Improving the latter characteristics
implies the sacrifice of fidelity. It is significant to design a meticulous solution to improve percep-
tion and editability while retaining fidelity. Moreover, the metric which can be used to evaluate
perception and editability in current study is missing. Although many perceptual metrics are widely
used in visual tasks (e.g., FID(Heusel et al., 2017) and SWD(Rabin et al., 2011)), they are deeply
influenced by image distortion in inversion and cannot faithfully evaluate the inversion results(Tov
et al., 2021).

Since perception and editability are positively related to the alignment degree of inverse latent codes
with synthetic distribution, solving the disalignment of inversion methods is a straightforward solu-
tion for improving them. An intuition idea is that construct a numerical measurement of disalign-
ment and optimize it in inversion. We next analyze how to formulate it first and build the Latent
Space Alignment Inversion Paradigm (LSAP), including the evaluation metric and solutions.

3.2 DISALIGNMENT FORMULATION

To illustrate disalignment between synthetic and inverse latent space, we firstly define P space as a
reference space, denoting Pinv and Psyn as inverse and synthetic latent space, respectively. GP is
defined as the generator from P space to image space. Suppose that Z is the multivariate standard
normal distribution and X is the real image distribution. We establish two mapping functions F :
Z → Psyn and I : X → Pinv . In practice, I serves as an embedding method, used to convert
images into P space latent code. Moreover, F is a mapping function consisting of multiple parts
in the front of generator. If we find a distance function L to measure latent codes, we can define
disalignment D between these two spaces as follow:

D = Epsyn∼Psyn,pinv∼Pinv
[L(psyn, pinv)]

= Ez∼Z,x∼X [L(F (z), I(x))]. (1)

Hence, two vital parts of disalignment measurement (Equation 1) are:

• Latent Space: which latent space is effective to measure disalignment;
• Distance Function: how to measure the distance between latent codes.

We respectively answer these two questions in the following parts.

3.3 NORMALIZED STYLE SPACE (SN )

Although Z/W/W+ spaces are primarily popular in previous research, in this work, we propose
a new latent space, Normalized Style Space (SN ), and we will prove that it is better to measure
disalignment.
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Let us revisit the existing latent spaces first. Given the sampled random variable z from Z space, the
mapping network first converts it into w in W space. Then affine modules are applied on w at each
resolution level, which output is s = {s1, s2, . . . , sk}, where si = Aiw+ bi and the output space is
named Style Space (S space).
Property 3.1. Suppose that s = {s1, s2, . . . , sk} is a set of S space latent codes and corresponding
to image x = GS(s). For ∀a ∈ R and ∀l ∈ [1, k], if ŝ follows:

ŝn =

{
sn, n ̸= l

a× sn, n = l

we have x = GS(s) = GS(ŝ).2

Property 3.1 illustrates that S space latent codes are scaled-independent in every component. Those
with the same angles will generate the same results. Hence, converting codes in the unit hyper-
sphere, we construct a new latent space, Normalized Style Space (SN ), in which codes are normal-
ized from S space by the euclidean norm. It follows:

sNi =
si

∥si∥2
=

Aiw + bi
∥Aiw + bi∥2

(2)

To demonstrate differences between each latent space in measuring disalignment, we take extensive
analyses:
Property 3.2. Given a sets of S space latent codes s = {s1, . . . , sk} ̸= 0, ∃s′ = {s′1, . . . , s′k} ̸= s
such that GS(s) = GS(s

′).

Proof. According to Property 3.1, for ∀l ∈ [1, k] when s′l = a × s(a ∈ R) and s′i = si(i ̸= l), we
have GS(s) = GS(s

′). Since sl ̸= 0, s′l ̸= sl.

Property 3.3. For lth layer (∀l ∈ [1, k]), define Fl : Z/W → S as the mapping function between
S and Z/W space. For all pl ∈ Z/W (Fl(p) ̸= 0), exist p′l ̸= pl such that the corresponding S
space latent codes satisfy: s′l = a× sl (a ∈ R), where sl = Fl(pl) and s′l = Fl(p

′
l).

3

Corollary 3.1. Given a sets of latent codes p = {p1, . . . , pk} in Z/W/S space and p ̸= 0, ∃p′ =
{p′1, . . . , p′k} ≠ p such that GP(p) = GP(p

′).

According to Corollary 3.1, different latent codes in Z/W/S space can generate the same images,
which implies the distance of these latent codes can not reflect discrepancies in generated results.
Hence, we choose SN as reference space to measure disalignment in inversion.

3.4 COSINE DISTANCE

Illustrated in Equation 1, the distance function is required to measure the discrepancy between pair-
wise latent codes. When we denote SN space as reference space, an intuition distance function is
the cosine distance:

L = 1− cos(sNsyn, s
N
inv) (3)

Since sNsyn and sNinv have unit norm, we have:

L = 1− sNsyn · (sNinv)T (4)

Notably, as sNinv is the inversion result, cosine distance is differentiable for it to minimize in inversion
process.

4 LATENT SPACE ALIGNMENT INVERSION PARADIGM

In this section, we construct the Latent Space Alignment Inversion Paradigm (LSAP) to measure
and improve perception and editability of inversion methods. Specifically, we propose the SN

Cosine Distance (SNCD) and generalized alignment solutions in Image Embedding phase, including
LSAPE and LSAPO for encoder-based and optimization-based methods, respectively.

2Proof can be found in Appendix A.1.
3Proof can be found in Appendix A.2.
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Figure 2: Alignment Inversion Solutions of LSAP. We show the details of encoder-based and
optimization-based inversion methods in our alignment paradigm. The pivotal part is the LSNCD,
which represents the disalignment degree of inverse latent codes.

4.1 SN COSINE DISTANCE

In § 3, we analyze how to formulate disalignment and determine the reference latent space and
distance function. Based on them, we propose a new evaluation metric SN Cosine Distance (SNCD)
as:

SNCD = 1− EsNsyn∼SN
syn,s

N
inv∼SN

inv
[sNsyn · (sNinv)T ] (5)

Since sNsyn and sNinv are independent, we have:

SNCD = 1− EsNsyn∼SN
syn

[sNsyn] · EsNinv∼SN
inv

[sNinv]
T (6)

The small value of SNCD means that SN
inv space aligns with SN

syn space. SNCD can reflect the
perception and editability in image level, which we will show in qualitative and quantitative experi-
ments.

4.2 ALIGNMENT INVERSION

Inversion methods in Image Embedding phase aim to embed images into latent space in encoder-
based or optimization-based way, and the process is as follows:

p∗ = argmin
p

[L(x,GP(p)] (7)

E∗ = argmin
E

[Ex∼X (L(x,GP(E(x))))] (8)

where x is given image, X is image dataset, L is image level loss function (e.g., MSE, LPIPS(Zhang
et al., 2018), identity loss(Deng et al., 2019)) and E is an encoder. Since inversion methods are
mainly supervised at the image level, there is a lack of limitation of inverse latent space distribution.
To construct a uniform solution to train encoder or optimize the latent codes, we can supervise the
disalignment degree and add an alignment term in L. According to Equation 6, disalignment in
inversion is modeled by:

SNCD = 1− EsNsyn∼SN
syn

[sNsyn] · Ex∼X [F (I(x))]T (9)

As EsNsyn∼SN
syn

[sNsyn] is independent to inversion, solving disalignment is exactly aligning the output
space of I with synthetic latent space. Thanks to SNCD’s differentiable property, we can apply
it to inversion methods to construct a direct and efficient alignment solution, shown in Figure 2.
According to Equation 9, we first sample k latent codes from the multivariant normal distribution
and convert them into SN by pre-trained generator to simulate the synthetic distribution SN

syn, which
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Table 1: Quantity results on face domain. We show the quantity results of encoder-based,
optimization-based, and hybrid methods, respectively. LSAP-based methods achieve better
distortion-perception/editability trade-offs, for our method slightly damages the reconstruction per-
formance and attains superior perception and editability ability. - means evaluation is unavailable
for unstable results or time-consuming. × means the generated result is highly unnatural.

Fidelity Perception & editability

Metric MSE ↓ LPIPS ↓ Similarity ↑ SNCD ↓ LECpose ↓ LECsmile ↓ LECage ↓ Similaritypose ↑ Similaritysmile ↑ Similarityage ↑
pSp 0.0351 0.1628 0.5591 0.1013 89.3529 55.8694 64.6177 0.4374 0.4785 0.3077
e4e 0.0475 0.1991 0.4966 0.0495 26.6551 22.3202 23.2861 0.4178 0.4173 0.3441

LSAPE 0.0397 0.1766 0.5305 0.0385 19.0211 14.0360 14.6715 0.4597 0.4519 0.3944
StyleGAN2-W 0.0696 0.1987 0.3066 0.0656 - - - 0.2389 0.2470 ×

LSAPO-W 0.0690 0.1986 0.2989 0.0492 - - - 0.2182 0.2362 ×
StyleGAN2-W+ 0.0279 0.1179 0.7463 0.1063 - - - × × ×

LSAPO-W+ 0.0359 0.1376 0.6587 0.0407 - - - 0.4846 0.5161 ×
HFGIe4e 0.0210 0.1172 0.6816 - - - - × 0.5409 0.4763

HFGILSAP 0.0210 0.0945 0.7405 - - - - × 0.5766 0.5704
SAMe4e 0.0143 0.1104 0.5568 - - - - - - -

SAMLSAP 0.0117 0.0939 0.6184 - - - - - - -

are denoted as {sNi }k. Then, we define an alignment loss as follows:

LSNCD(x) = 1− 1

k

k∑
i

(sNi ) · (F (I(x))T (10)

= 1− µsN · (F (I(x))T (11)

where µsN represents the mean of {sNi }k. LSNCD is calculated by given images x (i.e., a batch of
images in encoder training or one image in optimization) in each iteration. Moreover, we present
the details of our encoder and optimization methods separately.

Encoder. The pipeline of encoder-based alignment inversion method is shown in Figure 2a. Given
real images, encoder is optimized by minimizing multiple losses at image level and latent code
level. Following Richardson et al. (2021) and Tov et al. (2021), Limg consists of distortion loss,
perception loss, and identity loss. Besides, delta-regulation loss is also applied to inverse codes. The
whole training object is defined by:

L = L2 + λ1Llpips + λ2Lsim + λ3Ld−reg + λLSNCD (12)

where λ1, λ2, λ3, λ are hyper-parameters to adjust the weight of each component in loss function. In
encoder-based method, LSNCD aims to align the encoder’s output space with synthetic latent space.

Optimization. Optimization-based inversion method updates latent code iteratively. Compared
to encoder-based approach, LSNCD is used to minimize the distance between a certain latent code
with synthetic latent space. Following Karras et al. (2020), we apply two losses in image level and
latent code level, respectively:

L = Llpips + λLSNCD (13)

The encoder-based and optimization-based method are denoted as LSAPE and LSAPO respectively.

5 EXPERIMENTS

In this section, we conduct extensive experiments to demonstrate the effects of our LSAP in the face
domain. Results on other domains can be found in Appendix F.1. We evaluate inversion methods
from three perspectives. We use MSE, LPIPS, and identity similarity to evaluate fidelity and use
SNCD and LEC to evaluate perception and editability. Furthermore, we calculate the identity sim-
ilarity between origin images and edited images under the same editing effects by each inversion
method. For image perception, we discuss in Appendix E to illustrate the discrepancy.

Implementation Details. See Appendix C.

Quantitative Results. We provide the inversion results in Table 1. For encoder-based methods,
LSAPE’s reconstruction performance is slightly decreased from pSp(Richardson et al., 2021) and
obtains a significant improvement on perception and editability metrics. Compared to e4e, LSAPE
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Figure 3: Inversion and editing results of different inversion methods. We show the comparison
of encoder-based, optimization-based and hybrid method respectively. LSAPE improves the per-
ception and editability while retaining the fidelity, and HFGILSAP and SAMLSAP further reduce
image distortion.

is superior in all perspectives. LSAPE achieves the best LEC in three editing attributes and identity
preservation in two attributes. It is worth mentioning that although e4e has decent editability, it gets
worse similarity between origin images and edited images than pSp in ”pose” and ”smile”, which is
caused by their reconstruction gap. Nevertheless, LSAPE reaches a higher similarity in ”pose” and
”age”, which indicates that it can preserve portrait identity well during manipulation.

For optimization-based methods, LSAPO obtains comparable reconstruction performance in both
W and W+ spaces. W space inversions both get weak results. Directly optimizing latent codes
in W+ achieves the best fidelity; however, which gets the worst SNCD and cannot be used to edit.
The latent codes may locate in a low-density place of synthetic distribution under only minimizing
image distortion per image. LSAPO-W+ employs additional alignment supervision and makes
inverse codes editable. Meanwhile, thanks to its terrific reconstruction ability, the edited images
preserve identity best.
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To demonstrate our approach’s generality and potential, we evaluate the performance with Result
Refinement methods (i.e., HFGI(Wang et al., 2022) and SAM(Parmar et al., 2022)) employed with
e4e and LSAPE . Since HFGI and SAM aim to refine the generated and edited results and do not
produce new latent codes, SNCD and LEC are unavailable to measure. Therefore, we focus on
reconstruction ability and identity preservation in editing. As shown in the last four rows of Table 1,
our method achieves the best performance in every perspective. It attains lower image distortion
even than W+ space optimization. HFGI with e4e and LSAPE reach the same MSE results while
LSAPE gains better LPIPS and identity similarity. With SAM, LSAPE achieves the best MSE and
LPIPS in all experiments. For image editing, HFGI with e4e and LSAPE both reach higher identity
preservation, while LSAPE has a 0.03 improvement in ”smile” and a 0.10 improvement in ”age”.

Qualitative Results. We perform the qualitative comparison of our methods and previous inversion
methods in Figure 3. Our alignment paradigm attains comparable reconstruction quality with pSp
and StyleGAN2 optimization (both in W and W+ spaces) in encoder-based and optimization-based
methods. Meanwhile, LSAP improves image perception and editability a lot. In comparison with
e4e, which is the most popular encoder in recent research, LSAPE achieves better fidelity and ed-
itability. For example, editing results of man in the first image of Figure 3 from e4e have redundant
glasses (smile) and change eyes gaze (pose). In optimization-based methods, W space inversion
can not get acceptable results. LSAPO makes W+ codes editable and preserves identity much dur-
ing editing. It demonstrates that our approach provides a concise and straightforward solution even
in optimization-based methods, while previous methods(Roich et al., 2021) inverse images into W
to attain editability. In hybrid methods, HFGI and SAM improve the reconstruction ability from
e4e and LSAPE . Inversion and editing results from those methods are similar to the correspond-
ing results from encoders while retaining more image details. SAMLSAP achieves state-of-the-art
for its high fidelity perception, and editability performance. We show more qualitative results in
Appendix F.2.

Image Embedding and Result Refinement. In § 3.1, we point out that fidelity is improved in the
Result Refinement step, while perception and editability are inherited from Image Embedding. As
can be seen in Figure 3, if editing results from encoder are weak, such as attributes entanglement,
the corresponding results from hybrid methods are basically similar. For example, editing the third
image with ”smile” and ”age”, results from e4e appear with additional glasses, then the results from
HFGIe4e and SAMe4e also have the same impacts. Hence, although Result Refinement can largely
improve the fidelity, the Image Embedding still plays an important role in inversion.

SNCD and Perception/editability. In § 3 we find these two characteristics are related to alignment
between inverse codes and synthetic distribution. Then we introduce that SNCD can numerically
reflect them, which is validated in our experiments. Those with smaller SNCD have better image
quality and editing results (e.g., e4e and LSAPE), while the large SNCD means weak generating
and manipulation results (e.g., pSp and StyleGAN2-W+).

6 CONCLUSION

Fidelity, perception and editability are three critical characteristics of inversion methods. While
dividing inversion methods into two steps Image Embedding and Result Refinement, although the
second step improves fidelity a lot, it only inherits the perception and editability from the first step.
Hence, designing a image embedding mechanism with excellent perception and ediatbility and re-
taining fidelity is a critical problem of gaining a better inversion method. To this end, we start by
tracing the source of perception and editability in inversion process and find that it is significant to
embed images aligning with synthetic distribution in Image Embedding step. Hence, we propose
a Latent Space Alignment Inversion Paradigm (LSAP), containing the measurement and solution
of latent space disalignment. Specifically, to illustrate the disalignment straightforwardly and nu-
merically, we propose SN Cosine Similarity (SNCD) as metric with Normalized Style Space (SN )
latent space. Thanks to the differentiable characteristic of SNCD, we conduct a uniform solution
in encoder-based and optimization-based approaches. Through extensive experiments, LSAP shows
promising results in all three features, and hybrid methods with LSAP achieve state-of-the-art.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan: How to embed images into the
stylegan latent space? In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 4432–4441, 2019.

Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan++: How to edit the embedded
images? In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 8296–8305, 2020.

Yuval Alaluf, Or Patashnik, and Daniel Cohen-Or. Restyle: A residual-based stylegan encoder via
iterative refinement. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 6711–6720, 2021.

Yuval Alaluf, Omer Tov, Ron Mokady, Rinon Gal, and Amit Bermano. Hyperstyle: Stylegan inver-
sion with hypernetworks for real image editing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 18511–18521, 2022.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis
for multiple domains. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 8188–8197, 2020.

Antonia Creswell and Anil Anthony Bharath. Inverting the generator of a generative adversarial
network. IEEE transactions on neural networks and learning systems, 30(7):1967–1974, 2018.

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin
loss for deep face recognition. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 4690–4699, 2019.

Emily Denton, Ben Hutchinson, Margaret Mitchell, and Timnit Gebru. Detecting bias with genera-
tive counterfactual face attribute augmentation. 2019.

Tan M Dinh, Anh Tuan Tran, Rang Nguyen, and Binh-Son Hua. Hyperinverter: Improving stylegan
inversion via hypernetwork. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 11389–11398, 2022.

Qianli Feng, Viraj Shah, Raghudeep Gadde, Pietro Perona, and Aleix Martinez. Near perfect gan
inversion. arXiv preprint arXiv:2202.11833, 2022.

Anna Frühstück, Krishna Kumar Singh, Eli Shechtman, Niloy J Mitra, Peter Wonka, and Jingwan
Lu. Insetgan for full-body image generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7723–7732, 2022.

Jianglin Fu, Shikai Li, Yuming Jiang, Kwan-Yee Lin, Chen Qian, Chen Change Loy, Wayne Wu,
and Ziwei Liu. Stylegan-human: A data-centric odyssey of human generation. arXiv preprint
arXiv:2204.11823, 2022.

Lore Goetschalckx, Alex Andonian, Aude Oliva, and Phillip Isola. Ganalyze: Toward visual defi-
nitions of cognitive image properties. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 5744–5753, 2019.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Shanyan Guan, Ying Tai, Bingbing Ni, Feida Zhu, Feiyue Huang, and Xiaokang Yang. Collaborative
learning for faster stylegan embedding. arXiv preprint arXiv:2007.01758, 2020.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

10



Under review as a conference paper at ICLR 2023

Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. Ganspace: Discovering
interpretable gan controls. Advances in Neural Information Processing Systems, 33:9841–9850,
2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Ali Jahanian, Lucy Chai, and Phillip Isola. On the” steerability” of generative adversarial networks.
arXiv preprint arXiv:1907.07171, 2019.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401–4410, 2019.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8110–8119, 2020.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. Alias-free generative adversarial networks. Advances in Neural Information Process-
ing Systems, 34:852–863, 2021.

Taewoo Kim, Chaeyeon Chung, Yoonseo Kim, Sunghyun Park, Kangyeol Kim, and Jaegul Choo.
Style your hair: Latent optimization for pose-invariant hairstyle transfer via local-style-aware hair
alignment. arXiv preprint arXiv:2208.07765, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision work-
shops, pp. 554–561, 2013.

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro
Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic sin-
gle image super-resolution using a generative adversarial network. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 4681–4690, 2017.

Zuoxin Li, Fuqiang Zhou, Lu Yang, Xiaojie Li, and Juan Li. Accelerate neural style transfer with
super-resolution. Multimedia Tools and Applications, 79(7):4347–4364, 2020.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of the IEEE international conference on computer vision, pp. 3730–3738, 2015.

Gaurav Parmar, Yijun Li, Jingwan Lu, Richard Zhang, Jun-Yan Zhu, and Krishna Kumar Singh.
Spatially-adaptive multilayer selection for gan inversion and editing. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11399–11409, 2022.

Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. Styleclip: Text-
driven manipulation of stylegan imagery. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 2085–2094, 2021.

11



Under review as a conference paper at ICLR 2023
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A PROPERTY PROOF

In this section, we provide detailed proof of Property 3.1 and Property 3.3.

A.1 PROOF OF PROPERTY 3.1

Property 3.1 Suppose that s = {s1, s2, . . . , sk} is a set of style space latent codes and corresponded
to image x = GS(s). For ∀a ∈ R and ∀l ∈ [1, k], ŝ follows:

ŝn =

{
sn, ifn ̸= l

a× sn, ifn = l
.

We have x = GS(s) = GS(ŝ).

Proof. According to StyleGAN2, style latent codes are used in weight demodulation way. For lth
layer, convolution layer weights Wi,j,k are scaled by lth style latent codes sl firstly:

W ′
ijk = sil ×Wijk, (14)

where i, j, k enumerate input feature maps, output feature maps and spatial footprint, respectively.

To integrate instance normalization in convolution layer, StyleGAN2 demodulates each ouput fea-

ture map by σj =
√∑

i,k W
′
ijk

2, assuming that input activations are i.i.d. random variables with
unit standard deviation (ignore ϵ used for numerical stable):

W ′′
ijk =

W ′
ijk√∑

i,k W
′
ijk

2
(15)

Substitue formula 14 into formula 15, then we can reach:

W ′′
ijk =

sil ×Wijk√∑
i,k(s

i
l ×W 2

ijk)
(16)

Suppose that ŝl = a× sl,

Ŵ ′′
ijk =

ŝil ×Wijk√∑
i,k(ŝl ×W 2

ijk)

=
a× sil ×Wijk√∑
i,k(a× sil ×W 2

ijk)

=
sil ×Wijk√∑
i,k(s

i
l ×W 2

ijk)
= W ′′

ijk (17)

Thus, if scale s by a ∈ R in an arbitrary layer, convolution weights are identical, meaning generated
images are the same.

A.2 PROOF OF PROPERTY 3.3

Property 3.3 For lth layer (∀l ∈ [1, k]), define Fl : Z/W → S as the mapping function between S
and Z/W space. For ∀pl ∈ Z/W (Fl(p) ̸= 0) and a ∈ R, ∃p′l ̸= pl such that the corresponding S
space latent codes satisfy: s′l = a× sl, where sl = Fl(pl) and s′l = Fl(p

′
l).

Proof. We prove this property separately under W and Z spaces. Since cases under each layer level
are the same without loss of generality, to express concisely, we consider the situation under an
arbitrary layer and ignore l in the later formulation.
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pSp e4e LSAPE

Figure 4: Illustrate the Latent Space Distribution. We show the latent code distribution of random
sampling and inversion from real images in multiple latent spaces (i.e., W/S/SN ). For all spaces,
we choose the first two dimensions of codes for visualization. Our method and e4e clearly bring the
distributions closer.

W space The mapping function between W and S space is established by linear projection in
generator, as follows:

s = F (w) = Aw + b (18)

If ∃y, such that

Ay = (a− 1)b (19)

and let

w′ = aw + y (20)

we have

s′ = Aw′ + b = A(aw + y) + b = aAw + ab = as (21)

In StyleGAN, A ∈ Rm×n(m ≤ n) may not be square matrix in some resolution levels and the rank
of A is unstable. It indicates Equation 19 can not be solved by inverse of A directly. We can obtain
y by solving the least squares problem:

min
y

∥Ay − (a− 1)b∥ (22)

Hence, for ∀w, when w′ = aw + y, F (w) = F (w′). In addition, we can prove w′ ̸= w by the
counterfactual method. If w′ = w, we have y = (1− a)w and A(1− a)w = (a− 1)b, so Aw = −b
and s = 0. Due to s ̸= 0, w′ ̸= w and w′ = aw + y, F (w) = F (w′), we prove that property holds
in W space.

Z space Although we have proved in W space, the mapping function between Z and W or Z
and S is represented by a multilayer perception, which is difficult to prove directly by formula.
Fortunately, as the objective function is defined, we can obtain z′ by optimization, satisfying s =
F (z) = a× F(z

′) = ks′ and z′ ̸= z.

B LATENT SPACE DISTRIBUTION

We illustrate the discrepancy between inverse distribution and synthetic distribution in each space
from pSp, e4e, and LSAPE as shown in Figure 4. Blue points are first sampled in standard normal
distribution and then fed into generator to convert into other spaces. We also scatter the inverse
latent codes from CelebA-HQ test dataset.

In pSp, for only image level losses are used to get better fidelity, inverse distributions clearly dis-
align with synthetic distribution, especially in W space. As we can see, these two distributions do
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not overlap almost at all. However, in S and SN spaces, this phenomenon is alleviated, although
disalignment still occurs. This also validates our previous analysis of these spaces that SN is more
suitable to measure distribution disalignment. LSAPE and e4e both employ latent code alignment
techniques. A W space latent code discriminator is introduced in e4e, and we propose the SN space
alignment loss to minimize the discrepancy between two distributions directly. Hence, disalign-
ments are significantly decreased in these two methods, as can be seen in the last two columns. In S
and SN spaces, latent codes inversed by e4e and LSAPE are gathered in the middle of the synthetic
distribution while LSAPE’s output space is much closer.

Table 2: Latent Codes Distance in Synthetic Images Inversion. We inverse randomly synthetic
images to obtain pairwise latent codes in each latent space and calculate the average distance.

W S SN

pSp 63.50 859.02 0.10
e4e 11.63 299.53 0.03

LSAPE 11.87 312.20 0.03

Furthermore, we conduct a quantitative experiment to study the disalignment in inversion meth-
ods. First, we randomly generate 5,000 images by StyleGAN2 and convert their latent codes into
W/S/SN spaces. Then we inverse these images by each encoder and measure the average distance
of latent codes from synthetic and inverse sources. For W and S spaces, we use MSE to measure
distance and use SNCD in SN space. Since each value in the table represents the distance in latent
space, the lower value indicates inverse codes are close to synthetic codes. Without any supervision,
codes inversed by pSp are far away from their origin latent codes in all latent spaces. LSAPE and e4e
have similar performance, while e4e has slight improvements in W and S spaces. It is reasonable
that e4e is trained with W space supervision, and LSAPE is supervised in SN space.

C IMPLEMENTATION DETAILS

Datasets. We conduct the whole experiment on four domains: face, cars, church, and wild animal,
corresponding to human, object, scene, and animal, respectively. In all domains, we use the official
StyleGAN2 generator. For face domain, We train the LSAPE on FFHQ(Karras et al., 2019) (70,000
images) and evaluate on CelebA-HQ(Liu et al., 2015; Karras et al., 2017) test dataset (2824 images).
Editing directions are gained by Shen et al. (2020). For car domain, we use Stanford Cars(Krause
et al., 2013) dataset with 8,144 images for training and randomly selected 1000 images for evaluation
and edit images by Härkönen et al. (2020). For church domain, we use LSUN(Yu et al., 2015)
Church dataset with 126,227 training images and 300 test images. For wild animal domain, we use
AFHQ(Choi et al., 2020) Wild dataset.

LSAPE . The input image resolution is 192 × 256 in car domain and 256 × 256 for the others.
For data augmentation, we only employ random horizontal flips. We adopt the Ranger optimizer,
combining the Rectified Adam(Liu et al., 2019) and the Lookahead technique(Zhang et al., 2019),
with 0.001 learning rate. We take all experiments on a single GPU with batch size of 8. Besides,
we follow the progressive training from e4e. In LSAPE , perceptual loss weight λ1 is 0.8, delta-
regulation loss λ3 is 2e−5 , and SNCD loss λ is 0.5 for all domains. Similarity loss weight λ2 is 0.1
for face domain over pre-trained ArcFace(Deng et al., 2019) and 0.5 for others with MOCOv2(Chen
et al., 2020) and ResNet-50(He et al., 2016).

Optimization-based Method. Following Karras et al. (2020), we adopt Adam(Kingma & Ba,
2014) optimizer to minimize perceptual loss and SNCD loss with noise regularization. λ is set to 20
for W+ space and 5 for W space.

Hybrid Method. We apply e4e and LSAPE to two hybrid methods, HFGIWang et al. (2022) and
SAM(Parmar et al., 2022), to illustrate the effects of Image Embedding step. For HFGI, we use
official weight to evaluate HFGIe4e and follow its training script to train HFGILSAP . In practice,
we only replace the encoder weight from e4e to LSAPE . Since SAM only releases the optimization
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𝜆 = 0

𝜆 = 0.5

Figure 5: Ablation study of image perception. We show the inversion result from LSAPE and
the same encoder without LSNCD to illustrate the effect. LSAPE significantly improves the image
quality and solves the unnatural generation.

codes, we first embed images into latent codes by encoder, and then optimize the latent codes with
intermediate feature for 500 iterations, with threshold τ = 0.225.

Evaluation. Since inversion and editing results are gained by multiple codebases, we conduct
all image level evaluations on saved image files. MSE, LPIPS and ID similarity are calculated
on 256 × 256 resolution by script from pSp(Richardson et al., 2021). To get SNCD, we choose
k = 50, 000 to random sample latent codes from generator and convert them into SN space. For
LEC and identity similarity, we use different editing factor to ensure the same editing effect for all
inversion methods, which can be found in quality results.

D ABLATION STUDY

Table 3: Ablation study on hyper-parameter of LSAPE . We set λ = 0.5 in our experiments by
default.

Fidelity Perception & editability

λ MSE ↓ LPIPS ↓ Similarity ↑ SNCD ↓ LECpose ↓ LECsmile ↓ LECage ↓
0 0.0369 0.1657 0.5512 0.0736 24.8245 22.5007 24.8069
0.1 0.0382 0.1703 0.5438 0.0416 19.1594 14.0133 15.2246
0.25 0.0391 0.1737 0.5410 0.0395 19.1345 14.1382 15.1599
0.5 0.0397 0.1766 0.5305 0.0385 19.0211 14.0360 14.6715
0.75 0.0406 0.1792 0.5222 0.0381 19.0949 14.0128 14.3198
1.0 0.0413 0.1809 0.5168 0.0378 15.8013 13.8433 14.6084

We study the hyper-parameter λ of LSNCD on face domain with LSAPE as exmaple, and the quan-
titative results are shown in Table 3. A higher value of λ makes image distortion increase. This result
is in line with our expectations since λ controls the contributions of alignment loss. Conversely, per-
ception and editability are improved as λ increased. We visualize the inversion results in Figure 5
with λ = 0 and 0.5. In the first row, quality of teeth, eyes and lip’s texture is weak. For example,
in the left image in first row, the end of the left eyelid (right in the figure) is located too far from the
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𝜆 = 0 𝜆 = 0.5 𝜆 = 1.0

Figure 6: Ablation study of image editability. We show the manipulation result from LSAPE with
different hyper-parameter λ.

left eye. Besides, teeth is misaligned with adhesions and lips are too smooth without normal texture.
These problems are solved by LSAP, as we can see in the second row. To demonstrate change in
editability, we further compare the manipulation results with λ = 0, 0.5, 1.0, which is shown in
Figure 6. The first two images are edited with ”smile” while the third is edited with ”pose”. When
λ = 0, the edited images are unphotorealistic, and glasses occur with editing ”smile”. Results of
λ = 0.5 and 1.0 show the similar results with excellent editability. The inversion and editing results
show the superiority of our alignment paradigm.

E IMAGE PERCEPTION

We illustrate the discrepancy of image perception from each inversion method by high-resolution
inverse images. As can be seen in Figure 7, the inverse results from each approach are marginally
different in high resolution, especially in hair, teeth, lip, and skin area. This is not obvious in low
resolution or thumbnails, as can be seen the first row. However, it makes image unnatural and
fake in high resolution. We recommend comparing the visual quality at a higher resolution (e.g.,
1024× 1024). Our alignment paradigm improves the image quality well, as can be seen in Figure 7,
our results have natural visual details.
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LSAPE (ours)e4epSp

Figure 7: Illustrate image perception in high resolution results. We show the inversion results
from pSp, e4e, and LSAPE in high resolution to demonstrate the details of images. We also provide
the low-resolution results to compare in the first row. The difference of perception is not obvious in
low-resolution images.

Domain Car Church Wild Animal

Metric MSE↓ LPIPS↓ SNCD↓ MSE↓ LPIPS↓ SNCD↓ MSE↓ LPIPS↓ SNCD↓
e4e 0.1201 0.3252 0.0646 0.1505 0.4307 0.0761 0.0882† 0.2658† 0.0379†
LSAPE (ours) 0.1049 0.3106 0.0492 0.1144 0.3426 0.0588 0.0785 0.2524 0.0224
SAMe4e 0.0289 0.1506 - - - - - - -
SAMLSAP (ours) 0.0247 0.1361 - - - - - - -

Table 4: Quantity results on other domains. † means the model is unavailable and we train the
encoder by official code.

F ADDITIONAL RESULTS

F.1 RESULTS ON OTHER DOMAINS

We conduct experiments on cars, churches, and wild animals to illustrate the universality. The
quantity results are shown in Table 4. Since editing results are unstable and identity cannot be
measured in these three domains, LEC and identity preservation are not applied. We can measure
perception and editability by SNCD and visualization. Compared to e4e, LSAPE achieve better
performance in all fields. We also employ SAM with these two encoders and evaluate the image
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LSAPE (ours)e4eInput LSAPE (ours)e4eInput

Figure 8: Inversion results on other domains. In car and church domains, the official e4e models
are available and we train the encoder on AFHQ(Choi et al., 2020) Wild dataset.

distortion (i.e., MSE and LPIPS). The qualitative results can be found in Figure 8. Our results have
much natural and high-quality performance.

We further edit images in car domain and compare the difference between two encoders: e4e and
LSAPE , which we show in Figure 9. For inversion, LSAPE achieves slight improvement in fidelity,
since the color and reflection are reconstructed accurately. For example, in the second image, the
reflection is represented in LSAPE result, while the result from e4e only shows the white color.
During editing, LSAPE demonstrates the excellent ability to generate good editing results. With
SAM technique, LSAPE also achieves a better result in both inversion and manipulation.

F.2 ADDITIONAL RESULTS ON FACE DOMAIN
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LSAPE

e4e

SAM
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black blue rim

Figure 9: Inversion and editing comparison between e4e and LSAPE . We illustrate these two
encoders’ inversion and editing results and the corresponding results with SAM. LSAP significantly
improves editability and retains more visual details during inversion.

21



Under review as a conference paper at ICLR 2023

Input LSAPE (ours)e4epSp

Smile

Pose

StyleGAN2-𝒲 StyleGAN2-𝒲!LSAPO-𝒲 (ours) LSAPO-𝒲! (ours)

Encoder-based Methods Optimization-based Methods

Smile

Smile

Pose

Age

Age

Pose

Age

Hybrid Methods
HFGI HFGI SAM SAM

Figure 10: We show the additional inversion and editing results on face domain.
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Figure 11: We show the additional inversion and editing results on face domain.

23


	Introduction
	Related Work
	Disalignment in Latent Space
	Fidelity, Perception and editability
	Disalignment Formulation
	Normalized Style Space (SN)
	Cosine Distance

	Latent Space Alignment Inversion Paradigm
	SN Cosine Distance
	Alignment Inversion

	Experiments
	Conclusion
	Property Proof
	Proof of Property 3.1
	Proof of Property 3.3

	Latent Space Distribution
	Implementation Details
	Ablation Study
	Image Perception
	Additional Results
	Results on Other Domains
	Additional Results on Face Domain


