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Abstract

Autonomous agents embedded in a physical envi-
ronment need the ability to correctly perceive the
state of the environment from sensory data. In
partially observable environments, certain proper-
ties can be perceived only in specific situations and
from certain viewpoints that can be reached by the
agent by planning and executing actions. For in-
stance, to understand whether a cup is full of cof-
fee, an agent, equipped with a camera, needs to turn
on the light and look at the cup from the top. When
the proper situations to perceive the desired prop-
erties are unknown, an agent needs to learn them
and plan to get in such situations. In this paper,
we devise a general method to solve this problem
by evaluating the confidence of a neural network
online and by using symbolic planning. We exper-
imentally evaluate the proposed approach on sev-
eral synthetic datasets, and show the feasibility of
our approach in a real-world scenario that involves
noisy perceptions and noisy actions on a real robot.

1 Introduction

In embodied Al agents, an amount of knowledge may emerge
from the interaction with the environment. In this manner,
the knowledge provided to the agent at the beginning, pro-
duced by some off-line process, may be extended and ad-
justed by interacting with the environment. Symbolic plan-
ning is an effective technique for generating sequences of
actions (i.e. plans) to achieve goals. However, in order to
use symbolic planning in embodied Al, agents need to map
their high throughput low-level perceptions of the environ-
ment (e.g., images) into properties of symbolic states. More-
over, embodied agents should be able to dynamically and au-
tonomously evaluate and improve their perceptual abilities
by actively exploring their environment. This is also a well-
known challenge in the field of active perception [Bohg et al.,
2017]. In partially unknown environments, certain properties
can be perceived only in specific situations. For instance, to
check if a cup is full of coffee, an agent, equipped with a cam-
era, needs to turn on the light and look at the cup from the top;
it is useless to observe the cup from the side. An open chal-
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lenge is whether an agent can automatically recognize the sit-
uations from which a useful perception can be made, and how
such situations can be reached by acting in the real world.

In this paper, we devise a general method to solve this
problem. We model the agent’s perception with a set of
(deep) neural networks that map perceptions (e.g., an image
of a cup), into properties of symbolic states (e.g., the cup is
empty). We propose a method to identify, via clustering, the
situations from which the predictions of the neural networks
are correct with a confidence higher than a given threshold.
Each cluster is associated with an action that can be executed
in the identified situations and reaches a proposition consid-
ered as the goal of a symbolic planning problem. In this
way, the agent can use a symbolic planner to synthesise plans
reaching situations where observations are more informative.

We define a framework that allows us to formalize the
problem of learning the set of situations in which a perception
model of an agent reaches a desired level of confidence. In
such a framework, we suppose that the environment behaves
like a probabilistic transition system unknown by the agent.
The agent knowledge about the environment is represented in
terms of a symbolic planning domain. The agent has access
to the current state of the environment by a so-called percep-
tion function that maps observations of the environment into
a set of (belief) states of the symbolic model. We develop an
algorithm that returns a set of belief states of the symbolic
model of the agent, where the prediction of the perception is
more reliable. We transform the epistemic planning problem
of reaching a belief state into a classical planning problem,
similarly to [Belle et al., 2023; Petrick and Bacchus, 2002;
Bonet and Geffner, 2011]. We then use a classical planner to
find a plan that leads the agent to a useful situation.

We experimentally evaluate the proposed approach by
showing that observing from the useful situations found by
our method results in a higher accuracy w.r.t. making the pre-
diction directly from the perception of the current environ-
ment state. In our experiments, we consider several synthetic
datasets, and a real-world scenario that involves noisy percep-
tions and noisy actions on a real robot.

2 Related Work

A wide variety of approaches and applications have been
proposed for enhancing robotic agents with active learn-
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ing techniques [Kulick er al., 2013; Cakmak et al., 2010;
Chao et al., 2010; Ribes et al., 2015; Hayes and Scassellati,
2014; Huang et al., 2010; Ashari and Ghasemzadeh, 2019;
Taylor er al., 2021]. In these works, robotic agent improve
their skills or learn new concepts by collecting and labeling
data in an online way. All these methods label data either
by means of human supervision or by relying on the pre-
diction of a pre-trained model. In [Ugur and Piater, 2015;
Lamanna et al., 2023], perceptions are generated by execut-
ing actions and labeled with the effect specified in a sym-
bolic planning domain. None of these methods consider the
problem of estimating the quality of the obtained perception
model under different conditions to discriminate when per-
ception is trustable, which is the main objective of this paper.

Concerning the problem of learning planning domains
from continuous observations, the approach by Migimatsu
and Bohg (2022) learns to map images into the truth values
of predicates of planning states. Differently from us, their ap-
proach is offline and requires a sequence of images labeled
with actions, while our approach plans for generating this se-
quence online. We share the idea of learning state representa-
tions through interaction with the work by Pinto et al. (2016),
where they learn visual representations by manipulating ob-
jects on a table. They learn these representations in an unsu-
pervised way, through a CNN trained on a dataset generated
by interacting with objects. However, the learned representa-
tions lack interpretation and they are not suitable for applying
symbolic planning. Other works have addressed the prob-
lem of learning planning domains from perceptions in the
form of high-dimensional raw data (such as images), see, e.g.,
[Asai and Fukunaga, 2018; Asai, 2019; Janner et al., 2019;
Dengler et al., 2021; Konidaris et al., 2018; Occhipinti et al.,
2022]. In all the above-mentioned works, the abstract plan-
ning domain is obtained by offline pre-training, and the map-
ping between perceptions to the abstract model is fixed, while
we learn and adapt this mapping online.

Our work shares some similarity with planning under
partial observability (e.g., [Bertoli et al., 2006; Bonet and
Geffner, 2014]): some state variables might not be always
observable. However in planning under partial observabil-
ity the model describes which variables are/are not observ-
able in which state, while in our approach, this information
is learned online. Planning with perceptions is also consid-
ered in epistemic planning [Belle et al., 2023; Petrick and
Bacchus, 2002]. In epistemic planning, the domain state en-
codes the current belief of the agent by means of epistemic
literals; e.g., Kp (resp. =K p) for some propositional vari-
able p states that the agent knows (resp. does not know) that
p is true. Epistemic literals can appear in the action precon-
ditions and effects, which allow for a uniform treatment of
sensing actions and “physical” actions. Epistemic planning
does not consider the problems of perceiving from continuous
features, and of learning and exploiting perception function.
However, we exploit in our methodology a common practice
in epistemic planning that transforms planning under partial
observability into epistemic planning under full observability.

Finally, active perception is a strongly studied area in
robotics [Bajcsy et al., 2018]. Most work in this area deals
with reaching the best view points for a vision sensor [Grotz,
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2021; Zeng et al., 2020], although some works consider
more general observation conditions like lightning or blur-
ring, [Tarabanis et al., 1995], as we do here. The view
planning problem can be summarized by: sampling candi-
date viewpoints, evaluating the quality of the information ob-
tained from them, and choosing the best one. While we share
the motivation and the main procedure, we map the low-level
data obtained from viewpoints into abstract states of a sym-
bolic planning domain, evaluate the quality of this mapping,
and we use symbolic planning to choose the best next view-
point. More importantly, most approaches to view planning
assume that the relation between viewpoints and observabil-
ity is given: in our work, this relation is learned.

3 Problem Formulation

We model the partially observable environment where the
agent operates as Env = (Sgny, AEnv, VEnvs OEnv, Obs), where
(SEnvs AEny, YEnv) 18 @ nondeterministic automaton composed
by the set Sg,, of environment states, the set Ag,, of agent
“low-level” actions executable in the environment, and the
transition relation Vg C Sgny X Apny X Sgnv: Ogny 1S the
set of all possible observations from the environment; and
obs : Sgnv — Ogny 1s a deterministic observation function.

Example 1. Consider an agent in a room that wants to see
the picture on the wall in front of it, but its view is occluded by
a circular object. The agent has the possibility to change its
viewpoint so that the object only partially occlude the picture.
Furthermore, the light in the room can be turned on or off by
the agent. The set Og,, of observations of the agent is a set
of images of size w X h; some examples of observations are
shown in Figure I.

8 555

(a) (b) () (d) (e)

Figure 1: Examples of observations of the environment states where
a handwritten digit three is shown on the wall. In (a) the light is off,
while in (b)—(e) it is on; in (b) the occluding object is in the center,
in (c) is on the edge, and in (d) and (e) is in a corner.

The agent Ag is modeled by Ag = (Mg, Bag, €Xag, fag),
where Ma, = (Sag, Aag, Vag) is a finite automaton, Sy, is
a set of agent states, A, are agent “high-level” actions, and
7Yag is a transition relation contained in Sag X Aag X Sag.
The agent state is specified in terms of a set of state variables
x = (x1,...,2,). The automaton M 4, constitutes the inter-
nal abstract representation of the environment adopted by the
agent. We distinguish between Sa, and Sk, because the in-
ternal agent state may abstract away parts of the environment
state that are irrelevant for the agent. For instance, the agent
state in Example 1 does not consider the room temperature.

Example 2 (Agent’s transition system). The set of states
Sag of the agent can be described by three states variables:
digit that takes values in {0, . .., 9}, occl that takes values in
{(4,7) | 0 < i < w, and0 < j < h}, and light that takes
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Figure 2: A portion of the transition system of the agent.

boolean values. For instance, the state 3(4,7)0 is a state in
Sag that represents the situation where the digit 3 is on the
wall, the occluding object is centered in (4,7), and the light
is off. The set of high-level actions in Aag allows the agent
to switch the light on and off, to change the picture on the
wall with another digit, and to move the occluding object in
different positions. More precisely, for every state variable
x € {digit, occl, light}, the action effect © < v, where v is
a value in the domain of x, sets the value of x to v. We sup-
pose that all the actions but switching the light on/off, can be
performed only if the light is on. A portion of the transition
system of the agent, which considers only digits 3 and 4 and
the occluding object in (4,7) or (5,7), is shown in Figure 2.

In addition to the internal representation of the environment,
the agent is equipped with a subset of states Ba, C S that
represent the belief state of the environment. Furthermore,
the agent can carry out its high-level actions in A4, by exe-
cuting the corresponding low-level actions in Ag,,. This ca-
pacity is represented by the function exs,, which associates
to each pair (s,a) € Sag X Aag @ program exa,(s,a) of
actions in Ag,, executable in Env, such as, e.g., in hierar-
chical task networks [Erol et al., 1994]. Since the environ-
ment is nondeterministic, the state of the environment result-
ing from the execution of exag(s,a) is also nondeterminis-
tic. Finally, the agent is associated with a perception function
fag : Opny — Pr(Sag) that returns a probability distribution
fag(s | 0) on astate s in Sy, given an observation o in Ogpy.

Example 3 (Agent perception function). Continuing with
our example, we can represent the perception function of the
agent with three separate perception functions, one for each
state variable, i.e., fag = (fdigits focel, fiight), defining

ng(S | 0) = (fdigit(sdigit | 0)7 foccl(soccl \ 0), flight(Slight \ 0))

where s, for every x € {digit, occl, light} denotes the value
of x in the state s.

The agent state variables are grouped into control variables
and observable variables. The control variables are such that
their values can be known in every state, while the values of
the observable variables can be known only in some states.
For example, variable light is a control variable because its
value can be always known; while variable digit is observable
because when the light is off its value is unknown. Therefore,

in general, not all environment observations can provide to
the agent sufficient information to discriminate, by means of
fag, the values of the observable variables. Indeed, as for
our example, if the environment is observed when the light is
off, the agent cannot discriminate the value of the observable
state variable digit by means of fgigi:. Therefore, to rely on
the prediction of the perception function f,,, an agent should
know (believe) that the environment is in a state where such
a prediction is sufficiently confident. This leads us to the def-
inition of confidence of a perception function in a belief state
BAg g SAg-

Definition 1 (Confidence in a state). The confidence of the

agent perception function fa, in a state s € Sag, denoted by
conf( fag, s), is defined as

1
S 2 Eeeolublo O
A8 2 (sh,a) €5 (9)
where 13, (s) = {(s',a) | (s', a,5) € g}
Definition 2 (Confidence in a belief state). The confidence of
the agent perception function fa, in a belief state Byg C Sag
is the average of the confidence of faq in each state s € By,.

The intuitive reading of (1) is that, for every way to reach
s, i.e., forevery (s, a, s) € Yag, Eomexpy(s7,a) fag(s | 0) is the
expectation of the agent believing to be in s from the obser-
vation o obtained after executing a in s’. Since the execution
of an action is non-deterministic, the observation o obtained
after an action execution is a random variable. The higher
the expectation value, the higher the agreement between the
abstract model, the perception function and the concrete exe-
cution of the high-level action a. This expectation is averaged
on all the possible ways of reaching s.

The agent perception function can be modeled as fa, =
(fers--+s fu,). We denote by x_; = v_; the assignments
to all the state variables but z;. The confidence of f,, con-
ditioned to x_; = v_; is defined as the confidence of fa, in
Sp_j=v_, = {5 € Sag | 82, = v; Vj #i}.

Definition 3 (Viewpoint). A viewpoint with confidence at
least t € [0, 1] for a state variable x is a belief state Bayz C
Sag such that conf( fr, Bag) > t.

Example 4. Suppose that fqigit, fiight and foca are neural
networks trained with labelled observations like those shown
in Figure 1. For instance, the network fignt is trained with a
set of observations similar to the first shown in Figure 1 and
labeled with 0, and a set of observations similar to the other
four (possibly with different digits and different positions of
the occluding object) and labeled with 1. Similarly, the net-
work focc is trained with observations like (a) and (b) labeled
with (§, %) (the occluding object is in the center, though in
(a) it is not visible), with observations similar to (c) with label
(%, h), and with observations similar to (d) and (e) with label
equal to (w, h) and (w — 4, 4), respectively. One can reason-
ably expect that the confidence of fiignt is high for every belief
state B since the visual difference of the observations, inde-
pendently from the digit and the occluding object, is evident.
Differently, the confidence of focq Will be high only in the be-
lief states where the light is on (i.e, the state variable light has
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value 1). Finally, faigix will be highly confident when the light
is on and the occluding object is in a corner, less confident
when the object is on the edge, and not confident when it is
in the middle. Globally the confidence of fa, will be the best
when the light is on, and the occluding object is on a corner,
i.e., in the belief set Beomer = {S € Sag | Siight = 1 and
SOCC' e {(01 0)7 (w7 0)7 (07 h/)’ (w7 h)}}'

Knowing the belief states where the perception function is
sufficiently confident is a crucial aspect for the agent to cor-
rectly perceive the current state of the environment. Indeed,
if fap has a high confidence on B,,, then the agent can rely
on fag to derive its current state from the environment obser-
vation, e.g., by selecting s* = argmax,(fag(s | 0)), where
o is the current observation of the environment state, and ob-
taining the least ambiguous (total) belief state equal to {s*}.
A more cautious selection would be to select the first £ most
probable states obtaining the belief state {s7,. .., s} }, where
s¥ denotes the i-th best prediction of f(s | 0). When, instead,
fag is not confident in By, then making a measure in By,
does not provide reliable information about the environment.
In this situation, the agent might find a plan 7 that leads to a
new belief state (7, Bag) Where fa, is confident. However,
notice that 7 should not modify the observable state variable
that the agent wants to perceive in Byg, but only change the
state control variables that allow for a better perception.

Example 5. Suppose that the agent is placed in the environ-
ment described in Example 1 (a), where the light is off and
it wants to know which digit is on the wall. Its initial belief
set is the entire Sag (it is completely ignorant, i.e., no beliefs).
The current perception is the black image shown in Figure 1.
Since fiight is confident for any belief state, then the agent
can rely on the prediction of fignt. Therefore, the perception
of fiight will lead to a belief set Sight—o = {s € S | Siight=0}-
Since in this belief state fqigi: is not confident, the agent needs
to find a plan that leads to a belief state where figh is more
reliable. Such a belief state is Bcomer as defined at the end
of Example 4. To reach this belief state it can execute (in se-
quence) two actions with effects light < 1, and occl < ¢
for some ¢ = (0,0),(0,h), (w,0), (w, ). This plan will not
modify the value of the state variable digit. Therefore, after
executing the plan the agent will see an observation similar
to the two rightmost pictures of Figure 1, and by the percep-
tion function fqigic it can obtain that digit = 3 with a high
confidence.

The aim of our work is addressing the following task.

Problem. Given an agent Ag = (Mg, Bag, fag, €xaq) and
a state variable z, find a set of viewpoints By, ..., By for x
with confidence greater than t, and compute a plan © that
does not change the value of x and such that v(m, Bag) = B;
for some 1 < i < k.

4 Method
We describe our approach assuming that the perception func-
tion is in the form fa, = (fsz,,..., fs,). For the sake of

presentation, we assume that z;,...,xz,_1 are control vari-
ables, and therefore the perception function f,, is perfect in
any belief state, i.e., it always returns the ground-truth value,
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Figure 3: Heatmap of the confidence of the perception function faigit
in our running example.

and only variable x,, is observable. However, the method can
be applied for any partition of the state variables in control
and observable variables. The agent has to find the belief
states where x,, can be observed with high confidence by
fx, . For instance, in Example 3 the agent is provided with
the perception function for all state variables; we assume that
the perception function of foc, and fiighe are perfect, while
the agent has to find the belief states where the confidence of
fdigit is above a given threshold.

4.1 Estimating the Perception Confidence

In order to estimate the confidence of f, in an agent state
s € Sag, the agent can approximate Equation (1). To this
purpose, the agent needs a set of observations Oy C Ogypy
labeled with the value of z,, in s. The agent can construct
the set of observations Oy by executing a plan that leads to
s and collecting observations from the reached environment
state. In Example 1, if the agent is in state 4(4,7)1, it can
construct the observation set O34 7); by executing the action
with effect digit <— 3 and adding the observation taken from
the resulting state to O3(4,71.

We focus on the problem of finding a set of belief states
B = {Bi,..., B} where the state variable z,, is observ-
able. For this purpose, we have to select a set B C 254 One
possibility could be to consider all the belief states obtained
by assigning the control variables _,, to any possible value
v_,. In our running example, the agent considers the be-
lief states where the values of the control variables light and
occl are fixed to some values; an example of belief state is
SIight:l,och:(O,O) = {0(07 0)17 1(07 0)17 teey 9(07 0)1}

To estimate the confidence conf(f,, ,B;) in each belief
state B;, the agent computes :

1 1
@ Z |07 Z fz, (s ]0).

seB,; S| 0€0,

In Figure 3, we report the perception function confidence
of the neural network predicting the state variable digit con-
sidered in our running example. The control state variables
are light, occl. For instance, the heatmap in Figure 3 shows
the confidence of the network evaluated on images collected
in states where light = 1 and the values of occl vary among
the coordinates of all image pixels. Specifically, each pixel
(i,7) of the heatmap reports the confidence of the network
averaged over all images where the occluding circle is cen-
tered in position (i, 7). As expected, the confidence is lower
when the occluding circle is centered in the middle area of
the image.
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4.2 Find Viewpoints via Clustering

The straightforward methodology described before is not fea-
sible when the number of possible combinations of values
of the control variables is large. In this case, the number of
states in Sa, is huge, and hence it is not feasible to collect
a set of observations for each state s. Furthermore, the set
of belief states with the control variable fixed to some values
is exponentially large with respect to the number of control
variable values. To deal with the problem of collecting a set
of observations for each state, we collect observations from
a subset of states, which is a good representative sample for
the domain of the control variables. Afterward, we cluster
the collected observations into a set of belief states, one for
each cluster, and we select the clusters where the perception
function confidence is sufficiently high. To apply clustering,
we assume that the values of the control variables are numer-
ical (e.g., light on/off is encoded by light equal to 1/0), and
we denote the distance measure between a pair of values v,
v’ of the control variables as dist(v, v'). Such a procedure is
detailed in Algorithm 1.

In the first part of the algorithm (Lines 2-11), for every
possible value v,, of the observable variable x,,, the agent col-
lects the confidence y of observing v,, from m states where
T, = v,. Bach y is associated with the value v_,, of the con-
trol variables in the state where x,, has been observed. To this
aim, the agent iteratively samples m assignments v_,, to the
control variables = _,, (Line 4); it computes a plan for reach-
ing the state © = (v_y,,v,) from its current belief state By,
(Line 5). Then, it executes the plan, observes the reached en-
vironment state (Line 6), and, on Line 7, computes the con-
fidence y = fz, (v, | 0) of observing v,,. Finally, on Line
9, the agent updates its belief state Bag. Notice that f, is
learned from the samples that are collected online. Indeed,
for every f,. , there is an action in the planning domain cor-
responding to the training of a neural network (Line 6).

In the second part of the algorithm (Lines 13—17), for every
element v_,, appearing in F, the algorithm computes the av-
erage confidence y* of the prediction done from the neighbor
states N(v_p,), i.e., from states where dist(v_,,v" ) < r
for a given distance threshold r € R*,

In the last part of the algorithm (Lines 18-25), the agent
builds a set of belief states 3 starting from F™*. The elements
of F'* are clustered in C', . . . , C}, sets (in our experiments we
applied the K-mean algorithm). The agent builds the set C of
clusters by selecting the clusters with an average confidence
higher than the given threshold ¢. For each cluster in C, the
agent computes the cluster centroid ¢; by averaging the values
v_,, of the control variables (Line 22). Afterward, the agent
builds the belief state B; associated with the cluster C; by
selecting the states in Sa, whose control variables distance
from c; is less than threshold r (Line 23). The set of belief
states B is finally extended with the computed belief state B;.

4.3 Planning to Reach a Belief State

For perceiving the observable variable x,,, the agent needs to
construct and execute a plan 7 from its current belief state to
reach a state of a belief state in the set I3 returned by Algo-
rithm 1. To this aim, we adopt symbolic (PDDL) planning.

Algorithm 1 FIND BELIEF STATES

Require: Ag = (Mag, Bag, €Xag, fag)
Require: ¢ € [0, 1]: confidence threshold
Require: ~ € R™: belief state radius
Require: m: number of sampled values for x,,
1: F«0
2: for v, € Dom(z,) do
3 forie{l,...,m}do
4 v_y, < uniformly sample values for & _,,
5: T <—PLAN(MAg, .BAg7 Sw:(’u,n,vn))
6: 0 < expg(m)
T Y ¢ fo,(vn | 0)
8 F < APPEND(F, (v_p,y))
9: Bag 4 yag(m, Bag)
10:  end for
11: end for
12: F* + 0
13: for (v_n,y) € F do
14: N(v_p) + {(v_ ,,y") € F| dist(v',,,v_pn) <71}
150 " Nl 2l e (o_m) Y
16:  F™ < APPEND(F™, (v_pn,y"))
17: end for
18: C1,...Ck < CLUSTERING(F™)
19: C « {C; | \Cilzl Z(v_n,y*>€c’i y* >t}
20: B« 0
21: for C; € Cdo
22: ci +— ﬁ Z(v,n,y*)eci V_p
23:  B; < {s € Sag | dist(sz_,,,ci) <1}
24: B+ BU{B;}
25: end for
26: return 3

In particular, the agent’s automaton M, is specified as a
(PDDL) planning domain. The specification of the planning
domain contains a set of operators for modifying the values
of the state variables x1,...,x,. For instance, in our run-
ning example, the agent can change the value of the control
variable light by executing the action with effect light < 1.

For variable z,,, we extend the planning domain with a
predicate known_xn, which indicates that the agent knows the
value v,, of x,,. For each learned belief state B; € B, and
values v_,, € s forall s € B;, we add to the planning do-
main an action observe xn(v_,,) with preconditions x; = v;
for all 1 < i < n, and effect known xn. Finally, we define
a planning problem as follows. In the initial state, x; = v;
with1 <4 < nand v; € sforall s € Bag; the goal of the
planning problem is known _xn.

Example 6. Suppose x,, = digit, Bag = Siignt—0,0ccl=(2, )

and B = {Slightzl,occlz(O,O)vSIight:l,och:(w,h)}' Then,
the planning domain is extended with two actions
observe_digit(1, (0,0)) and observe_digit(1, (w, h)). Their
preconditions are respectively {light = 1,occl = (0,0)},
and {light = 1,occl = (w,h)}; their (positive) effect is
known _digit(). In the initial state of the planning problem
light = 0, 0ccl = (%, £); the problem goal is known_digit().
S5 Experimental Analysis

We investigate the effectiveness of our approach for deter-
mining the belief states where an agent can perceive observ-
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Dataset | #Train | #Test | #Object types | #Images per type
Cifarl0 50000 | 10000 10 6000
Cifar100 50000 | 10000 100 600
EuroSAT | 21600 | 5400 10 [2000, 3000]
FER 28709 | 3589 7 [400, 7000]
MNIST 60000 | 10000 10 7000
OxfordPet | 3731 3669 37 200

Table 1: Datasets of object images used for object classification. For
each dataset, we report the number of images in the training and test
set (2nd, 3rd columns), the number of object types (4th column), and
the number of images per object type (5th column).

able state variables. In our experiments, we consider vari-
ables representing object types and object properties. More-
over, we evaluate the agent’s capabilities of planning and act-
ing to reach a belief state form which it can perceive the
values of the observable variables. We experiment our ap-
proach on several datasets of images for object classification,
and perform a real-world demonstration using a robot with
noisy sensors and noisy actions. For evaluating our approach,
we adopted standard machine learning metrics, i.e., accu-
racy, precision, and recall of the perception function w.r.t. the
ground truth variable values.

5.1 Learning to Perceive Object Types

For learning to perceive and classify objects, we considered
6 datasets with both synthetic and real-world RGB images
of objects that are labeled with their types. The consid-
ered datasets are reported in Table 1. For each dataset, we
modified perceptual aspects of the images by changing their
brightness and blur, and by adding an occluding circle. These
perceptual aspects correspond to the control variables of the
agent state, and can be controlled through agent’s actions.
For example, an agent equipped with a camera can change
the brightness of its camera image by turning on/off a light;
similarly, the blur can be changed by calibrating the camera;
and the occlusion of an object can be changed by moving the
agent to a different point of view. All images have been modi-
fied by: (i) decreasing the brightness by 90% with a 0.5 prob-
ability; (ii) blurring the image by 50% with a 0.5 probabil-
ity; and (iii) adding an occluding circle centered in a position
uniformly sampled from the image size and with a diameter
equal to 70% of the image size. We refer to the original and
modified datasets as noisy and clean datasets, respectively.
As a perception function for classifying object types, we
adopted a neural network architecture composed by a ResNet
[He er al., 2016] followed by a linear layer with a number
of output perceptrons equal to the number of object types,
and the SoftMax activation function. For symbolic (PDDL)
planning, we used planner FastDownward [Helmert, 2006].
We consider each image in the noisy training set as an ob-
servation. For each of these images, the agent computes the
values of the control variables x1,...,2,_1 corresponding
to the image brightness, blur, and occluding circle position.
Then, the agent evaluates its perception function f,_(x,|0).
In our experiments, x,, is the type of the object in the image.
Finally, the agent computes the set of belief states B where it
can observe the object types by clustering the collected obser-
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Figure 4: Accuracy of the object type predictions for each dataset.

vations as described in Algorithm 1. The agent does the same
for the noisy test set, but in addition it checks if its current
belief state is in 3; if this is not the case, it plans to reach a
state in B; finally, the agent predicts the object type.

We compare our approach with the following baselines:

* Perception function trained on the Noisy training set and
evaluated on the Noisy test set (NN): the agent assumes
that all the state variables can be always observed, and
hence it does not plan to reach a state where the con-
fidence of its perception function is sufficiently high.
This baseline provides a lower bound of the performance
achievable with our approach.

* Perception function trained on the Clean training set and
evaluated on the Noisy test set (CN): as in NN, the agent
assumes all the state variables can be observed. How-
ever, w.r.t. NN, the agent is provided with a perception
function trained in fully observable environments.

* Perception function trained on the Noisy training set and
evaluated on the Clean test set (NC): the agent can reach
states where the object type is perfectly observable (i.e.,
the image has its original brightness, there is no blur,
and no occluding circle). This version provides an upper
bound of the performance achievable with our approach.

* Perception function trained on the Clean training set and
evaluated on the Clean test set (CC): as in NC, the agent
can reach states where the object type is perfectly ob-
servable. This version provides a measure of the com-
plexity of the classification task.

The average accuracy of the object classifier predictions
achieved by our approach (with a confidence threshold ¢ =
0.9) w.r.t. the baselines is shown in Figure 4. Our approach
achieves good accuracy in all domains when compared to the
NC version, i.e., the agent computes and executes plans that
effectively lead to belief states where the perception function
for the object types is more reliable. The overall performance
of our approach decreases in domain FER because the clas-
sification task is more complex for this domain, as CC pro-
vides the worst performance for FER. Our approach improves
the performance of the NN baseline significantly: it is at least
10% better in all domains but FER. Such improvement empir-
ically shows the importance of planning and acting to reach
states where the agent can better observe a state variable. Fi-
nally, the CN baseline provides the worst accuracy, which is
significantly lower than the NN accuracy. This is because the
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Object type  Property \ Precision \ Recall
cup filled 1 0.66
mug filled 1 0.94
laptop on 0.61 0.98
big bow! full 1 0.18
small bowl  full 1 0.31
chair free 1 0.28
Average - [ 094 ] 036

Table 2: Precision and recall of the viewpoints w.r.t. the observabil-
ity of a number of properties of different objects.

perception function for CN is trained in fully observable en-
vironments and tested in partially observable environments.

5.2 Real World Experiments

To experimentally show the applicability of our approach in
a real-world environment, we performed an experiment with
a Softbank Robotic’s Pepper humanoid robot with noisy sen-
sors (e.g., RGB and depth camera) and actuators. Pepper is
placed in a living room where there is a table with some ob-
jects on top of it (e.g., a mug, a laptop). The task is per-
ceiving an object property that is observable. For example,
the property filled for objects of type mug can be perceived
only when looking at the mug from the top. Firstly, Pepper
trains a neural network for recognizing the object property,
by collecting online a number of observations (set to 200 in
our experiments) according to the implementation proposed
by Lamanna et al. (2023). Pepper labels the observed images
by means of human supervision. For instance, Pepper asks
a human to fill the mug, takes a number of pictures of the
resulting situation, and finally labels these images with the
action effect specified in a PDDL domain. The control vari-
ables associated with each observation are the distance, yaw
angle, and pitch angle between the Pepper camera and the
object. The control variable values are computed by the Pep-
per’s noisy depth image, and noisy odometry position. Pepper
evaluates the confidence of the neural network for the col-
lected observations, and clusters the observations according
to the associated values of the control variables and the neural
network confidence. For clustering, we adopted the K-means
algorithm with K = 8. The viewpoints where the property
is observable are obtained by selecting the clusters with an
average confidence higher than a threshold ¢ = 0.8.

In Table 2, we evaluate the determined viewpoints by com-
puting their precision and recall w.r.t. the observability of a
number of properties of different objects. To do this, we man-
ually annotated the observations collected by Pepper as ob-
servable and not observable. Therefore, true positives consist
of observations in the viewpoints determined by our approach
where the property can be observed; false positives are obser-
vations in the determined viewpoints from which the property
cannot be observed. Similarly, true negatives are observations
in states that are not determined viewpoints from which the
property is labeled as non observable; whereas false negatives
are observations in states that are not determined viewpoints,
but from which the property is observable. The results in Ta-
ble 2 provide empirical evidence that our approach effectively
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Figure 5: Accuracy of the predictions of the object properties aver-
aged over all properties and objects reported in Table 2. The width
of the colored areas measures the standard deviation of the accuracy.

finds the viewpoints where the properties are observable. For
all object types but laptop, the found viewpoints contain ob-
servations where the property is always observable (i.e., the
precision equals 1). However, for object types big/small bowl
and chair, the recall is low, i.e., the agent does not find all the
viewpoints where the properties are observable.

We also evaluate the capability of Pepper to plan and act for
reaching a viewpoint and observing the object properties. For
this purpose, Pepper is placed in a random position, and asked
to predict the object properties. Firstly, Pepper observes the
object and checks if its current state belongs to the set of pre-
viously learned viewpoints. If this is not the case, Pepper
plans and acts to reach a viewpoint. Finally, Pepper predicts
the truth value of the property. The above procedure is re-
peated 20 times for each object property. In this experiment,
we compare our approach with the NN baseline. Essentially,
such a baseline assumes that the property can be always ob-
served and hence does not plan to reach a viewpoint before
predicting the truth value of the property. The accuracy of the
predictions achieved by our approach w.r.t. the NN baseline is
shown in Figure 5. In particular, we report the performance of
property predictors trained for different epochs. The results
show that planning and acting for reaching the learned view-
points enables Pepper to improve its capability to correctly
predict the truth value of the object properties.

6 Conclusions

We proposed a method for enabling an agent in a partially un-
known environment to learn the situations where a state vari-
able is observable, and reach such situations by planning and
acting. We formalized the problem of learning the situations
where the perception model of the agent is more confident.
Afterward, we developed an algorithm for finding the agent
states where the perception model is confident enough, and
plan to reach such states by means of symbolic planning.

We experimentally evaluated the effectiveness of our ap-
proach for recognizing object types in a number of synthetic
datasets, and object properties in a real-world environment
involving noisy perceptions and noisy actions on a real robot.

In this work, we assume that the agent can always change
the truth value of the observable variables, eventually asking
for the help of a human. In future work, we will investigate
how the agent can change such value without knowing it.
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