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Abstract

Accurate and flexible world models are crucial
for autonomous systems to understand their en-
vironment and predict future events. Object-
centric models, with structured latent spaces,
have shown promise in modeling object dy-
namics and interactions, but often face chal-
lenges in scaling to complex datasets and in-
corporating external guidance, limiting their ap-
plicability in robotics. To address these limita-
tions, we propose TextOCVP, an object-centric
model for image-to-video generation guided by
textual descriptions. TextOCVP parses an ob-
served scene into object representations, called
slots, and utilizes a text-conditioned transformer
predictor to forecast future object states and
video frames. Our approach jointly models ob-
ject dynamics and interactions while incorpo-
rating textual guidance, thus leading to accu-
rate and controllable predictions. Our method’s
structured latent space offers enhanced control
over the prediction process, outperforming sev-
eral image-to-video generative baselines. Addi-
tionally, we demonstrate that structured object-
centric representations provide superior control-
lability and interpretability, facilitating the mod-
eling of object dynamics and enabling more pre-
cise and understandable predictions. Videos and
code are available at https://play-slot.
github.io/TextOCVP/.

1. Introduction
Understanding and reasoning about the real world is essen-
tial for enabling autonomous systems to better comprehend
their surroundings, predict future events, and adapt their
actions accordingly. Humans achieve these capabilities by
perceiving the environment as a structured composition of
individual objects that interact and evolve dynamically over
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a) Object-Centric Decomposition
Learned Objects

b) Text-Conditioned Image-to-Video Generation
‘Put the green block
in the cyan bowl.’C

Figure 1: Overview of TextOCVP. (a) Our model first
parses a reference frame X1 into its object components S1.
(b) Our TextOCVP predictor jointly models object dynam-
ics and interactions while integrating textual guidance, gen-
erating future object states and video frames that align with
the provided textual instructions.

time (Kahneman et al., 1992). Neural networks equipped
with such compositional inductive biases have shown the
ability to learn structured object-centric representations of
the world, which enable desirable properties, such as out-
of-distribution generalization (Dittadi et al., 2022), compo-
sitionality (Greff et al., 2020), or sample efficiency (Mos-
bach et al., 2024).

Recent advances in unsupervised object-centric represen-
tation learning have progressed from extracting object rep-
resentations in synthetic images (Locatello et al., 2020;
Lin et al., 2020b) to modeling objects in video (Kipf
et al., 2022; Singh et al., 2022) and scaling to real-world
scenes (Seitzer et al., 2023; Zadaianchuk et al., 2024).
These developments have enabled object-level dynamics
modeling for future prediction and planning. Notably,
models like SlotFormer (Wu et al., 2023) or OCVP (Villar-
Corrales et al., 2023) introduced object-centric world mod-
els that explicitly model spatio-temporal relationships be-
tween objects, shifting away from image-level approaches
that ignore scene compositionality. Despite these advance-
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ments, current approaches struggle with complex object ap-
pearances and dynamics, and lack the ability to incorporate
external guidance, thus limiting their effectiveness as world
models in robotic applications.

To address these challenges, we propose TextOCVP, a
novel object-centric model for image-to-video generation
with language guidance, illustrated in Fig. 1. Given a refer-
ence image and text instruction, TextOCVP extracts object
representations and predicts their evolution using a novel
text-conditioned object-centric transformer. This module
forecasts future object representations by modeling object
dynamics and interactions, while also incorporating textual
information through a text-to-slot attention mechanism. By
jointly modeling spatio-temporal object relationships and
integrating textual guidance, TextOCVP generates future
object states and video frames that align with the provided
instructions.

We evaluate our approach through extensive experiments
focusing on image-to-video generation tasks with varying
levels of complexity. Our results show that TextOCVP out-
performs existing text-conditioned methods by effectively
leveraging object-centric representations. This demon-
strates the significant advantage of incorporating tex-
tual guidance into structured object-centric representations,
particularly for scenes featuring multiple moving objects.

Through an in-depth model analysis, we demonstrate the
importance of our proposed object-centric latent space,
which allows TextOCVP to generate video sequences that
closely align with language instructions. We further
demonstrate how TextOCVP adapts its generated video se-
quences based on different captions by routing the text in-
formation to the relevant object representations.

In summary, our contributions are as follows:

• We propose TextOCVP, a novel text-driven image-to-
video generation model, featuring a text-conditioned
object-centric predictor that integrates textual guid-
ance via a text-to-slot attention mechanism.

• Through extensive evaluation, we show that
TextOCVP outperforms existing text-conditioned
models by leveraging object-centric representations.

• We demonstrate that TextOCVP is controllable, seam-
lessly adapting to diverse textual instructions.

2. Related Work
2.1. Object-Centric Learning

Representation learning, the ability to extract meaningful
features from data, often improves model performance by
enhancing its understanding of the input space (Bengio
et al., 2013). Object-centric representation learning focuses

on simultaneously learning representations that character-
ize individual objects within an input image or video.

Recently, object-centric models have progressed from
learning object representations from synthetic images (Gr-
eff et al., 2019; Lin et al., 2020a; Villar-Corrales & Behnke,
2022; Locatello et al., 2020) to videos (Kipf et al., 2022;
Singh et al., 2022; Elsayed et al., 2022), and real-world
scenes (Seitzer et al., 2023; Aydemir et al., 2023; Zada-
ianchuk et al., 2024; Kakogeorgiou et al., 2024). The
learned object representations benefit downstream tasks,
such as reinforcement learning (Mosbach et al., 2024) or
visual-question answering (Wu et al., 2023), among others.

2.2. Video Prediction and Generation

Future frame video prediction (VP) is the task of fore-
casting the upcoming T video frames conditioned on the
preceding C seed frames (Oprea et al., 2020). When the
number of seed frames is C = 1, this task is often re-
ferred to as image-to-video generation. Several methods
have been proposed to address this challenge, leveraging
2D convolutions (Gao et al., 2022; Chiu et al., 2020),
3D convolutions (Vondrick et al., 2016; Tulyakov et al.,
2018), recurrent neural networks (RNNs) (Denton & Fer-
gus, 2018; Villar-Corrales et al., 2022; Wang et al., 2022;
Guen & Thome, 2020; Franceschi et al., 2020), Transform-
ers (Rakhimov et al., 2021; Ye & Bilodeau, 2022; 2023), or
diffusion models (Höppe et al., 2022; Ho et al., 2022).

2.2.1. OBJECT-CENTRIC VIDEO PREDICTION

Object-centric VP presents a structured approach that ex-
plicitly models the dynamics and interactions of individ-
ual objects to forecast future video frames. These meth-
ods typically involve three main steps: decomposing seed
frames into object representations, forecasting future ob-
ject states using a dynamics model, and rendering video
frames from the predicted object representations. Various
approaches have been proposed for this task, using differ-
ent architectural designs such as RNNs (Creswell et al.,
2021; Zoran et al., 2021; Nguyen et al., 2024) or trans-
formers (Wu et al., 2021; 2023; Villar-Corrales et al., 2023;
Song et al., 2023; Daniel & Tamar, 2024). Despite promis-
ing results, these models are currently limited to simple de-
terministic datasets or rely on action-conditioning (Mos-
bach et al., 2024) or inferred latent vectors (Villar-Corrales
& Behnke, 2025). In contrast, our proposed model fore-
casts future video frames conditioned on past object slots
and textual descriptions.

2.2.2. TEXT-CONDITIONED VIDEO PREDICTION

This category of VP models leverages text descriptions
to provide appearance, motion and action cues that guide
the generation of future frames. This task was first pro-
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posed by Hu et al. (2022), who utilized a VQ-VAE to
encode the images into visual token representations, and
modeled the image dynamics with an axial transformer that
jointly processes such tokens along with text descriptions.
TVP (Song et al., 2024) leverages RNNs to learn text rep-
resentations, which condition a GAN-based framework in
order to generate videos from a single frame. MMVG (Fu
et al., 2023) combines a VQ-GAN (Esser et al., 2021) with
a masked transformer predictor. More recently, several
methods leverage diffusion models with text conditioning
(Gu et al., 2024; Ni et al., 2023; Chen et al., 2023).

Concurrently with our work, Wang et al. (2024) com-
bine object-centric learning with text-conditional image-
to-video generation. The authors propose an autoregres-
sive diffusion model conditioned on object slots and text
descriptions and evaluate on simple datasets. In contrast,
we explicitly model the object dynamics with an autore-
gressive transformer, and evaluate our approach on more
complex robotics simulations.

3. Method
We propose TextOCVP – a novel object-centric model for
text-conditioned image-to-video generation. Given an ini-
tial reference image X1 and a text caption C, TextOCVP
generates the subsequent T video frames X̂2:T+1, which
maintain a similar appearance and structural composition
as the reference image, and follow the motion described in
the text caption.

TextOCVP, which is illustrated in Fig. 2, implements an
object-centric approach, in which the reference frame X1

is first decomposed with a scene parsing module (Sec. 3.1)
into a set of NS D-dimensional object representations
called slots S1 ∈ RNS×D, where each slot represents a sin-
gle object in the image. The object slots are fed to a text-
conditioned transformer predictor (Sec. 3.2), which jointly
models their spatio-temporal relations, and incorporates the
textual information from the caption C as a guidance for
predicting the future object slots Ŝ2:T+1. Finally, the pre-
dicted object slots are decoded in order to render object
representations and video frames (Sec. 3.3).

We propose two different TextOCVP variants, which dif-
fer in the underlying object-centric decomposition mod-
ules. Specifically, TextOCVPSAVi leverages SAVi (Kipf
et al., 2022), whereas TextOCVPDINO extends the DI-
NOSAUR (Seitzer et al., 2023) framework for recursive
object-centric video decomposition and video rendering.

3.1. Scene Parsing

The scene parsing module decomposes a video sequence
X1:τ into a set of permutation-invariant object repre-

Figure 2: Overview of TextOCVP. TextOCVP parses the
reference frame X1 into object representations S1. The
text-conditioned object-centric predictor models object dy-
namics and interactions, incorporating information from
the description C to predict future object states and frames.

sentations called slots S1:τ = (S1, ...,Sτ ), with St =
(s1t , ..., s

NS
t ), where each slot s represents a single object.

For learning the object representations, we leverage the
object-centric video decomposition framework proposed
by Kipf et al. (2022). At time step t, the corresponding
input frame Xt is encoded with a feature extractor module
into a set of Dh-dimensional feature maps ht ∈ RL×Dh

representing L spatial locations. The feature extractor is
convolutional neural network in our TextOCVPSAVi vari-
ant and a DINO-pretrained vision transformer (Caron et al.,
2021) in TextOCVPDINO. These feature maps are processed
with a Slot Attention (Locatello et al., 2020) corrector,
which updates the previous slots St−1 based on visual fea-
tures from the current frame following an iterative atten-
tion mechanism. Namely, Slot Attention performs cross-
attention, with the attention weights normalized over the
slot dimension, thus encouraging the slots to compete to
represent parts of the input. It then updates the slots using
a Gated Recurrent Unit (Cho et al., 2014) (GRU). Formally,
Slot Attention updates the previous slots St−1 by:

A = softmax
NS

(
q(St−1)k(ht)T√

D

)
∈ RNS×L, (1)

St = GRU(Wtv(h),St−1) with Wi,j =
Ai,j∑L
l=1 Ai,l

, (2)

where k, q and v are learned linear projections that map
input features and slots into a common dimension. The
final output of this module is the set of slots St, representing
the objects of the input frame.

3.2. Text-Conditioned Object-Centric Predictor

Our proposed text-conditioned predictor module, depicted
in Fig. 3, autoregressively forecasts future object states
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conditioned on the object slots from the reference frame
S1 and a textual description C.

To condition the prediction process, the text description C
is encoded into text token embeddings C employing an
encoder-only transformer module. We experiment with dif-
ferent variants of this module, including a vanilla trans-
former encoder (Vaswani et al., 2017) or a pretrained
T5 (Raffel et al., 2020) module.

At time step t, the predictor receives as input the corre-
sponding text embeddings C, as well as the previous object
slots S1:t, which are initially mapped via an MLP to the
predictor token dimensionality DPred. Additionally, these
tokens are augmented with a temporal positional encoding,
which applies the same sinusoidal positional embedding to
all tokens from the same time-step, thus preserving the in-
herent permutation-equivariance of the objects.

Each layer of our predictor module mirrors the transformer
decoder architecture (Vaswani et al., 2017). First, a self-
attention layer enables every slot to attend to all other ob-
ject representations in the sequence, modeling the spatio-
temporal relations between objects. Subsequently, a text-
to-slot cross-attention layer enhances the slot representa-
tions by incorporating important features from the text em-
beddings, such as motion or appearance information. Fi-
nally, an MLP is independently applied for each token.
This process is repeated in every predictor layer, result-
ing in the predicted object slots of the subsequent time step
Ŝt+1. Furthermore, we apply a residual connection from
St to Ŝt+1, which improves the temporal consistency of the
predictions. This process is repeated autoregressively to
obtain slot predictions for T subsequent time steps.

3.3. Video Rendering

The video rendering module decodes the predicted slots Ŝt
to render the corresponding video frame X̂t. We lever-
age two variants of the video rendering module, for our
TextOCVPSAVi and TextOCVPDINO variants, respectively.

TextOCVPSAVi Decoder This variant independently de-
codes each slot in Ŝt with a CNN-based Spatial Broadcast
Decoder (Watters et al., 2019), rendering an object image
ont and mask mn

t for each slot snt . The object masks are nor-
malized across the slot dimension, and the representations
are combined via a weighted sum to render video frames:

X̂t =
NS∑
n=1

ont · m̃
n
t with m̃n

t = softmax
NS

(mn
t ). (3)

TextOCVPDINO Decoder This decoder variant decodes
the object slots in two distinct stages. First, following
DINOSAUR (Seitzer et al., 2023), an MLP-based Spatial
Broadcast Decoder (Watters et al., 2019) is used to gener-

Figure 3: Text-conditioned object-centric predictor.

ate object features along with their corresponding masks.
Similar to the TextOCVPSAVi decoder, the object masks are
normalized and combined with the object features in or-
der to reconstruct the encoded features ĥt ∈ RL×Dh . In
the second stage, the reconstructed features ĥt are arranged
into a grid format and processed with a CNN decoder to
generate the corresponding video frame X̂t.

3.4. Training and Inference

Our proposed TextOCVP is trained in two different stages.

Object-Centric Learning We first train the scene pars-
ing and video rendering modules for decomposing video
frames into object-centric representations by minimizing
a reconstruction loss. In the TextOCVPSAVi variant, these
modules are trained simply by reconstructing the input im-
ages, whereas in TextOCVPDINO they are trained by jointly
minimizing an image and a feature reconstruction loss:

LSAVi =
1

T

T∑
t=1

||X̂t − Xt||, (4)

LDINO =
1

T

T∑
t=1

||X̂t − Xt||+ ||ĥt − ht||. (5)

Predictor Training Given the pretrained scene parsing
and rendering modules, we train our TextOCVP predictor
for text-conditioned video generation using a dataset con-
taining paired videos and text descriptions. Namely, given
the object representations from a reference frame S1 and
the textual description C, our TextOCVP predictor forecasts
the subsequent object slots Ŝ2, which are decoded into a
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predicted video frame X̂2. This process is repeated autore-
gressively, i.e. the predicted slots are appended to the input
in the next time step, in order to generate the set of slots for
the subsequent T time steps. This autoregressive training,
in contrast to teacher forcing, enforces our predictor to op-
erate with imperfect inputs, leading to better modeling of
long-term dynamics at inference time.

Our predictor is trained by minimizing the following com-
bined loss:

LTextOCVP =
1

T

T+1∑
t=2

λImgLImg + λSlotLSlot, (6)

with LImg = ||X̂t − Xt||22 and LSlot = ||Ŝt − St||22, (7)

where LImg measures the future frame prediction error, and
LSlot enforces the alignment of the predicted object slots
with the actual inferred object-centric representations.

Inference At inference time, TextOCVP receives as input
a single reference frame and a language instruction. Our
model parses the seed frame into object slots and autore-
gressively predicts future object states and video frames
conditioned on the given textual description. By modifying
the language instruction, TextOCVP can generate a new se-
quence continuation that performs the specified task while
preserving a consistent scene composition.

4. Experiments
4.1. Experimental Setup

4.1.1. DATASETS

We evaluate the performance of TextOCVP for text-
driven image-to-video generation on two different datasets,
namely CATER and CLIPort. Further dataset details are
provided in Appendix D.

CATER CATER (Girdhar & Ramanan, 2020) is a dataset
that consists of long video sequences, featuring two simul-
taneously moving 3D objects, with the motion described
by a textual caption. We used the CATER-Hard variant in-
troduced by Hu et al. (2022). This dataset contains 30,000
sequences featuring between three and eight objects, two
of which follow a predefined action pattern. In our experi-
ments, we resize the images to 64× 64.

CLIPort CLIPort (Shridhar et al., 2022) is a robot ma-
nipulation dataset consisting of video-caption pairs. We
employ 21,000 336 × 336 sequences of the Put-Block-In-
Bowl task. Each sequence features a table with multiple
bowls and blocks of different color, placed at random posi-
tions on the table. The corresponding caption describes the
action of the robot arm picking a block of a specific color
and putting it into a specific bowl.

Table 1: Quantitative evaluation on CATER for prediction
horizons of T = 9 and T = 19. TextOCVP outperforms
all baselines. Best two results are highlighted in boldface
and underlined, respectively.

CATER1→9 CATER1→19

Method SSIM↑ LPIPS↓ SSIM↑ LPIPS↓
OCVP 0.874 0.078 0.854 0.101
Non-OC TF 0.874 0.092 0.849 0.112
SEER 0.723 0.245 0.535 0.299
MAGE 0.877 0.108 0.871 0.111
TextOCVP 0.924 0.035 0.904 0.042

4.1.2. BASELINES

We select several baselines to benchmark TextOCVP
against state-of-the-art image-to-video generation meth-
ods and to analyze different design choices within our
architecture. To assess the impact of text conditioning,
we compare TextOCVP with OCVP-Seq (Villar-Corrales
et al., 2023), an unconditional object-centric video predic-
tion model. To evaluate the role of object-centric represen-
tations, we introduce a TextOCVP variant (Non-OC TF)
that replaces the structured slot representation with a sin-
gle high-dimensional embedding. Finally, we benchmark
our approach against three text-conditioned image-to-video
generation models: MAGE (Hu et al., 2022), MAGEDINO,
and SEER (Gu et al., 2024). Additional details for the base-
lines can be found in Appendix C.

4.1.3. IMPLEMENTATION DETAILS

All our models are implemented in PyTorch and trained
on a single NVIDIA A6000 (48Gb) GPU. TextOCVPSAVi
closely follows Kipf et al. (2022) for the design of the scene
parsing and video rendering modules. TextOCVPDINO
leverages DINOv2 (Oquab et al., 2023) as image en-
coder, uses a four-layer MLP-based Spatial-Broadcast De-
coder (Watters et al., 2019), which is shared among all
slots, to decode the object slots into object features and
masks. Additionally, it uses a CNN decoder to map the re-
constructed scene features back to images. On the CATER
dataset, we use the TextOCVPSAVi variant with eight 128-
dimensional object slots; whereas on CLIPort we employ
the TextOCVPDINO variant with ten 128-dimensional slots.
Our predictor module is an eight-layer transformer with
512-dimensional tokens, eight attention heads, and a hid-
den dimension of 1024. Further implementation details are
provided in Appendix B.

4.2. Results

4.2.1. CATER RESULTS

On the CATER dataset, we train the models to generate
nine future frames given a single reference frame and a text
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t = 1 2 10 20 30

MAGE

TextOCVP

‘the medium green metal sphere is sliding
to (2, 1). the small brown metal cube

is picked up and placed to (-3, 1)’

Figure 4: Qualitative evaluation for text-driven image-to-
video generation on CATER. Top row shows ground truth
frames. TextOCVP generates sharp future frames, whereas
MAGE blurs and misses objects.

Table 2: Quantitative evaluation on CLIPort for predic-
tion horizons of T = 9 and T = 19. TextOCVP and
MAGEDINO outperform all methods. Best two results are
highlighted in boldface and underlined, respectively.

CLIPort1→9 CLIPort1→19

Method SSIM↑ LPIPS↓ SSIM↑ LPIPS↓
Non-OC TF 0.901 0.184 0.872 0.210
SEER 0.887 0.141 0.622 0.331
MAGEDINO 0.940 0.064 0.931 0.075
TextOCVP 0.950 0.062 0.931 0.078

caption. In Tab. 1 we report quantitative evaluations on
CATER using the same setting as in training, i.e. predicting
T = 9 frames, as well as when predicting T = 19 future
frames. In both settings, TextOCVP outperforms all other
models, demonstrating superior perceptual quality.

Fig. 4 shows a qualitative comparison between TextOCVP
and MAGE. Our proposed method generates a sequence
that is closely aligned to the ground-truth, whereas MAGE
predictions feature multiple errors and artifacts, including
missing objects, blurry contours, and significant changes
on object shapes. This highlights the effectiveness of
object-centric representations to accurately represent and
model object dynamics. Additional qualitative results are
provided in Appendix E.

4.2.2. CLIPORT RESULTS

Tab. 2 shows a detailed quantitative evaluation for image-
to-video generation on the CLIPort dataset. TextOCVP
outperforms all baselines when evaluated on the same set-
ting as in training (i.e. 1 → 9). When generating
for longer horizons, our model shows competitive perfor-
mance, closely following MAGEDINO.

In our qualitative evaluations, we observe that TextOCVP
often generates the most accurate generations given the ref-

‘put the gray block in the brown bowl’

MAGEDINO

TextOCVP

t = 1 20 30 40 50

a)

‘put the blue block in the gray bowl’

MAGEDINO

TextOCVP

t = 1 20 30 40 50

b)
Figure 5: Qualitative evaluation on CLIPort. Top rows de-
pict the ground truth frames. TextOCVP successfully com-
pletes the pick-and-place task, whereas MAGE fails to pre-
dict robot motion (a) or the block disappears (b).

erence frame and text description. Fig. 5 shows two qualita-
tive examples comparing TextOCVP with the MAGEDINO
baseline. MAGEDINO fails to complete the task outlined
in the textual description, as it stops generating consistent
robot motion after 30 frames (Fig. 5a), or misses the target
block after several prediction time steps (Fig. 5b). In con-
trast, TextOCVP correctly generates the sequences follow-
ing instructions provided in the given textual description.

However, we identify that TextOCVP often generates arti-
facts in the background and lacks textured details in certain
objects, thus degrading its quantitative performance despite
generating accurate future frames. Additional qualitative
results are provided in Appendix E.

4.3. Model Analysis

4.3.1. ABLATION STUDIES

We perform several ablation studies to support and val-
idate the architectural choices of our model components
and their impact on TextOCVP’s image-to-video genera-
tion performance. The results are presented in Tab. 3.
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Table 3: Ablation studies. We ablate different architectural design choices in our proposed TextOCVP model.
(a) Effect of number of layers in predictor.

CATER1→9

# Layers PSNR↑ SSIM↑ LPIPS↓
2 31.83 0.912 0.041
4 32.58 0.921 0.036
8 32.82 0.924 0.035

(b) Evaluation of different text encoders on CATER and CLIPort.

CATER1→9 CLIPort1→9

Text Encoder PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Custom TF 31.62 0.909 0.045 - - -
Frozen T5 31.83 0.912 0.041 26.99 0.950 0.062

FT T5 - - - 26.85 0.947 0.065

(c) Effect of residual connection in predictor.

CLIPort1→9

Residual PSNR↑ SSIM↑ LPIPS↓
No 26.55 0.946 0.066
Yes 26.99 0.950 0.062

(d) Effect of the number of slots NS.

CLIPort1→9

# Slots PSNR↑ SSIM↑ LPIPS↓
8 25.95 0.890 0.079

10 26.99 0.950 0.062

Table 4: Quantitative evaluation on a CLIPort test set with
unseen colors. We report the video generation performance
and its drop relative to the known-color dataset.

CLIPort1→9 CLIPort1→19

Method SSIM↑ LPIPS↓ SSIM↑ LPIPS↓

MAGEDINO 0.935 -0.5% 0.076 -19% 0.924 -0.7% 0.087 -16%

TextOCVP 0.946 -0.4% 0.066 -6.4% 0.927 -0.4% 0.083 -6.4%

Number of Layers (Tab. 3a) TextOCVP performs best
with NPred = 8 predictor layers. Scaling beyond eight
layers was not explored, as the performance improvements
when increasing from four to eight layers were marginal.

Residual Connection (Tab. 3c) Applying a residual con-
nection to the predictor output, Ŝt+1 := Ŝt+1 + St, en-
hances the model’s performance by improving the temporal
consistency of the predicted slots.

Text Encoder (Tab. 3b) We evaluate the performance
of different text encoders, including a vanilla transformer,
a frozen T5 encoder, and a fine-tuned (FT) T5. A frozen
T5 module led to the best TextOCVP performance on both
CATER and CLIPort datasets. We argue that given the rela-
tively small vocabulary size on CLIPort, fine-tuning T5 did
not prove to be beneficial.

Number of Slots (Tab. 3d) Using NS = 10 slots re-
sulted in better performance for TextOCVP on CLIPort,
even though each scene can be described with eight slots
(six objects, robot arm and background). This observation
suggests that additional slots can be used as registers in or-
der to help with internal computations (Darcet et al., 2024).

4.3.2. MODEL ROBUSTNESS

We evaluate the performance of TextOCVP and
MAGEDINO on a CLIPort evaluation set featuring color
variations in the text instructions that were not encountered

during training. This evaluation measures how well the
models generalize to unseen scene features, highlighting
their ability to handle novel configurations.

Tab. 4 presents the results on this evaluation set. We re-
port both the video generation performance as well as the
performance drop relative to the evaluation set with known
colors. Our model outperforms MAGEDINO for both pre-
diction horizons. Most notably, TextOCVP demonstrates
significantly higher robustness to objects with previously
unseen colors compared to the baseline, showing a much
smaller drop in performance for the perceptual LPIPS met-
ric. This highlights the effectiveness of leveraging object-
centric representations for image-to-video generation and
planning, in contrast to relying on holistic scene represen-
tations that struggle with novel scene compositions.

4.3.3. CONTROLLABILITY

A key objective of text-driven image-to-video generation
is to provide control over the model generations. This is
achieved through language instructions that describe the
objects in the scene and their expected motion. We qual-
itatively assess the controllability of our model on both the
CATER and CLIPort datasets.

CATER In Fig. 6, we showcase the control that
TextOCVP provides over its generations. We qualitatively
evaluate this ability by generating multiple videos condi-
tioned on the same reference frame while varying the lan-
guage instruction. We experiment with altering both the
moving and target objects and their actions in the language
instruction, as well as providing instructions that include a
number of tasks beyond what the model was trained on.

As shown in Fig. 6, TextOCVP successfully identifies the
objects described in the text and executes the instructions
accordingly. Notably, our model can distinguish between
two nearly identical purple cones in the scene, despite their
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‘the large purple rubber cone is picked up
and placed to (2, 3). the small gold metal
snitch is picked up and placed to (-1, 1).’

Original
Captiona)

‘the medium cyan rubber sphere is picked up
and placed to (-2, 2). the medium purple

metal cone is sliding to (2, 3).’

Changed
Objects

& Actions
b)

‘the large purple rubber cone is sliding to
(-1, 1). the small gold metal snitch is
rotating. the medium purple metal cone
is picked up and placed to (-1, -3).’

More
Moving
Objects

c)

t = 1 2 15 30

Figure 6: Qualitative evaluation of TextOCVP controllabil-
ity on CATER. Top row shows the ground truth sequence.
We underline the changed actions with respect to the orig-
inal caption. We demonstrate TextOCVP’s controllability
by generating multiple sequences from the same reference
frame, each conditioned on a different text instruction.

identical shapes and color, and correctly generates a se-
quence with the specified motion.

This demonstrates that key object attributes, such as size or
color, are effectively captured through the text-to-slot at-
tention mechanism. Leveraging this information, the text-
conditioned predictor accurately predicts the future motion
of each individual object as specified in the instruction.
These results highlight the benefits of combining object-
centric representations with text-based conditioning.

CLIPort We perform a similar experiment on the CLI-
Port dataset, as shown in Fig. 7. A single frame con-
taining multiple colored blocks and bowls is provided to
TextOCVP. By modifying the textual instruction, we can
control which block the robot arm picks up and the bowl

‘put the cyan block in the brown bowl’

Original
Caption

‘put the blue block in the brown bowl’

Changed
Block

t = 1 20 30 40

Figure 7: Qualitative evaluation of TextOCVP controlla-
bility on CLIPort. Top row depicts ground-truth frames.
TextOCVP correctly generates a sequence where the robot
picks up the correct block and places it into the bowl as
specified in the textual instruction.

where it is placed. In both examples, TextOCVP success-
fully selects the correct block and places it in the specified
bowl. Furthermore, the movement of the robot arm adapts
to the motion described in the instruction, demonstrating
accurate and responsive control.

5. Conclusion
We presented TextOCVP, a novel object-centric model for
text-driven image-to-video generation. Given a single in-
put image and a text description, TextOCVP generates a
sequence that matches the description by parsing the en-
vironment into object representations and modeling their
dynamics conditioned on the textual instruction. This is
achieved with a novel text-conditioned object-centric trans-
former, which predicts future object states by modeling the
spatio-temporal relationships between objects while incor-
porating the guidance from text. Through extensive eval-
uations, we demonstrated that TextOCVP outperforms ex-
isting text-conditioned models for the image-to-video gen-
eration, highlighting our model’s ability to generate con-
sistent long sequences and adapt its predictions based on
language input. Moreover, we validated our architectural
choices through ablation studies, highlighting the impor-
tance of combining textual and object-centric information.
With its structured latent space and superior controllability,
TextOCVP offers potential for robotics applications, where
it can serve as a controllable world model, enabling effi-
cient planning, reasoning, and decision-making.
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A. Limitations and Future Work
While TextOCVP demonstrates promising results for text-guided object-centric video prediction, it presents some limita-
tions that we plan to address in future work:

Prediction Artifacts TextOCVP occasionally generates artifacts in the predicted frames, such as blurriness, inconsistent
object appearances, lack of textured details in the objects, or visual artifacts in the background. We believe that these
limitations stem from the video rendering module, which might lack the representational power to reconstruct precise
image details from the latent space representation.

Poor Temporal Consistency We observe that TextOCVP’s predictions often lack temporal consistency when forecasting
for long prediction horizons (T > 30). We attribute this limitation to the fact that TextOCVP is trained by optimizing
reconstruction losses, which do not penalize temporal inconsistencies.

Future Work To address these limitations, we plan to extend our TextOCVP framework with more powerful decoder
modules, such as autoregressive transformers (Singh et al., 2022) or diffusion models (Jiang et al., 2023), as well as scale
our predictor module. Furthermore, we plan to incorporate temporal discriminators (Clark et al., 2020) to improve the
temporal consistency of the predicted video frames. We believe that exploring these architectural modifications will enable
us to utilize TextOCVP as a world model in complex real-world robotic environments.

B. Implementation Details
We employ TextOCVPSAVi for the experiments on CATER and TextOCVPDINO for experiments on CLIPort. Below we
discuss the implementation details for each of these variants.

B.1. TextOCVPDINO

TextOCVPDINO variant consists of our proposed text-conditioned predictor module and an object-centric decomposition
module that extends the DINOSAUR (Seitzer et al., 2023) framework for recursive object-centric video decomposition and
video rendering.

Text-Conditioned Predictor The predictor is composed of NPred = 8 identical layers, each containing 8-head attention
mechanisms and an MLP with a single hidden layer of dimension 1024 and a ReLU activation function. Furthermore, the
predictor uses an embedding dimensionality of 512, context window size of ten frames, and applies a residual connection
from the predictor input to its output.

Text Encoder TextOCVPDINO leverages a pretrained and frozen small version of T5 encoder (Raffel et al., 2020), which
consists of 6 T5 blocks. This text encoder uses a vocabulary with size 32,128.

Scene Parsing The scene parsing module generates NS = 10 slots of dimension 128. As feature extractor, we use
DINOv2 ViT-Base (Oquab et al., 2023), featuring 12 layers, using a patch size of 14, and producing patch features with
dimension Dh = 768. The Slot Attention corrector module processes the first video frame with three iterations in order
to obtain a good initial object-centric decomposition, and a single iteration for subsequent frames, which suffices to recur-
sively update the slot representation. The initial object slots S0 are randomly sampled from a Gaussian distribution with
learned mean and covariance. We use a single Transformer encoder block as the transition function, which consists of a
four attention heads and an MLP with hidden dimension 512.

Video Rendering The video rendering module consists of two distinct decoders. First, a four-layer MLP-based Spatial
Broadcast Decoder (Watters et al., 2019) with hidden dimension 1024 reconstructs the patch features from the slots. Then,
to reconstruct the images from the features, we implement a CNN-based decoder with four convolutional layers, where
each layer uses 3 × 3 kernels. Every layer is followed by bilinear upsampling and a ReLU activation function. A final
convolutional layer is applied to map to the RGB channels of the image.

Training We train our model for object-centric decomposition using videos sequences of length five frames for 1000
epochs. We use batch size of 16, the Adam optimizer (Kingma & Ba, 2015), and a base learning rate of 4 × 10−4, which
is linearly warmed-up for the first 10000 steps, followed by cosine annealing for the remaining of the training process.
Moreover, we clip the gradients to a maximum norm of 0.05. The predictor module is trained given a frozen and pretrained
object-centric decomposition model for 700 epochs. The predictor is trained using the same hyper-parameters as for
object-centric decomposition. In the predictor loss function LTextOCVP, we set λImg = 1 and λSlot = 1.
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B.2. TextOCVPSAVi

TextOCVPSAVi uses the same text-conditioned predictor and text-encoder architectures as TextOCVPDINO, but employs
SAVi (Kipf et al., 2022) as the object-centric decomposition module.

Scene Parsing The scene parsing module generates NS = 8 slots of dimension 128. Following Kipf et al. (2022), we
use as feature extractor a four-layer CNN with ReLU activation function, where each convolutional layer features 32 5× 5
kernels, stride = 1, and padding = 2. The Slot Attention corrector follows the same structure as in TextOCVPDINO.

Video Rendering Following Kipf et al. (2022), we utilize a CNN-based Spatial Broadcast Decoder (Watters et al., 2019)
with four convolutional layers with 32 kernels of size 5× 5 , stride = 1, and padding = 2, and a final convolutional layer
which maps to four channels (RGB + alpha mask).

Training We train our model for object-centric decomposition using video sequences of length ten frames for 1000
epochs, using batch size of 64, and an initial learning rate of 10−4, which is warmed up for 2500 steps, followed by
cosine annealing for the remaining of the training process. Moreover, we clip the gradients to a maximum norm of 0.05.
The predictor module is trained given a frozen and pretrained object-centric decomposition model for 1400 epochs. The
predictor is trained using the same hyper-parameters as for object-centric decomposition. In the predictor loss function
LTextOCVP, we set λImg = 1 and λSlot = 1.

C. Baselines
We employ four different baselines to compare againts our TextOCVP model on the image-to-video generation task on
CATER and CLIPort datasets. To emphasize the importance of incorporating textual information, we include a comparison
with OCVP-Seq (Villar-Corrales et al., 2023), a recent object-centric video prediction model that does not utilize text con-
ditioning. Additionally, we evaluate a non-object-centric TextOCVP variant (Non-OC TF) that processes the input image
into a single high-dimensional slot representation, instead of multiple object-centric slots, thus allowing us to evaluate the
effect of object-centric representations. Moreover, we compare TextOCVP with two popular text-conditioned image-to-
video generation baselines that do not incorporate object-centricity: MAGE (Hu et al., 2022) and SEER (Gu et al., 2024).
We train both models on CATER and CLIPort closely following the original implementation details12.

C.1. MAGE

MAGE is an autoregressive text-guided image-to-video generation framework that utilizes a VQ-VAE (Russakovsky et al.,
2015) encoder-decoder architecture to learn efficient visual token representations. A cross-attention module aligns textual
and visual embeddings to produce a spatially-aligned motion representation termed Motion Anchor (MA), which is fused
with visual tokens via an axial transformer for video generation. For experiments on CATER, we use a codebook size of
512 × 256 with a downsampling ratio of four, whereas on CLIPort we use a codebook size of 512 × 1024. Moreover, on
CLIPort we replace MAGE’s standard CNN encoder and decoder with the DINOv2 ViT encoder and CNN decoder used in
our TextOCVPDINO approach. This adjustment ensures a fair comparison and significantly enhances MAGE’s performance
on CLIPort. We refer to this modified version as MAGEDINO. Additionally, to align with our experimental setup, we omit
the speed parameter.

C.2. SEER

SEER is a diffusion-based model for language-guided video prediction. It employs an Inflated 3D U-Net derived from a
pretrained text-to-image 2D latent diffusion model (Rombach et al., 2022), extending it along the temporal axis and inte-
grating temporal attention layers to simultaneously model spatial and temporal dynamics. For the language conditioning
module, SEER introduces a novel Frame Sequential Text (FSText) Decomposer, which decomposes global instructions
generated by the CLIP text encoder (Radford et al., 2021) into frame-specific sub-instructions. These are aligned with
frames using a transformer-based temporal network and injected into the diffusion process via cross-attention layers. We
initialize SEER from a checkpoint pretrained on the Something-Something V2 dataset (Goyal et al., 2017), and further
fine-tune it for a few epochs. We observed that incorporating a text loss enhanced SEER’s performance, while other hyper
parameters were kept consistent with its original implementation.

1https://github.com/Youncy-Hu/MAGE
2https://github.com/seervideodiffusion/SeerVideoLDM/tree/main
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D. Datasets
CATER CATER (Girdhar & Ramanan, 2020) is a dataset that consists of long video sequences, each described by a
textual caption. The video scenes consist of multiple 3D geometric objects in a 2D table plane, which is split into a 6× 6
grid with fixed axis, allowing the exact description of object’s positions using coordinates. The text instruction describes
the movement of specific objects through four atomic actions: ‘rotate’, ‘pick-place’, ‘slide’, and ‘contain’. The caption
follows a template consisting of the subject, action, and an optional object or end-point coordinate, depending on the action.
The movement of the objects starts at the same time step. Furthermore, the initial positions are randomly selected from the
plane grid, and the camera position is fixed for every sequence.

In our work, we employ CATER-hard, which is a complete version of the CATER dataset, containing 30000 video-caption
pairs. It includes 5 possible objects: cone, cube, sphere, cylinder, or snitch, which is a special small object in metallic gold
color, shaped like three intertwined toruses. Furthermore, every object is described by its size (small, medium, or large),
material (metal or rubber), and color (red, blue, green, yellow, gray, brown, purple, cyan, or gold if the object is the snitch),
and this description is included in the textual caption. Every atomic action is available. The ‘rotate’ action is afforded by
cubes, cylinders and the snitch, the ‘contain’ action is only afforded by the cones, while the other two actions are afforded
by every object. Every video has between 3 and 8 objects, and two actions happen to different objects at the same time.
The vocabulary size is 50.

CLIPort CLIPort (Shridhar et al., 2022) is a robot manipulation dataset, consisting of video-caption pairs, i.e. long
videos whose motion is described by a textual video caption. There are many variants of the CLIPort dataset, but we focus
on the Put-Block-In-Bowl variant. We generate 21000 video-caption pairs with resolution 336×336. Every video contains
6 objects on a 2D table plane, and a robot arm. Objects can be either a block or a bowl, and there is at least one of them
in every sequence. The starting position of each object is random, with the only constrain to be placed on the table. Each
video describes the action of the robot arm picking a block, and putting it in a specific bowl. The video caption follows the
template ‘put the [color] block in the [color] bowl’. Each individual object in the scene has a different color. In the train
and validation set, the block and the bowl that are part of the caption can have one of the following colors: blue, green,
red, brown, cyan, gray, or yellow, while in the test set they can have blue, green, red, pink, purple, white, or orange color.
The other 4 objects, called distractors, can have any color. During a video sequence, it can be possible that the robot arm
goes out of frame, and comes back in later frames, thus requiring the model to leverage long range dependencies. The
vocabulary size is 15.

E. Additional Results
E.1. SAVi vs. DINO

Current object-centric approaches for video generation are limited to relatively simple synthetic datasets. We attribute this
limitation primarily to the object-centric modules used for learning object representations. Motivated by this observation,
we extend DINOSAUR (Seitzer et al., 2023) to handle video data and reconstruct images effectively.

To demonstrate the significance of the object-centric module in scaling to more complex datasets, we input the same video
sequence to both SAVi and our extended DINOSAUR trained on CLIPort. As illustrated in Fig. 8, SAVi struggles to
accurately model objects on the 2D plane, whereas our proposed object-centric model successfully reconstructs the scene,
closely resembling the input. The visual features extracted by the DINOv2 (Oquab et al., 2023) encoder contain high-level
semantic information, and during training, the slots are specifically optimized to efficiently encode this information. This
design enables the model to scale and handle more complex object-centric video data effectively.

E.2. Robustness to Number of Objects

We evaluate the performance of TextOCVP and MAGEDINO on a CLIPort evaluation set consisting of scenes with a larger
number of objects than encountered during training, i.e. the 2D table plane contains 8 instead of 6 objects. This evalu-
ation demonstrates the robustness of models when generalizing to scenes with more objects. The quantitative results are
presented in Tab. 5. We report both the video generation performance and the performance drop relative to the original
evaluation set.

We observe that our model outperforms MAGEDINO on every metric, for both prediction horizons. Notably, TextOCVP
demonstrates significantly higher robustness to scenes with more objects, as reflected by the smaller decline in performance
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t = 1 2 3 4 5

Ground Truth

SAVi

Ext. DINO

Ext. DINO
Masks

Figure 8: Comparison between SAVi and our Extended DINOSAUR (Ext. DINO) decomposition modules in reconstruct-
ing an CLIPort video sequence.

Table 5: Quantitative evaluation on a CLIPort test set with more objects. We report the video generation performance and
its drop relative to the original dataset.

CLIPort1→9 CLIPort1→19

Method SSIM↑ LPIPS↓ SSIM↑ LPIPS↓
MAGEDINO 0.929 (-1.2%) 0.088 (-37.5%) 0.920 (-1.2%) 0.094 (-25.3%)
TextOCVP 0.936 (-1.5%) 0.076 (-22.6%) 0.921 (-1.1%) 0.090 (-15.4%)

for the perceptual LPIPS metric. This result is further illustrated in Fig. 9, where we show a qualitative comparison of
video generations for scenes with 8 objects. As observed, our model correctly illustrates the motion described in the text
instructions, while MAGEDINO fails to generate accurate sequences, missing the target block, a behaviour observed in
various examples.

These results highlight once again the effectiveness of object-centric representations in image-to-video generation, as
TextOCVP is able to generalize to scenes with more objects by simply increasing the number of slots.

E.3. Text-to-Slot Attention Visualizations

An additional advantage of using object-centric representations is the improved interpretability. This can be shown in the
visualizations of text-to slot attention weights, which help us understand how the textual information influences and guides
the model predictions. First, in Fig. 10, we visualize the text-to-slot attention weights for different cross-attention heads
for a single slot that represents the rotating red cube. We observe that the slot attends to relevant text tokens from the input,
such as the object shape, size and the action taking place.

In Fig. 11, we additionally visualize the text-to-slot attention weights, averaged across attention heads, for different slots in
a CATER sequence. We observe that slots that represent objects in the textual description attend to relevant text tokens, such
as their target coordinate locations. These results demonstrate that the text-to-slot attention mechanism effectively aligns
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‘put the gray block in the brown bowl’

MAGEDINO

TextOCVP

t = 1 t = 5 10 20 30 40

Figure 9: Qualitative evaluation of MAGEDINO and TextOCVP on a CLIPort sequence with more objects than those seen
during training. TextOCVP correctly generates a sequence where the robot picks up the gray block and places it in the
brown bowl, while MAGEDINO fails by missing the target bowl.

the textual information with the object-centric representations, enabling the model to generate accurate video sequences
based on the given text instructions, while providing superior interpretability.

E.4. Qualitative Evaluations

Figs. 12 and 13 show qualitative evaluations on CATER in which both MAGE and TextOCVP successfully generate a
sequence following the instructions from the textual description. Fig. 14 illustrates an example where MAGE fails to
generate a correct sequence, while TextOCVP successfully completes the task described by the text.

Figs. 15 and 16 show examples of TextOCVP’s control over the predictions. In both sequences, TextOCVP generates
a correct sequence given the text instructions, and seamlessly adapts its generations to a modified version of the textual
instructions.
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‘the small red rubber cube is rotating.
the small gray cylinder is rotating.’
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Figure 10: Visualization of the text-to-slot attention between an object and the textual caption. We visualize the text-to-slot
attention weights for different heads. Our predictor module focuses on relevant text tokens to predict the scene dynamics,
including the object size, shape or the action.
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t = 1 5 10 15 20 25 30

‘the cone is sliding to (-3, -3).
the snitch is picked up and placed to (-1, 2 ).’

1.0

0.5

0.0

Slot 3

th
e

co
ne is

sl
id

in
g to ( -3
,

-3 ) .
th

e
sn

itc
h is

pi
ck

ed up an
d

pl
ac

ed to ( -1
, 2 ) .

1.0

0.5

0.0

Slot 4

th
e

co
ne is

sl
id

in
g to ( -3
,

-3 ) .
th

e
sn

itc
h is

pi
ck

ed up an
d

pl
ac

ed to ( -1
, 2 ) .

1.0

0.5

0.0

Slot 6

th
e

co
ne is

sl
id

in
g to ( -3
,

-3 ) .
th

e
sn

itc
h is

pi
ck

ed up an
d

pl
ac

ed to ( -1
, 2 ) .

Figure 11: Text-to-slot attention weights, averaged across attention heads, for different objects in the sequence. Slots that
represent objects in the textual description attend to relevant text tokens, such as their target locations.
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‘the large brown metal cone is picked up and containing the
medium red rubber cone. the small gold metal snitch is rotating.’

MAGE

TextOCVP

t = 1 5 10 15 20 30

Figure 12: Qualitative evaluation on CATER. Both MAGE and TextOCVP successfully generate a sequence following the
instructions from the textual description.

‘the medium green rubber cone is picked up and
containing the small gold metal snitch.

the large purple rubber cone is picked up and placed to (-1, 3).’

MAGE

TextOCVP

t = 1 5 10 15 20 30

Figure 13: Qualitative evaluation on CATER. Both MAGE and TextOCVP successfully generate a sequence that illustrates
the motion described in the text, but MAGE’s predictions are of a lower resolution.
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‘the large yellow rubber cone is sliding to (2, 3).
the small gold metal snitch is picked up and placed to (-3, 1).’

MAGE

TextOCVP

t = 1 5 10 15 20 30

Figure 14: Qualitative evaluation on CATER. MAGE fails to generate a sequence that accurately follows the motion
described in the text. Specifically, the yellow cone does not slide as expected, and artifacts such as the merging of two
small objects are introduced. On the other hand, the sequence generated by TextOCVP is closely aligned with the ground
truth, accurately capturing the motion of the objects.
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‘put the blue block in the brown bowl’

Original
Caption

‘put the blue block in the red bowl’

Changed
Bowl

t = 1 10 20 30 40 50

Figure 15: Qualitative evaluation of TextOCVP controllability on CLIPort. TextOCVP correctly generates a sequence
where the robot picks up and places the block specified in the textual instruction.

‘put the green block in the cyan bowl’

Original
Caption

‘put the green block in the red bowl’

Changed
Bowl

t = 1 10 20 30 40 50

Figure 16: Qualitative evaluation of TextOCVP controllability on CLIPort. TextOCVP correctly generates a sequence
where the robot picks up and places the block specified in the textual instruction.
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