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Abstract— Today’s tactile sensors have a variety of different
designs, making it challenging to develop general-purpose meth-
ods for processing touch signals. In this paper, we learn a unified
representation that captures the shared information between
different tactile sensors. Unlike current approaches that focus
on reconstruction or task-specific supervision, we leverage con-
trastive learning to integrate tactile signals from two different
sensors into a shared embedding space, using a dataset in
which the same objects are probed with multiple sensors. We
apply this approach to paired touch signals from GelSlim
and Soft Bubble sensors. We show that our learned features
provide strong pretraining for downstream pose estimation and
classification tasks. We also show that our embedding enables
models trained using one touch sensor to be deployed using
another without additional training. Project details can be
found at https://www.mmintlab.com/research/cttp/.

I. INTRODUCTION

Tactile sensing is a fundamental enabler of dexterous
robotic manipulation, providing critical information about
contact forces, object properties, and interaction dynamics.
However, unlike vision and audio, which have enjoyed sig-
nificant standardization, tactile sensors vary greatly in their
designs and sensing mechanisms. For instance, sensors such
as GelSlim [1], Soft Bubble [2], and DIGIT [3] each provide
distinct forms of tactile feedback, from detailed surface
deformations to broader contact geometries. While this diver-
sity has enabled progress in specialized tasks, it also presents
a major challenge: algorithms and models developed for
one sensor type are rarely applicable to others. This sensor-
specificity hampers the generalization of tactile manipulation
techniques and necessitates labor-intensive adaptation efforts
when working with new sensors, limiting their utility in real-
world, unstructured environments.

Existing methods aimed at addressing these cross-sensor
disparities, such as sensor calibration or transfer learning
techniques, are often insufficient in practice. Calibration
tends to be sensor-specific and difficult to generalize, while
transfer learning struggles to overcome the substantial distri-
bution shifts between sensors. Models trained on the data of
one tactile sensor often fail to generalize effectively without
significant retraining, as each sensor encodes its unique fea-
tures based on its design. Although progress has been made
in cross-sensor tactile modeling, existing approaches fail to
capture the information shared between tactile sensors with
different sensing modalities, leading to less than desirable

*These authors contributed equally.
1University of Michigan {samanrod, ymdou, willvdb,

oller, kvso, ahowens, nfz}@umich.edu
Supported by NSF GRFP #2241144, NSF CAREER Awards #2339071

and #2337870, and NSF NRI #2220876.

Fig. 1. Contrastive Touch-to-touch Pretraining (CTTP). We learn a
joint embedding between signals from different tactile sensors. The resulting
model learns a touch feature representation that conveys the physical
properties of the touched object that are provided by both sensors, which is
useful pretraining for downstream tasks. The embedding also enables “zero
shot” transfer of downstream touch models from one sensor to another.

performance in tasks such as object classification and pose
estimation.

In this paper, we introduce Contrastive Touch-to-Touch
Pretraining (CTTP), a self-supervised learning framework
that uses paired tactile data to bridge the gap between differ-
ent sensor modalities. Our approach builds on multimodal
contrastive learning frameworks (CLIP [4], MViTac [5],
SSVTP [6], UniTouch [7], CMC [8]) and extends the idea of
contrastive learning to paired tactile data. Unlike prior works
that focus on vision-tactile alignment, our method explicitly
learns a shared latent space across different tactile sensors,
enabling sensor-agnostic touch representations. To the best of
our knowledge, this problem has not been directly addressed
in previous visuo-tactile contrastive learning approaches. We
obtain these paired tactile signals (from GelSlim and Soft
Bubble sensors) from a robot grasping the same object in
the same configuration but with different sensors. In this
framework, paired data acts as positive examples, while
unpaired data serves as negative examples, allowing us to
discover representations that capture meaningful similarities
between disparate sensors. Unlike self-supervised approaches
that rely on reconstruction or task-specific objectives, our
method focuses on preserving the shared information in the
tactile signatures, enabling generalization across sensors. We
show that this shared representation can be used to perform
zero-shot classification and pose estimation across sensors,
providing a scalable solution for integrating heterogeneous
tactile sensors and opening new possibilities for tactile
manipulation systems in real-world applications.



II. RELATED WORKS
A. Representation Learning with Tactile Data

Prior works have been learning tactile representations
using various methods, including aligning with other modal-
ities, particularly vision [9], [7], [10], [11], [12], [13],
[14], [6], [15], [16]. Other work trains using task-specific
supervised learning [17], [18] and masked autoencoding [18].
In contrast, we pair touch signals from two different sensors,
resulting in a representation that captures the information
that is shared between them (rather than what is shared
between vision and touch). This also allows us to directly
transfer models between two touch sensors, which is not
straightforward using these other approaches. Work from the
audio community has successfully learned representations
by performing contrastive learning on data processed in
multiple formats [19], while we perform contrastive learning
on data from two different sensors. While recent work has
shown that generative models can translate between tactile
signals [20], it has not addressed the problem of learning
touch representations using these paired signals.

B. Vision-Based Tactile Sensors

To capture touch signals, vision-based tactile sensors use
cameras that detect deformations of an elastomer layer
installed on the top of it. During recent years, many
vision-based tactile sensors have been introduced, including
GelSight [21], GelSlim [1], [22], Soft Bubble [23], [2],
DIGIT [24], Finger Vision [25], and DenseTact [26]. The
touch signals are represented as either 2D images or 3D depth
maps. We use Soft Bubble and GelSlim sensors in this work.
The Soft Bubble sensor uses a camera-based depth sensor
to capture the deformation of a thin, compliant, and air-
filled membrane when it is warped by external contacts. The
GelSlim sensor uses an RGB camera to measure deforma-
tions of an elastomer. The elastomer is illuminated by LED
lights, and changes in deformations correspond to changes
in the material’s color. We perform pretraining on these two
sensors to show that our CTTP learns useful representations
even on sensors that are largely different in deformations,
compliance, contact areas, and representation.

C. Tasks and Algorithms for Tactile Sensing

Recent works have showcased the usefulness of vision-
based tactile sensors on various tasks, including material
estimation [9], [17], [7], grasping stability prediction [17],
[7], in-hand object pose estimation (e.g., Soft Bubble [27],
GelSlim [28], and DIGIT [29]), local geometry estimation
(e.g., Soft Bubble [27], GelSlim [22], GelSight [17], and
DIGIT [30]), and force field estimation (e.g., Soft Bub-
ble [23], GelSlim [22], Finger Vision [31]). These methods
further improve success on manipulation tasks, such as peg-
in-hole insertion [28], in-hand pivoting [32], and dense
packing [33]. However, all of these methods are tied to
specific tactile sensors. UniTouch [7] and T3 model [18]
tackle this problem by designing a unified model for tactile
sensors, but they require either aligned vision data or an
intensive labelling process (e.g., object class and pose). Our

approach, by contrast, leverages aligned tactile data and does
not require additional labeling.

III. METHOD

In this section, we present the details of our approach for
learning a shared representation across tactile sensors using
contrastive self-supervised learning. First, we describe how
we adapt contrastive learning, which is typically applied in
vision tasks, to train on paired tactile data. Next, we explain
the role of batch size selection in CTTP performance. Finally,
we describe the experimental setup, including the robot and
tactile sensors used and the process for pairing tactile data
across different sensors.

A. Contrastive Learning on Paired Tactile Data

Contrastive learning has emerged as a powerful tool for
self-supervised representation learning across various do-
mains, including vision, language, and multimodal tasks.
In a typical contrastive learning setup, the goal is to learn
an embedding space where similar inputs (positive pairs)
are pulled together and dissimilar inputs (negative pairs)
are pushed apart. For instance, in vision-language models
like CLIP [4], images and text captions are aligned based
on whether they refer to the same scene. Inspired by this
cross-modal alignment, we adopt a similar approach for
tactile data, where we aim to align different tactile sensors
that capture the same object in the same configuration into
a shared latent space, treating these as positive pairs and
pushing apart other signatures.

More formally, for each object we collect tactile signals
from two sensors, and define a positive pair as (t1, t2), where
t1 and t2 are the tactile signals from the two sensors when
grasping the same object in the same configuration. Negative
pairs consist of tactile signals from either sensor that come
from different objects or distinct ways of grasping the same
object. Let z(1)i and z(2)i represent the latent embeddings of
these tactile signals. The objective of contrastive learning
is to learn an embedding function fθ that minimizes the
distance of latent vectors between positive pairs while max-
imizing the distance between negative pairs. Fig.1 shows a
schematic of our method.

We use the InfoNCE loss [34], which is commonly used in
contrastive learning, to encourage the separation of positive
and negative pairs in the embedding space. For each pair of
tactile signals, the loss is computed as:

LNCE =− log
exp

(
sim(z(1)i ,z(2)i )/τ

)
∑

N
j=1 exp

(
sim(z(1)i ,z(1\2)

j )/τ

) , (1)

where sim(·, ·) is the cosine similarity between embeddings:

sim(zi,z j) =
zi · z j

∥zi∥∥z j∥
, (2)

and τ is a temperature parameter that controls the sharpness
of the distribution, and N is the number of negative pairs
in the batch. By optimizing this loss, we maximize the



similarity between the latent representations of positive pairs
(z1,z2), while minimizing the similarity between the anchor
z1 and the negative examples {zn}.

B. Experimental Setup

Our experiments are conducted using a robot equipped
with two pairs of tactile sensors: GelSlim and Soft Bubble
sensors. We observe the robot setup with these tactile sensors
and corresponding tactile signals in Fig. 1. We use a dataset
that was previously collected as part of our prior study,
Touch2Touch [20], where we gathered data from a set of
objects varying in shape and size. Each object is placed in
a fixed position within the robot’s workspace, and the robot
is instructed to grasp the object in different configurations,
capturing both tactile signatures from each sensor as well as
the robot’s pose information.

Data collection is performed independently for each tactile
sensor, and tactile signatures are paired when the same
object is grasped in the same configuration by different
sensors. This pairing allows us to establish positive pairs
for contrastive learning. For negative pairs, we collect data
from different objects or from significantly varied grasp
configurations of the same object. We ensure that the dataset
captures a wide range of tactile signatures across objects and
grasp poses to support the generalization of our model across
varying sensors and novel objects.

C. Default Setting

We use ResNet-50 [35] as the encoder network, and a two
layer MLP projection head to project the representation to a
64-dimensional latent space. We optimize the model using
Adam with a learning rate of 3×10−4, and we train at batch
size 128 for 100 epochs.

IV. EXPERIMENTS AND RESULTS

We evaluate CTTP on two main tasks: (i) tool classifica-
tion and (ii) in-hand pose estimation. We benchmark CTTP’s
performance by testing it against several baselines:

• ImageNet PT: ResNet-50 [35] pretrained on the Ima-
geNet [36] dataset.

• ResNet RI: ResNet-50 with random initialization.
• T3 PT: The T3 [18] architecture pretrained on recon-

struction.
• T3 Class PT: The T3 architecture pretrained on object

classification.
• T3 Pose PT: The T3 architecture pretrained on in-hand

pose estimation.
We emphasize that the final two baselines require labeled

data to learn the latent representation of tactile information,
while CTTP does not. For the T3 baselines requiring labeled
data, we evaluate the latent space learned from the labels on
other downstream tasks to keep evaluation fair. Both of our
downstream tasks require learning predictions from latent
spaces using neural networks. As such, we examine two
training and evaluation datasets for each downstream task:

• Unseen Grasps: We train the classification and in-
hand pose estimation networks on the latent vectors

that represent the original training dataset used to learn
the representations, then evaluate the tasks on latent
vectors that represent grasps which are not seen during
the representation learning nor the downstream task
learning. These grasps are on the same tools used for
representation learning.

• Unseen Tools: We train the classification and in-hand
pose estimation networks on the latent vectors that
represent grasps on tools which were not used for
representation learning, then evaluate the tasks on a
separate set of latent vectors that represent grasps which
are not seen during the representation learning nor the
downstream task learning. These grasps are on the same
tools used for the downstream task learning.

Additionally, we examine two generalization cases:
• Generalization Within Sensor: In this case, the down-

stream tasks are trained on latent vectors that represent
one sensor’s images and then tested using unseen im-
ages from that same sensor.

• Generalization Across Sensors: In this case, down-
stream tasks are trained on latent vectors that rep-
resent one sensor’s images, then tested using images
from the other sensor. We emphasize that CTTP’s high
performance in this case when compared to the other
methods is due to the alignment of the two sensors’
latent representations.

A. Classification

Here, we evaluate our method on the downstream task
of tool classification. We train a single linear layer on the
embeddings generated by each of our baselines and classify
within 9 classes (9 different tools) for unseen grasps and
3 classes (3 different tools) for unseen tools. We train the
model by minimizing the cross-entropy loss between the
ground truth labels and the predicted class probabilities.
For evaluation, we utilize top-1 accuracy by selecting the
class with the highest predicted probability. Fig. 2 shows the
results of CTTP in comparison to the baselines, and Fig. 3
displays the tool classification results for CTTP trained with
different batch sizes.

In Fig. 2, we observe that, with the exception of ResNet
RI, all methods achieve an accuracy above 80%, with CTTP
achieving the highest accuracy. However, when it comes to
generalization across tactile sensors, our results show a sig-
nificant drop in performance for all baselines, approximating
random chance (denoted by a dotted line). In contrast, CTTP
maintains significantly higher performance. Additionally, we
observe that CTTP and ImageNet PT surpass both T3 base-
lines when evaluated on the unseen tools, suggesting higher
tool generalization performance.

Table I presents results on generalization across sensors
using a tool classification downstream task. The classifier
is trained only on embeddings from Soft Bubbles tactile
images and evaluated zero-shot on GelSlims tactile images.
Seen GelSlims means that tactile images from these GelSlim
sensors were included in the training of CTTP, while Unseen
GelSlims indicates that the model was tested on tactile
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Fig. 2. Representation Learning Models Comparison on Classification
Accuracy. We compare CTTP to our baselines on the downstream task of
tool classification. We evaluate their performance in three areas: general-
ization within a single visuo-tactile sensor, generalization across different
visuo-tactile sensors, and generalization to unseen tools. For reference, the
dotted line represents random chance performance.
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Fig. 3. CTTP Batch Size Comparison on Classification Accuracy.
We compare CTTP trained on different batch sizes on the downstream
task of tool classification. We evaluate their performance in three areas:
generalization within a single visuo-tactile sensor, generalization across
different visuo-tactile sensors, and generalization to unseen tools. For
reference, the dotted line represents random chance performance.

images from GelSlim sensors that were not seen during
training. These unseen GelSlim sensors show variations in
manufacturing imperfections, color patterns, gel stiffness,
and dot pattern distribution. For comparison, we report
performance on Soft Bubbles images as an upper bound
and random chance as a lower bound. Overall, the model
generalizes to unseen GelSlim sensors with a small accuracy
drop compared to seen sensors, demonstrating its ability to
learn sensor-agnostic tactile representations.

Fig. 3 shows how training with different batch sizes
impacts CTTP performance. Our final CTTP model uses a
batch size of 128. In Fig. 3, we observe that increasing the
batch size improves classification accuracy, particularly for
generalization within the same sensor. However, performance
significantly drops for generalization across different sensors
when the batch size is increased to 256. When evaluating the
impact of batch size on generalization to unseen tools, we
observe a trend similar to that of generalization to unseen
grasps.

B. In-Hand Pose Estimation

We test the latent space generated by CTTP against
the baselines for the task of estimating the SE(2) in-hand
pose of a grasped object. For all results, a fully-connected
network (two 256-dimensional hidden layers) takes each

2048-dimensional latent vector as input and outputs a 3-
dimensional in-hand pose (y,z,θ). The parameters of this
network are learned by minimizing the MSE between the
estimated and ground-truth in-hand pose. Two separate pre-
dictors were trained to estimate the SE(2) pose for each finger
in the parallel plate gripper.

The unseen grasp results for in-hand pose estimation
can be seen in Table II. When generalizing within the
latent vector-represented sensor, the T3 and ImageNet PT
baselines exhibit similar error magnitudes while our method
outperforms them most significantly in the θ orientation
error, with the majority of errors falling within ±1◦. The
randomly initialized ResNet performed the worst in this case.
When generalizing across sensors, our method outperforms
the other methods in (y,z) translation error and again most
significantly in the θ orientation error, with the majority of
errors falling within ±5◦. The self-supervised T3 PT baseline
performed the worst in this case.

The unseen tools results for in-hand pose estimation can be
seen in Table III. When generalizing within the latent vector-
represented sensor, again, the T3 and ImageNet PT baselines
exhibit similar error margins, and our method outperforms
them in the θ orientation error. In terms of translation error,
testing on unseen tools appears to enhance the performance
advantage of CTTP over other methods, compared to testing
on unseen grasps. The randomly initialized ResNet again
performed the worst. When generalizing across sensors, the
CTTP latent vectors predict the majority of orientation errors
to be within ±5◦, far exceeding the other methods. In
translation, our method maintains the majority of errors to
be within ±3 mm, indicating some ambiguity while still
outperforming all other methods by at least 1 mm. The self-
supervised T3 PT baseline again performed the worst in this
case. The second-best latent representation for in-hand pose
estimation in this case is the T3 Class PT baseline. Thus,
this is the baseline with which we compared the CTTP latent
representation for in-hand pose estimation in the use case of
robotic peg insertion in Section IV-D.

TABLE I
CLASSIFICATION ACCURACY - GENERALIZATION ACROSS SENSORS

Sensor Unseen Grasps (%) Unseen Tools (%)

Random Chance 11.11 33.33
Soft Bubbles 98.00 99.22

Seen GelSlims 85.13 96.09
Unseen Gelslims 79.00 88.28

C. Latent Space Visualization

We used t-SNE (t-distributed Stochastic Neighbor Em-
bedding) [37] to map the 2048-dimensional latent vector
generated by CTTP to a low-dimensional 2D space. In Fig.
4, we present the results of a t-SNE analysis on embeddings
from both seen and unseen tools in our dataset. We conduct
this analysis for CTTP, several baseline models, and CTTP
trained with different batch sizes. This figure illustrates the
structure and relationships between the embeddings.



Fig. 4. TSNE Comparison. we present the results of a t-SNE analysis on embeddings from both seen and unseen tools in our dataset. We conduct this
analysis for CTTP, several baselines models (top), and CTTP trained with different batch sizes (bottom). For this analysis, we focus on visualizing the
structure and relationships between the embeddings, focusing on tool differentiation (gray and pink) and sensor alignment (maize and blue). We consider
the model successful when the t-SNE shows groupings of tools and, at the same time, the sensor colors overlap (sensors are aligned). Our CTTP model
is trained on a batch size of 128 (bottom).

TABLE II
IN-HAND POSE ESTIMATION ERRORS FOR UNSEEN GRASPS

Method y Error (mm) z Error (mm) θ Error (◦)

Generalization Within Sensor

CTTP −0.01±0.21 0.02±0.31 0.03±0.56
T3 Class PT −0.01±0.73 0.01±0.71 −0.04±2.81

T3 PT −0.0±0.42 0.02±0.38 −0.14±2.42
ImageNet PT −0.0±0.72 0.01±0.72 −0.26±3.51

ResNet RI −0.12±1.41 0.06±1.18 −1.69±10.47

Generalization Across Sensors

CTTP −0.03±1.79 0.12±3.32 0.25±4.39
T3 Class PT −0.25±4.38 0.82±3.6 −4.22±18.78

T3 PT −10.26±15.81 −4.66±5.34 −33.87±38.87
ImageNet PT −4.67±6.15 −5.2±4.97 5.85±23.64

ResNet RI −0.36±3.16 −4.9±4.97 −2.8±15.27

To assess each model’s success, we look for two key
features in the t-SNE plot: tool differentiation (represented by
gray and pink) and sensor alignment (represented by maize
and blue). Tool differentiation means that the plot shows
distinct tool groupings, indicating that the model correctly
differentiates between different tools. Sensor alignment, on
the other hand, shows overlapping colors for sensors, indi-
cating that the model effectively aligns the sensors and that
the latent space is sensor agnostic.

A successful model will display clear clusters for each tool
and overlapping sensor colors within each cluster, showing

TABLE III
IN-HAND POSE ESTIMATION ERRORS FOR UNSEEN TOOLS

Method y Error (mm) z Error (mm) θ Error (◦)

Generalization Within Sensor

CTTP 0.01±0.24 0.0±0.09 −0.01±0.34
T3 Class PT 0.04±1.02 0.01±0.65 −0.1±3.13

T3 PT −0.02±0.59 −0.01±0.28 −0.03±2.34
ImageNet PT −0.02±0.86 0.01±0.59 −0.1±2.5

ResNet RI 0.08±1.2 0.04±0.57 0.23±5.85

Generalization Across Sensors

CTTP 0.23±2.79 −0.17±2.41 −0.01±4.39
T3 Class PT −0.95±5.71 0.45±3.57 −2.67±18.47

T3 PT 1.8±14.12 −2.52±5.76 19.04±27.54
ImageNet PT 0.3±3.34 −2.05±3.44 −1.84±21.82

ResNet RI 2.1±5.35 −5.27±6.83 1.68±22.79

that tools are distinguished and the sensor data is aligned.
The top of Fig.4 shows the t-SNE representations com-

paring CTTP and our baselines. We observe that, with the
exception of ResNet RI, all models are able to differentiate
between tools, with CTTP showing larger and more unified
clusters per tool. For sensor distribution, the t-SNE projection
shows that the baselines maintain a separation between Soft
Bubbles and GelSlims regions. In contrast, CTTP has high
overlaps between these regions. This outcome is desirable
because our goal is to align the sensors and create an
embedding space that clearly differentiates tools while being



agnostic to sensor-specific differences.
The bottom of Fig.4 shows how CTTP embedding space

varies with batch size. As batch size increases, tool class
differentiation improves, but sensor alignment decreases.
D. Insertion Task

We leverage our classification and in-hand pose estimation
models to perform a peg insertion task, and compare the
performance of CTTP-generated latent spaces against those
generated by T3 for this purpose. The robot setup is shown
in Fig. 5. The insertion task consists of four stages: handoff,
classification, reorientation, and insertion. First, the robot
is handed an unknown tool at an unknown pose. Second,
using the classification model discussed in Section IV-A, the
robot identifies the tool, and selects the correct hole for peg
insertion. Third, the robot determines the in-hand pose of
the tool and reorients it to align with the hole, preparing
for placement. Finally, the robot inserts the tool into the
corresponding hole.

For this insertion task, we are interested in cross-sensor
generalization, and thus test the class and in-hand pose
predictors that were trained on Soft Bubble latent vectors,
while our testing setup uses GelSlims. In this experiment,
we compare the performance of CTTP and T3, and use
T3 Pose PT as the pretraining model for the classification
stage and T3 Class PT as the pretraining model for the
pose estimation stage. This ensures a fair comparison in
which the task had not been seen during pretraining. We
performed these experiments with three unseen tools that
were not used during pretraining. The results of these real
robot experiments are shown in Fig. 5, showing that our
CTTP-derived latent vectors lead to a much higher insertion
success rate (18) than the second-best representations from
T3 (5). In online classification, the CTTP-derived latent
space correctly identified the tool 28/30 times, compared to
the T3 Pose PT with only 18/30 times.

V. DISCUSSION

In this paper, we showed that we can obtain useful
tactile representations by learning a joint embedding between
the signals of different touch sensors. This representation
performs well on downstream touch understanding tasks, and
it allows us to transfer touch models trained on one sensor
to another, in contrast to other tactile embedding methods
lacking this ability. Our work opens two new directions. The
first is studying the merits of cross-modal touch supervision,
and how it relates to other supervisory signals, such as vision
and touch. The second is developing new contrastive learning
models and augmentation strategies.
Limitations. We conducted our experiments on two types
of tactile sensors, GelSlim and Soft Bubble sensors, as
they are commonly used in robotics and have very different
form factors. Further experiments have yet to reveal whether
aligning the latent spaces of more than two tactile sensors
would improve CTTP generalization.
Extrapolations. Fig. 4 shows CTTP to be the only method
where latent vectors from both sensors are thoroughly mixed
throughout the latent space, a finding which agrees with

Fig. 5. Insertion Task. We use our representation to perform peg insertion
tasks using both tool classification and in-hand pose estimation. a) Our
testing setup using each of the three unseen tools and corresponding holes.
After handing the tool to the robot, classification occurs which allows
the robot to select the correct hole. b) The CTTP-generated latent space
performs far better in cross-sensor task transfer.

the performance of CTTP on cross-sensor model training
and downstream tasks we show in Section IV. Additionally,
increasing the batch size of CTTP to 256 causes the sensors
to lose alignment in the latent space. This is likely because
the batch size controls the ratio of negative to positive
samples in the contrastive learning process. The number of
negative samples increases with batch size while the positive
samples remain the same. Thus, we recommend a batch size
of 128 for training CTTP.

It seems all methods generate a latent representation
which performs similarly on downstream tasks, regardless
if that task is learned on the tools which trained the latent
representation or not. The unseen tools and unseen grasps
train/test dataset configurations yielded similar results in both
classification and in-hand pose estimation. While our method
does outperform others in within-sensor generalization, the
real strength of CTTP is in across-sensor generalization. No
other method exceeded random choice for across-sensor clas-
sification. In across-sensor in-hand pose estimation, CTTP is
the only method which yields a usable range of orientation
errors. We demonstrated that a pretrained CTTP model
enables using a labeled dataset from one tactile sensor to per-
form manipulation tasks with a different sensor. Recent work,
Sparsh [38], has explored self-supervised learning on large-
scale tactile datasets. Their approach learns general-purpose
tactile representations across multiple sensors, complement-
ing our focus on direct sensor-to-sensor representation learn-
ing. Future work could investigate how contrastive learning
and large-scale pretraining strategies can be combined to
enhance cross-sensor generalization. As increasing diversity
in available tactile sensing in turn increases diversity in
datasets and algorithms, CTTP can help ensure that progress
made in one tactile laboratory is progress made in another.
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