
Under review as a conference paper at ICLR 2023

A PROBABILISTIC FRAMEWORK FOR
MODULAR CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual learning (CL) algorithms seek to accumulate and transfer knowledge
across a sequence of tasks and achieve better performance on each successive
task. Modular approaches, which use a different composition of modules for each
task and avoid forgetting by design, have been shown to be a promising direction
to CL. However, searching through the large space of possible module compo-
sitions remains a challenge. In this work, we develop a scalable probabilistic
search framework as a solution to this challenge. Our framework has two distinct
components. The first is designed to transfer knowledge across similar input do-
mains. To this end, it models each module’s training input distribution and uses a
Bayesian model to find the most promising module compositions for a new task.
The second component targets transfer across tasks with disparate input distribu-
tions or different input spaces and uses Bayesian optimisation to explore the space
of module compositions. We show that these two methods can be easily combined
and evaluate the resulting approach on two benchmark suites designed to capture
different desiderata of CL techniques. The experiments show that our framework
offers superior performance compared to state-of-the-art CL baselines.

1 INTRODUCTION

The continual learning (CL) (Thrun & Mitchell, 1995) setting calls for algorithms that can solve a
sequence of learning problems while performing better on every successive problem. A CL algo-
rithm should avoid catastrophic forgetting — i.e., not allow later tasks to overwrite what has been
learned from earlier tasks — and achieve transfer across a large sequence of problems. Ideally,
the algorithm should be able to transfer knowledge across similar input distributions (perceptual
transfer), dissimilar input distributions and different input spaces (non-perceptual transfer), and to
problems with a few training examples (few-shot transfer). It is also important that the algorithm’s
computational and memory demands scale sub-linearly with the number of encountered tasks.

Recent work (Valkov et al., 2018; Veniat et al., 2020; Ostapenko et al., 2021) has shown modular
algorithms to be a promising approach to CL. These methods represent a neural network as a compo-
sition of modules, in which each module is a reusable parameterised function trained to perform an
atomic transformation of its input. During learning, the algorithms accumulate a library of diverse
modules by solving the encountered problems in a sequence. Given a new problem, they seek to find
the best composition of pre-trained and new modules, out of the set of all possible compositions, as
measured by the performance on a held-out dataset. Unlike CL approaches which share the same
parameters across all problems, modular algorithms can introduce new modules and, thus, do not
have an upper bound on the number of solved problems.

However, scalability remains a key challenge in modular approaches to CL, as the set of mod-
ule compositions is discrete and explodes combinatorially. Prior work has often sidestepped this
challenge by introducing various restrictions on the compositions, for example, by only handling
perceptual transfer (Veniat et al., 2020) or by ignoring non-perceptual transfer and being limited by
the number of modules that can be stored in memory (Ostapenko et al., 2021). The design of CL
algorithms that relax these restrictions and can also scale remains an open problem.

In this paper, we present a probabilistic framework as a solution to the scalability challenges in
modular CL. We observe that searching over module compositions efficiently is difficult because
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Figure 1: The figure depicts the set of all paths, Π4, that a modular algorithm considers when solving
the 4th problem Ψ4 in a sequence. The modular architecture has L = 2 layers. The library comprises
all previously trained modules: Λ4 = {m1
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4 (Eq. 2) select a pre-trained
module for the first layer, enabling perceptual transfer. Paths in ΠPT,2

4 reuse modules in both layers.
They can perform few-shot transfer since they only require a few examples (to select the correct
path). Paths in ΠNT,1

4 (Eq. 6) achieve non-perceptual transfer by reusing a module in the second
layer, allowing applications to new input domains.

evaluating most of them involves training their new modules. This difficulty would be overcome if
we could approximate a module composition’s final performance without training its new modules.

Accordingly, our method divides the search space into subsets of module compositions which
achieve different types of forward transfer and can be searched through separately. It then explores
each subset using a subset-specific probabilistic model over the choice of pre-trained modules, de-
signed to take advantage of the subset’s properties. Querying each probabilistic model is efficient,
as it does not involve training new parameters, which in turn enables a scalable search method.

Operationally, we first develop a probabilistic model over a set of module compositions which can
achieve perceptual and few-shot transfer. The model exploits the fact that the input distribution
on which a module is trained can indicate how successfully said module would process a set of
inputs. Second, we identify a subset of module combinations capable of non-perceptual transfer
and, using a new kernel, define a probabilistic model over this subset. We show that each of the two
probabilistic models can be used to conduct separate searches through module combinations, which
can then be combined into a scalable modular CL algorithm capable of perceptual, few-shot and
non-perceptual transfer. Using two benchmark suites that evaluate different aspects of CL, we show
that our approach achieves different types of knowledge transfer in large search spaces, is applicable
to different input domains and modular neural architectures, and outperforms competitive baselines.

2 BACKGROUND

A continual learning algorithm is tasked with solving a sequence of problems S = (Ψ1, ...,ΨT ),
usually provided one at a time. We consider the supervised setting, in which each problem is char-
acterised by a tuple Ψ = (D, T ), where D is the input domain, comprised of an input space and an
input distribution, and T is a task, defined by a label space and a labelling function (Pan & Yang,
2009). A CL algorithm aims to transfer knowledge between the problems in a sequence in order to
improve each problem’s generalisation performance. The knowledge transfer to a single problem
can be defined as the difference in performance when the rest of the problems are not available.

CL algorithms have several desiderata. First, an algorithm should be plastic, i.e., learn to solve new
problems. Second, it should be stable and avoid catastrophic forgetting. Third, it should be capable
of forward transfer: the ability to transfer knowledge to a newly encountered problem. In particular,
we distinguish between three types of knowledge transfer: between problems with similar input
distributions (perceptual), between problems with different input distributions or different input-
spaces (non-perceptual) and to problems with a few training examples (few-shot). Fourth, a CL
algorithm should also be capable of backward transfer, meaning its performance on previously
encountered problems should increase after solving new ones. Finally, the resource demands of a
CL algorithm should scale sub-linearly with the number of solved problems.
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Modular approaches represent a deep neural network ζΘ as a composition of modules ζΘ = mL ◦
... ◦m2 ◦m1, where the first module that is applied to the input is m1. Each module mi represents
a nonlinear transformation, parameterised by θ(mi). It can consist of one or more hidden layers,
each with a potentially different type (e.g. convolutional, fully connected, LSTM, Transformer, etc)
and with a different activation function (e.g. ReLU or tanh). Given a problem, one needs to select
optimal values for all parameters Θ and return the resulting neural network ζΘ as the solution.

Modular approaches have been successfully applied to continual learning. After solving t− 1 prob-
lems, they accumulate a library of previously trained modules that each have been used to help
perform one or more of the previous tasks. Denote this library by Λt =

⋃L
i=1{mi

j}j<t, where mi
j

denotes a module in layer i that was trained on the j-th problem. It is then possible to construct
different modular neural networks by either selecting a pre-trained module from the library or by
training a new one from scratch for each of the L layers. We denote the set of all modular neural
networks as Πt = {({m1

j}j<t ∪ {m1
t})× ...× ({mL

j }j<t ∪ {mL
t )}, where mi

t denotes new module
used in layer i with randomly initialised parameters. We refer to each element of Πt as a path, as
it can be seen as guiding the forward computation through different modules. Figure 1 illustrates
the set of all paths Π4 for the fourth problem of some sequence, using a modular architecture with 2
module layers.

Let a new problem Ψt be specified by a training and a validation datasets, Dtr = (Xtr,Ytr) and
Dval = (Xval,Yval). Evaluating each path π requires training the network on Dtr and evaluating it
on Dval. Let π[pre] and π[new] denote the pre-trained and randomly initialised modules, respectively,
from π. Training results in parameters Θ∗

new = {θ(mi
j) : m

i
j ∈ π[new]} for each of the new modules.

Parameters from the pre-trained modules are frozen. Thus, evaluating a path can be computationally
expensive and one wants to evaluate as few paths as possible. However, the search space grows
quickly. If there are J pre-trained modules for each module types in the library, the search space
consists of (J +1)L unique paths. This necessitates a search strategy S(Πt) which can prioritise the
most promising paths for evaluation.

Modular algorithms can achieve many of the CL desiderata (Valkov et al., 2018). Catastrophic
forgetting is prevented by freezing the parameters of all pre-trained modules in the library. A path
with only randomly initialised parameters can be selected, ensuring the methods’ plasticity. As more
problems are solved, the pre-trained modules in the library can be reused in order to achieve all types
of forward transfer, as discussed in the following sections. However, a key challenge has been to
attain all transfer using a search strategy which scales to the enormous search space.

3 PROBABILISTIC MODULAR CONTINUAL LEARNING

We propose a probabilistic approach which uses the information available about the new problem
to compute a distribution over different choices for pre-trained modules. The distribution does not
model the new modules, and this allows efficient queries. This leads to a principled search strategy.

Specifically, we split Πt into subsets Πi
t ⊂ Πt of paths in which the reused modules are at the

same layer positions. For each subset, we define a a probability distribution over the choice of
pre-trained modules, p(π[pre]|Xtr,Ytr,Xtr,Yval, Ej). This distribution uses the available training
and validation datasets, and the previously evaluated paths Ej . Here, j denotes the index of the
current path suggestion. This distribution can be queried efficiently, as it does not involve randomly
initialised modules. Now we define a search strategy for each path subset Πi

t. At step j, this strategy
selects the unevaluated path with the highest posterior probability of its pre-trained modules:

SMAP(Π
i
t) =

(
argmax

π∈Πi
t

p(π[pre]|Xtr,Ytr,Xtr,Yval, Ej)

)
j

(1)

Multiple subsets of Πt can be explored by applying this search strategy to each sequentially.

Next, we first apply our approach to subsets of paths which are capable of perceptual and few-shot
transfer. Second, we apply it to a subset of paths capable of non-perceptual transfer. In both cases,
we define a suitable Bayesian model, which takes advantage of each subset’s properties. Finally, we
show how the two search strategies can be combined.

3



Under review as a conference paper at ICLR 2023

4 EFFICIENT PERCEPTUAL TRANSFER AND FEW-SHOT TRANSFER

To achieve perceptual transfer, a model needs to transfer knowledge on how to transform the input.
For a path, this means reusing the first l ∈ {1, ..., L} module layers. Additionally, a path that reuses
all L layers can allow for few-shot transfer, since there are no new parameters that need to be learned.
Therefore, we start by considering paths where the first l layers are selected from the library, while
the rest are selected to be new randomly initialised modules, i.e.

ΠPT,l
t = {π : π = {mi

<t, i ≤ l} ∪ {mi
t, i > l}}. (2)

Each subset grows polynomially with the size of the library and exponentially with the number of
layers, which makes a naive search inapplicable. Several previous papers consider this search space.
For example, MNTDP (Veniat et al., 2020) only consider paths where all of the pre-trained modules
come from the same previous solution. This leads to a rigid approach which cannot compose pre-
trained modules in novel ways. In contrast, LMC (Ostapenko et al., 2021) propose to model each
module’s input density, enabling flexible input-specific composition of modules. However, their
approximations double the storage requirements and requires that all modules be loaded in memory,
which could hinder scaling to a large number of pre-trained modules.

In this section, we present a probabilistic model, which allows us to efficiently explore novel input-
specific module compositions. In contrast to LMC, we efficiently approximate each module’s input
density and also allow for prior knowledge over the choice of pre-trained modules to be incorporated.
Evaluating our approximations can be done without loading the corresponding pre-trained modules
in memory and we show that this leads to a scalable search strategy.

H2
iH1

iXi

M1 M2 M3

N

Figure 2: A graphical model of
the joint distribution over a PT path
with three pre-trained modules π =
(M1,M2,M3) and hidden states
H1

i and H2
i .

Our motivating intuition is to select pre-trained modules so
that the distribution of inputs each module receives in the
new problem will match the input distribution said module
was trained on. This minimizes the amount of distribution
shift faced by each module, hopefully increasing the perfor-
mance of the full network. Using this insight, for a given
value of l, we define a probabilistic model over the choices
of pre-trained modules and their N inputs (including X - the
problem inputs, and Hi - relevant hidden states). Figure 2
shows the corresponding graphical model for l = 3. The
hidden states and the choice of pre-trained modules are la-
tent variables which are sequentially used to generate the ob-
served inputs. This allows us to infer the distribution over
pre-trained modules, given the observed inputs:

p(M1, ...,M l, X1, ..., XN , H1
1 , ...,H

1
N , ...,H l−1

1 , ...,H l−1
N )

=

N∏
j=1

{
p(Xj |H1

j ,M
1)

l−1∏
i=2

[
p(Hi−1

j |Hi
j ,M

i)
]
p(H l−1

j |M l)

}
l∏

i=1

[
p(M i)

]
. (3)

As a result, we then model the posterior of a PT path as only being dependent on the training
inputs, p(π[pre]|Xtr) := p(m1, ...,ml|x1, ...,xN ), and express it in terms of quantities which we can
approximate, as derived in Appendix A:

p(m1, ...,ml|x1, ...,xN ) ∝ p(m1, ...,ml,x1, ...,xN ) = p(m1, ...,ml,h0
1, ...,h

0
N )

≈
N∏
j=1

{
l−1∏
i=1

[
q(hi−1

j |mi)∑
mi+1′ q(hi

j |mi+1′)p(mi+1′)

]
q(hl−1

j |ml)

}
l∏

i=1

p(mi) (4)

where q(hi−1
j |mi) denotes our approximation to the training input distribution of the module mi.

We define a prior distribution over pre-trained modules which gives preference to modules which
helped achieve a higher accuracy, on the problems which they have been trained on. Our motivation
is that such modules have learned a more generalisable transformation of their inputs. We use
softmax to define a prior, p(M i), over the modules in layer i which is proportional to each module’s
previously achieved accuracy. The prior is defined in Appendix B, eq. 12.
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We set out to construct an approximation of a module’s training input distribution, p(Hi−1|M i),
which is easy to compute in terms of implementation, storage and computational resources. After a
module is trained, we perform dimensionality reduction of each sample from the module’s training
distribution. We use a random projection (Johnson, 1984) to reduce each sample’s dimensionality
from c to k ≪ c. Finally, we compute the sample mean and covariance of the projected data samples
in order to approximate their distribution using a multivariate Gaussian. This greatly reduces the
number of parameters required to approximate the resulting distribution from c + c2 to k + k2.
When maximising the posterior using Eq. 4, we compute q(hi−1

j |mi) ∝ q(Ai−1hi−1
j |mi), where

Ai−1 is a layer-specific randomly generated matrix used for random projection (Pedregosa et al.,
2011). Surprisingly, our ablation experiments, presented in Appendix E.2, suggest that using a
Gaussian approximation over randomly projected inputs is also more reliable than using a Gaussian
approximation over the original inputs.

Search Strategy The number of possible PT paths of length l increases exponentially with l. As a
result, evaluating p(π|Xtr) for all PT paths in the SMAP search strategy (Eq. 1) is infeasible. Instead,
we augment the search with a greedy policy: after selecting the first a pre-trained modules, we freeze
this selection and reuse the same a modules for PT paths with l > a which reuse more pre-trained
modules. Also, for each value of l, the search only recommends the path which has the highest
probability under our model, since this is the path which is best equipped to handle the inputs. We
define the resulting search strategy over all ΠPT as:

SPT
G (ΠPT

t ) := {π∗PT,l}Ll=1 (5)

where π∗PT,l = π∗PT,l−1[: l − 1] ∪m∗,l ∪ {mi
t}Li=l

m∗,l = argmax
ml

p(π∗′PT,l−1[: l − 1] ∪ml|x1, ...,xN ).

It states that in order to select the most promising PT path with l pre-trained modules, π∗PT,l, we
choose the previously selected l − 1 pre-trained modules, π∗PT,l−1[: l − 1], and append the optimal
choice for layer l, m∗,l, which maximises the resulting posterior distribution.

The storage requirement of this search is associated with the number of modules in the library.
Therefore, it scales linearly with the number of solved problems, O(t). The exact number depends
on the type of similarity between the encountered problems. If perceptual transfer and few-shot
transfer is often possible, the number of modules in the library will grow more slowly. Our greedy
search strategy requires that each module from the library is loaded at most once, which leads to a
constant memory requirement. The computational complexity of this search remains constant with
the number of solved problems since it selects a constant number of paths for each problem: L+ 1
(L suggested by our search strategy, plus a randomly initialised model).

5 EFFICIENT NON-PERCEPTUAL TRANSFER

To achieve non-perceptual transfer, an algorithm can use pre-trained modules for the last l module
layers. This represents knowledge on how to transfer a latent representation of the input to a task-
specific prediction. Therefore, we identify subsets ΠNT,l

t ∈ Πt which consists of paths capable of
non-perceptual transfer. Each path has its first L − l modules randomly initialised while the rest l
modules are selected from a library:

ΠNT,l
t =

{
πNT,l
t : πNT,l

t = {mi
t}li=1 ∪ {mi

<t}Li=L−l+1

}
. (6)

Probabilistic Model While the pre-trained modules in PT paths process the inputs, the pre-trained
modules in NT paths predict the outputs. As a result, we build a probabilistic model which captures
how good an NT path is in predicting the correct outputs after training. Concretely, for NT paths
with the same number l of pre-trained modules, we model the posterior over the choice of pre-trained
modules given the validation dataset as:

p(π[pre]|Xval,Yval) ∝ p(Yval|Xval, π[pre])p(π[pre]). (7)

We define a prior over π[pre] which assigns equal non-zero values only to pre-trained modules which
have been used together to solve a previous problem. This reflects our prior assumption that using
novel combination of modules for non-perceptual transfer is unnecessary for our sequences.
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We model p(Yval|Xval, π[pre]) using a Gaussian process (GP), which before recommending a path at
step j, is fit on previous evaluations Ej . For numerical stability, we model the logarithm, predicting:

log p(Yval|Xval, π
[pre]
i ) ∼ GP(0, κ(π

[pre]
i , π

[pre]
j )) (8)

To enable this, we define a kernel function κ between the pre-trained modules of two NT paths, based
on the standard Euclidean distance in function space. Let the inner product between f : Ω → Rr

and g : Ω → Rr be: ⟨f , g⟩ =
∫
Ω
f(z) · g(z)dz . This allows us to compute the distance between

two functions as:

d(f, g) := ||f − g|| =
√

⟨f − g , f − g⟩ =

√∫
Ω

(f(z)− g(z)) · (f(z)− g(z))dz .

We approximate this value using Monte Carlo integration with a set of inputs, Z, from the func-
tions’ common input space. We can then define the kernel function between the chosen pre-trained
modules of two NT paths with the same l value, using the squared exponential kernel function and
the distance between the functions computed by their last l modules:

κ(π
[pre]
i , π

[pre]
j ;Z) = σ2 exp

{
−(d(π

[pre]
i , π

[pre]
j ;Z)2)/(2γ2)

}
(9)

where σ and γ are the kernel hyperparameters which are fit to maximise the marginal likelihood of
a GP’s training data (Rasmussen & Williams, 2006).

To create Z for a value of l, we store a few samples from the input distribution of each pre-trained
module at layer L − l + 1. Given a new problem, we create Z by combining all the stored hidden
activations. This allows us to compare functions on regions of the input space with higher density.

Search Strategy We modify SMAP and apply it on a single subset ΠNT,lmin
t where lmin is the user-

defined minimum number of modules which need to be transferred. Due to our choice of prior, max-
imising the posterior using Eq. 7 amounts to maximising the log-likelihood over paths with nonzero
probability. However, our GP-based approximation provides a distribution of the likelihood’s value
(reflecting the uncertainty of the GP’s prediction). To account for this, we use an acquisition func-
tion, namely Upper Confidence Bound (UCB) (Shahriari et al., 2015) which provides an optimistic
prediction of the likelihood. We compute it as UCB(µ, σ) = µ+ βσ, where β is a hyperparameter,
and µ and σ are respectively the mean and the standard deviation of the GP-predicted distribution.
The resulting search strategy resembles Bayesian Optimisation:

SBO-MAP(Π
NT,lmin
t ) =

(
argmax

π∈Πi
t

UCB
(
log p(Yval|Xval, π[pre])

))
j

. (10)

At each step j, we fit a GP (Eq. 8) with a kernel κ (Eq. 9) on the set of evaluations of the previous
paths Ej , and select the unevaluated path π whose pre-trained modules maximise the UCB.

The GP makes it possible to detect when further improvement is unlikely, allowing us
to perform early stopping. For this purpose we compute the Expected Improvement,
EI
(
log p(π[pre]|Xval,Yval)

)
of the path selected for evaluation at each step j. If it is lower than a

certain threshold, we exit the search and do not recommend any more paths for evaluation. EI-based
early stopping has been previously suggested in Nguyen et al. (2017) and, similarly to Makarova
et al. (2022), our preliminary experiments showed that it leads to fewer evaluations, compared to
using UCB for early stopping.

In the worst case SBO-MAP would propose O (t− 1) paths for evaluation which scales linearly with
the number of solved problems. While early stopping reduces the number of evaluated paths, our
experiments suggest said number still scales linearly with the number of problems. However, our
ablation experiments, presented in Appendix E, demonstrate that our search strategy exhibits a good
anytime performance. This means that our Bayesian optimisation algorithm is capable of quickly
finding a path which achieves positive non-perceptual transfer. Therefore, it is possible to constrain
SBO-MAP to evaluating a constant number of paths and still achieve non-perceptual transfer across a
long sequence of problems.

6



Under review as a conference paper at ICLR 2023

SA MCL-RS HOUDINI MNTDP-D PeCL, CCL

Â

Sfew 75.47 78.14 80.82 82.18 88.12
Sout 74.25 76.16 74.40 77.95 78.15
Sout* 72.27 73.39 72.27 75.48 75.72
Sout** 71.51 73.85 71.75 73.71 75.73
Spl 93.61 93.63 93.61 93.72 93.79
S− 73.88 76.67 79.59 81.67 81.92
S+ 73.61 75.08 73.61 74.54 74.49
Aggregated: 76.37 78.13 78.01 79.89 81.13

Tr−1

Sfew 0. 5.87 4.54 11.42 46.07
S− 0. 17.22 34.27 34.29 34.29
Sout 0. 5.64 0. 15.41 15.41
Sout* 0. 0.43 0. 12.53 12.53
Sout** 0. 4.61 1.46 1.74 12.04
Spl 0. 0. 0. 00.20 00.20
S+ 0. 0. 0. 0. 0.
Aggregated: 0. 4.82 5.75 10.8 17.22

Table 1: Results on compositional benchmarks that do not evaluate non-perceptual transfer.

SA MCL-RS HOUDINI MNTDP-D PeCL NoCL CCL

Â
S in 89.01 90.85 89.32 90.62 90.26 92.20 92.82
Ssp 87.94 92.22 92.99 87.94 87.92 91.92 91.93
Aggregated: 88.48 91.54 91.16 89.28 89.09 92.06 92.38

Tr−1
S in 0. 1.81 11.04 9.70 7.61 18.89 22.28
Ssp 0. 25.68 30.27 0. 0. 23.65 23.65
Aggregated: 0. 13.75 20.66 4.85 3.805 21.27 22.97

Table 2: Results on compositional benchmarks that evaluate non-perceptual transfer.

6 EXPERIMENTS

We evaluate the perceptual, non-perceptual and few-shot transfer capabilities, as well as the scala-
bility, of our methods. Also, we assess the applicability of our methods to disparate input domains
and neural architectures. To this end, we perform experiments on a new benchmark suite as well as
on the CTrL (Veniat et al., 2020) benchmark suite.

We derive three modular CL algorithms: PeCL, which can perform perceptual and few-shot transfer
using SPT

G (ΠPT
t ) (Eq 5); NoCL, which can perform non-perceptual transfer using SBO-MAP(Π

NT,lmin
t )

(Eq. 10); and CCL, which combines both search strategies using SCCL(Π
PT
t ∪ ΠNT,lmin

t ) :=

SPT
G (ΠPT

t ) + SBO-MAP(Π
NT,lmin
t ). We compare our algorithms to a number of competitive modular

CL baselines: Standalone (SA), which trains a new model for every problem; MCL-RS, which ran-
domly selects paths from Πt (shown to be a competitive baseline in high-dimensional search spaces
and in neural architecture search (Li & Talwalkar, 2020)); HOUDINI(Valkov et al., 2018), with a
fixed neural architecture to keep the results comparable; and MNTDP-D (Veniat et al., 2020).

We use the same set of hyperparameters, listed in Appendix D, for our approaches across both
benchmark suites, which suggests that this choice of hyperparameters is robust and applicable to
different problems and neural architectures. Moreover, we use a problem-specific random seed to
make the training process deterministic, so that the difference in performance can be accredited only
to the LML algorithm, and not to randomness introduced during training. For each baseline, we
assess the performance on a held-out test dataset and report the average accuracy of the final model
across all problems, Â (see Eq. 14), as well as the amount of forward transfer on the last problem,
Tr−1, computed as the difference in accuracy, compared to the standalone baseline (see Eq. 15).

Compositional Benchmarks. We introduce a benchmark suite consisting of different sequences
which can diagnose different CL properties. We build on the CTrL benchmarks (Veniat et al., 2020)
by instead using problems with compositional tasks, in which each problem combines an image clas-
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sification task with a two-dimensional pattern recognition task. This allows us to design sequences
to evaluate specific desiderata, such as non-perceptual transfer, few-shot transfer, and scalability to
long problem sequences. We have the following sequences of length 6. In Spl, each problem is
represented by a large dataset in order to evaluate an algorithm’s plasticity. In S+ the last problem
is the same as the first, but is represented with a larger dataset, allowing for backward transfer to be
evaluated. Conversely, in S−, the first and last problems are also the same but the first is represented
by a bigger dataset, thus, evaluating forward knowledge transfer to the same problem. We define
three different sequences which evaluate perceptual transfer. In Sout, the input domains of the first
and last problems are the same. In Sout* the input domains of the first, second and last problems
are the same, making it harder to decide which problem to transfer from. In Sout** the first and
last problems are the same, however, perceptual knowledge needs to be transferred from the sec-
ond problem, as it also has the same domain but is represented by a larger dataset. Sfew evaluates
few-shot transfer, since the last problem is represented by 10 data points and solving it requires
re-combining knowledge from problems 2 and 4 in a novel way. Finally, there are two sequences
evaluating non-perceptual transfer. In Sin the first and last problem share the same two-dimensional
pattern, while having different input image domains. Ssp is the same as Sin, except last problem’s
input space is also re-shaped from an image to a one-dimensional vector, which loses the structural
information and requires different architecture for the first few modules in order to process the input.
Therefore, this evaluate an algorithm’s ability to transfer across different input spaces and similar
but not identical neural architectures. Finally, Slong is a sequence of 60 randomly selected problems,
which evaluates perceptual and non-perceptual transfer on long sequences.

The neural architecture which we use consists of L = 8 modules, which leads to a large search
space, since even for t = 6, there are O(tL = 1679616) different possible paths. Full specification
of the problems, sequences, neural architecture and training procedure can be found in Appendix D.
We create 3 realisations of each sequence by randomly selecting different compositional problems.
Afterwards, for each sequence, we report the measurements, averaged over these 3 versions.

Results. Overall, CCL has higher performance than the other methods, averaged across sequences
(Tables 1 and 2). Our method is designed specifically to enhance perceptual, few-shot and non-
perceptual transfer. Therefore, we expect its performance on other CL desiderata to be comparable to
the baselines. We find that PeCL and CCL exhibit the same performance for sequences which do not
involve non-perceptual transfer (Table 1). Our method demonstrates similar plasticity to the others,
according to Spl, as well as similar performance on S+ which evaluates backward transfer. Note
that SPT

G enables our algorithms to outperform the baselines on the sequences which require forward
knowledge transfer, with the other scalable modular algorithm, MNTDP-D, being second. On Sout**,
our performance-based prior helps our method identify the correct modules to be transferred, leading
to a +10.3 higher accuracy on the last problem than MNTDP-D. On Sfew our algorithm’s ability to
perform few-shot transfer leads to +34.7 higher accuracy on the last problem than MNTDP-D.

For non-perceptual transfer (Table 2), we find that SBO-MAP enables NoCL and CCL to transfer
knowledge across different input distributions and input spaces. In Ssp, the different input space
necessitates a different modular architecture for the first 5 modules, resulting in a much smaller
search space, O(63 = 216). This allows non-scalable approaches, namely MCL-RS and HOU-
DINI, to also be effective on this sequence. Lastly, CCL’s performance demonstrates that combining
SPT
G and SBO-MAP leads to a better performance on sequences that allow for both perceptual and

non-perceptual transfer. Finally we evaluated our approach on Slong, a sequence of 60 problems.
PeCL achieved +7.37 higher average accuracy than the standalone baseline demonstrating its abil-
ity to achieve perceptual transfer on a long sequence of problems. MNTDP-D achieved 8.83 higher
average accuracy than SA which confirmed its scalability. Finally, CCL performed the best, attain-
ing +12.25 higher average accuracy than SA. This shows that our approach can successfully attain
perceptual and non-perceptual transfer across a long sequence of problems.

CTrL benchmarks. The CTrL benchmark suite (Veniat et al., 2020) defines fewer sequences to
evaluate different CL properties. Namely, they specify Spl, S+, S−, Sout, Ssp which are defined
identically to ours. In contrast, the sequences are over multi-class classification tasks of coloured
images from different domains. They also use a different modular architecture, based on ResNet18
(He et al., 2016), which is more complex than the architecture used in the previous benchmarks. Our
experimental setup, detailed in Appendix D, mirrors the one used in Veniat et al. (2020), except that
we make the training process deterministic, as discussed above.

8
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SA MNTDP-D PeCL NoCL CCL

Â

S in 58.77 61.36 61.78 63.41 63.10
Sout 74.25 77.95 78.15 - 78.15
Spl 58.25 93.72 93.79 - 93.79
S− 56.28 81.67 81.92 - 81.92
S+ 73.61 74.54 74.49 - 74.49
Aggregated: 64.23 77.85 78.03 - 78.29

Tr−1

S in 0. 22.12 24.67 32.57 32.57
Sout 0. 15.41 15.41 - 15.41
Spl 0. 00.20 00.20 - 00.20
S− 0. 34.29 34.29 - 34.29
S+ 0. 0. 0. - 0.
Aggregated: 0. 14.40 14.91 - 16.49

Table 3: The evaluations on the CTrL sequences, except for Slong. For each sequence, we report
average accuracy A and the amount of forward transfer on the last problem Tr−1.

Our results (Table 3) demonstrate that our methods, namely PeCL and CCL, achieve similar per-
formance to MNTDP-D on Spl, S+, S−, Sout which evaluate plasticity, backward and perceptual
transfer. On S−, NoCL and CCL successfully perform non-perceptual transfer, leading to superior
performance on the last problem of the sequence (+10.45 higher than MNTDP). CTrL also specifies
Slong which has 100 problems but only evaluates perceptual transfer. PeCL was successfull in trans-
ferring knowledge, achieving an average accuracy that was +14.48 higher than SA. Overall, the
results demonstrates that both SBO-MAP are also applicable to more complex modular architectures.

7 RELATED WORK

This work considers the data-incremental (De Lange et al., 2021) supervised setting of continual
learning. Other settings can involve overlapping problems Farquhar & Gal (2018) or reinforcement
learning (Khetarpal et al., 2020). CL desidarata is also presented in Schwarz et al. (2018); Hadsell
et al. (2020); Delange et al. (2021), which include other properties, e.g. selective forgetting of trivial
information, but do not distinguish between different types of forward transfer. We list such types
following Valkov et al. (2018), but add the requirement of non-perceptual transfer over input spaces.

Continual learning methods can be categorised into ones based on regularisation, replay or a dy-
namic architecture (Parisi et al., 2019). The first two share the same set of parameters across all
problems which limits their capacity and, in turn, their plasticity (Kirkpatrick et al., 2017). Dynamic
architecture methods can share different parameters by learning a problem-specific parameter masks
(Mallya & Lazebnik, 2018) or adding more parameters (Rusu et al., 2016). This category includes
modular approaches to CL, which share and introduce new modules, allowing groups of parameters
to be trained and always reused together. Modular approaches mainly differ by their search space
and their search strategy. PathNet (Fernando et al., 2017) uses evolutionary search to search through
paths that combine up to 4 modules per layer. Rajasegaran et al. (2019) use random search on the
set of all paths. HOUDINI (Valkov et al., 2018) uses type-guided exhaustive search on the set of
all possible modular architectures and all paths. This method can attain the three types of forward
transfer, but does not scale to large search spaces. Their results also show that exhaustive search
leads to better performance than evolutionary search. MNTDP-D (Veniat et al., 2020) is a scalable
approach which restrict its search space to perceptual transfer paths, derived from previous solutions.
Similarly to SPT

G , MNTDP-D evaluates only L + 1 paths per problem, however, the approach does
not allow for novel combinations of pre-trained modules which prevents it from achieving few-shot
transfer. In contrast, our approach can achieve all three types of forward transfer. LMC (Ostapenko
et al., 2021) makes a soft selection over paths. For each layer, they compute a linear combination
of the outputs of all available pre-trained modules. To do this, the authors model the distribution
over each module’s outputs using a separate auto-encoder. In contrast, for SPT

G we use multivariate
Gaussian approximations of the projected inputs of a pre-trained module, which requires orders of
magnitude fewer parameters. LMC can achieve perceptual and few-shot transfer, but is not capable
of non-perceptual transfer. Finally, LMC requires that all modules be kept in memory which limits
it applicability to larger libraries, thus, larger search spaces.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

10

http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy


Under review as a conference paper at ICLR 2023

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. In
Uncertainty in Artificial Intelligence, pp. 367–377. PMLR, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Anastasia Makarova, Huibin Shen, Valerio Perrone, Aaron Klein, Jean Baptiste Faddoul, Andreas
Krause, Matthias Seeger, and Cedric Archambeau. Automatic termination for hyperparameter
optimization. In First Conference on Automated Machine Learning (Main Track), 2022.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 7765–7773, 2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, and Svetha Venkatesh. Regret for expected im-
provement over the best-observed value and stopping condition. In Asian conference on machine
learning, pp. 279–294. PMLR, 2017.

Oleksiy Ostapenko, Pau Rodriguez, Massimo Caccia, and Laurent Charlin. Continual learning
via local module composition. Advances in Neural Information Processing Systems, 34:30298–
30312, 2021.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359, 2009.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
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A DERIVING THE POSTERIOR FOR PT PATHS

In this section we show how we approximate the posterior distribution p(m1
<t, ...,m

l
<t|x1, ...,xN ).

To ease the presentation, and without loss of generality, we set the number of pre-trained modules
l = 3. Next, we express the joint distribution in terms of quantities which we can approximate.

p(M1,M2,M3, X1, ..., XN , H1
1 , ...,H

1
N , H2

1 , ...,H
2
N )

= p(M1)p(M2)p(M3)

N∏
j=1

p(Xj |H1
j ,M

1)p(H1
j |H2

j ,M
2)p(H2

j |M3)

Here, p(Xj |H1
j ,M

1) can be expressed as:

p(Xj |H1
j ,M

1) =
p(Xj , H

1
j ,M

1)

p(H1
j ,M

1)
=

p(H1
j |Xj ,M

1)p(Xj |M1)p(M1)

p(H1
j )p(M

1)
=

p(H1
j |Xj ,M

1)p(Xj |M1)∑
m2′ p(H1

j |m2′)p(m2′)
.

Moreover, p(H1
j |H2

j ,M
2) can be expressed as:

p(H1
j |H2

j ,M
2) =

p(H1
j , H

2
j ,M

2)

p(H2
j ,M

2)
=

p(H2
j |H1

j ,M
2)p(H1

j |M2)p(M2)

p(H2
j )p(M

2)

=
p(H2

j |H1
j ,M

2)p(H1
j |M2)∑

m3′ p(H2
j |m3′)p(m3′)

.

Therefore, the joint distribution can be expressed as:

p(M1,M2,M3, X1, ..., XN , H1
1 , ...,H

1
N , H2

1 , ...,H
2
N )

= p(M1)p(M2)p(M3)

N∏
j=1

p(H1
j |Xj ,M

1)p(Xj |M1)∑
m2′ p(H1

j |m2′)p(m2′)

p(H2
j |H1

j ,M
2)p(H1

j |M2)∑
m3′ p(H2

j |m3′)p(m3′)
p(H2

j |M3).

(11)

This expression contains three groups of distributions, which we need to define. First, we can define
a prior over the choices of pre-trained modules for different module layers, p(M i). Second, we
can approximate each module’s training input distribution, leading to p(Hi

j |m
i+1
<t ) ≈ q(Hi

j |m
i+1
<t ).

The third group of distributions contains p(Hi
j |H

i−1
j ,M i) which is a distribution over the values

of a hidden layer Hi given the previous hidden layer hi−1 and a module mi. However, said hid-
den layer is given by the deterministic transformation hi

j = mi(hi−1
j ). Therefore, we can model

p(Hi
j |H

i−1
j ,M i) = δ(Hi

j − hi
j) using the Dirac delta function δ. This function has the property

that
∫∞
−∞ f(z)δ(z − c)dz = f(c), which we use next in order to simplify the posterior. We write:

p(m1,m2,m3|x1, ...,xN ) =
p(m1,m2,m3,x1, ...,xN )

p(x1, ...,xN )
∝ p(m1,m2,m3,x1, ...,xN )

=

∫ ∞

−∞
...

∫ ∞

−∞
p(m1,m2,m3,x1, ...,xN ,h

′1
1 , ...,h

′1
N ,h

′2
1 , ...,h

′2
N )dx1...dh

′

N

= p(m1)p(m2)p(m3)

N∏
j=1

p(xj |m1)∑
m2′ p(h1

j |m2′)p(m2′)

p(h1
j |m2)∑

m3′ p(h2
j |m3′)p(m3′)

p(h2
j |m3)

≈ p(m1)p(m2)p(m3)

N∏
j=1

q(xj |m1)∑
m2′ q(h1

j |m2′)p(m2′)

q(h1
j |m2)∑

m3′ q(h2
j |m3′)p(m3′)

q(h2
j |m3)
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In general, for l pre-trained modules, we approximate the numerator of the posterior using:

p(m1, ...,ml|x1, ...,xN ) ∝ p(m1, ...,ml,x1, ...,xN )

≈
l∏

i=1

p(mi)

N∏
j=1

{
l−1∏
i=1

[
q(hi−1

j |mi)∑
mi+1′ q(hi

j |mi+1′)p(mi+1′)

]
q(hl−1

j |ml)

}

To compute this, we need to define a prior distribution over modules and approximate a module’s
training input distribution.

B DEFINING THE PRIOR FOR PT PATHS

Computing Eq. 4 requires us to define a prior distribution over the choice of a pre-trained module,
p(M i). Say two modules mi

a and mi
b are trained using two different paths on two different problems.

Now, say that the model trained on problem a achieved Acc(a) validation accuracy, while the model
trained on problem b achieved a higher validation accuracy Acc(b) = Acc(a) + δ, for δ > 0. We
hypothesise that the module, whose model achieved the higher accuracy after training, is likely to
compute a more useful transformation of its input. Therefore, if mi

a and mi
b have a similar likelihood

for a given set of training data points, we would give preference to using mi
b. To this end, we define

the prior distribution in terms of a module’s original accuracy using the softmax function as follows:

p(mi
j) =

e
Acc(j)

T

Σmi
j′
e

Acc(j′)
T

. (12)

Here T is the temperature hyperparameter which we compute as follows. Suppose that, for a given
set of inputs {x1, ...,xN}, we have selected the first i − 1 modules and have computed the inputs
to the ith module, DHi−1

= {hi−1
j }Nj=1. Moreover, suppose that the likelihood of module mi

a is

slightly higher than the likelihood of mi
b, i.e. that p(DHi−1 |mi

a) > p(DHi−1 |mi
b). However, be-

cause the model of mi
b was trained to a higher accuracy ( Acc(b) = Acc(a) + δ), we would like to

give mi
b preference over mi

a. Therefore, we would like to set the hyperparameter T so that the pos-
terior of the path using mi

b is higher, i.e. p(m1
<t, ...,m

i
a|x1, ...,xN ) < p(m1

<t, ...,m
i
b|x1, ...,xN ).

Using Eq. 4 we can express this as:

p(m1
<t, ...,m

i
a|x1, ...,xN ) < p(m1

<t, ...,m
i
b|x1, ...,xN )

p(mi
a)p(D

Hi−1

|mi
a) < p(mi

b)p(D
Hi−1

|mi
b)

p(mi
a)

p(mi
b)

<
p(DHi−1 |mi

b)

p(DHi−1 |mi
a)

e
Acc(a)

T

e
Acc(a)+δ

T

<
p(DHi−1 |mi

b)

p(DHi−1 |mi
a)

Acc(a)

T
− Acc(a) + δ

T
< log

p(DHi−1 |mi
b)

p(DHi−1 |mi
a)

T >
δ

log p(DHi−1 |mi
b)− log p(DHi−1 |mi

a)
.

(13)

We can then use the inequality in Eq. 12 in order to determine the value T. To do this, one needs to
decide how much difference in log likelihood should be overcome by a difference δ in accuracy.

C BELL - BENCHMARKS FOR LIFELONG LEARNING

We now introduce BELL - a suite of benchmarks for evaluating the aforementioned CL properties.
As above, we assume compositional tasks and then generate various lifelong learning sequences,
with each evaluating one or two of the desired properties. Running an CL algorithm on all se-
quences then allows us to asses which properties are present and which are missing. This builds

14
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Sequence Sequence Pattern Properties
Spl [Ψ+

1 ,Ψ
+
2 ,Ψ

+
3 ,Ψ

+
4 ,Ψ

+
5 ,Ψ

+
6 ] 1., 2.

S− [Ψ+
1 ,Ψ

−
2 ,Ψ

−
3 ,Ψ

−
4 ,Ψ

−
5 ,Ψ

−
1 ] 3.

Sout [Ψ+
1 ,Ψ

−
2 ,Ψ

−
3 ,Ψ

−
4 ,Ψ

−
5 ,Ψ

−
6 = (D1, h1, g6)] 3.1

Sout* [Ψ−
1 ,Ψ

+
2 = (D1, h1, g2),Ψ

−
3 ,Ψ

−
4 ,Ψ

−
5 ,Ψ

−
6 = (D1, h1, g6)] 3.1

Sout** [Ψ−
1 ,Ψ

+
2 = (D1, h1, g2),Ψ

−
3 ,Ψ

−
4 ,Ψ

−
5 ,Ψ

−
1 ] 3.1

Sin [Ψ+
1 ,Ψ

−
2 ,Ψ

−
3 ,Ψ

−
4 ,Ψ

−
5 ,Ψ

−
6 = (D6, h6, g1)] 3.2.1

Ssp [Ψ+
1 ,Ψ

−
2 ,Ψ

−
3 ,Ψ

−
4 ,Ψ

−
5 ,Ψ

−
6 = (D6, h6, g1)] 3.2.2

Sfew [Ψ+
1 = (D1, h1),Ψ

+
2 = (D2, h2),Ψ

−
3 ,Ψ

−
4 = (D1, h1, g4),Ψ

−
5 ,Ψ

−−
6 = (D2, h2, g4)] 3.3

S+ [Ψ−
1 ,Ψ

−
2 ,Ψ

−
3 ,Ψ

−
4 ,Ψ

−
5 ,Ψ

+
1 ] 4.

Slong [Ψi]
100
i=1 5.

Table 4: A list of all of the different CL sequences in BELL, each of which evaluates different CL
properties. The first column contains the sequence’s name, the second shows the sequence’s pattern
and the third column lists the CL properties evaluated by this sequence.

upon the CTrL benchmark suite, presented in Veniat et al. (2020), which defines different sequences
of image classification tasks, namely Spl, S−, Sout, Sin, S+ and Slong. They evaluate plasticity, per-
ceptual transfer, non-perceptual transfer, catastrophic forgetting, backward transfer and scalability.
We define these sequences similarly but for problems with compositional tasks. This allows us to
introduce new sequences which evaluate new CL properties (Ssp and Sfew). We also introduce new
more challenging sequences (Sout* and Sout**).

We assume compositional tasks and represent each problem as a triple Ψt = (Dj , hj , gk) where Dj

is the distribution of the inputs and hj and gk constitute the labelling function f , i.e. f = g ◦ h. We
refer to hj as the lower labelling sub-function and to gk as the upper labelling sub-function. We use
the indices j and k to indicate whether the corresponding labelling sub-function has occurred before
in the sequence (j < t, k < t) or if it is new and randomly selected (j = t, k = t). For brevity, if j =
t and k = t, we don’t write out the whole triple but only Ψt. By repeating previously encountered
domains or labelling sub-functions, we can control what knowledge can be transferred in each of the
define sequences. In turn, this allows us to evaluate different CL properties. We use Ψ+ to indicate
that the dataset generated for this problem is sufficient to learn a well generalising approximation
without transferring knowledge. On the other hand, Ψ− indicates that the CL algorithm cannot
achieve good generalisation on this problem without transferring knowledge. Finally, Ψ−− indicates
that the generated training dataset consists of only a few datapoints, e.g. 10.

A complete list of the different sequences in BELL is presented in Table 4. Following Veniat et al.
(2020), we set the sequence length of most sequences to 6 which, as we show in the experiments sec-
tion, is sufficient for evaluating different CL properties. Next, we separately present each sequence,
detailing which CL properties it evaluates.

Plasticity and Stability: The sequence Spl = [Ψ+
1 ,Ψ

+
2 ,Ψ

+
3 ,Ψ

+
4 ,Ψ

+
5 ,Ψ

+
6 ] consists of 6 distinct

problems, each of which has a different input domain and a different task. Moreover, each of the
generated datasets has a sufficient number of data points as not to necessitate transfer. Therefore,
this sequence evaluates a CL algorithm’s ability to learn distinct problems, i.e. its plasticity (1.).
Moreover, this sequence can be used to evaluate an algorithm’s stability (2.) by assessing its perfor-
mance after training on all problems and checking for forgetting.
Forward Transfer: Most of our sequences are dedicated to evaluate different types of forward
transfer. To begin with, in the sequence S− = [Ψ+

1 ,Ψ
−
2 ,Ψ

−
3 ,Ψ

−
4 ,Ψ

−
5 ,Ψ

−
1 ] the first and the last

datasets represent the same problem, however, the last dataset has fewer data points. Therefore, an
CL algorithm would need to transfer the knowledge acquired from solving the first problem, thus,
demonstrating its ability to perform overall forward transfer (3.).
Perceptual Forward Transfer: We introduce three different sequences for evaluating perceptual
transfer (3.1). First, in Sout = [Ψ+

1 ,Ψ
−
2 ,Ψ

−
3 ,Ψ

−
4 ,Ψ

−
5 ,Ψ

−
6 = (D1, h1, g6)] the last problem has

the same input domain and input-processing target function h1 as in problem 1. However, the
last problem’s dataset is small, therefore, an CL algorithm needs to perform perceptual trans-
fer from the first problem, which is described by a large dataset. Second, Sout* = [Ψ−

1 ,Ψ
+
2 =

(D1, h1, g2),Ψ
−
3 ,Ψ

−
4 ,Ψ

−
5 ,Ψ

−
6 = (D1, h1, g6)] shares the same input distributions and lower la-
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belling sub-function h1 across problems Ψ1, Ψ2 and Ψ6. Therefore, a CL algorithm needs to decide
whether to transfer knowledge obtained from the first or from the second problem. Third, the se-
quence Sout** = [Ψ−

1 ,Ψ
+
2 = (D1, h1, g2),Ψ

−
3 ,Ψ

−
4 ,Ψ

−
5 ,Ψ

−
1 ] is similar to the preceding one, with

the distinction that the last problem is the same as the first. In this sequence, an CL algorithm needs
to decide between reusing knowledge acquired from solving the same problem (Ψ1), or to transfer
perceptual knowledge from a more different problem (Ψ2). Overall, these three sequences are de-
signed to be increasingly more challenging in order to distinguish between different CL algorithms
which are capable of perceptual transfer to a different extent.
Non-Perceptual Forward Transfer: Currently, we define two sequences to assess an algorithm’s
ability to transfer non-perceptual knowledge. Firstly, in Sin = [Ψ+

1 , Ψ−
2 ,Ψ

−
3 ,Ψ

−
4 ,Ψ

−
5 ,Ψ

−
6 =

(D6, h6, g1)] the last problem has the same upper labelling sub-function as the first problem. How-
ever, the two problems’ input distributions and lower labelling sub-functions are different. There-
fore, an CL algorithm would need to transfer knowledge across different input domains (3.2.1).
Secondly, the sequence Ssp = [Ψ+

1 ,Ψ
−
2 ,Ψ

−
3 ,Ψ

−
4 ,Ψ

−
5 ,Ψ

−
6 = (D6, h6, g1)] is simiarly defined,

however, the input distribution of the last problem is also defined on a different input space from the
input space of the first problem. Therefore, an algorithm would need to transfer knowledge across
different input spaces (3.2.2).
Few-shot Forward Transfer: In order to evaluate this property, we introduce the following se-
quence, in which the first two problems are different from the rest of the sequences: Sfew = [Ψ+

1 =
(D1, h1),Ψ

+
2 = (D2, h2),Ψ

−
3 ,Ψ

−
4 = (D1, h1, g4),Ψ

−
5 ,Ψ

−−
6 = (D2, h2, g4)]. The labelling func-

tions of the first two problems are simpler, each consisting only of a lower labelling sub-function.
This is done in order to provide a CL algorithm with more supervision on how to approximate h1 and
g1 more accurately. The fourth problem Ψ4 in this sequence then shares the same input domain and
lower lableling sub-function as the first problem, but introduces a new upper labelling sub-function
g4. The last problem then shares the input domain and the lower labelling sub-function of Ψ2, while
also sharing the upper labelling sub-function of problem Ψ4. Moreover, the last problem’s training
dataset consists of only a few data points. Therefore, a CL algorithm would need to reuse its ap-
proximations of h2 and g4 in a novel manner in order to solve the last problem.
Backward Transfer: The sequence S+ = [Ψ−

1 ,Ψ
−
2 ,Ψ

−
3 ,Ψ

−
4 ,Ψ

−
5 ,Ψ

+
1 ] has the same first and last

problem. However, the first dataset has significantly less data points than the last. Ideally, an CL
algorithm should use the knowledge acquired after solving the last problem in order to improve its
performance on the first problem. While this sequence represents a starting point for evaluating
backward transfer, it is possible to introduce other sequences, representing more elaborate evalua-
tions. For instance, introducing sequences which evaluate perceptual and non-perceptual backward
transfer separately. However, as backward transfer is not the focus of this thesis, this is left for future
work.
Scalability: This property can be evaluated using a long sequence of problems. For this purpose
we define Slong = [Ψi]

60
i=1 which consists of 60 problems, each randomly selected with replacement

from a set of problems. Most problems are represented by a small dataset, Ψ−
t . Each of the first 50

problems has a 1
3 probability of being represented by a large dataset, Ψ+

t . Each problem also has a
1
10 probability of being represented by an extra small dataset, Ψ−−

t .

The definitions of these sequences rely on three sets of domains, lower labeling sub-functions and
upper labelling sub-functions, respectively. In turn, these can be used to create a set of problems.
Next, we present a set of problems which can be used together with the aforementioned sequence
definitions in order to evaluate CL algorithms.

C.1 COMPOSITIONAL PROBLEMS

To implement the sequences defined above, one needs to define a set of compositional problems.
To this end, we define 9 different pairs of an input domain and a lower labelling sub-function,
{(Di, hi)}9i=1. Moreover, we define 16 different upper labelling sub-functions {gi}16i=1. These can
be combined into a total of 144 different compositional problems.

First, we define 9 image multi-class classification tasks, which all share input and output spaces
R28×28 → R8, but each have a different input distribution Di and a domain-specific labelling
function hi. Concretely, we start with the following image classification datasets: MNIST (Le-
Cun et al., 2010), Fashion MNIST (FMNIST) (Xiao et al., 2017), EMNIST (Cohen et al., 2017)
and Kuzushiji49 (KMNIST) (Clanuwat et al., 2018). Since some of the classes in KMNIST have
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significantly fewer training data points, we only use the 33 classes with the following indices:
[0, 1, 2, 4 − 12, 15, 17 − 21, 24 − 28, 30, 34, 35, 37 − 41, 46, 47], as they have a sufficient num-
ber of associated data points. We split the image datasets into smaller 8-class classification datasets.
We use i to denote the different splits of the same original dataset. For instance EMNIST2 represents
the third split of EMNIST, corresponding to a classification task among the letters form ’i’ to ’p’.
Using this we end up with the following 9 image datasets: MNIST1, FMNIST1, {EMNISTi}3i=1,
{KMNISTi}4i=1. For each of these image datasets, we set aside 4800 validation images from the
training dataset. We also keep the provided test images separate.

Figure 3: An illustration of the four two-dimensional patterns which are used by the four g(2) func-
tions to label the input coordinates. Green indicates a positive label, and red indicates a negative
label.

Second, we define a set of binary classification tasks, which map R16 → {0, 1}. Each task’s la-
belling function gi receives two concatenated 8-dimensional one-hot encodings and returns a binary
value, indicating if the given combination of 2 classes, represented by the input, fulfils a certain
criteria. We further decompose the labelling function into gi(x) = g

(2)
k (g

(1)
j (x[: 8]), g

(1)
j (x[8 :])).

Here, g(1)j maps a one-hot encoding to an integer between 1 and 8. For instance, g(1)1 maps the first
dimension to 1, the second to 2 and so on. As a result, we use g(1) to convert the initial input of two
one-hot encodings to two-dimensional coordinates. We define 4 different g(1) mappings, where g(1)1

is defined as above, and g
(2)
1 , g(3)1 and g

(4)
1 each map the dimensions to a different randomly selected

integer between 1 and 8.
At the same time, each g

(2)
k : R2 → {0, 1} outputs whether a given two-dimensional coordinate is a

part of a certain pattern or not. We define 4 different g(2) functions, each corresponding to one of 4
two-dimensional patterns, shown in Fig 3. In total, these functions need to label 8 ∗ 8 = 64 different
two-dimensional coordinates.
We fuse the 4 different g(1) functions with the 4 different g(2) functions to define 16 different g
functions:

{g(k−1)∗4+j(x) = g
(2)
k (g

(1)
j (x[: 8]), g

(1)
j (x[8 :])), k ∈ {1, 2, 3, 4}, j ∈ {1, 2, 3, 4}}.

Figure 4: An example input for Ψ = (DMNIST1
, hMNIST1

, g = (g
(2)
XOR, g

(1)
1 )). These images are

classified by hMNIST and then are mapped to the coordinates (1, 6) by g
(1)
1 since they represent the

first and sixth classes respectively. Afterwards, g(2)XOR labels this input as 0, using the XOR pattern,
shown in 3.

Finally, we can combine our 9 image classification datasets {(Di, hi)}9i=1 with our 16 binary clas-
sification tasks, in order to create 144 compositional problems {Ψ(k−1)∗9+j = (Dk, hk, gj), k ∈
{1, ..., 9}, j ∈ {1, ..., 16}}. The input to a problem Ψi = (Dk, hk, gj) are two images sampled from
Di. Each image is labelled by hi, each resulting in an eight-dimensional one-hot encoding of the
corresponding image’s class. The two one-hot encodings are then concatenated and labelled by gj ,
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which results in a binary label. An example for Ψ = (DMNIST1
, hMNIST1

, g = (g
(2)
XOR, g

(1)
1 )) is shown

in Fig 4.

Sequence Ssp involves transferring across input spaces by having its last problem’s input domain be
defined over a different input space. To create this domain we flatten any randomly selected domain
from R28×28 to R784. This loses the images’ spacial information and requires that a different neural
architecture is applied to process those inputs.

C.2 REALISING THE SEQUENCES

To implement a sequence S of length l, we need to select l concrete compositional problems which
fit the pattern specified by said sequence. Let the sequence have l(1) different pairs of image domain
and lower labelling sub-function, and l(2) different upper labelling sub-functions. For all sequences,
apart from Slong, we select l(1) pairs of (Di, hi) by sampling from the set of all possible image classi-
fication tasks, without replacement. Similarly, we select l(2) different upper labelling sub-functions
by sampling without replacement from the set of available binary classification tasks {gi}16i=1. For
Slong, we use sampling with replacement.

If a problem’s training dataset needs to be large, Ψ+
i , we generate it according to the triple

n+
tr = (30000,Alltr,All). The first value indicates that we generate 30000 data points in total.

The second value indicates how many unique images from the ones set aside for training, are used
when generating the inputs. In this case, we use all the available training images. The third value
indicates how many out of the 64 unique two-dimensional coordinates, used by the upper labelling
sub-function, are represented by the input images. In this case, we use all two-dimensional coordi-
nates.

Some of the problems’ training datasets are required to be small and to necessitate transfer. For
sequences S−, Sout, Sout*, Sout**, Sfew, S+, we generate the training datasets of each problem Ψ−

using the triple n−
tr = (10000, 100,All). This way, only 100 unique images are used to generate

the training dataset, so solving the problem is likely to be difficult without perceptual transfer. The
subset of unique images is randomly sampled and can is different between two problems which share
an input domain. For sequences Sin and Ssp, which evaluate non-perceptual transfer, we use the
triple n−

tr = (10000,Alltr, 30). As a result, the generated datasets will only represent 30/64 of the
two-dimensional coordinates, which is not sufficient for learning the underlying two-dimensional
pattern. Therefore, these problems will necessitate non-perceptual transfer. When generating a
dataset for a problem Ψ− in the sequence Slong, we randomly choose between the two, namely
between (10000, 100,All) and (10000,Alltr, 30).

For the problems in which the training dataset needs to contain only a few data points, Ψ−−, we use
the triple n−−

tr = (10, 20, 10). This creates only 10 data points, representing 20 different images
and 10 different two-dimensional patterns.

For problems with Ψ−−, we use the triple n−−
val = (10, 20, 10) for generating the validation dataset.

For the rest of the problems, we use the triple n−−
val = (5000,Allval,All). Finally, we generate all

test datasets using the triple n−−
test = (5000,Alltest,All).

D EXPERIMENTS

Across both benchmark suites, we use the same set of hyperparameters for our algorithms, which
we initially selected for a different set of problems in our preliminary experiments. This suggests
that this choice of hyperparameters is robust and applicable to different problems and neural archi-
tectures. For PeCL and CCL we project the hidden states to 20 dimensions before modelling the
resulting distribution. Moreover, we use 0.001 as the softmax temperature parameter for the prior
distribution over pre-trained modules. For NoCL and CCL we store 40 of the training inputs of each
of the pre-trained modules used in the (L − lmin + 1)th layer. The value for lmin is 3 for both the
BELL and the CTrL benchmarks. The jitter of the expected improvement is 0.001 and the threshold
used for early stopping, is 0.001. To calculate the value of the upper confidence bound (UCB), we
set the hyperparameter β = 2 in order to encourage exploration over exploitation.
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We use two measurements to assess the performance of each LML algorithm. First, we compute the
average accuracy, Â, across all problems after the last problem is solved. An algorithm’s average
accuracy after it is trained on some problem sequence S = (Ψ1,Ψ2, ...,Ψ|S|) can be defined as:

Â(S) =
1

|S|

|S|∑
i=1

A(Ψi) (14)

where A(Ψi) denotes the algorithms’ final accuracy on problem Ψi, evaluated on a held-out test
dataset. Second, we compute the forward transfer on the last problem only, Tr−1, for the sequences
in which the performance on the last problem diagnoses an LML property. We compute it as the
difference between the final accuracy on the last problem by an LML algorithm, and this accuracy
for a standalone baseline, ASA:

Tr−1(S) = A(Ψ|S|)−ASA(Ψ|S|). (15)

We do not evaluate backward transfer, nor forgetting, since all the LML algorithms which we eval-
uate are immune to forgetting, and to backward transfer, by design as they freeze any previously
trained parameters.

In our experiments, we make the training process deterministic, so that the difference in perfor-
mance can be accredited only to the LML algorithm, and not due to randomness introduced during
training. For this purpose, we fix the random initialisation of new parameters to be problem and
path-specific. In other words, for a given problem, if a model with the same path is instantiated
twice, it will have the same initial values for its new randomly initialised parameters. Moreover,
we fix the sequence of randomly selected mini batches seen during training to be the same for a
given problem. Finally, as we use PyTorch for our experiments, we fix the random seed and use the
command “torch.use deterministic algorithms(True)”. The overall results is that, for a given prob-
lem and a given library, evaluating the same path will always result in the same performance, even
across different modular LML algorithms.

All experiments are implemented using PyTorch 1.11.0 (Paszke et al., 2019). We also use GPy’s
(GPy, since 2012) implementation of a Gaussian process. We run each LML algorithm on a single
sequence, on a separate GPU. All experiments are run on a single machine with two Tesla P100
GPUs with 16 GB VRAM, 64-core CPU of the following model: ”Intel(R) Xeon(R) Gold 5218
CPU @ 2.30GHz”, and 377 GB RAM.

D.1 BELL BENCHMARKS

We first evaluate our algorithms and the baselines on the benchmark suite which we introduced in
Section C. We create 3 versions of each sequence by randomly selecting different compositional
problems. Then, for each sequence, we report the measurements, averaged over these 3 versions.

D.1.1 NEURAL ARCHITECTURE

Here, we present the minimal neural architecture which we have found to be suitable for solving
said problems.

We first define a convolutional neural network ζCNN : R28×28 → R8, suitable for processing im-
ages from the image classification datasets. We use a 5-layer architecture with ReLU hidden ac-
tivations and a softmax output activation. The layers are as follows: Conv2d(input channels=1,
output channels=64, kernel size=5, stride=2, padding=0), Conv2d(input channels=64, out-
put channels=64, kernel size=5, stride=2, padding=0), flatten, FC(4*4*64, 64), FC(64, 64),
FC(64, 10). Here, Conv2d specified a two-dimensional convolutional layer and FC specifies a
fully-connected layer.

Second, we define a fully-connected neural network for processing a concatenation of two 8-
dimensional one-hot embeddings, ζMLP : R16 → R1. It consists of 2 FC hidden layers with 64
hidden units and RELU hidden activations, followed by an output FC layer with a sigmoid activa-
tion.

For a compositional problem Ψk = (Di, hi, gj) the input is a 2-tuple of images, (x1,x2)
and the expected output is a binary classification. We solve it using the architecture ζcomp =
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ζMLP(concatenate(ζCNN(x
2), ζCNN(x

2))). This architecture processes each of the 2 input images
with the same ζCNN model. Then the 2 outputs are concatenated and processed by a ζMLP model.

We represent this as a modular neural architecture by considering each of the 8 parameterised non-
linear transformations to be a separate module. This increases the number of possible paths for
each problem. As a result, for the 6th problem in a sequence, the number of possible paths is upper
bounded by O(68 = 1679616). Therefore, in this setting, even sequences of length 6 are challenging
for modular LML approaches.

The input space of the last problem of sequence Ssp’ is given by a 8-dimensional vector. Therefore,
only for this problem, we replace ζCNN with a different architecture, ζFC, which consists of two fully
connected layers, with a hidden size of 64, uses ReLU as a hidden activation and softmax as its
output activation.

We train new parameters to increase the log likelihood of the labels using the AdamW optimiser
(Loshchilov & Hutter, 2017) with 0.00016 learning rate, and 0.97 weight decay. The training is
done with a mini batch size of 32 and across 1200 epochs. We apply early stopping, based on the
validation loss. We stop after 6000 updates without improvement and return the parameters which
were logged to have had the best validation accuracy during training.

D.2 CTRL BENCHMARKS

The CTrL benchmark suite was introduced in Veniat et al. (2020). They define a number of se-
quences, based on seven image classfication tasks, namely: CIFAR10 and CIFAR100 (Krizhevsky
et al., 2009), DTD (Cimpoi et al., 2014), SVHN (Netzer et al., 2011), MNIST (LeCun et al.,
1998), RainbowMNIST (Finn et al., 2019), and Fashion MNIST (Xiao et al., 2017). All images
are rescaled to 32x32 pixels in the RGB color format. CTrL was first to introduce the following
sequences: S−, S+, Sin, Sout, Spl and Slong, which are defined similarly to our definitions. How-
ever, the difference is that they are defined for and implemented by image classification tasks. The
last task in Sin, which evaluates non-perceptual transfer, is given by MNIST images with a different
background color than the first task. The last task in Sout is given by shuffling the output labels of
the first task. Slong has 100 tasks. For each task, they sample a random image dataset and a random
subset of 5 classes to classify. The number of training data points is sampled according to a distri-
bution that makes it more likely for later tasks to have small training datasets. In contrast to us, they
use only 1 selection of tasks for each sequence, i.e. 1 realisation of each sequence. To generate the
sequences, we use the code provided by the authors (Veniat & Ranzato, 2021).

The neural architecture used is a small variant of ResNet18 architecture which is divided into 6
modules, each representing a different ResNet block (He et al., 2016). While the paper presenting
the CTrL benchmark states that 7 modules are used, we used the authors’ code (Veniat, 2021) for this
method which specifies only 6 modules with the same total number of parameters. The difference
from the architecture stated in the paper is that the output layer is placed in the last module, instead
of in a separate module.

All parameters are trained to reduce the cross-entropy loss with an Adam optimiser Kingma & Ba
(2014) with β1 = 0.9, β1 = 0.999 and ϵ = 10−8. For each task, each path is evaluated 6 times with
different combinations of values for the hyperparameters of the learning rate ({10−2, 10−3}) and of
the weight decay strength {0, 10−5, 10−4}. The hyperameters which lead to the best validation per-
formance are selected. Early stopping is employed during training. If no improvement is achieved in
300 training iterations, the parameters with the the best logged validation performance are selected.
Data augmentation is also used during training, namely random crops (4 pixels padding and 32x32
crops) and random horizontal reflection.

E ABLATION EXPERIMENTS

E.1 BAYESIAN OPTIMISATION

We evaluate our search strategy SNT,l
BO (Eq. 10) which is used for non-perceptual transfer. For this

purpose, we create a new sequence:

Sin+ = [Ψ+
1 ,Ψ

+
2 , ...,Ψ

+
15,Ψ

−
16 = (D6, h6, g1)]
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Figure 5: Comparing to randomly selected initial points (BO l2 rnd init), and random search (RS).

which involves all 16 upper labelling sub-functions g of BELL. The last problem’s dataset is gener-
ated according to the triple n−

tr = (10000,Alltr, 30), which states that only 30 out of the 64 possible
two-dimensional patterns are represented in the dataset. As a result, non-perceptual transfer is nec-
essary in order to maximise the performance on the final problem. We create 5 realisations of Sin+

with different randomly selected problems.

Even though our method is deterministic, the baselines we compare it to involve randomly selecting
2 or all random paths. For each such baseline, and each of the 5 realisations of the sequence Sin+,
we run the baseline 10 times with 10 different random seeds. This results in 10 ∗ 5 = 50 evaluations
per method which we average over when reporting its performance. For each method, we plot its
maximum accuracy achieved per number of paths evaluated.

We compare our search strategy sNT,l
BO (which we denote BO l2) to an augmented version which

randomly selects the initial 2 paths (BO l2 r), and to a random search baseline which recommends
paths in a random order (RS). The results, shown in Fig. 5, demonstrate our approach’s superior
anytime performance.

E.2 RANDOM PROJECTIONS

The usage of SPT
G (Eq. 5) relies on approximations of the training input distributions of pre-trained

modules. Instead of modelling a module’s training input distribution directly, we proposed to first
project samples from it to k dimensions using random projection, and then we model the resulting
distribution with a multivariate Gaussian. In this section we would like to evaluate three aspects of
this approach. First, we would like to assess the usefulness of the resulting approximations for the
purposes of selecting the correct input distribution. Second, we would like to assess the sensitivity
of our approximations to the hyperparameter k. Third, we would like to compare our approach
to Gaussian approximation of the original input space in order to determine whether we sacrifice
performance.

To this end, we evaluate whether our approach is useful for distinguishing between a set of input
distributions. We compare the approximations resulting from different choices of k = {10, 20, 40}.
The resulting methods are referred to as rp 10, rp 20 and rp 40 respectively. Moreover, we compare
to the method of computing a Gaussian approximation of a module’s training input distribution,
without a random projection. Since this can lead to a singular covariance matrix, we make use of
diagonal loading (Draper & Smith, 1998) in which we add a small constant (10−8) to the diagonal
of the computed sample covariance matrix in order to make it positive definite. We refer to the
resulting method as diag loading.

We compare how well can these approaches distinguish between the 9 image datasets used in BELL.
We chose to use the input images for our comparison since they have the highest dimension and
should be the most difficult to approximate.

To evaluate one of the methods, we first use it to approximate all 9 input distributions using N
data points, resulting in 9 approximations, denoted as {qi}9i . Second, for each input distribution
pj , we sample 100 different data points and use them to order the approximations in descending
order of their likelihood. Ideally, if the data points are sampled from the j-th distribution pj , the
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(a) (b)

Figure 6: Comparison of different methods for modelling a module’s input distribution. The x axis
represents the number N of data points used to compute an approximation. The y axis represents the
average position, as defined in the main text, which indicates how well a method can approximate
the distributions. The lower the average position is, the better the model performs. Figure a) presents
a plot across all choices of N . Figure b) focuses on the first few values of N .

corresponding approximation qj should have the highest likelihood, and thus should be the first in
the list, i.e. should have an index equal to 0. We compute the index of qj in the ordered list and use
it as an indication of how successfully the method has approximated pj . We compute this index for
each of the 9 distributions and report the average index, also referred to as the average position.

We evaluate each method for different choices of N , N = {50, 100, 500, 1000, 5000, 10000, 20000,
30000, 44000}. Moreover, we repeat all evaluations 5 times using different random seeds and report
the mean and standard error of the average position. The results are reported in Fig. 6.

Our results show that directly modelling the original distribution with a Gaussian leads to sub-
optimal performance. On the other hand, we observe that for N ≥ 500, the methods which use
random projection can always match the given data points with the correct distribution which they
were sampled for. Surprisingly, for N = 50 and N = 100, diag loading outperforms the other
methods and can successfully identify the correct distribution of the given data points. Furthermore,
we observe that for these values of N , decreasing the dimension k that the data points are projected
to leads to better performance of the methods that are based on random projection.

Overall, our results suggest that the approximations which we use for SPT
G are effective when the

new modules are trained on more than 100 data points. This seems like a reasonable requirement,
as fewer points are likely to result in a sub-optimal performance.
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