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Abstract. Deploying deep learning (DL) models in medical applications
relies on predictive performance and other critical factors, such as con-
veying trustworthy predictive uncertainty. Uncertainty estimation (UE)
methods provide potential solutions for evaluating prediction reliability
and improving the model confidence calibration. This paper introduces
Learning from EXpert Disagreement for UE (LEXU) for medical im-
age segmentation, a method that leverages the variability in annotations
from multiple experts to guide model training. By focusing on regions of
disagreement among experts and incorporating multi-rater optimization
strategy, LEXU enhances the model’s awareness of challenging cases,
resulting in better calibration and predictive uncertainty. The method
shows a 55% improvement in correlation with expert disagreements at the
image level and a 23% improvement at the pixel level, along with compet-
itive segmentation performance compared to state-of-the-art techniques,
all while requiring only a single forward pass.

Keywords: Uncertainty estimation - Medical image segmentation - Model
calibration.

1 Introduction

Maximizing the predictive performance of deep learning (DL) models is not the
only factor leading to a wide-scale deployment in real-world applications. Partic-
ularly in the medical domain, other model properties must be analyzed to ensure
clinical adoption and minimize unforeseen consequences. Experts underline the
inability of models to convey trustworthy predictive uncertainty as one of the
main reasons for their slow and limited adoption in clinical practice [6]. Uncer-
tainty estimation (UE) is gaining attention as a promising solution for evaluating
prediction reliability as well as for purposes such as enhancing prediction quality,
conducting quality assurance, domain adaptation, and active learning [9I32].
Various UE methods have been proposed to enhance the reliability and safety
of predictive systems. For instance, Stochastic Variational Inference [7] estimates
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Table 1: Inter-observer variability Dice scores, shown as mean (std). Object 1
and Object 2 refer to {disc, cup} for RIGA and {GTVp, GTVn} for HECKTOR.

Dataset RIGA HECKTOR
Split/Fold Val Test Fold 1 Fold 2 Fold 3

Object 1 0.954 (0.012) 0.956 (0.013) 0.773 (0.243) 0.722 (0.250) 0.835 (0.209)
Object 2 0.789 (0.094) 0.796 (0.114) 0.723 (0.251) 0.705 (0.263) 0.720 (0.231)

the posterior distribution by modeling a Gaussian distribution for each param-
eter of the network. Monte-Carlo Dropout (MCDO) [8] aggregates outputs of
multiple forward passes of the same input with activated dropout layers to ap-
proximate the true posterior of the model. Deep Ensembles (DE) [20] consists of
multiple networks trained with different initializations. Test-time data augmen-
tation (TTA) [4] uses multiple forward passes but with differently augmented
versions of the same input. Studies [24J3] highlight that DE outperforms most
methods in robustness and confidence calibration despite their time and memory
inefficiency. Although a growing number of studies on UE indicate a promising
trajectory, some questions remain unanswered, e.g. the calibration of uncertainty
estimates, uncertainty vs fairness, and practical deployment of UE methods.

Generally, low model uncertainty suggests the prediction is accurate. How-
ever, there are cases where the model shows low uncertainty, yet multiple experts
disagree, indicating the need for a closer examination of the given case. This mis-
match between low model uncertainty and high expert disagreement can lead
to critical oversights, such as missing early diagnoses of diseases. The disagree-
ment between multiple annotators is measured by the inter- and intra-observer
variability analysis, whereby experts often have different opinions and levels of
expertise when assigning labels [S0JI4/18]. To illustrate, Table [1| presents the
inter-observer agreement scores for the retinal fundus images used in glaucoma
analysis (RIGA) [I] and for the head and neck tumor segmentation (HECK-
TOR) [2] datasets employed in this study. Although multi-rater label sampling
and training strategies exist [I3232TIT0OITH22], the direction of explicitly incor-
porating this natural uncertainty information into the training process to obtain
better calibrated and more reliable model outputs remains underexplored.

As models are trained to mimic human annotators for disease detection, there
is a need to align the uncertainty estimates with real-world divergences in ex-
pert judgment for different scenarios. If we focus on trust and transparency, such
an alignment can foster more effective collaboration between clinicians and DL
models. When models express uncertainty in situations that mirror human un-
certainty, clinicians are more inclined to trust the model’s predictions. Moreover,
enhancing the ability to handle scenarios deviating from training data promotes
robustness and adaptability.

Additionally, the development of new UE methods should emphasize simplic-
ity and efficiency to ensure widespread adoption and accessibility. Most current
UE methods require several input passes (e.g., MCDO, TTA) or considerably
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Fig.1: LEXU employs a U-Net-like architecture. The Disagreement Guidance
Module (DGM) captures uncertainty by comparing variance heatmaps from the
model and annotations. Multi-Rater Optimization (MRO) enables segmentation
training using multiple expert-provided annotations.

increase the number of parameters, which incurs additional time and financial
and environmental costs.

To address these issues, we propose LEXU (Learning from EXpert Disagree-
ment for UE), an expert disagreement-guided uncertainty estimation method
for medical image segmentation. We explicitly use variability in ground-truth
annotations from several raters to guide the model and develop a multi-rater
optimization strategy to incorporate ground-truth segmentation masks from all
annotators during training. We validate our results on two distinct ophthalmol-
ogy and head and neck tumor datasets, which contain images from different
modalities, including fundus photography, CT, and PET scans. We show that
LEXU produces well-calibrated uncertainty outputs that correlate better with
expert disagreements than existing state-of-the-art methods. The method does
not explicitly distinguish between aleatoric and epistemic uncertainties, as re-
cent studies [25/I7I29] indicate that reliably separating them is often infeasible
in practice. Instead, it addresses the challenge of identifying difficult samples
where multiple annotators may disagree, which is inherently tied to both types
of uncertainty. The main contributions of this study are:

— We develop a novel, simple and intuitive UE method that takes into account
inherent variability in ground-truth masks by leveraging multiple-
annotator datasets.

— We demonstrate an efficient single forward pass method to estimate both
image and pixel-level uncertainties.
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— We offer insights into relevant downstream applications and conduct a com-
prehensive analysis of method components, addressing recommendations from
prior studies [I7]. The code is publicly available on github.comﬂ

2 Methodology

We propose a method that utilizes variability in annotations from multiple ex-
perts to enhance predictive UE, model calibration, and awareness of challenging
cases. We build upon Layer Ensembles (LE) [19], a single-pass uncertainty esti-
mation framework for medical image segmentation, which extends the concept
of prediction depth (PD) [5]. PD assesses sample complexity and segmenta-
tion quality by incorporating multiple segmentation heads at different depths of
the network. LEXU leverages this idea by linking PD, segmentation heads, and
ground truth variability from multi-annotator datasets.

2.1 Problem Formulation

Consider a medical image segmentation dataset D = {X? M}V, consisting of
images X € RE*WxC and corresponding masks M = {M; };V:l from N,, annota-
tors. Our primary goal is to develop an efficient uncertainty-aware segmentation
network F that enhances predictive uncertainty estimation while maintaining
low computational cost. Unlike DE [20] which demands high computational and
memory costs, F requires a single forward pass to generate UE through multiple
(N,) segmentation predictions, i.e. F(X) = M = {Mj}ji”l, which are used to
generate an uncertainty map. As shown in Figure[I} our model F consists of an
encoder-decoder architecture and multiple segmentation heads.
Encoder-Decoder. We adopt the U-Net [28] for our encoder-decoder design.
An input image X passes through the encoder with Ng downsampling blocks for
extracting hierarchical features. Feature maps after each block are used to feed
into subsequent blocks and skip connections from encoder to decoder during
upsampling. Each decoder block consists of upsampling, convolutional layers,
batch normalization, ReLU, and skip connections.

Segmentation Heads. We attach a segmentation head to every decoder output
for generating multiple segmentation predictions, resulting in Np = Np. Each
segmentation head consists of a convolution layer for transforming its input to
the desired segmentation output channels, followed by upsampling to ensure a
uniform shape across all predictions. This approach facilitates UE while intro-
ducing only a negligible increase in computational overhead and parameters.

2.2 Learning from Expert Disagreement for Uncertainty Estimation

LEXU proposes to distill uncertainty information available from multi-rater
ground-truth, enabling F to estimate natural uncertainty provided by experts.

3 https://github.com/Katalip/grader _soup
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As illustrated in Figure[I[} LEXU incorporates the Disagreement Guidance Mod-
ule (DGM) to explicitly capture annotation variability, and Multi-Rater Opti-
mization (MRO) to enable learning from different expert annotations.

DGM. Given a set of masks { M };V:”l for an image X, we first compute the pixel-
wise variance along the channel axis to obtain the ground-truth variance heatmap
H. Similarly, we apply the same procedure to generate the model uncertainty
heatmap H from segmentation predictions F (X). Then, we apply the RMSE loss
between H and H to allow the model to learn the inherent uncertainty in the
ground-truth masks. In this way, based on the previously defined PD concept [5],
each segmentation head can mimic a certain level of expertise, e.g., low-, mid-,
and high-level details. Using heatmaps from ground-truth masks, these heads
can imitate a high level of disagreement at the pixel level when the sample has
many ambiguous regions and, on the other hand, have smaller uncertainty when
the image is relatively easier to segment.

MRO. Inspired by [12I16], we design MRO to facilitate segmentation training
by leveraging annotations from multiple experts to mitigate overconfident pre-
dictions and improve model calibration. Let M; be the last segmentation head
prediction. We optimize M, to harness all available annotations through a soft
majority voting label, denoted as S(M). For the rest predictions {M; }jV:"”‘Q, we
randomly sample one of the annotations, denoted as RS(M).

Final Loss Function. Overall, LEXU’s loss can be defined as follows:

NP
L=« EBCE(S(M),Ml)+Z£BCE(RS(M),MJ') +[‘3~£RM5E(H,I:I), (1)

=2

where Lpcg is the segmentation loss, and Lgryrsr measures the discrepancy
between the ground-truth and predicted variance heatmaps. o, 5 € R.

3 Experimental Details

Datasets. RIGA benchmark [I] is a public dataset for retinal cup and disc
segmentation, containing 750 color fundus images from three databases: 460 from
MESSIDOR, 195 from BinRushed, and 95 from Magrabia. Six glaucoma experts
manually labeled the segmentation masks. Following [23/13], we used BinRushed
and MESSIDOR for training, while Magrabia was reserved for testing. All images
are normalized between 0 and 1 and resized to 256 x256.

A subset of HECKTOR 2022 data [2] consists of 44 cases with multiple an-
notations, each with registered 3D CT and PET scans of head and neck (H&N)
region. Annotations of gross tumor volumes of the primary tumors (GTVp) and
lymph nodes (GTVn) come from 10 different experts. On average, 3 annota-
tions are available for an image (ranges from 2 to 4 per patient). We perform
preprocessing steps similar to [26] and convert 3D volumes to 2D axial slices.
Comparison and Evaluation Metrics. Motivated by [19], we conduct a com-
prehensive evaluation of correlation analysis and segmentation performance. We
measure image-level uncertainty correlations using Spearman’s rank correlation
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Table 2: Correlation analysis and segmentation performance comparison on the
RIGA and HECKTOR datasets.

Correlation Analysis Segmentation Scores
SR SR DCt DCt NCCtT NCCt Dicet Dicet NLL|
RIGA Disc Cup Disc Cup Disc Cup Disc Cup
DE 0.472 0.349 0.444 0.399 0.644 0.607 0.977 0.874 0.219
LE -0.630 -0.517  0.601 0.516 0.470 0.473 0.974 0.869 0.174
LEXU 0.703 0.689 0.685 0.651 0.766 0.735 0.970 0.856 0.163
HECKTOR GTVp GTVn GTVp GTVn GTVp GTVn GTVp GTVn
DE 0.184 0.158 0.349 0.245 0.314 0.348 0.829 0.784 0.512
LE 0.810 0.620 0.766 0.575 0.242 0.245 0.766 0.691 0.197

LEXU 0.904 0.816 0.862 0.799 0.456 0.492 0.788 0.726 0.131

Table 3: Effect of heatmap loss with different S values on the RIGA dataset.

Correlation Analysis Segmentation Scores
SR SR DCr DCr Dicet Dicet NLLJ
Disc Cup Disc Cup Disc Cup

-0.594 -0.524 0.572 0.526 0.974 0.874 0.173
0.690 0.707 0.665 0.657 0.973 0.854 0.166
0.712 0.673 0.680 0.643 0.971 0.855 0.163
0 0.661 0.606 0.680 0.634 0.965 0.818 0.161

T ™™
Il
= ot w o

(SR) and distance correlation (DC) [31] between variance sums in heatmaps from
models and ground-truth masks. For pixel-level assessment, we compute the av-
erage normalized cross-correlation (NCC) between heatmap pairs for the test
set. The Negative Log-Likelihood metric (NLL) evaluates network confidence
calibration, penalizing small uncertainty for incorrect predictions. Segmentation
performance is assessed using the soft Dice metric with soft majority voting la-
bels as ground-truth masks. For the RIGA dataset, we report the results of three
runs for LEXU and LE and a single run for DE. With HECKTOR, we report
patient-based 3-fold cross-validation results.

Implementation Details. We use an ImageNet-pretrained ResNet50 [11] as
the encoder, resulting in Ng = 6 and Np = 5. The models are trained for 200
epochs with a bs of 16 on RIGA and 120 epochs with a bs of 32 on HECKTOR,;
chosen empirically. We use a learning rate of 5¢5. We employ five networks in
DE, and skip the first five segmentation heads for LE as suggested by [19]. For
LEXU, we set a« = 1, while 3 is set to 5 for RIGA and 2.5 for HECKTOR.
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Fig.2: (a)—(b) Segmentation quality control results. d-AUC ({): the difference
between the area under the main curve and the ideal line. Dashed lines indicate
ideal lines. (c) Example difficulty estimation results, showing the distribution of
layer agreements and model agreements at 0%, 50%, and 100% distorted images.

4 Results and Discussion

4.1 Correlation Analysis and Segmentation Performance

Table 2] summarizes the correlation and segmentation performance. In the RIGA
dataset, DE shows a moderate correlation with the SR value reaching 0.472 and
0.349 for the disc and cup, respectively, whereas LE indicates a negative correla-
tion. LEXU shows a stronger correlation with SR of 0.7034+0.02 and 0.68940.012
for the disc and cup respectively. This trend is reflected in the DC scores as well.
While DE and LE models show some correlation, LEXU shows much higher
DC values for both the disc and cup, with 0.685+0.020 and 0.6514+0.008. At
the pixel level, NCC values for LEXU are also the highest, with 0.766+0.005
and 0.73540.003 for disc and cup, respectively. Although LEXU has a slight
drop in segmentation performance compared to the best-performing DE model,
it requires 5x fewer parameters. In addition, LEXU has the lowest NLL value of
0.16340.005, while DE and LE models tend to be overconfident in their predic-
tions. This suggests LEXU is less prone to overconfidence and making predictions
at somewhat ambiguous regions in the image. We confirm this behavior in the
qualitative examples (Figures [3) and by examining the 8 coefficient (Table [3]).
The HECKTOR dataset shows a similar trend in performance, both in corre-
lation and segmentation analyses. The DE model captures a low level of correla-
tion in the GTVp and GTVn in SR and DC metrics. While LE shows reasonable
scores, LEXU achieves the highest correlation scores at both image and pixel
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Fig. 3: Top row: Input image with contours of all masks, ground-truth variance
heatmap, variance heatmaps from LEXU, LE, DE. Bottom row: Input image
with soft majority voting mask’s contour (threshold 0.5), corresponding ground-
truth mask, predicted masks from LEXU, LE, DE. SV: sum of variances.

levels. DE has the highest dice scores, however LEXU shows much better cali-
bration, achieving the lowest NLL.

4.2 Segmentation Quality Control

We evaluate methods for segmentation quality control [27] on both datasets.
We choose dice thresholds of 0.97 and 0.85 for disc and cup, and 0.65 and
0.55 for GTVp and GTVn, respectively, to mark model outputs as poor seg-
mentation masks. The variance metric is used for all methods to detect these
marked masks. Figure shows the results for disc and cup structures, while
the results for GTVp and GTVn are available in Figure 2b. DE shows the best
overall performance, with the lowest remaining poor segmentation fraction at all
quantile thresholds for both cup and GTVn. LEXU performs similarly to DE,
especially for the cup. However, it has a slightly higher remaining poor segmen-
tation fraction than DE for GTVn at higher variance thresholds. LE has the
worst performance overall, with the highest remaining poor segmentation frac-
tions. Overall, the results show that LEXU is effective for segmentation quality
control, performing better than LE and similarly to DE.

4.3 Example Difficulty Estimation

We also evaluate the methods for example difficulty estimation (Figure ) by
applying Gaussian noise, blurring, hue, saturation, and value changes on the
RIGA dataset. We use inter-layer agreement scores for LEXU, LE, and agree-
ment scores between models for DE to detect perturbed images. Overall, the
agreement scores decrease for all methods as the distortion level (proportion of
images with augmentations) increases. This indicates that all methods are ef-
fective at detecting challenging samples as the applied distortions become more
severe, which is more apparent with the cup as it has a more complex structure.
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5 Conclusion

We proposed LEXU, a simple approach that leverages expert disagreements to
guide the model during training for improved predictive uncertainty quantifi-
cation without additional costs. Our extensive evaluations of the RIGA and
HECKTOR datasets have shown that LEXU is effective at detecting difficult
cases in which multiple annotators may disagree, and also maintains robust seg-
mentation performance. Future work could refine DGM by exploring alternative
loss functions, such as KL divergence, and expand LEXU to other medical imag-
ing tasks. Overall, the alignment of model uncertainty with expert variability is
a significant step towards fostering trust and transparency in clinical settings,
which is crucial for the adoption of deep learning models in medical practice.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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