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Abstract

Learning to defer (L2D) aims to optimize human-AT collaboration by allocating prediction
tasks to either a machine learning model or a human expert, depending on which is most
likely to be correct. This allocation decision is governed by a rejector: a meta-model that
routes inputs based on estimated success probabilities. In practice, a poorly fit or otherwise
misspecified rejector can jeopardize the entire L2D workflow due to its crucial role in allo-
cating prediction tasks. In this work, we perform uncertainty quantification for the rejector.
We use conformal prediction to allow the rejector to output prediction sets or intervals in-
stead of just the binary outcome of ‘defer’ or not. On tasks ranging from image to hate
speech classification, we demonstrate that the uncertainty in the rejector translates to safer
decisions via two forms of selective prediction.

1 Introduction

Learning-to-Defer (L2D) (Madras et al.,|2018; Mozannar & Sontag), [2020) is a framework for human-AT col-
laboration that divides responsibility between machine and human decision makers. For every test instance,
a ‘rejector’ function decides if the case should be passed to either a human or model (but not both). The
rejector can be seen as a meta-classifier that determines how to assign responsibility based on which decision
maker (human or machine) is more likely to make the correct prediction. L2D systems offer the promise of
improved safety and robustness by having a human available for support. Yet this promise critically depends
on the rejector’s performance. Being a predictive model itself, the rejector is susceptible to the usual failure
modes, such as distribution shift between training and test data and label noise. Yet, unlike with traditional
predictive models, there is an extra point of failure in that the distribution of the human’s predictions can
also shift (Tailor et al., 2024).

In this paper, we perform principled uncertainty quantification (UQ) for the rejector sub-component of 12D
systems. Specifically, we use the framework of conformal prediction (CP) (Vovk et al., |2022) to allow the
rejector to output sets or intervals, instead of just a binary outcome (defer or not). This allows the rejector
to express its uncertainty about whether the human or machine should be assigned to make the decision. In
turn, this unlocks new abilities for the L2D system. For example, if the rejector is unsure about to whom
responsibility should be assigned, the system can simply abstain from making any prediction. As a concrete
example, consider automated diagnosis of skin lesions. For each dermoscopic image, our L2D system either
outputs a prediction or abstains, depending on if the allocation decision was sufficiently certain. In the
latter case, a clinician could request further information such as running additional lab tests or biopsies
before making the final decision. Alternatively, an uncertain rejector could mean that we should query both
the human and model for their predictions. If the human and model agree on their prediction, then this is
a good indication that that prediction is reliable (& la ensembling).
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We explore these novel L2D workflows in experiments on tasks ranging from image to hate speech classifica-
tion. We find that introducing UQ into L2D allows safe alternative behaviors (e.g. abstention or consensus
checking, as mentioned above) that prevent the L2D system from otherwise returning the wrong prediction.
We also study various L2D learning objectives, parameterizations, and CP formulations, finding that the
one-vs-all parameterization tends to result in better downstream performance (e.g. accuracy) but at the cost
of sometimes having too small of uncertainty sets and in turn under-covering the true label. In summary,
we make the following contributions{T]

o Distribution-Free UQ for L2D Allocation (Sections [3|-|3.1)): We are the first to formulate a UQ
problem for the L2D deferral decision. Moreover, we are the first to apply conformal prediction to the
rejector sub-model of L2D, providing distribution-free coverage guarantees on expert correctness.

e Novel L2D Workflows (Section - : We propose four novel, alternative workflows for L2D
that operate via (i) abstention, (ii) checking for consensus between expert and model predictions, (iii)
preferring to query the model when the human is uncertain (for cost saving), and (iv) preferring to query
the human under distribution shift.

2 Background

We first review the necessary background information on L.2D and conformal prediction.

2.1 Learning to Defer

Setting, Data, and Model We focus on multiclass L2D (with one expert) (Madras et al.,|2018; Mozannar
& Sontag, [2020), though the ideas presented can straightforwardly generalize to L2D-based regression (Zaoui
et al., 2020). Let X denote the feature space and ) the label space, a categorical encoding of K € N=2
classes. Let x, € & denote a feature vector, and y,, € J denotes the associated class index. L2D assumes
that we have access to human predictions, denoted m,, € ) for the associated feature vector x,,. The
training data then includes the features, the true label, and the human’s prediction: D = {x,,, Y, M 1.
The human is assumed to be skilled at the prediction task but is not an oracle. For example, the feature
vector could be a medical image, m,, is the expert’s diagnosis from looking at the image, and y, is a true
label that can only be obtained from a biopsy. L2D also assumes that the human has access to background
knowledge that the classifier does not, such as years of medical training in the aforementioned example. The
L2D framework requires two sub-models: a classifier and a rejector (Cortes et al., [2016bga). We denote the
classifier as h : X — Y and the rejector as r : X — {0,1}. When r(x) = 0, the classifier makes the decision,
and when r(x) = 1, the classifier abstains and defers the decision to the human. Thus the rejector can be
thought of as a ‘meta-classifier,” predicting which predictor would most likely be correct in its prediction.

Learning Learning in L2D requires us to fit both the rejector and classifier. We assume that whoever
makes the prediction—model or human—incurs a loss of zero (correct) or one (incorrect). Using the rejector
to toggle between the human and model, we have the overall classifier-rejector loss:

Lo-1(hyr) = Bxyun|(1=7(x)) - T[A(x) # ] + r(x) - Tm # y] | (1)

where I[h(x) # y] denotes an indicator function that the model prediction does not match the label and
I[m # y] denotes another indicator function that the human prediction does not match the label. Minimizing
this loss results in the Bayes optimal classifier and rejector:

h*(x) = argmax P(y = y|x), r(x) = I|P(m =ylz) > maxP(y = yaz)} (2)
yeY yeY

where P(y|x) is the probability of the label under the data generating process and P(m = y|z) is the

probability that the expert is correct. The assumption that the expert has additional knowledge is what

allows them to possibly outperform the Bayes optimal classifier.

1 An abbreviated version of this paper appeared in the non-archival proceedings of the NeurIPS 2024 Workshop on Bayesian
Decision-Making and Uncertainty.



Published in Transactions on Machine Learning Research (02/2026)

Surrogate Losses Several consistent surrogate losses have been proposed for Equation (1| (Mozannar &
Sontag), [2020; Verma & Nalisnick] [2022; Mao et al., |2024c;b} [Cao et all [2023; (Charusaie et al., 2022)). For
our implementation, we focus on the two surrogates that have demonstrated the ability to learn calibrated
predictors in practice since the more calibrated the predictor, the better the conformal prediction results
will be. Specifically, we use [Verma & Nalisnick| (2022)’s one-vs-all (OvA) parameterization and |Cao et al.
(2023)’s asymmetric softmax (A-SM) parameterization. These parameterizations assume the classifier and
rejector are unified via an augmented label space: Y+ = Y U { L}, where 1 denotes the rejection option.
Then let g : X — R for k € [1, K| where k denotes the class index, and let gx+1 : X — R denote the
rejection (L) option. The ¢ functions are analogous to the logits of a neural-network-based classifier. The
OvVA surrogate loss is given as (Verma & Nalisnick, [2022):

Yovalgr, - gr i1, y,m) = Glgy(@)]+ Y bl-gy(@)] + dl—gx41(z)]
Y eV Fy (3)

+1[m =y]- (blgx+1(x)] — dl=gK+1(2)])
where ¢ : {£1} x R — R, is a binary surrogate loss. For instance, when ¢ is the logistic loss, we have
d[f ()] = log(1 + exp{—f(x)}).
The A-SM surrogate loss is defined as follows (Cao et al., [2023):

Yasm(gr, - 9rx+152,y,m) = —logbasm(g(x),y) —I[m #y] -log (1 — da-sm(g(x), K +1))

—I[m =y|-logpasm(g(z), K +1) “

exp{gy(z)} if y#K+1
S explay @) |
where ¢a-sm(g(x),y) = v yeXp{gKH(m)} otherwise

K+1
y’:l exp{gy (z)} — maxy ey exp{gy (x)}

Here, the ‘asymmetry’ is due to the softmax having different terms in the denominator for the class and rejec-
tor terms. The symmetric softmax parameterization (Mozannar & Sontag), 2020) has the same denominator
for both terms, which leads to issues for estimating the expert’s correctness probability in practice (Verma
& Nalisnick] 2022; |Cao et al., [2023)). For both parameterizations, at test time, the classifier is obtained by
taking the maximum over g functions: § = h(z) = argmax, ¢ x) gy (z). The rejector is implemented as:
r(@) = I[gr41(x) = maxy ey gy (2)].

Expert Correctness Both the OvA and A-SM parameterizations compute the probability that the expert
is correct. For the OvA parameterization, this probability is directly parameterized by the (K + 1)th binary

classifier: .

= T op( g @) )

A-SM similarly uses the deferral score, but here the parameterization requires evaluating all K + 1 functions:

p(m = y[x) = dova [9x+1(X)]

eXp{gK+1($)} (6)

H(m = vix) = da. xz), K+1)= '
P = ¥) = asmlgle) K1) = e ) — masy cy explgy (@)

Both estimators have been shown to be competitively calibrated when trained by empirical risk minimization
and without relying upon post-hoc procedures such as temperature scaling (though they could be employed
as well) (Cao et al., 2023).

2.2 Conformal Prediction

Conformal prediction (CP) is a model-agnostic, distribution-free approach to uncertainty quantification with
finite-sample guarantees (Shafer & Vovkl |2008;|Angelopoulos & Bates|, 2023)). Given a test-time feature vector
xXn+1, CP seeks to construct a prediction set C'(xy41;T) € Y such that the true label y,  is included with
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probability 1 —a: P (YN+1 € C(xn+1; T)) >1—aq, for a € [0,1]. Tis a parameter that controls the set size,
as will be described below. This statement is a marginal guarantee, meaning that it will hold, on average,
over test samples but will not necessarily hold for any particular sample. CP’s aforementioned guarantee is
built off the crucial assumption that the test data is drawn exchangeably with a calibration set.

To compute the parameter T that controls the prediction sets, the split-CP (a.k.a. inductive CP) algorithm
(Papadopoulos et al.l 2002)) is a popular choice due to its computational and sample efficiency (Fang &
Bellotti, 2024]) and resemblance to the traditional workflow of hyperparameter tuning. Split-CP requires T
be fit to a held-out calibration set Dy, which must be drawn exchangeably with the test set for the CP coverage
guarantee to hold. Given a classifier already trained on the training set Dj, its estimated class probabilities
are denoted f(x) = [f1(x),..., fx(x)]. CP then requires a score function be chosen that quantifies how well
the model’s prediction conforms to the true label’s. Using the softmax confidence associated with the true
label is a reasonable choice: s(x,y; f) = 1 — fy(x), where f, (x) is the estimated score for the true label.
Others exist that incorporate all dimensions that have higher confidence than the true label (Romano et al.,
2020). Split-CP then proceeds by evaluating s (x,y; f) on all points in the held-out set and setting 7 to be
the (1 — «) quantile (with a finite-sample correction) of the empirical distribution of scores. For a test time
point xx 41, the prediction set is constructed as:

Clxny1) = {7 | filkwyr) 21171},

which represents the softmax dimensions that outscore the threshold 1 — 7. CP is commonly evaluated by
checking that the desired coverage level is achieved in practice while also having efficient set sizes. The latter
is crucial since the CP guarantee is trivially met by choosing C(xy41;7T) = Y for (1 — @)% of test cases.

3 Uncertain Deferral via Conformal Prediction

We will now apply the CP framework to quantify the uncertainty in the rejector sub-component of an L2D
system. Concretely, instead of just outputting 0 (model) or 1 (human), we want the CP-based rejector
to output a set C, (x;T), which is an element of the superset {{0},{1},{0,1}}. C,(x;7t) = {0,1} means
that the rejector is unsure if the decision should be allocated to the human or model. Thus, instead of
prediction sets, we call the uncertainty set of the rejector a deferral set. In Section [3.2] we will discuss how
to incorporate these sets into downstream decision making.

Ideal Construction Recalling the Bayes optimal decision rule for the rejector (Equation , it would be
ideal if C; (x;T) could satisfy the guarantee:

P(T* (XN+1) e C, (XN+1;T)> > 1—a,

which means that, marginally, the probability that the output of the Bayes optimal rejector is in the set is
at least 1 — . Constructing an adaptive set via validation statistics, unfortunately, requires that we be able
to compare P(m = y|x) vs P(y|x) to compute a non-conformity score. This comparison requires high-fidelity
estimates of two conditional probabilities, and obtaining estimates of such one-off events is known to be
impossible (Roth et al., 2023). The only work-around is if we observe multiple samples of both the label
y and expert prediction m (Johnson et al., [2024), which would only drastically increase the already high
supervision burden of L2D. Thus, we leave this construction as an open problem and turn to a more practical
alternative below.

Practical Construction We instead consider constructing the set to capture an alternative quantity:
I [m N+1=YN +1] , an indicator function representing if the human will make the correct prediction. Similarly,
we wish to construct prediction sets such that this binary variable will have a coverage guarantee:

]P(H [HlN+1 = YN-i-l} e C, (XN+1;T)) >1—a. (7)

This statement is not equivalent to the one above since the expert could be correct (i.e. I [m N+1=Y¥nN +1] =
1) but P(y|x) still be a better predictive model (i.e. r*(x) = 0). In other words, this formulation is considering
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the expert’s performance in isolation of the classifier’s. However, the high-level semantics are retained since
Cy (xn4+1;7) = {0} means that the expert will likely be wrong and so using the classifier is either a good
decision or not an inferior one (if the model would also be wrong). Conversely, C, (xny4+1;T) = {1} means
that the expert will likely make the correction prediction. If C, (xy+1;T) = {0,1}, then the prediction set
is unsure if the expert will be correct and still suggests uncertainty in the deferral decision. This relaxation,
importantly, allows us to define a practical conformity statistic. Prior work has demonstrated that this
practical construction—estimating expert correctness—can be properly calibrated and effectively correlates
with the expert’s superiority over the classifier (Verma & Nalisnick] 2022).

3.1 Constructing Deferral Sets

We can construct deferral sets that follow the guarantee in Equation [7] by treating the deferral decision as a
binary classification problem: whether the expert will make the correct prediction or not. Following CP as
it is usually applied to binary classification, we construct the conformity score using the binary probabilities
given in Equation [§] for OvA and Equation [6] for A-SM. To obtain the threshold 7, we follow the standard
procedure of split-CP by computing these non-conformity scores on a held-out calibration set (Angelopoulos
& Bates, 2023)), obtaining the (1 — «) empirical quantile, and applying the threshold at test time as follows:

O} i 1-pm=yx) >1-7
Cr(x7) = {1} if pm=ylx) =17 (8)
{0,1} otherwise.

The set C,. (x;7) should satisfy the coverage guarantee given in Equation [7} assuming the usual assumptions
of CP hold, such as exchangeability between calibration and test data.

3.2 Using Deferral Sets in Decision Making

Now that we have detailed how to construct CP deferral sets, we next address how to use them to improve
decision making within the L2D framework. While there are surely alternative uses, below we detail three
that we believe will be practical and useful in a variety of applications.

Abstention The use that likely first comes to mind is prediction with the option to abstain (Chowl, (1957}
Cordella et al.} 1995 Herbei & Wegkamp), 2006; Hellman, [1970; |Geifman & El-Yaniv} 2017)). In the traditional
case, the classifier only makes a prediction if it is confident; otherwise, it abstains since the consequences of
being wrong outweigh the consequences of providing no prediction. This is often appropriate for applications
in healthcare: it is better to wait and perform more tests, seek out more opinions, etc. than to give a patient
a wrong diagnosis. Our CP deferral sets allow for a similar workflow, but instead of abstaining because
the prediction is uncertain, the L2D system will abstain because it is uncertain about to whom to allocate
responsibility, the machine or human. Specifically, if C,. (xn41;7) = {0, 1}, then the L2D system will abstain.
Otherwise, the system will defer if r*(x) = 1. A visualization of this workflow is shown in Figure As is
typically the case with abstention methods, we expect this workflow to improve the system accuracy at the
cost of reducing coverage.

Consensus Prediction We next consider how to make a prediction even if C, (zny41;7) = {0,1}. If the
rejector is uncertain to defer or not, we propose querying both the model and human for their predictions.
If they agree, then that consensus prediction is output as the L2D system’s final prediction. If they do
not agree, then the system abstains from making any prediction. This workflow has the same appeal to
safety as the abstention-only option, but it will have higher coverage since it will make predictions when the
abstention-only workflow would not. This workflow is diagrammed in Figure We expect this workflow
to perform similarly as abstention but with increased coverage, since it can still make predictions even when
the deferral set is of maximum size.

Human-Preferred Prediction under Distribution Shift We consider cases in which intuition leads us
to believe the human is a more robust predictor than the model. Consider the task of image classifier under
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features features

(a) Abstention (b) Consensus Prediction

Figure 1: L2D Decision Making Workflows. Subfigure (a) shows that the L2D system will abstain if the rejector is
uncertain. Subfigure (b) shows the alternative workflow in which, if the rejector is uncertain, the system will check
for consensus between the expert and model predictions and abstain otherwise.

covariate shift caused by corruption noise (Ovadia et al.| [2019). Even low-levels of noise can cause modern
classifiers to start to fail, but a human can often be robust to similar noise. Another example of such human
superiority is the case of adversarial examples, which by definition do not fool humans but fool a classifier.
To cover such cases in which safety concerns dictate that the human should have priority, we call our third
workflow ‘human-preferred prediction. This means that if C,. (xn41;7) = {0, 1}, the L2D system will still
query and return the human’s prediction as the final output, despite the uncertainty. In this case, we are
not using the deferral set in the same way as the previous two workflows since covariate shift is assumed to
be happening. This shift violates the core assumptions of CP, invalidating the coverage guarantee.

3.3 Constructing and Using Deferral Intervals

Rather than producing a prediction set for the binary classifier (Section , we can instead consider an
uncertainty interval for the rejector’s confidence itself. This would result in the uncertainty interval of the
form [b;(x), b,-(x)], such that the conditional endpoints satisfy b;(x) € [0,1), b,.(x) € (0, 1], and b;(x) < b,.(x).
The coverage guarantee would then be P (P(m = y|x) € [b;(x), br(x)]) > 1 —c, where a € [0, 1] again controls
the nominal coverage. provides an algorithm to compute this interval in practice. Their
algorithm can be applied straightforwardly to this case.

Moving on to decision-making, the deferral interval can be used the same way as the deferral set, as outlined
in Section [3:2] The only change is that instead of, for example, abstaining when the set is of size two, here
we need to specify a certain width that, when exceeded, triggers abstention. One possibility is to simply
abstain if the interval is on both sides of 50% (i.e. 0.5 € [b;(x), b-(x)]) and to not abstain when the interval
is contained on one side (i.e. 0.5 < b;(x) or 0.5 > b,.(x)).

Yet unlike with deferral sets, this interval allows for a deferral decision that is close to traditional L2D
but can be made more robust. Instead of just comparing the point estimates of the rejector and classifier
confidences, we can use the interval and only defer when we are very sure that the human is more likely to
be correct than the classifier: defer if b;(x) > max,cy p(y = y|x). Doing so will ostensibly save in expert
queries since the system will only call the expert when they clearly improves upon the classifier.

Model-Preferred Prediction for Cost Saving While the abstention and consensus prediction work-
flows in Section [3.2 apply likewise to deferral intervals, we propose an additional workflow, model-preferred
prediction. When the uncertainty interval is [0, 1], we are unsure if the expert will be correct, and since
experts usually require some expense to query, then we may want to query the expert only when we are sure
they will be correct. Otherwise, the 2D system may have just as an acceptable an outcome querying the
model, which often requires a negligible cost to query. We expect this workflow to increase the classifier’s
coverage while not substantially decreasing overall system accuracy.

In preliminary experiments, we found deferral intervals improved allocation calibration (ECE 5.86 — 5.17).
However, the intervals were often too wide to support informative routing decisions at the desired coverage
level. This reflects a known calibration—efficiency trade-off in conformal inference: marginal coverage is
enforced by inflating interval size (Angelopoulos & Bates|, [2023} [Barber et al [2023)), especially with split
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calibration and limited signal, which can yield intervals that are decision-agnostic (e.g., near [0, 1]) and thus
uninformative for cost-aware thresholds. We therefore defer these results to Appendix [C]

4 Related Work

The L2D framework (Madras et al.l 2018 along with its precursors (Chowl, |1957; Bartlett & Wegkamp) [2008}
[Yuan & Wegkamp, [2010; (Cortes et al. 2016b)) have received much attention of late due to their potential
to improve safety via semi-automation (Raghu et al.l 2019). The majority of such attention has focused
on L2D’s learning objective (Mozannar & Sontag, 2020; Verma & Nalisnick, 2022} [Mao et all [2024cib}
Cao et all 2023; [Charusaie et al., [2022) and its extension to multiple experts (Verma et al., [2023; Maol
et al., [2024a; Keswani et al., |2021; Hemmer et al., [2022)). Only two works have previously considered the
uncertainty estimation abilities of the rejector sub-component, with |[Verma & Nalisnick! (2022)) first observing
the aforementioned pathologies of the symmetric softmax parameterization and |Cao et al.| (2023) proposing
the asymmetric softmax as a remedy. |Liu et al.| (2022)) employed ensembling to estimate the classifier’s
uncertainty and used this to inform the deferral decision, but their approach does not model the expert’s
abilities nor represent the expert’s uncertainty.

Conformal Prediction for L2D CP has previously been incorporated into L2D and related frameworks.
[Straitouri et al| (2023 and Babbar et al| (2022)) both proposed performing CP for a classifier and then
passing the set to a human to choose the label that will be the final prediction. Yet like the aforementioned
approach by , the classifier’s uncertainty is being quantified, not the human’s, which is the
focus of our methodology. The work of [Verma et al.| (2023) is more related: they apply CP to multi-expert
L2D to quantify the uncertainty in who is the best expert of the multiple available. Their coverage guarantee
is formulated with the goal of including this best expert in the set. Our approach could be applied to
multi-expert L2D, but it would construct a deferral set per expert, not across experts as they do.

Large Language Models using Conformal Prediction for Deferral With the rapid adoption of Large
Language Models (LLMs), conformal prediction has become a vital tool for safety, alignment and model
routing. Several concurrent approaches design conformal prediction with LLMs to mitigate hallucinations
on various tasks (Quach et al., [2024; |Cherian et all, [2024; [Huang et al., 2025). |Su et al.| (2025) introduced
an uncertainty-aware router that defers hard samples from a weak LLM to a strong reasoning model based
on conformal set sizes. However, this work is not done for the L2D framework.

5 Experiments

We now experimentally demonstrate that incorporating uncertainty via CP into the deferral decision can
have tangible benefits to the safety and robustness of L2D systems. Our experiments follow closely the setup
in previous works on L2D (Mozannar et al., [2023} [Verma et al., 2023; |Cao et all 2023) while introducing
uncertainty quantification for the rejector. We trained L2D models using the OvA and A-SM surrogate losses.
Taking this base L2D model, we then apply the CP procedure described in Section [3] Our implementations
are publicly available at https://github.com/yizirui/conformal_L2D. See the supplementary materials
for additional details, including training hyperparameters and backbone architectures.

Datasets We utilize three datasets tailored to different tasks: CIFAR-10 (Krizhevsky} 2009) for image
classification, HAM10000 (Tschandl et al., [2018) for skin lesion diagnosis, and Hate Speech (Davidson et al.,
for hate speech detection. The CIFAR-10 dataset comprises 60,000 instances, divided into training,
calibration, and test sets at 70%, 10%, and 20%, respectively. Similarly, Hate Speech contains 25,000
instances, split into the same proportions. The HAM10000 with 10,015 dermatoscopic images, is divided into
60% training, 20% calibration, and 20% test splits.

Models and Experts We follow previous work’s L2D experimental settings (Mozannar et all [2023;
[Verma & Nalisnick), {2022} [Verma et al., |2023)), including their choice of base model backbones and expert
simulations. We apply a three-layer convolutional neural network (CNN) for CIFAR-10, a 34-layer residual
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network (ResNet34) for HAM10000, and a linear network and SBERT embedding (Reimers & Gurevychl
2019) for Hate Speech. Expert simulations mirror [Mozannar et al.| (2023): on CIFAR-10, an oracle predicts
perfectly on the first k=6 classes and uniformly at random on the remaining (10—k); on Hate Speech, we
use a stochastic “random-annotator” baseline; on HAM10000, an MLP-Mixer trained on meta-data emulates
an expert with contextual information beyond pixels (Tolstikhin et al.| 2021)).

Table 1: Coverage and Efficiency. We report mean and standard deviation of the empirical coverage and
the average size of the deferral set for a confidence level of 1 — a = 90%.

Dataset Parameterization  Coverage (%) Average Set Size
OvA 86.94 £+ 0.86 1.07 £ 0.03
CIFAR-10 A-SM 90.53 + 0.56  1.37 + 0.01
OvA 90.65 £ 0.63 1.25 £ 0.01
HAM10000 A-SM 91.13 £ 0.58 1.28 + 0.03
HateSpeech OvA 90.35 £ 0.53 1.03 £ 0.03
P A-SM 90.67 £ 0.52 1.01 £ 0.01

5.1 Coverage and Efficiency

We first experimentally verify that the target coverage is met, validating CP’s guarantee (Equation . In
Table [T, we report the empirical coverage and average set size for the three aforementioned datasets. Both
parameterizations meet the target coverage level (90%) for all datasets except for OvA on CIFAR-10 (~ 87%).
In all cases, the sets are quite efficient, with the average set size always being less than 1.3. The exceptionally
small set size of 1.07 for OvA on CIFAR-10 leads to its mis-coverage. We suspect the mis-coverage is due to
(natural) train-test distribution shift.

5.2 Learning to Defer with Abstention and Consensus Prediction

We next investigate the efficacy of the abstention and consensus decision-making workflows presented in
Section [3:2] Table [2] reports the system accuracy, ratio of test points deferred, and the coverage of the
system (i.e. the fraction of points for which the system does not abstain) again for CIFAR-10, Hate Speech,
and HAM10000. We see that both OvA and A-SM improve upon the system accuracy of the base L2D model
for CIFAR-10 and HAM10000, with improvements ranging from 2 to 5 percentage points (in absolute terms).
However, the coverage reduction is variable, ranging from modest (—8 percentage points) to substantial
(—38 percentage points), meaning that the system accuracy improvement would be practical in some cases
(e.g. OvA for CIFAR-10) and not in others (e.g. A-SM for CIFAR-10). On Hate Speech, abstention occurred
for very few points, leading to uninteresting system accuracy results. We do not see a clear superiority
between the parameterizations.

Table [2| highlights the ‘safety-availability’ trade-off inherent to conformal L2D. This drop implies a ‘routing
ambiguity’ where the rejector cannot confidently distinguish between expert and model capability. The
consensus prediction workflow demonstrates how we can recover some of this lost coverage. By querying
both model and human when the rejector is uncertain, we increase coverage significantly (e.g., 67.57% for
CIFAR-10 A-SM) while maintaining comparable system accuracy.

5.3 Learning to Defer under Covariate Shift

To evaluate three workflows under covariate shift, we induce out-of-distribution (OOD) shift with a six-level
severity index (1-6), where levels 1-5 increase smoothly. We then define level 6 as the extreme-shift condition
across all datasets. The transition from level 5 to 6 represents a markedly larger distributional change than
the preceding increments. On CIFAR-10, we utilized the brightness corruption subset of CIFAR-10-C for
severity levels 1 to 5 and use SVHN at level 6 to induce a semantic shift. For HAM10000, we compose two
image corruptions with severity-controlled parameters: (i) masking with fraction p growing from 10% to
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Table 2: Abstention and Consensus Prediction. We report mean and standard deviation of system accuracy,
fraction of points deferred, and test-set coverage.

Parameterization Method System Accuracy Fraction Deferred System Coverage
Base Model 84.71 £+ 0.46 55.26 £+ 1.76 100
= OvA Abstention 86.72 £+ 1.02 56.41 £ 2.30 92.14 £+ 0.48
o Consensus 86.79 + 1.07 56.38 + 2.31 93.32 £+ 0.52
§ Base Model 84.01 £+ 045 56.63 + 3.73 100
O A-SM Abstention 87.05 + 0.76 84.13 £ 4.56 62.53 £ 0.75
Consensus 87.58 + 0.61 79.62 £+ 4.31 67.57 £ 0.75
Base Model 82.1 £ 0.49 33.71 £ 2.39 100
§ OvA Abstention 87.48 + 0.51 3591 + 2.84 7523 + 1.40
S Consensus 85.72 £+ 0.63 3427 + 2.52 88.39 + 1.85
= Base Model 78.92 + 0.29 26.68 + 3.07 100
é A-SM Abstention 87.05 + 0.87 28.11 £+ 3.45 72.82 £ 1.19
Consensus 84.76 £+ 0.44 2749 + 3.16 84.48 £+ 0.95
~ Base Model 92.09 £+ 0.07 42.41 + 0.99 100
g OvA Abstention 92.28 + 0.14 42.48 + 0.96 99.38 + 0.43
;.:i Consensus 92.25 + 0.13 42.42 £+ 0.96 99.78 £+ 0.22
© Base Model 91.82 £+ 0.32 67.91 + 1.76 100
§ A-SM Abstention 91.88 + 0.15 67.79 £ 1.74 99.16 £ 0.75
Consensus 91.88 + 0.12 67.81 £ 1.73 99.65 £+ 0.28

50% at level 5 and 80% at level 6, and (ii) Gaussian blur with kernel size increasing from 3x3 to 13x13 and
their standard deviation o from 0 to 4 at level 5 then 6 at level 6. For HateSpeech, we perturb embeddings
with adversarial noise injection (Wei & Zoul [2019; [Donahue et al.l [2017): progressively from level 1 to 5
(i) dimension masking with ratio r € [5%, 25%], (ii) additive jitter with standard deviation increasing from
~ 2% to = 10%, and (iii) simple token-inspired edits with rates up to 25%. Level 6 constitutes an extreme
step: r = 40%, jitter ~ 15%, and edit rates ~ 40%. Here, we include additional baselines that test other
uncertainty methods (deep ensembling) and if the held-out data we use for split-CP could be better used for
finetuning. We detail these additional method variants below.

Original & Original A-SM We built our original models with OvA surrogate (Verma et al., 2023|) and
with A-SM surrogate (Cao et al., 2023)) on dataset without shift.

Conformal Following Section [3] we calibrate the rejector with split-CP on a calibration set from the non-
shifted dataset to compute the threshold 7.

Conformal 4+ Shifted D., While the above conformal method does not fit to the target distribution, a
subset from the target distribution is expected to calibrate the system to target distribution in computing
in Section 3l

Finetuned on Shift (Baseline) We perform a finetuning to see how L2D framework could take the most
advantage of the limited and invaluable data from target distribution. Rejectors were trained on the source
distribution will apply on the same subset in the Conformal + Shifted D., method to finetune.

Selective Prediction (Baseline) To disentangle the benefits of the L2D rejector from simple uncertainty
thresholding, we compare against a Selective Prediction baseline (Mozannar et al., [2023; |Geifman & El-
Yaniv}, [2017). This method relies solely on the base classifier’s vanilla confidence, defined as the maximum
softmax probability. A threshold 7 is tuned on the calibration set to maximize system accuracy: prediction
is deferred if the classifier’s confidence is below 7, and retained otherwise.

Ensemble (Baseline) We approached the uncertainty ensemble by |Liu et al.| (2022)) in a computationally
efficient way by taking advantage of the already trained L2D functions. An uncertainty ensemble can be
constructed by reinitializing and trivially retraining m rejector layer functions based on above trained L2D
functions. To align with the size of the conformal set C, (x;7) in this study, we set m = 2.

Prediction Figure [2|reports the system accuracy and ratios of deferred instances in the population of the
abstention, consensus, human-preferred methods shown in Figs. and [2] respectively for OOD data.
In this scenario, it is notable that under a non-extreme distribution shift, both proposed conformal methods
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Figure 2: L2D via Conformal Prediction on OOD. Figures above report the mean and standard deviation of system
accuracy and ratio of deferred instances for methods stated in this section via abstention, consensus, and human-
preferred prediction under different levels of distribution shift for CIFAR-10C, HAM10000, and Hate Speech. The
proposed L2D framework, employing both OvA and A-SM surrogate losses, exhibits less fluctuation and greater
robustness against covariate shift compared to most listed methods, although model deterioration remains evident.

outperform the original L2D framework and selective prediction. In particular, Conformal OvA + Shifted
Dy and Conformal A-SM + Shifted D ., methods demonstrate effective deferral behavior by recognizing
uncertainty in the test data, thereby maintaining the overall robustness and accuracy of the system. This
approach limits performance degradation across shifts from levels 1 to 5 in CIFAR-10 and HAM10000 from level
1 to 5. On the Hate Speech, the performance decline was mitigated, showing a slower rate of deterioration.

Discussion The divergent behaviors observed in Figure [2| underscore the necessity of uncertainty quan-
tification in the deferral decision under shift. As evidenced by the rising deferral ratios in Figure [2] the
Conformal + Shifted D, methods dynamically adapt to the shift intensity. For instance, in HAM10000
levels 4-6, Conformal OvA + Shifted D.q move from 75.91% to 74.97% while Original OvA move from
69.01% to 67.00%. This suggests that recalibrating the rejector on even a small sample, for example 10%
calibration compared with 70% of training or 20% of testing, from the target distribution allows the system
to effectively detect when the model’s competence region has been exited. Consequently, the system pre-
serves overall reliability by routing ambiguous instances to the consensus or the human expert or abstaining
entirely.
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5.4 Evaluation of Rejector Uncertainty

In Section [3:3] we incorporate uncertainty interval to defer and abstain conservatively. Specifically, a L2D
system should not defer when a human expert is not believed to predict correctly under confidence level
1 — a. We introduce two metrics that jointly characterize the performance of the rejector when deferring:
uncertainty rejector accuracy acc(m = y) and uncertainty classifier accuracy ace(y = y) as follows:

ace. :Z]I[m:y,r(w)zl] e :ZH[QZy,r(m)zo]
AR ) 7 = R B i 1 P

Here, r(x) = 1 indicates deferral, and r(x) = 0 indicates acceptance of the classifier’s prediction. The metric
accy,—, measures the correctness of deferred predictions—assuming the original model m approximates the
human expert, and accy=, quantifies the accuracy of predictions made autonomously. Together, these metrics
summarize a L2D system’s decision-making performance under uncertainty. We observed improvements in
both metrics under L2D with deferral interval, particularly large in gains accy—,; detailed results appear in
Appendix [C] These gains indicate that uncertain instances are predominantly deferred.

6 Conclusions, Limitations, and Future Work

We applied conformal prediction to the rejector component of the learning-to-defer framework with both
one-vs-all and asymmetric softmax parameterizations. This approach offers finite-sample, distribution-free
guarantees for quantifying uncertainty in the expert’s predictions. Our experiments demonstrate that not
only does our method achieve the targeted coverage guarantees with compact prediction sets, but the re-
sulting deferral sets or intervals also enable alternative decision-making workflows, such as abstention or
expert—model consensus. In particular, we advocate an abstention workflow that empowers the system to
respond “I don’t know who knows” when its confidence is insufficient, thereby enhancing the safety and
robustness of human—AI collaboration. Such a system alerts users to gather additional information before
making a confident decision.

The primary limitation of our work is that our deferral sets are constructed based on expert correctness,
not on the comparison that truly dictates the deferral decision. They reflect but do not perfectly align with
the Bayes optimal rejector that compares the expert’s correctness probability with the classifier’s confidence.
Thus extending our CP procedure to somehow fuse and compare the uncertainty in the classifier and rejector
is an exciting and impactful direction for future work that would address this limitation. Another direction
is to apply distribution-free risk control (Angelopoulos et al., [2024) to ensure the deferral decision respects
certain constraints, such as bounding the deferral rate.
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A Theoretical Supplement

A.1 Expected size of the deferral set under covariate shift

The widening of deferral sets under covariate shift acts as a functional safety mechanism. This behavior
arises from the specific construction of our deferral set C,.(x;7) in Eq. [8 The rejector outputs the uncertain
set {0, 1} if and only if the expert correctness probability satisfies: p(m = y|x) € Y. On in-distribution data,
the rejector is confident, and the density of p(m = y|x) concentrates at the boundaries {0, 1}, minimizing
the frequency of uncertain sets. However, as the rejector faces out-of-distribution inputs, its predictive
performance degrades thus tends to produce less distinguishable probabilities on 0 and 1, i.e. moving
p(m =y | x) closer to 0.5, where the system is roughly 50-50 about whether the expert will be correct. As
the score distribution concentrates within ¢/, the threshold 1 — 7 is more often not satisfied to produce a
singleton deferral set, so deferral sets of size two become more frequent precisely in those regions.

This phenomenon is formalized in the below section. To simplify, let p(x) = p(m = y | x) be the rejector’s
estimate of the expert-correctness probability, and let C..(x;7) be the conformal deferral set defined in Eq.
The conformal deferral set satisfies |C,(x;7)| € {1,2}. We can have

17 ZA)(X) S’f'OI‘ﬁ(X) Z 177’:5
2, T<plx)<l—"1.

|C(x;7)| = {
and hence
|ICr(x;7)| =14+ {7 < p(x) <1—7}.
Therefore, for any covariate distribution Qy,
EXNQX [|Cr(x; %)‘} =1+ Qx(ﬁ(x) € u) .

This identity shows that deferral sets become wider precisely when a larger fraction of test points fall into the
middle-confidence region Y. To express this more symmetrically around the decision boundary 0.5, define a
probability margin

() = 12p(x) — 1| € [0,1].

Assuming 7 < 0.5, the event p(x) € (7,1 — 7) is equivalent to v,(x) < 1 — 27. Hence,
Exng, [0 (3 7)]] = 14 Qx(7p(x) < 1—27).

A sufficient condition for wider deferral sets under a shifted covariate distribution (Qx with relative to the
source distribution Py is that more shifted points have small margin, i.e.,

Qx(1p(x) <1 =27) > Pe(yp(x) <1-27).
Under this condition, the expectation follows that
Ex~q. [lcr(x§ 7A—)H > Ex~p, HCT(X§ 7A')|]

This presents, when distribution shift makes the rejector less separable between m = y and m # y (equiv-
alently, p(x) is closer to 0.5, so y,(x) shrinks), more points fall into U, increasing the expected deferral set
size. We emphasize that this is a conditional explanation of the empirical widening behavior, and does not
by itself provide a coverage guarantee under arbitrary distribution shift.

A.2 Theoretical Formalization of Human-Preferred and Model-Preferred Prediction

Human-Preferred Workflow The Human-Preferred Workflow is designed for scenarios where the test
distribution Pjes:(x,y) differs from training Piqin (X, y).

Assumption 1 (Human Robustness): While machine classifiers suffer significant performance degrada-
tion under distribution shifts (e.g., image corruptions, adversarial attacks),it is well-established that human
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perception remains comparatively invariant. |Geirhos et al.| (2019) demonstrate that CNNs rely on texture
bias which is fragile to shift, while humans rely on shape bias which is robust. [Dodge & Karam| (2017) show
human vision significantly outperforms DNNs on distorted images. Humans are also robust to adversarial
perturbations that fool models (Zhou & Firestone, [2019).

In addition, the human expert can access privileged metadata that is unavailable to the model. For example,
in our HAM10000 experiments, the expert utilizes metadata beyond pixel information. When the conformal
set is C.(x) = {0,1}, the rejector indicates high uncertainty about the standard inductive relationship
between input and correctness. Under distribution shift, this uncertainty signal is correlated with the model
entering a failure mode. Let R(h) and R(m) be the risk of the classifier and human, respectively. Under shift,
we assume the inequality Rgpipi(h) > Rspife(m). Therefore, the Human-Preferred workflow is formalized
as a robust fallback policy.

0, if Cr(x;7) ={0,1} A § =m, (Consensus while Uncertainty detected)
, if Cr(x;7) ={0,1} A § # m, (Uncertainty detected)

r(x), otherwise.

This minimizes the expected risk upper bound by deferring to the agent with the lower variance in per-
formance across distributions (the human), utilizing the size of the conformal set as a proxy for detecting
out-of-distribution (OOD) samples.

Model-Preferred Workflow This workflow can be motivated through a cost-sensitive objective, where
querying the human expert incurs a non-negligible cost while using the model is essentially free. Let ¢;, > 0
be the cost of consulting the human expert per query. A standard cost-sensitive system loss to minimize is:

Lofl,model-preferred(ha T) = E|:(1 - T(X)) : H[h(x) 7& Y] + T(X) : H[m 7é y] + ’I"(X) : ch:| .

When the conformal deferral set is Cy(x;7) = {0, 1}, the rejector does not provide directional evidence at
confidence level 1 —q« that deferring is beneficial to justify paying the query cost. Since the cost ¢, is incurred
whenever r(x) = 1, a budget-aware policy is to defer only when there is a confidently certified benefit, and
otherwise default to the model. In particular, under the model-preferred workflow we set 7(x) = 0 whenever
Cy(x;7) = {0,1} to avoid paying ¢, when uncertain.

B Experimental Details

B.1 Accuracy vs Deferred Ratio

Figure |3| summarizes the accuracy-coverage comparison across all datasets (CIFAR-10, HAM10000, and
HateSpeech) and deferral workflow (abstention, consensus, and human-preferred).

B.2 Datasets in Experiments

Table [3| summarizes the datasets used in this work. The CIFAR-10 dataset consists of 60,000 32x32 color
images, evenly distributed across 10 distinct classes (Krizhevskyl [2009). It is divided into 50,000 training
images and 10,000 test images. The CIFAR10-C dataset introduces 15 common real-world corruptions, along
with 4 additional types of corruption, applied to the test images from CIFAR-10. The HAM10000 dataset
(Tschandl et al., 2018) contains 10,015 dermatoscopic images, categorized into seven types of skin lesions:
melanocytic nevi, melanoma, benign keratosis-like lesions, basal cell carcinoma, actinic keratoses, vascular
lesions, and dermatofibroma. The HateSpeech dataset (Davidson et al.,|2017) includes 24,802 labeled tweets,
sampled from a total of 85.4 million tweets across 33,458 users, with labels divided into 3 categories.
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Figure 3: Accuracy—coverage for all datasets and deferral workflows. Each panel plots non-abstention accuracy versus
the fraction of examples deferred to the human (ratio deferred). The top row corresponds to CIFAR-10, the middle
row to HAM10000, and the bottom row to HateSpeech; within each row, the three columns show the abstention,
consensus, and human-preferred deferral workflows, respectively.

B.3 Distribution Shift Simulation
To simulate covariate shift in the HAM10000 dataset, we applied Gaussian blur and noise corruption to the

images. Table [4] outlines the Gaussian blur parameters for varying levels of severity, with increasing kernel
sizes and o values to progressively enhance the blurriness as the shift intensifies. To introduce covariate
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Dataset n K  Human Expert Base Model Optimizer Epochs Learning Rate
CIFAR-10 60k 10 synthetic k classes CNN with 2 Conv layers (width = 50) Adam 100 1x1073
HAM10000 10015 7 MLP Mixer ResNet34 SGD 150 1x1073
HateSpeech 25k 3 random annotator Linear Network with SBERT Adam 50 1x 1072

Table 3: Summary of datasets and model configurations used in this work. Here, n refers to the total number
of samples in each dataset, K represents the number of classes, epochs refers to the total training epochs for
the L2D framework with a rejector, and base model indicates the foundational model used within the L2D
framework.

Severity Level Kernel Size o

1 (3, 3) 0.5
2 (5, 5) 1.0
3 (7,7) 2.0
4 (9, 9) 3.0
5 (11,11) 4.0
6 (13,13) 5.0

Table 4: Gaussian Blur Kernel Sizes and ¢ Values for Different Severity Levels

shift in the Hate Speech dataset, adversarial noise was applied. This transformation was constructed using
techniques such as synonym replacement, random insertion, random deletion, and character swapping on
the text embeddings.

B.4 Additional Detail of Conformal Prediction

For the split-conformal prediction procedure described in Section

Score Function : We utilize the probability of the expert correctness p(m = y|x) as defined in Eq.
(OvA) and Eq. [6] (A-SM).

Quantile Calculation : The threshold 7 is computed as the [(Neq 4+ 1)(1 — «)]/Neq: empirical quantile
of the calibration scores, with a finite-sample correction.

B.5 Rejector Entropy
B.6 Coverage and Efficiency at Higher Target Coverage Levels

In the main paper Table [I] we reported coverage and efficiency results for the OvA rejector at a target
coverage level of 1 —a = 90%. This level is standard in conformal prediction and uncertainty quantification,
where prediction sets are often calibrated to contain the true label with probability around 90% in order to
balance statistical validity with the size of the output sets (Angelopoulos & Bates| |2023; |Angelopoulos et al.|
2021)).

To demonstrate that our method is not tied to a single confidence level, we additionally evaluate the OvA
rejector at higher target coverage levels 1—a € {95%,99%} on CIFAR-10, HAM10000, and HateSpeech. The
empirical coverage and average deferral-set size for these settings are summarized in Table[6] As discussed in
the main paper, all empirical coverage are slightly above the corresponding target levels, except a few cases
falling slightly below, which is consistent with the coverage guarantees. The results exhibit the expected
coverage-efficiency trade-off and confirm that our framework can be tuned to stricter coverage requirements
without changing the conclusions.
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Table 5: Mean entropy of the rejector’s estimated expert correctness I:’(m = y|x) under increasing
distribution-shift severity.

Shift severity
Dataset 0 1 2 3 4 5 6

CIFAR-10 0.3122 0.3394 0.3691 0.3988 0.4185 0.4227 0.3204
HAM10000 0.1280 0.1063 0.1374 0.1457 0.1944 0.2645 0.2736
Hate Speech 0.3078 0.3487 0.3650 0.3714 0.3776 0.3834 0.3896

Table 6: Coverage and Efficiency of OvA Rejector at Higher Confidence Levels. We report the empirical
coverage and the average size of the deferral set for confidence levels 1 — a = 95% and 1 — a = 99%.

1—a=9% 1—a=99%
Dataset Coverage (%) Average Set Size Coverage (%) Average Set Size
CIFAR-10 93.08 1.46 98.41 1.76
HAM10000 95.72 1.86 98.59 1.77
HateSpeech 95.14 1.32 99.09 1.80

B.7 Evaluation on Uncertainty of Rejector r(x) with Deferral Set

Section [5.4] introduced evaluation metrics for the rejector under uncertainty in addition to system accuracy:
uncertainty rejector accuracy actm—y, and uncertainty classifier accuracy accy—,. While the main paper
focuses on overall system accuracy and ratio deferred Figure [2| here we report these metrics across severity
levels for the same methods considered in Section 5.3.

In particular, Original denotes the original OvA L2D model without conformal calibration, rows without
the “+ Shifted D.q;” suffix (Abstention, Consensus, Human Preferred) correspond to the Conformal OvA
rejector calibrated on the source distribution, and rows with “4 Shifted D.,;” correspond to Conformal OvA
recalibrated on a small subset of the shifted target distribution.

C Experiment: L2D with Deferral Intervals

This section documents the experiment evaluating L2D workflow with conformal deferral intervals, both
without and with Conformal + Shifted D (i.e., recalibrating on a small target-domain subset under
shift).

Reliability Diagram We perform evaluation of calibration and examine the validity of conformal predic-
tion by plotting reliability diagram and computing expected calibration error (ECE). We define the expected
accuracy and ECE as

8T(Z\C(C) = P(m = y|p(m = Y|X) = C), ECEp(m:y) = ]Ex “P)(m =Yy | p(m = y|X) = C) - C‘ )

where c¢ is the confidence level. From the prediction interval [b;(x), b..(x)], the uncertainty bar of the expected
accuracy could be calculated as A_ = b(x) I[m = y|, AT = b,.(x) I[[m = y|. Figure |4 presents the reliability
diagram and constructs the error bar by distributing the prediction interval across the accuracy.

Uncertainty Rejector Evaluation we evaluate the performance of the uncertainty rejector r(x) by
accuracy metrics accm=y and accy—, on CIFAR-10 datasets. Table shows a significant increase in L2D
with the prediction interval in accp,—, and acey—,, while the deferral interval is too large. This confirms
that the binary regression would adjust the rejector to make deferral decision and abstention with care of
uncertainty. It also reports that with abstention, the system accuracy increases from 83.87% to 93.75%,
Table [10] evaluated the ace,,—, and accy—, in L2D with deferral interval.
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Figure 4: Evaluation of Calibration on CIFAR-10: Subfigure (a) reports a reliability diagram w/o abstention and the
expected calibration error (ECE) is 5.86. Subfigure (b) reports a reliability diagram w/ abstention and the ECE is
5.17

D Additional Experiment

D.1 Dual CP: Conformal Prediction on Both Classifier and Expert Model

While Section |3 approaches optimal rejector with human expert correctness I[myi1 =yy,;]. In this
section, we present our exploration to compare the calibrated uncertainty of both the classifier and the
expert model to make the deferral decision explicitly. To this end, we fit a weak classifier human(x) to
simulate the human expert predictions m from features x, yielding a probabilistic predictor Pruman(y | X).
One may explicitly construct classifier prediction sets Cj(x; Tp) for classifier h*(x) and annotator prediction
sets Chuman (X; Thuman) for human expert human*(x) following the split conformal prediction construction
in Section

We then defer when the classifier is more uncertain by comparing the sizes of the two prediction sets under
the same confidence level 1 — a:

T*(X) — Lif |Ch(x5Th)| > [Chuman (X5 Thuman)|s
0 otherwise.

We reuse the experimental setup and one-vs-all (OvA) parameterization from Section 5} We then apply the
dual conformal-prediction (CP) procedure described above to the CIFAR-10, HAM10000, and Hate Speech
datasets without shift. The resulting coverage and deferral-rate metrics are reported in Table [T1}

D.2 Finetuning on Uncertain Instances

To broaden coverage, one may finetune the L2D system on instances that CP flags as uncertain. The initial
threshold T could be again computed over initial calibration set Dy as Section Building on the dual-CP
deferral setup in Appendix we now run CP on the training set D; and form prediction set C, (x;7).
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We could then define the uncertain subset by a cardinality (“width”) threshold ¢,ps:
Duncertain == {:B S Dl : |Cr(m772)” Z tabs} .

We reweight the OvA surrogate loss by prediction set width ||C;.(z; 7)| and perform a fine-tuning to explicitly
emphasize these uncertain inputs:

b—gr1(x)]

B |Chuman (iL’; %human”

Vreova (g1, gx 41T, y,m) = $lgy ()]

followed by re-running the dual CP to compute updated thresholds 7/ and 7/, .., on Ds. Resulting coverage
metrics are reported in Table Finetuning on uncertain instances can raise system accuracy relative to
dual CP without finetuning, but it does not surpass the original L2D baseline in our runs: suggesting that
the OvA parameterization may capture rejector uncertainty and that post-hoc CP calibration remains a
strong, distribution-free control for deferral decisions.
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Table 7: Performance under uncertainty rejection across severity levels on CIFAR-10, reporting standard
accuracy (acc), uncertainty rejector accuracy (accm=y), and uncertainty classifier accuracy (accy—y).

Severity Method ace (%) acCm=y (%) accy=y (%)
Original 85.02 86.55 85.02
0 Abstention 86.56 87.84 71.74
Consensus 86.63 87.83 85.15
Human Preferred 84.27 86.77 82.68
Original 85.25 86.23 85.25
Abstention 86.72 86.91 71.27
Consensus 86.78 86.92 86.60
1 Human Preferred 84.95 86.27 83.93
Abstention + Shifted D,y 89.63 89.63 72.86
Consensus + Shifted D, 89.77 89.61 89.99
Human Preferred + Shifted D, 83.05 86.21 83.99
Original 84.05 86.03 84.05
Abstention 85.52 87.02 71.53
Consensus 85.57 87.02 83.79
2 Human Preferred 83.60 86.07 81.44
Abstention + Shifted D,y 87.84 88.89 73.11
Consensus + Shifted D,y 88.01 88.93 86.77
Human Preferred + Shifted D q; 81.70 86.00 81.62
Original 83.35 86.45 83.35
Abstention 84.83 87.22 69.71
Consensus 84.91 87.27 81.76
3 Human Preferred 82.75 86.64 79.26
Abstention + Shifted D, 87.54 89.44 71.32
Consensus + Shifted D,y 87.53 89.37 84.84
Human Preferred + Shifted D, q; 81.25 86.51 79.39
Original 83.60 86.32 83.60
Abstention 85.54 87.61 71.18
Consensus 85.65 87.70 83.09
4 Human Preferred 83.30 86.49 79.98
Abstention + Shifted D, g 87.82 89.17 72.83
Consensus + Shifted D,y 88.07 89.37 86.32
Human Preferred + Shifted D q; 81.90 86.28 80.09
Original 79.90 83.29 79.90
Abstention 81.83 84.64 64.58
Consensus 81.82 84.59 78.15
5 Human Preferred 79.45 83.62 75.03
Abstention + Shifted D, 86.85 87.71 67.86
Consensus + Shifted D,y 86.79 87.40 85.85
Human Preferred + Shifted D q; 78.20 83.36 75.62
Original 60.58 74.84 60.58
Abstention 73.66 74.64 12.67
Consensus 73.63 74.62 7.49
6 Human Preferred 73.81 74.63 6.15
Abstention + Shifted D,y 73.08 73.07 13.63
Consensus + Shifted D,y 74.48 74.52 58.82
Human Preferred + Shifted D, 74.90 74.63 6.19
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Table 8: Performance of deferral-set workflows on HAM10000 under distribution shift. We report system
accuracy (acc), uncertainty rejector accuracy (accm=y), and uncertainty classifier accuracy (accy=y).

Severity Method ace (%) ACCm=y (%) accy=y (%)
Original 80.86 82.81 80.86
0 Abstention 86.00 88.22 85.55
Consensus 84.86 84.98 84.79
Human Preferred 78.45 81.25 80.75
Original 75.17 71.99 75.17
Abstention 79.73 72.71 76.34
Consensus 80.12 73.08 86.17
1 Human Preferred 76.71 70.42 82.49
Abstention + Shifted D,y 82.92 76.09 80.35
Consensus + Shifted D,y 82.07 73.79 88.36
Human Preferred + Shifted D, q; 76.77 69.79 82.81
Original 72.69 62.68 72.69
Abstention 77.99 67.31 74.09
Consensus 78.91 67.78 81.02
2 Human Preferred 75.37 63.64 77.40
Abstention + Shifted D,y 78.26 68.12 73.78
Consensus + Shifted D4 80.56 67.50 82.39
Human Preferred + Shifted D q; 75.70 62.31 76.92
Original 69.21 63.64 69.21
Abstention 74.26 68.13 72.35
Consensus 75.56 65.74 76.18
3 Human Preferred 72.69 67.46 70.39
Abstention + Shifted D, 76.56 74.60 75.56
Consensus + Shifted D,y 78.78 69.74 78.77
Human Preferred + Shifted D, 74.97 66.35 69.93
Original 68.61 68.49 68.61
Abstention 72.21 74.44 70.87
Consensus 75.66 71.56 76.19
4 Human Preferred 73.29 68.66 69.63
Abstention + Shifted D,y 72.62 74.39 71.23
Consensus + Shifted Dy 78.57 65.79 79.93
Human Preferred + Shifted D q; 73.96 61.97 70.49
Original 68.01 60.61 68.01
Abstention 69.72 66.52 66.67
Consensus 78.06 65.38 80.22
5 Human Preferred 74.10 61.59 71.25
Abstention + Shifted D, q; 68.48 69.59 66.81
Consensus + Shifted D4 79.28 67.87 81.47
Human Preferred + Shifted D q; 75.17 65.47 69.92
Original 70.88 69.59 70.88
Abstention 68.99 68.27 56.74
Consensus 79.74 71.68 89.91
6 Human Preferred 75.84 68.35 83.93
Abstention + Shifted D,y 67.24 67.11 55.88
Consensus + Shifted D,y 80.64 72.30 90.64
Human Preferred + Shifted D, 76.17 68.59 84.71
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Table 9: Performance of deferral-set workflows on Hate Speech under distribution shift. We report system
accuracy (acc), uncertainty rejector accuracy (accm=y), and uncertainty classifier accuracy (accy=y).

Severity Method ace (%) ACCm=y (%) accy=y (%)
Original 92.11 86.88 92.11
0 Abstention 92.16 86.88 87.58
Consensus 92.17 86.88 95.90
Human Preferred 92.15 86.88 95.80
Original 86.28 90.14 86.28
Abstention 86.57 90.15 77.80
Consensus 86.71 90.18 84.35
1 Human Preferred 86.48 90.12 83.60
Abstention + Shifted D,y 87.97 90.18 78.82
Consensus + Shifted D,y 88.41 90.21 87.15
Human Preferred + Shifted D, q; 87.71 90.14 83.67
Original 79.98 89.48 79.98
Abstention 80.51 89.42 72.36
Consensus 80.90 89.46 75.88
2 Human Preferred 80.89 89.45 74.44
Abstention + Shifted D,y 84.07 89.83 74.67
Consensus + Shifted D4 85.98 89.93 83.46
Human Preferred + Shifted D q; 85.25 89.48 74.49
Original 76.49 89.71 76.49
Abstention 76.91 89.78 67.26
Consensus 77.34 89.79 71.24
3 Human Preferred 77.42 89.75 70.08
Abstention + Shifted D, q; 81.01 90.38 68.85
Consensus + Shifted D,y 84.00 90.56 80.42
Human Preferred + Shifted D, 83.35 89.71 70.12
Original 73.18 89.93 73.18
Abstention 73.85 89.81 64.78
Consensus 74.37 89.85 67.11
4 Human Preferred 74.66 89.90 65.40
Abstention + Shifted D,y 78.49 90.23 66.74
Consensus + Shifted Dy 82.59 90.28 78.50
Human Preferred + Shifted D q; 82.69 89.93 65.50
Original 69.61 90.56 69.61
Abstention 70.09 90.49 59.92
Consensus 70.66 90.52 62.24
5 Human Preferred 70.92 90.55 60.91
Abstention + Shifted D, q; 76.75 90.75 62.50
Consensus + Shifted D4 82.23 90.70 77.87
Human Preferred + Shifted D q; 82.67 90.56 60.93
Original 66.59 89.05 66.59
Abstention 67.30 89.00 57.37
Consensus 67.90 89.03 59.25
6 Human Preferred 68.38 89.02 57.59
Abstention + Shifted D,y 71.40 89.05 57.52
Consensus + Shifted D,y 77.99 89.29 72.53
Human Preferred + Shifted D, q; 79.52 89.05 57.60
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Table 10: Performance under uncertainty rejection across severity levels, reporting standard accuracy,
uncertainty-based rejector accuracy (accm—y), classifier accuracy (accy—,), non-abstention rejector accu-
racy, and model preferred accuracy.

Severity Method ace (%) atlm=y (%) atcy=y (%)
Baseline 83.87 84.44 32.75
0 Deferral Interval 72.57 92.77 70.06
Abstention 93.75 92.77 74.14
Model Preferred 92.77 92.77 70.06
Baseline 83.10 84.64 35.27
Deferral Interval 71.90 92.88 67.65
Abstention 93.36 92.88 74.95
1 Model Preferred 92.88 92.88 67.65
Deferral Interval 4+ Shifted D,y 69.75 90.76 67.62
Abstention + Shifted D, 93.18 90.76 72.83
Model Preferred + Shifted D, 90.76 90.76 67.62
Baseline 80.65 83.21 35.35
Deferral Interval 68.80 91.96 65.88
Abstention 91.95 91.96 73.93
2 Model Preferred 91.96 91.96 65.88
Deferral Interval 4+ Shifted D, 4 70.00 89.56 66.59
Abstention + Shifted D,y 92.27 89.56 72.91
Model Preferred + Shifted D, 89.56 89.56 66.59
Baseline 77.20 83.62 40.53
Deferral Interval 62.40 94.55 58.79
Abstention 91.75 94.55 72.58
3 Model Preferred 94.55 94.55 58.79
Deferral Interval 4+ Shifted D,y 63.00 90.09 59.79
Abstention + Shifted D, 92.47 90.09 70.45
Model Preferred + Shifted D, 90.09 90.09 59.79
Baseline 76.90 83.78 42.53
Deferral Interval 63.10 94.32 59.06
Abstention 91.75 94.32 72.75
4 Model Preferred 94.32 94.32 59.06
Deferral Interval 4+ Shifted D,y 64.80 92.19 59.33
Abstention + Shifted D, 92.78 92.19 71.33
Model Preferred + Shifted D, 92.19 92.19 59.33
Baseline 73.75 84.05 46.40
Deferral Interval 59.80 90.06 56.97
Abstention 90.62 90.06 72.80
5 Model Preferred 90.06 90.06 56.97
Deferral Interval 4+ Shifted D, 4 59.85 90.96 57.03
Abstention + Shifted D,y 91.83 90.96 72.03
Model Preferred + Shifted D, 90.96 90.96 57.03
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Table 11: Dual CP Experiment. We report system accuracy on dual CP on the same three datasets but do
not notice performance improvement.

Dataset Method Sys. Acc.(%) Fraction Deferred (%)
CIFAR-10 Base Model 84.74 53.18

Dual CP 74.36 14.04
HAM10000  Base Model 82.10 19.34

Dual CP 80.72 11.18
Hate Speech  Base Model 91.44 33.64

Dual CP 91.24 42.82

Table 12: Dual CP Finetuning. We report system accuracy on top of the previous dual CP experiment
where taps = 1

Dataset Method Sys. Acc. (%) Fraction Deferred (%)
HAM10000 FT Dual CP 81.46 11.12
Hate Speech  FT Dual CP 91.42 42.05
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