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ABSTRACT

Time series are ubiquitous, capturing real-world phenomena ranging from human
neuronal firing and tectonic activity to atmospheric conditions. However, they are
challenging to analyze due to domain-specific timescales (e.g., sub-second for brain
activity and years for weather phenomena), complex multivariate relations, and
disparate modeling objectives. Prior works model time series by targeting specific
tasks, like forecasting, or distinct domains, like neural recordings. We introduce
a universal approach for scalable time series modeling across many tasks and
domains, which we call TOTEM: Tokenized Time Series Embeddings. We propose
a task-agnostic embedding that projects a continuous time series of any length
onto a discrete set of learned tokens. This embedding is derived by optimizing
a self-supervised objective formulated as a task-independent convolution-based
vector quantized variational autoencoder. Drawing inspiration from the recent
successes of Large Language Models, these discrete token sequences are then used
to learn downstream models with the powerful Transformer architecture. We show
that TOTEM matches or achieves SOTA performance on forecasting, classification,
and translation tasks with data drawn from a myriad of domains: neuroscience,
seismology, meteorology, power grids, and urban traffic. We further demonstrate
TOTEM’s scalability by introducing and evaluating it on new datasets, the largest
being ∼14× larger than existing benchmarks. Finally, we illustrate TOTEM’s
dominant zero-shot generalization capabilities across all of our downstream tasks.

1 INTRODUCTION

Time series capture the dynamics of diverse real-world systems over a range of timescales and levels
of granularity. The huge spectrum of intricate patterns, variation in temporal horizon, and diverse
research objectives makes general time series modeling challenging. For example, consider the
distinct nature of three domain-task pairs: long-term weather forecasting, human brain machine
interface classification, and seismological sensor translation. Because these domains and tasks are
so disparate, many works consider specific tasks, like forecasting (Das et al., 2023; Challu et al.,
2023; Zeng et al., 2023; Nie et al., 2022; Zhou et al., 2022; 2021; Wu et al., 2021; Liu et al., 2021;
Li et al., 2019), or domains, like neural recordings (Peterson et al., 2022; Liu et al., 2022; Talukder
et al., 2022; Peterson et al., 2021; Lawhern et al., 2018). Moving towards more universal modeling
approaches has the potential to unlock unprecedented generalized performance across a range of
tasks and domains at scale, akin to recent breakthroughs in language modeling.

In this work, we develop a scalable and universal approach for time series modeling across many
diverse domain-task pairs without domain- or task-specific data preprocessing and feature engineering.
We draw inspiration from Large Language Models (Radford et al., 2018), which leverage universal
tokenizations to solve a variety of tasks via Transformers (Vaswani et al., 2017). However, because
language data is naturally discrete while time series are continuous, one may wonder whether time
series can be effectively discretely tokenized to enable task-agnostic modeling. To that end, our
contributions are as follows.

Contributions to Scale and Universality.

• We study time series modeling at scale, which we interpret in three ways: (1) number
of tasks, (2) number of domains, and (3) dataset size. In this work, we explore all three
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Figure 1: (a) TOTEM employs TimeVQ, a VQ-VAE based model, to tokenize multivariate time
series from any domain, including neuroscience, seismography, meteorology, power grids and urban
traffic. (b) A single learnt codebook is the foundational embedding for distinct downstream tasks.

by evaluating on three tasks (forecasting, classification, and translation) and five domains
(termed Neuro, Earthquake, Weather, Electricity, and Traffic). Moreover, we introduce new
datasets for analysis that are up to ∼14× larger than previous benchmarks.

• We also study the universality of our representations, which we interpret in two ways: (1)
their adaptability across tasks, and (2) their generalizability to out-of-distribution data from
the same domain. We show that our method adapts to many tasks without domain-specific
data engineering and that it achieves strong zero-shot generalization capabilities.

Technical Contributions.

• Using a VQ-VAE based tokenizer, called TimeVQ, we show that discretely tokenizing time
series is an effective and task-agnostic modeling approach.

• We show that using our tokenizations, simple Transformer-based submodules can solve
diverse time series modeling tasks at state of the art levels without relearning the embeddings.

• We integrate TimeVQ and these Transformers into a single method called TOTEM
(Tokenized Time Series Embeddings) and show that it matches or beats the best exist-
ing methods designed for specific domains and/or tasks without further engineering.

2 RELATED WORK

We draw from work on time series analysis and tokenization in Large Language Models.

Forecasting. Traditional time series forecasting methods, e.g., ARIMA and GARCH (Box & Jenkins,
1968), are effective for short-horizon predictions but make linearity assumptions not applicable to
complex datasets and long horizons. Recently, multi-layer neural networks have emerged as powerful
alternatives. Here, some works (Nie et al., 2022; Zhou et al., 2022; 2021; Wu et al., 2021; Liu et al.,
2021; Li et al., 2019) advocate for Transformers and others (Das et al., 2023; Challu et al., 2023; Zeng
et al., 2023) for linear models or MLPs. While our proposed tokenization scheme is compatible with
any such downstream model architecture, we elect to use Transformers due to their strong empirical
performance on sequenced data. The current state of the art methods in time series forecasting are
TiDE (Das et al., 2023) and PatchTST (Nie et al., 2022). TiDE uses an MLP-based encoder that
leverages covariates, such as the day of the week or holidays, as effective features. PatchTST adopts a
Transformer encoder architecture and represents time series data with patches that can be overlapping
or non-overlapping. We compare against them in our experiments.

Classification. Multivariate time series classification (Ruiz et al., 2021; Karim et al., 2019; Bag-
nall et al., 2018) has been explored with a focus on neuroscience applications (Liu et al., 2022;
Peterson et al., 2022; 2021; Ye & Pandarinath, 2021; Lawhern et al., 2018). Electrophysiological
neuroscience datasets record the brain with electrodes whose physical dimensions range from mi-
crometers (resulting in single neuron recordings) to millimeters (resulting in local field potential
based electroencephalography and electrocorticography recordings). This 1000-fold difference in
electrode size results in vastly different statistical properties between single neuron and local field
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Figure 2: (a) TimeVQ learns a codebook from univariate time series via autoencoding. The encoder
and decoder consist of 1D convolutions and transpose convolutions, respectively. The input encoding
z is quantized into ẑ via the codebook prior to decoding. (b) All sensors are independently normalized
before tokenization. The token sequences are consumed by task-specific downstream Transformers.

potential (LFP) datasets. Therefore, neuroscience modeling techniques typically only validate their
results on datasets from one data regime, i.e., single neuron (Liu et al., 2022; Ye & Pandarinath,
2021) or LFP-based (Peterson et al., 2021; Lawhern et al., 2018). Recently, Peterson et al. (2022;
2021) released a large electrocorticography (ECoG) data suite intended for brain machine interface
classification. TOTEM is evaluated against the popular CNN-based EEGNet (Lawhern et al., 2018)
used for LFP modeling and forms the backbone of other brain data classifers (Peterson et al., 2021).

Translation. In multivariate time series, imputation of missing data is commonly studied (Talukder
et al., 2022; Yıldız et al., 2022; Luo et al., 2019; 2018). Typically, the missing data independently
afflict multiple sensors at random times or at all sensors at the same times, so many models leverage
data in and across channels to impute missing values. We study an even harder task that we call
translation: the inference of completely unobserved sensor channels from observed ones. Translation
is key in many applications which suffer from catastrophic hardware failures or sensor corruption.

Tokenization. In language modeling, Byte-Pair Encoding (Gage, 1994) extracts the most common
contiguous character sequences via a recursive algorithm. Language models like GPT (Radford et al.,
2018) use this representation to learn task-agnostic token embeddings via self-supervised next-token
prediction, followed by supervised finetuning for downstream tasks. In image reconstruction and
generation, VQ-VAEs (Van Den Oord et al., 2017) and VQ-GANs (Esser et al., 2021; Rombach et al.,
2022) quantize images into discrete learnt codes. Other models, such as ViTs (Dosovitskiy et al.,
2020) and PatchTST (Nie et al., 2022), patchify their input data to be compatible with Transformers,
essentially learning continuous embeddings of input time series. We opt for a discrete tokenization
scheme, similar to LLMs, which generates a fixed set of tokens used for learning downstream models
without the need for retraining. This contributes to the scalability of our approach and allows zero-shot
generalization to out-of-distribution settings.

3 TOTEM: TOKENIZED TIME SERIES EMBEDDINGS

This section presents TOTEM, our universally applicable method for scalable time series modeling.
TOTEM comprises two distinct modules: TimeVQ and Downstream Transformers. The TimeVQ
module adopts a vector quantized variational autoencoder (VQ-VAE) (Van Den Oord et al., 2017)
to learn a set of tokens. The tokens form a discrete codebook learnt from continuous time series
via self-supervision. We use the codebook’s embeddings as the basis for task-specific Downstream
Transformers. We describe TimeVQ in § 3.1 and our Downstream Transformer models in § 3.2. Each
multivariate time series dataset consists of E examples (i.e., number of distinct recordings), S sensor
channels, and T time steps, and can be formally expressed as {xj}Ej=1 ⊂ RS×T .

3.1 TIMEVQ: TOTEM’S TASK-AGNOSTIC TOKENIZER

VQ-VAEs (Van Den Oord et al., 2017), introduced for image reconstruction, are designed to quantize
an input representation into discrete codes. Here, we introduce TimeVQ, a vector quantization-
based model that analogously aims to learn a codebook of discrete time series tokens, which we
hypothesize is an effective tokenization even though time series are naturally continuous phenomena.
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The codebook is learned via self-supervision and can be thought of as a waveform basis that best
reconstructs the input time series. Figure 2 shows an overview of TimeVQ and Figure 3 visualizes
learnt codebooks for the Neuro domain (other domains in Appendix).

Model. TimeVQ consists of an encoder, quantizer, latent codebook, and decoder. It takes in a
univariate time series {xi ∈ RT }E·S

i=1 obtained by flattening the sensor channel of the multivariate
data. Thus, TimeVQ is sensor-agnostic, enabling TOTEM’s zero-shot generalizability (see § 4.6).

TimeVQ’s encoder E consists of strided 1D convolutions compressing the time series by a cumulative
stride of F . E maps a univariate time series x ∈ RT to a latent representation z = E(x) ∈ RT/F×D,
where D is the the hidden dimension. The latent codebook C = {ci}Ki=1 consists of K D-dim
codewords ci ∈ RD. During quantization, the codebook is used to replace z with ẑ ∈ RT/F×D such
that ẑj = ck, where k = argmini ||zj − ci||2. Our decoder D follows the reverse architecture of
the encoder E , consisting of 1D transpose convolutions with a cumulative stride of 1/F mapping the
quantized ẑ to a reconstructed time series x̂ = D(ẑ) ∈ RT .

Training Objective. We learn E , D, and C by optimizing the objective L = Lrec + Lcmt consisting
of a reconstruction loss Lrec = 1

E·S
∑

i ||xi − x̂i||22 and a commitment loss Lcmt, identical to Van
Den Oord et al. (2017), which allows the codebook to update despite the the non-differentiable
argmin operation during quantization. TimeVQ is agnostic to any downstream task, as it is only
trained to reconstruct the input time series. This makes our representation scalable: for any time
series domain, e.g. neural firing, we learn a single codebook that can be used for any downstream
application. Put simply, TOTEM’s task-agnostic TimeVQ becomes the foundational embedding
for any downstream model. We empirically show the scalable and universal properties of our
representation in § 4, where we employ a single TimeVQ for three distinct tasks.

Waveform vs. Scale. In time series data, both the scale (i.e., absolute values) and the waveform (i.e.,
shape) are important characteristics. Since time series can, in principle, have any scale (even within a
domain), learning a sufficiently expressive basis of waveforms across all scales is intractable. Thus,
prior to tokenization, we normalize the data by subtracting the mean µi and dividing by standard
deviation σi for each time series xi. This allows our tokens to be scale-invariant, capturing only
information about the shape of the data in a given domain. However, because the scale is important
for interpreting the data, we reintroduce it when training downstream task-specific models.

3.2 DOWNSTREAM TRANSFORMERS: TOTEM’S TASK-SPECIFIC TIME SERIES MODELS

We demonstrate how to utilize a TimeVQ task-agnostic codebook for three tasks: forecasting,
classification and translation. As described in § 3.1, TimeVQ transforms a continuous real-valued
univariate time series of length T into a sequence of T/F discrete tokens, where F is the cumulative
stride, or compression factor, of the model. This token sequence is aptly suited for the powerful
Transformer architecture (Vaswani et al., 2017), which learns relationships between tokens by
applying attention mechanisms in the embedding space. Unlike in prior popular architectures (e.g.
RNN’s inherent sequence linearity or CNN’s spatial locality), Transformers lack inductive biases,
thereby enabling more expressive models in language and vision.

When adapting Transformers to multivariate time series tasks, we aim to create distinct and reusable
submodules that can be mixed and matched to solve any downstream task. In total, we instantiate
three: (1) the Time Transformer Encoder, Time XEncoder; (2) the Sensor Transformer Encoder,
Sensor XEncoder; and (3) the Scale Reinstater. Our design allows us to construct models for our
trio of tasks – forecasting, classification and translation – using our reusable submodules, as we
describe below. We emphasize that while the submodules are combined in slightly different ways
for each task due to factors like the shape of the data, the expected outputs, etc., the submodule
architectures themselves are fixed beforehand and designed in a task-agnostic way.

Forecasting. In forecasting, our predictive model utilizes the Time XEncoder and Scale Reinstater
submodules. Using the codebook, TimeVQ converts a sensor’s observed measurements xs ∈ RTin

to a sequence of Tin/F tokens. Time XEncoder processes these tokenized time series independently
for each sensor, adding time-based positional encodings to each token along the time dimension.
Using a series of multi-head attention layers, Time XEncoder predicts the forecasted measurements
ȳs ∈ RTout for s = 1, ..., S. In parallel, the Scale Reinstater module (realized as an MLP) takes in xs
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NeuroA&B NeuroC

Figure 3: We visualize all 256 tokens in the time domain highlighting some for better visualization.
When comparing NeuroA&B and NeuroC codebooks we see similar codebook distributions, allowing
us to visualize how strong zero-shot generalization is possible. More visualizations in the Appendix.

and predicts the future’s mean, µs, and standard deviation, σs, for each sensor s = 1, ..., S. The final
forecasted prediction is ys = σs · ȳs + µs. Both Time XEncoder and Scale Reinstater are trained in
a supervised fashion by minimizing three smooth L1 losses between predictions {ȳs, µs, σs} and
their ground truth respectively.

Classification. In classification, we predict a label y for every example x ∈ RS×T . Thus, our
classifier must holistically model interactions across the sensor and time dimensions. To this end, it
consists of three submodules: the Time XEncoder, the Sensor XEncoder and the Scale Reinstater.
As in forecasting, the Time XEncoder first produces tokenized time series with time-based positional
encodings. The last layer averages the outputs into a single D-dim vector for each sensor, which we
call a sensor summarization token. The sequence of S summarization tokens is then passed to the
Sensor XEncoder, where a positional encoding corresponding to a sensor’s position is added. The
classifier’s Scale Reinstater linearly projects each sensor’s scale statistics [µs, σs] to a D-dim encoding
which is added to the corresponding sensor summarization token. Finally, the Sensor XEncoder
outputs categorical probabilities. All models are jointly trained by optimizing a cross-entropy loss.

Translation. Here, the goal is to recover unobserved sensor readings, y ∈ RSout×T , from observed
ones x ∈ RSin×T , which can be thought of as imputing completely missing sensors. The translation
model consists of a Time XEncoder, a Sensor XEncoder and a Scale Reinstater. For each of the
Sin available sensors, the Time XEncoder outputs a sequence of T/F tokens with added time-based
positional encodings. These are flattened into (TF ·Sin) tokens and input to the Sensor XEncoder. The
Scale Reinstater, identical to the one in classification, adds a sensor scale encoding to the tokens. All
models are trained with a smooth L1 loss between predicted and true translation measurements.

For all aforementioned tasks, we apply our downstream models to in-distribution and out-of-
distribution settings. In time series modeling, zero-shot generalization to out-of-distribution time
series is very challenging due to the high variability of time series measurements.

4 EXPERIMENTS

We evaluate TOTEM on three distinct tasks, forecasting, classification, and translation; and five dis-
tinct domains, human brain LFP (Neuro); phase-sensitive seismograms (Earthquake); meteorological
indicators (weather); domestic electricity consumption (Electricity); and road occupancy rate (Traffic).
Through extensive experimental evaluations, we show that TOTEM achieves two main results. First,
models trained with TOTEM match or outperform prior task- and/or domain-specific methods even
without additional engineering. Second, our experiments on zero-shot generalization demonstrate that
TOTEM’s learned tokenizations produce models that generalize on out-of-distribution data within the
same domain (i.e., from an unseen dataset), surpassing baseline performance across all domains.

4.1 DATASETS

Among our five domains, we introduce two new ones (Neuro and Earthquake) to study TOTEM’s
generalizability. For forecasting, we use Weather, Electricity, and Traffic data sourced from popular
time series forecasting benchmarks (Wu et al., 2021). In addition, we incorporate three human-brain
ECoG datasets (Peterson et al., 2022) which have never been paired with a long-horizon forecasting
task. These datasets correspond to different patients, which we label A, B, and C. For the 96 time
step prediction task, Traffic contains roughly 17k examples, Electricity 26k, Weather 52k, NeuroA
143k, NeuroB 157k, and NeuroC 710k. NeuroA & B are roughly 3× and NeuroC is roughly 14× the
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Codebook Size K Code Dim D Compression F

32 256 512 64 256 4 16

NeuroB 0.1160 0.0729 0.0749 0.0729 0.0880 0.0729 0.1966
Weather 0.1049 0.0674 0.0638 0.0674 0.0740 0.0674 0.1418
Earthquake 0.0018 0.0015 0.0017 0.0015 0.0018 0.0015 0.0023

MSE (↓)

NeuroB 0.0249 0.0101 0.0106 0.0101 0.0151 0.0101 0.0712
Weather 0.0391 0.0162 0.0131 0.0162 0.0228 0.0162 0.0696
Earthquake 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 0.0008

MAE (↓)

Table 1: TimeVQ study. Reconstruction performance for various
codebook sizes, codeword dimensions, and compression factors.

Neuro C → C A & B → C

MAE (↓) 0.0821 0.0839
MSE (↓) 0.0119 0.0129

Earthquake Random Split Geo Split

MAE (↓) 0.0015 0.0111
MSE (↓) 0.0002 0.0007

Table 2: TimeVQ zero-shot.
Reconstruction performance of
TimeVQ models trained in distri-
bution (2nd column) and out-of-
distribution (3rd column).

size of the previous largest benchmark. For classification, we utilize NeuroA, B, and C as no other
datasets come with classification labels. Finally, for translation, we introduce a dataset of phase
sensitive seismograms (Sun et al., 2023; Zhu & Beroza, 2019) in addition to NeuroA, B, and C.

4.2 TIMEVQ EFFECTIVENESS

We first study three attributes of the codebook: the number of codes K, the code dimension D, and
the compression factor F (i.e., the stride of TimeVQ’s encoder E). We report the reconstruction error
on three domains, NeuroB, Weather and Earthquake in Table 1. A codebook size of 32 performs
worse across all domains, with 256 and 512 performing equally well. A codeword dimension of 64
works as well or better than 256. Lastly, a compression factor of 4 performs better than 16. This is
expected as TimeVQ tokens trained with lower compression factors each capture fewer time steps.
For all experiments, we use K = 256, D = 64, and F = 4.

Figure 3 visualizes all learnt codes in the time domain (decoded by TimeVQ’s decoder D) for Neuro
data (see more domains in the Appendix). We visualize all codes in gray and highlight a few codes
with color, allowing visualization of the codes’ shape diversity between domains.

Table 2 shows TimeVQ’s reconstruction error for in- and out-of-distribution, i.e. zero-shot, evaluations.
We explore TimeVQs that are (1) trained and evaluated on NeuroC; (2) trained on NeuroA&B and
evaluated on NeuroC; (3) trained and evaluated on all Earthquake data; and (4) trained on NorCal
Earthquake and evaluated on SoCal Earthquake (called Geographical Split). Experiments 1 and 3
evaluate performance on in-distribution held-out data, while 2 and 4 test zero-shot generalization
on out-of-distribution data. Overall, the zero-shot models achieve only slightly worse performance,
which supports our hypothesis that TOTEM learns generalized embeddings (see Table 2). We study
the application of these zero-shot TimeVQs to downstream tasks in § 4.6.

4.3 FORECASTING

For forecasting, we evaluate on Weather, Electricity, and Traffic from Wu et al. (2021) as well as
NeuroA, B, and C – a total of six datasets. We compare TOTEM to the two best approaches from the
past two years, PatchTST (Nie et al., 2022) and TiDE (Das et al., 2023).

Task & Metrics. In forecasting, models intake a time series x ∈ RS×Tin and predict future readings
y ∈ RS×Tout , where S is the number of sensors and Tin, Tout signify the durations of the preceding
and succeeding time series, respectively. The pairs (x,y) are generated by striding the original time
series data. For our task, we experiment with forecast windows Tout ∈ {96, 192, 336, 720}. The input
time window, commonly referred to as lookback, is set to Tin = 512, following PatchTST (Nie et al.,
2022). TiDE reports a lookback of Tin = 720 for Weather, Electricity and Traffic, which gives them
an advantage. We take the Weather, Electricity, and Traffic results for TiDE and PatchTST from the
TiDE paper. For the Neuro domain, we train TiDE and PatchTST using their publicly available code,
and set the lookback to Tin = 512 for all methods for a fair comparison. NeuroA, B, and C originally
only record 1001 continuous timesteps. Therefore, with a lookback window of 512, the data only
support lookahead lengths of Tout ∈ {96, 192, 336}. We follow prior work and report mean squared
error (MSE) and mean absolute error (MAE) between ground truth and predicted future readings.

Training Details. We emphasize that for all prediction lengths, we only train one TimeVQ per dataset.
The downstream model is a Time XEncoder with 4 layers and 4 attention heads and a feed-forward
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Dataset NeuroC NeuroB NeuroA Weather Electricity Traffic
(Size) (710k) (157k) (143k) (52k) (26k) (17k)

MAE (↓) 96 192 336 96 192 336 96 192 336 96 192 336 720 96 192 336 720 96 192 336 720

TOTEM (ours) 0.585 0.611 0.622 0.600 0.642 0.663 0.360 0.385 0.399 0.196 0.242 0.283 0.330 0.231 0.245 0.265 0.292 0.241 0.242 0.248 0.275
TiDE 0.597 0.616 0.625 0.608 0.644 0.664 0.365 0.388 0.402 0.222 0.263 0.301 0.340 0.229 0.243 0.261 0.294 0.253 0.257 0.260 0.273
PatchTST 0.597 0.616 0.625 0.626 0.655 0.669 0.374 0.392 0.402 0.198 0.241 0.282 0.334 0.222 0.240 0.259 0.290 0.249 0.256 0.264 0.286

MSE (↓)

TOTEM (ours) 0.647 0.710 0.740 0.674 0.779 0.832 0.260 0.305 0.331 0.147 0.195 0.248 0.314 0.135 0.151 0.168 0.200 0.369 0.383 0.397 0.446
TiDE 0.670 0.719 0.742 0.692 0.781 0.829 0.267 0.307 0.331 0.166 0.209 0.254 0.313 0.132 0.147 0.161 0.196 0.336 0.346 0.355 0.386
PatchTST 0.671 0.720 0.743 0.737 0.807 0.845 0.287 0.319 0.337 0.149 0.194 0.245 0.314 0.129 0.147 0.163 0.197 0.360 0.379 0.392 0.432

Table 3: Forecasting. We compare TOTEM to TiDE and PatchTST on 6 datasets, arranged in
decreasing size, and prediction horizons Tout = {96, 192, 336, 720}. We report mean absolute error
(MAE) and mean squared error (MSE). For neuro, Tout ≤ 336 because of its original size.

ACC (↑) NeuroC NeuroB NeuroA

TOTEM (Ours) 0.736 0.633 0.599
EEGNet 0.542 0.488 0.538
Majority Class 0.530 0.506 0.518

Table 4: Classification on Neuro.

E & N → Z Z → E & N NeuroC NeuroB NeuroA

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

TOTEM (Ours) 0.491 0.644 0.479 0.719 0.534 0.435 0.504 0.390 0.517 0.416
Baseline 0.499 0.883 0.504 0.977 0.530 0.461 0.518 0.434 0.518 0.440

Table 5: Envelope Translation on Earthquake and Neuro.

hidden dimension of 256. We train using Adam with a base learning rate of 0.0001 and a one cycle
learning rate scheduler in accordance with PatchTST.

Results. Table 3 shows forecasting performance for NeuroA, B, and C, alongside Weather, Electricity,
and Traffic. The datasets are arranged in descending order by size. If we calculate the number of wins,
ties, and losses for each model across all 21 experiments for the MAE metric, TOTEM wins 14/21,
TiDE wins 1/21, and PatchTST wins 6/21. For the MSE metric, TOTEM wins 8/21, TiDE wins 9/21, and
PatchTST wins 3/21. Notably for the newly introduced 14× and 3× datasets; in MAE TOTEM wins
9/9, TiDE wins 0/9, and PatchTST wins 0/9; in MSE TOTEM wins 7/9, TiDE wins 1/9, and PatchTST
wins 0/9. These results demonstrate that TOTEM starkly outperforms prior approaches for larger
dataset sizes. Overall, TOTEM performs best; see Figure 4 for a visualization of a NeuroA forecast
over a length-96 horizon.

4.4 CLASSIFICATION

For classification, we experiment on NeuroA, B, and C, which contain labels of human activity
associated with brain machine interface signals. The task is to predict the move or rest label from
human ECoG measurements. We compare our method to EEGNet (Lawhern et al., 2018).

Task & Metrics. In this task, the multivariate time series input x ∈ RS×T is mapped to the action
executed by the patient, denoted by y ∈ {move, rest}. We follow the train/val/test split in the original
data suite release (Peterson et al., 2022), where the last recording day is used as the test set. We report
accuracy, namely the percentage of correct action predictions, on the test set.

Training Details. We use a trained TimeVQ to tokenize the respective Neuro datasets. In the
downstream model, both Time and Sensor XEncoder consist of 2 layers and 2 attention heads. The
feed-forward hidden dimension of each layer is set to 128. We train using Adam, a base learning rate
of 0.0001 and a one cycle learning rate scheduler.

Results. Table 4 shows action classification performance on NeuroA, B, and C. On these datasets,
TOTEM significantly outperforms EEGNet by 6.1, 14.5, and 19.4 percentage points respectively.
EEGNet utilizes 2D convolutions to operate in the sensor-time space, effectively treating the multi-
variate time series like an image; therefore, the electrode position is assumed to be fixed for every
input. In contrast, TOTEM leverages a sensor-agnostic TimeVQ and an order-agnostic transformer
architecture, a design decision which allows us to learn tokens on data with one arrangement of
sensors and deploy them on data with another. For brain recordings, this is crucial, as each patient
has a unique arrangement of surgically implanted arrays, so model generalization is highly desirable.
We explore this further in our zero-shot experiments in § 4.6.
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Figure 4: Model predictions for translation and forecasting. We show the inputs, predicted and true
measurements. Our model is able to predict the vertical envelope in both the in-domain and zero-shot
setting with similar accuracy. In all examples our models predict denoised versions of the true data,
indicating that our tokenization scheme might effectively denoise multivariate time series data.

4.5 TRANSLATION

In the translation task, we use measurements from observed sensors to infer missing measurements
from unobserved sensors (i.e., full sensor imputation). Formally, given input x ∈ RSin×T , we predict
output y ∈ RSout×T , where Sin, Sout are the numbers of observed and predicted sensors respectively.

Task & Metrics. We evaluate translation performance on the Earthquake and Neuro datasets. In
seismology, sensors measure three axes of movement: east-west (E), north-south (N), and vertical (Z).
The E and N components mainly record the secondary seismic wave, while the Z component mainly
measures the primary seismic wave. When sensor corruption occurs, one or more of the {E, N, Z}
sensor readings can be lost, making translation between sensor waveforms invaluable, especially in
the context of earthquake early-warning systems. In neuroscience, sensor imputation is critical as
fixing failed electrodes requires invasive brain surgery.

Due to the inherent difficulty of imputing an entire missing sensor, we relax the translation task by
instead predicting the envelopes of the missing waveforms, defined as their Hilbert transforms (Op-
penheim, 1999). While easier to predict, the envelope is still useful, as it contains amplitude and
power information, critical to earthquake early warning systems and neural analysis.

In the Earthquake domain, we conduct experiments on two envelope translation variants, from E&N
to Z measurements (E & N → Z) and vice versa (Z → E & N). To evaluate prediction quality, we
report mean squared error (MSE) and mean absolute error (MAE) between predicted and ground truth
measurements. We visualize some examples in Figure 4. For the Neuro translation task we randomly
mask 90% of sensors and train the model to return the envelope of these missing sensors for T = 192,
which is the most challenging masking ratio from Talukder et al. (2022).

Training Details. We use trained TimeVQs to tokenize the Neuro and Earthquake datasets. In the
downstream models, both Time and Sensor xEncoders consist of 4 layers and 4 attention heads. The
feed-forward hidden dimension of each layer is set to 256. We train using Adam, a base learning rate
of 0.0001 and a one cycle learning rate scheduler.

Results. Since we introduce the sensor translation task, there are no readily available competing
methods. Therefore, we design an MLP baseline that intakes time measurements x and predicts
envelopes y. Table 5 shows translation performance for the two Earthquake experiments and the
sensor masking experiments on NeuroA, B, and C. TOTEM outperforms the MLP baseline in all
experiments on the MSE metric and in 4/5 experiments on the MAE metric.

4.6 ZERO-SHOT GENERALIZATION

Setup. In this section, we apply the previously discussed zero-shot TimeVQs (Table 2) to explore
within-domain zero-shot generalization (i.e., on unseen datasets with different data distributions)
across all tasks. Zero-shot generalization is exceedingly difficult due to the high variability within
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96 192 336

TOTEM (Ours) 0.599 0.618 0.627
TiDE 0.616 0.630 0.637
PatchTST 0.612 0.627 0.636

MSE (↓)

TOTEM (Ours) 0.674 0.726 0.749
TiDE 0.708 0.743 0.764
PatchTST 0.709 0.746 0.767

MAE (↓)
Neuro A & B → C

(a) Forecasting.

Neuro A & B → C ACC (↑)

TOTEM (Ours) 0.569
EEGNet 0.475
Majority Class 0.530

(b) Classification.

NorCal E&N → SoCal Z MAE (↓) MSE (↓)

TOTEM (Ours) 0.506 0.590
Baseline 0.562 0.914

NorCal Z → SoCal E&N

TOTEM (Ours) 0.496 0.624
Baseline 0.581 1.047

(c) Translation.

Table 6: Zero-shot generalization results for downstream tasks.

domains, e.g., fault lines in different areas of the world behave differently. In all cases, both the
TimeVQs and Downstream Transformers never have access to the held out entity. In Neuro, we hold
out dataset NeuroC, while in Earthquake, we hold out SoCal Earthquakes. In Neuro, different patients
have both differing numbers of electrodes (NeuroA: 106, NeuroB: 72, Neuro: 93) and differing sensor
locations on the brain. In Earthquake, NorCal and SoCal are composed of distinct fault lines that
produce remarkably different waveforms due to factors like varying material subsurface properties.
For zero-shot forecasting and classification, we utilize the Neuro domain, and for zero-shot translation
we utilize the Earthquake domain.

TimeVQ Generalizability. The zero-shot performance of TimeVQ can be interpreted through the
lens of Figure 3. There, we visualize all 256 (decoded) codebook tokens for TimeVQ trained on data
from patients A & B and on patient C, noting that the overall shape of the aggregated codes is nearly
identical. In particular, the highlighted codes show that similar rising and falling behaviors are always
captured from brain recordings regardless of patient, demonstrating the universality of the learned
tokenization. These qualitative features provide insight into the strong zero-shot generalization on
Neuro data.

Downstream Transformer Generalizability. In Table 6, we explore zero-shot forecasting with
NeuroA, B, and C. Across all prediction horizon lengths and on both MSE and MAE metrics, TOTEM
measurably outperforms TiDE and PatchTST. We similarly explore zero-shot classification perfor-
mance on all Neuro datasets, where we find that TOTEM significantly outperforms EEGNet. Finally,
on Earthquake data, we test zero-shot generalizability on the E& N → Z and Z → E& N translation
tasks. In both cases, we significantly outperform the baseline on all metrics, which demonstrates the
value of our discrete tokenization scheme. Overall, we observe that TOTEM consistently outperforms
all existing state of the art models on every single zero-shot generalization task, which provides
strong evidence that discrete tokenization enables general, scalable time series modeling.

5 CONCLUSIONS, LIMITATIONS, & FUTURE WORK

We present TOTEM, a universal methodology for time series analysis at scale. TOTEM is comprised
of TimeVQ and Downstream Transformer modules that process TimeVQ’s output tokens for forecast-
ing, classification, and translation. TOTEM demonstrates strong zero-shot performance and state of
the art performance across multiple tasks and domains.

Limitations & Future Work. (1) TimeVQ’s convolutional architecture can tokenize a univariate
time series of any length T . However, when T isn’t a multiple of the compression factor, F , some
time steps may be omitted from tokenization. At high compression factors, this could result in many
time steps being excluded from downstream tasks. (2) TimeVQ’s token length is determined by a
fixed compression factor F . However, considering the continuous nature of time series, a dynamic
token length might offer a more fitting representation. Introducing variability in token lengths has the
potential to enhance data representations, possibly boosting performance in downstream tasks. (3)
We only explored a VQ-VAE based tokenizer. Incorporating other methods from the field of Neural
Compression into TOTEM could be an intriguing direction. (4) TOTEM introduces a universal
approach to time series analysis at scale, maintaining a consistent methodology across various tasks
and domains. Yet, each domain still necessitates its own TimeVQ, and every task demands a distinct
downstream model. The eventual goal in task-agnostic domain-agnostic time series analysis is to have
a singular TimeVQ tokenizer for all domains and one core architecture across all tasks, essentially
creating a time series foundation model. This is a topic for future exploration.
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6 CODE OF ETHICS

There are no immediate ethical concerns that arise from our work. However, as with all data driven
methods, certain ethical risks are important to be discussed, in this case surrounding time series
modeling. A few are reported below:

Privacy Concerns. Time series data, especially when sourced from personal devices or applications,
can contain sensitive information about individuals, e.g. for health domains. In this work, no time
series were sourced from personal devices. And the neural data we use was de-identified by the
original dataset authors.

Misuse. Time series forecast models can be misused. For instance, if a model forecasts stock prices
or market movements, it could be exploited for insider trading or other illegal financial activities. In
this work, we are focused on domains pertinent to scientific disciplines.

Economic Impacts. Automated forecasts and decisions based on time series models can significantly
impact industries and labor markets both positively and negatively. For instance, if a model can
accurately predict weather patterns, it might affect farmers and their crop decisions, or if it can
forecast energy consumption, it could impact the energy sector.

7 REPRODUCIBILITY

We address the reproducibility of our approach on three axis: data availability, data processing and
model training & evaluation.

Data Availability. All data used in this work are publicly available and referenced. See § 4.1.

Data Processing. The time series data in our work come in various forms, most commonly as a
3D array of shape E × S × T . Depending on the specific downstream tasks, we manipulate this
data to conform to the required format of the respective task. For forecasting, we follow the striding
implemented by Autoformer (Wu et al., 2021) in their publicly available github repository. For
classification, the data is kept in its original form (Peterson et al., 2022), and we remove faulty
sensors and examples (e.g. all zeros). For translation, we extract the different axes of movement from
the released data (Zhu & Beroza, 2019), and remove faulty sensors and examples (e.g. all zeros). All
data preprocessing scripts will be made available during our code and model release.

Model Training & Evaluation. We introduce a TimeVQ module which extends VQ-VAEs for the
time series domain. We describe TimeVQ’s design in § 3.1. For a compression factor of F = 4,
TimeVQ’s encoder E consists of 2 conv layers, each followed by a relu. TimeVQ’s decoder D inverts
this design and consists of 2 deconv layers each followed by a relu. We train TimeVQ with Adam,
a base learning rate of 0.0001, and input time series of length 96 for 15000 iterations at a 4096
batchsize across all datasets and tasks. The Downstream Transformer modules are described in § 3.2
and their architecture and training details for each task are provided in the respective sections in
epxeriments, § 4. We evaluate our time series predictions by reporting three metrics: accuracy, MAE
and MSE. Model training, evaluation and pre-trained models will be released with our code release.
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A APPENDIX

We provide more visualizations, dataset information and results in the Appendix.

A.1 NEURO STATISTICS

Table 7 details the statistics on NeuroA,B,C. We show the dataset sizes in their original form as well
as after processing for the downstream tasks. For the task of forecasting, NeuroC approximately hold
710k examples, which is roughly 14× larger than previous benchmarks.

Dataset NeuroC NeuroB NeuroA

Original (1802, 93, 1001) (399, 72, 1001) (363, 106, 1001)
Forecast (709988, 93, 512) (157206, 72, 512) (143022, 106, 512)
Classify (1802, 93, 1001) (399, 72, 1001) (363, 106, 1001)
Translate (536996, 93, 192) (118902, 72, 192) (108174, 106, 192)

Table 7: Neuro Dataset Information. All entries take the form (E,S, T ) where E is the number of
examples, S is the number of sensors, T is the number of time steps. The Original row details each
neuro’s initial shape before downstream task processing. The dataset is processed for the various
tasks. For forecasting and translation, the data is strided similar to Wu et al. (2021). For classification,
we keep the original shapes.

A.2 CODEBOOK VISUALIZATION

Figure 5 visualizes codebooks for Neuro, Weather and Earthquake. For Neuro, we visualize the
codebook from each individual patient as well as the codebook from the union of Neuro A and B
time series. The latter codebook is used for zero-shot experimentation on NeuroC both for reporting
reconstruction performance but also for downstream forecasting (see § 4.6). For Earthquake, we
visualize the codebook for all earthquakes as well as the codebook for earthquakes in Northern
California (NorCal).

A.3 ADDITIONAL FORECASTING RESULTS

We show forecasting on the ETT benchmark from Wu et al. (2021). The ETT benchmark is an
additional benchmark from the electricity domain which is processed to hold measurements every
minute (ETTm) or every hour (ETTh). Table 8 compares TOTEM to TiDE and PatchTST and reports
MAE and MSE for four output time horizons. We notice that TOTEM performs on par well on the
larger ETTm, but worse on the significantly smaller ETTh. This result along with Table 3, where
TOTEM dominates on larger datasers, suggests that our approach is more effective for learning at
scale, i.e. with large scale datasets. For smaller datasets, MLP-based methods like TiDE seem to have
an advantage.

Dataset ETTm1 ETTm2 ETTh1 ETTh2

MAE 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

TOTEM (ours) 0.343 0.365 0.384 0.416 0.252 0.292 0.327 0.383 0.404 0.434 0.457 0.500 0.351 0.411 0.471 0.594
Tide 0.349 0.366 0.384 0.413 0.251 0.289 0.326 0.383 0.398 0.422 0.433 0.465 0.336 0.380 0.407 0 .451
PatchTST 0.346 0.370 0.392 0.420 0.256 0.296 0.329 0.385 0.400 0.429 0.440 0.468 0.337 0.382 0.384 0.422

MSE

TOTEM (ours) 0.294 0.334 0.366 0.425 0.166 0.227 0.281 0.364 0.379 0.427 0.455 0.503 0.285 0.367 0.450 0.651
Tide 0.306 0.335 0.364 0.413 0.161 0.215 0.267 0.352 0.375 0.412 0.435 0.454 0.270 0.332 0.360 0.419
PatchTST 0.293 0.333 0.369 0.416 0.166 0.223 0.274 0.362 0.370 0.413 0.422 0.447 0.274 0.341 0.329 0.379

Table 8: Forecasting Results on the ETT dataset
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Weather

Earthquake NorCalEarthquake

NeuroA NeuroB

NeuroA&B NeuroC

Figure 5: Codebooks in time space, visualizing all 256 codes for NeuroA, NeuroB, NeuroC, NeuroAB,
Earthquake, Earthquake NorCal, and Weather. With selected codes visualized. Codebooks are
quantitatively similar within domains.
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