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ABSTRACT

Most CLIP-based image classifiers rely heavily on having known class names in
the prompt and therefore are neither explainable nor editable to humans. Here,
we present PEEB, a novel bird classifier that allows users to describe in text the
12 parts of every bird that they want to identify. After the textual descriptors
are defined, PEEB detects 12 parts of a bird in the image and then computes
a matching score between the image and each class by summing over the dot
products of 12 pairs of visual and textual part embeddings. Besides editability, our
classifier achieves state-of-the-art accuracy in two different zero-shot settings and
competitive performance when fine-tuned on target datasets.

1 INTRODUCTION

Fine-grained bird classification (Wah et al., 2011; Van Horn et al., 2015) is a long-standing challenge
in computer vision. Yet, state-of-the-art bird classifiers often have one or more of the following three
limitations. First, many classifiers both CNN-based (Krause et al., 2016) and ViT-based (He et al.,
2022) are inherently black-box. That is, they have no built-in mechanisms that explain to users how a
decision is made, e.g., which bird traits make a model think a given bird is Indigo Bunting?

Second, many bird classifiers claim to be explainable (Chen et al., 2019; Donnelly et al., 2022) by
comparing the input image with a set of learned, part-based prototypes. Yet, such prototypes are
feature vectors and therefore actually neither directly-interpretable nor -editable by users. Third, most
image classifiers require either training-set images in a supervised-learning setting or demonstration
images in a zero-shot setting (Xian et al., 2018; Zhu et al., 2018). This requirement is impractical
when building a classifier for a novel species whose photos do not yet exist in the database.

To address the above three problems, we propose PEEB, a bird image classifier that is both explainable
and editable via natural language. PEEB classifies images based only on the textual description
of bird parts provided by humans (no images needed). While PEEB leverages CLIP’s encoders
(Radford et al., 2021), it uses no class names (e.g., Indigo Bunting) in the prompt. In contrast, most
vision-language classifiers such as CLIP (Radford et al., 2021) and its extensions (Pratt et al., 2022;
Menon & Vondrick, 2022) rely so heavily on the known class names in the prompt that their accuracy
drops significantly when the names are removed or replaced by uncommon names (Secs. 5.1 and 5.2).

PEEB first uses a pre-trained, open-vocabulary object detector to (1) localize all 12 bird parts in
the input image and (2) generate 12 corresponding, visual part embeddings (Fig. 1). Using GPT-4,
we construct a textual descriptor (OpenAI, 2023) to describe each bird part of every species (see
Appendix B). The unnormalized distance (logits) between the input image and every class would
be the sum of the 12 dot products between the paired visual and textual part embeddings (Fig. 2).
Besides being editable by humans, PEEB achieves state-of-the-art results on the traditional zero-shot
and also CLIP’s zero-shot setting.

To our knowledge, all existing, public bird-image datasets (listed in Table 5) are limited in size (less
than 100K images per dataset) and in the number of classes (less than 1,500 species per dataset),
impeding large-scale, vision-language, contrastive learning research. Therefore, for our pre-training,
we build Bird-11K, an unprecedentedly large bird-image dataset of ∼290K images and ∼11K species,
i.e., basically all bird species on Earth (Sec. 3). Bird-11K is constructed from 7 existing bird datasets
and 55K new images that we collect from the Macaulay Library. Our main findings are:1

1Code and dataset are released on https://anonymous.4open.science/r/peeb-Bird-11K/README.md.
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crown: dark blue, sleek
0.48

forehead: brilliant blue plumage
0.55

nape: blue, blending with crown
0.64

eyes: alert, dark eyes
0.82

beak: sharp, pointed
0.83

throat: distinct black patch
0.30

breast: vivid blue hue
0.40

belly: pristine white
0.62

back: midnight blue
0.01

wings: blue with small white square
0.57

legs: thin, black legs
0.61

tail: blue-tinted for some females
0.43

crown: dark blue, sleek
0.48

forehead: brilliant blue plumage
0.55

nape: blue, blending with crown
0.64

eyes: alert, dark eyes
0.82

beak: sharp, pointed
0.83

throat: rusty
0.43

breast: vivid blue hue
0.40

belly: pristine white
0.62

back: midnight blue
0.01

wings: blue with black tips
0.74

legs: thin, black legs
0.61

tail: blue-tinted for some females
0.43

(a) Input image (b) Indigo Bunting 0.0331 (c) Eastern Bluebird 0.0445 (d) Example 
Indigo Bunting

PEEB

Explainable
Editable 
Bottleneck

Figure 1: Given an input image (a) from an unseen class of Eastern Bluebird, PEEB misclassifies it
into Indigo Bunting (b), a visually similar blue bird in CUB-200 (d). To add a new class for Eastern
Bluebird to the list of 200 classes that PEEB considers when classifying, we clone the 12 textual
descriptors of Indigo Bunting (b) and edit (- -▸) the description of throat and wings (c) to reflect
their identification features described on AllAboutBirds.org (“Male Eastern Bluebirds are vivid,
deep blue above and rusty or brick-red on the throat and breast”). After the edit, PEEB correctly
predicts the input image into Eastern Bluebird (0.0445) out of 201 classes (c).

1. CLIP-based classifiers depend mostly on class names in the prompt. For example, the CUB
accuracy of M&V classifier Menon & Vondrick (2022) drops substantially from 53.92% to
5.89% after the class names are removed from the prompt (Sec. 5.1).

2. On the zero-shot setting by CLIP (Radford et al., 2021), PEEB consistently outperforms
existing CLIP-based classifiers (Radford et al., 2021; Menon & Vondrick, 2022) on all three
benchmarks (CUB, NABirds, and iNaturalist) regardless of whether the common or the
scientific (i.e. uncommon) names are used (Sec. 5.2).

3. On the traditional zero-shot setting by Zhu et al. (2018), PEEB also outperforms other
existing state-of-the-art methods (Sec. 5.3), especially on “hard” splits, showing strong
generalization capabilities.

4. When fine-tuned on CUB, PEEB scores an 86.73% accuracy, which is competitive to the
best CUB classifiers trained using supervised learning (85–93% accuracy) in the literature
(Sec. 5.4) that are often neither explainable nor editable.

2 RELATED WORK

Standard CNNs and Transformers It is common to build bird classifiers based on standard CNNs
such as ResNets (He et al., 2016) or ViTs (He et al., 2022). Although high-performing, these models
do not admit an inherent explanation interface (Gunning et al., 2021) and therefore rely on post-hoc
interpretability methods, which tend to offer inaccurate and unstable, after-the-fact explanations
(Rudin, 2019; Bansal et al., 2020). In our work, the textual part descriptors (Fig. 1) form a natural-
language bottleneck interface that enables users to observe and edit the bird attributes that contribute
to each final prediction. That is, users can re-program the classifier without having to re-train any
network (see Fig. 1).

Part-based bird classifiers There are many bird classifiers that are built to explicitly use the colors
and textures of a bird’s parts to make decisions. Yet, most part-based classifiers are black boxes (see
Table 3 in Donnelly et al. (2022)). Some part-based classifiers are designed with an explainability
objective, e.g. by learning the part prototypes (Chen et al., 2019; Donnelly et al., 2022; Nguyen et al.,
2022; Nauta et al., 2022). Yet, because such prototypes are real-valued vectors, it is unknown how
much users could interpret them and use them in a downstream task. In contrast, PEEB is also a bird
classifier that relies on parts but allows users to define the textual descriptors of the birds of interest.
The classifier can be edited directly by users in text while all prior part-based bird classifiers require
complete retraining if any prototype needs modifications.
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Vision-language classifiers Recent vision-language models often claim to be interpretable because
their prompts are in natural language (Radford et al., 2021). Yet, most multimodal, CLIP-like
classifiers rely heavily on having the correct class names in the prompt (Yang et al., 2023; Pratt et al.,
2022; Menon & Vondrick, 2022). For example, using random words in each textual descriptor only
reduces the CUB accuracy of Menon & Vondrick (2022) method (hereafter, M&V) marginally from
53.92% to 53.21% as long as the correct class names are still present in the prompt. The closest to us
might be LaBo (Yang et al., 2023) as both do not use class names. Yet, it is unknown what image
details are being used by the LaBo when computing a prediction because the classifier matches every
textual part descriptor to the same image embedding (instead of the contextualized embedding of a
corresponding body part e.g., beak in Fig. 2).

Contrastive pre-training The seminal work of Reed et al. (2016) illuminated the potential of con-
trastive learning in enhancing generalization capabilities across vision and language tasks. Subsequent
research has further expanded on this approach, including works by He & Peng (2019); Kim et al.
(2022); Wang et al. (2021); Peng et al. (2021). Expanding on these foundational insights, Radford
et al. (2021) showed that contrastive pre-trained models can attain zero-shot learning outcomes on par
with models trained on specific datasets. This significant advancement is further supported by studies
such as Cherti et al. (2023), Li et al. (2021), and Mu et al. (2022), which collectively underscore the
success in deeply integrating vision and natural language processing. Inspired by these pioneering
efforts, our work introduces PEEB, a part-based, language-awarded bird classifier that utilizes the
principles of contrastive learning to refine part-based classification in birds.

3 BIRD-11K DATASET

3.1 DATASET CONSTRUCTION

We combine bird images from 7 distinct datasets with ∼55K images (10,534 classes) collected from
Cornell’s Macaulay Library, to form a unified Bird-11K dataset 2 (Table 5) for large-scale pre-training.
To the best of our knowledge, Bird-11K, comprising 440,934 images spanning 11,183 classes, is the
first bird dataset that encompasses almost all species on Earth. Since PEEB learns to match visual
parts to textual descriptors, it requires that bird images be distinctly visible and sufficiently large for
accurate part localization and matching. However, small and “hard-to-see” bird images in Bird-11K
make the dataset noisy and the training complex. Thus, we employ OWL-ViTlarge (Minderer et al.,
2022) to detect bird objects in all images using the query “bird” and filter out images with the
detected bird’s bounding box smaller than 100× 100 pixels. To circumvent class ambiguity, we retain
only the child species and exclude all parent classes. For instance, it is infeasible to systematically
map the parent class Cardinal to child classes such as Yellow Cardinal or Northern Cardinal so we
keep only the child classes for more diverse training. Following these filtration steps, the refined
Bird-11K dataset retains 294,528 images across 10,811 classes (Table 5).

3.2 DATASET SPLITS FOR ZERO-SHOT TESTS

Two distinct zero-shot definitions emerged in the recent literature. The first is “CLIP-like” zero-shot,
hereafter CZSL, models are trained on large-scale datasets which may inadvertently include a subset
of the testing classes or images. The second one, referred to as ZSL, ensures that the model is not
exposed to any classes during pre-training phases (Han et al., 2022; Ji et al., 2018; Zhu et al., 2018).

CZSL Considering CLIP has potentially been exposed to CUB, NABirds or iNaturalist classes, we
only exclude the test sets of these datasets from Bird-11K in the pre-training phases. Notably, we do
not use image-level labels during pre-training phase to maximize the classification accuracy. Instead,
we only train models contrastively to map bird parts to the corresponding descriptors.

ZSL In the traditional zero-shot setting, we execute different exclusion strategies on Bird-11K to
make sure the test classes are never exposed to the pre-trained models. As other datasets may share
a subset of CUB classes, we also exclude these classes to preserve the nature of this zero-shot
setting. For instance, if testing on the zero-shot splits for CUB (Akata et al., 2015), Super-Category-
Shared/Exclusive (SCS/SCE) (Elhoseiny et al., 2017), we remove all CUB classes from Bird-11K
during the pre-training.

2We do not redistribute the published datasets; we construct Bird-11K only for pre-training purpose.
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Figure 2: During the test time, we perform 2 steps. Step 1: (a) Encode an input image and texts (i.e.
12 part names) by the image and text encoder to get patch embeddings pi and text embeddings t′i. (b)
Feed pi to linear projection to get p′i in the same dimensional space with t′i and compute dot product
between {p′i} and {t′i}. (c) argmax over m embeddings to select 12 part embeddings.
Step 2: (a) Encode input texts (i.e. N sets of 12-part descriptors) with the same text encoder to get
ti. (b) Feed the selected part embeddings to box MLP to localize parts (in center format). (c) Also
feed the selected part embeddings to part MLP to get si in the same dimensional space with ti (d)
Compute dot product between {si} and {ti}, then diagonal sum for each class and argmax over
logits to get predicted label ŷ.

We introduce 3 splits for pre-training: Bird-11K[−test] for CZSL setting; Bird-11K[−CUB] and Bird-
11K[−NAB] for ZSL setting. For Bird-11K[−test] split, we allow a pre-trained model to see train
images but not the test ones like CZSL, so CUB, NABirds, and iNaturalist test sets are removed from
Bird-11K. For Bird-11K[−CUB] and Bird-11K[−NAB] splits, we exclude all CUB and NABirds classes
from Bird-11K respectively, to ensure that the part descriptions of the test classes are unseen to
pre-trained models. Moreover, we create a class-balanced validation set for each pre-training split to
select a checkpoint that is generalized well to all classes. Specifically, for all training-set classes with
more than 3 images, we randomly select 3 images per class to construct the validation set (Table 6).

4 METHOD

4.1 BACKBONE: OWL-VIT BIRD-PART DETECTOR

OWL-ViT (Minderer et al., 2022) is an open-vocabulary object detector that detects objects in an
image, given text queries, even if those objects are unseen during training. OWL-ViT consists of
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four components: a standard Vision Transformer image encoder, and an architecturally identical
text encoder, a box regression head, and a box classification head. While the box regression head is
a three-layer Multilayer Perceptron (MLP) followed by a GELU activation (Hendrycks & Gimpel,
2016) for the first two linear layers, the box classification head is simply a linear layer to project the
visual embeddings to the same dimensional space with text embeddings.

4.2 PART-BASED, EXPLAINABLE, AND EDITABLE BIRD CLASSIFIER (PEEB)

Architecture PEEB utilizes OWL-ViT to detect parts and extract visual part embeddings. PEEB
consists of image encoder, text encoder, and three blocks: linear projection, part MLP and box MLP.
Except for part MLP, which we propose and train from scratch, other components are initialized
from the corresponding components in OWL-ViT. Part MLP consists of 3 linear layers followed by a
GELU activation layer for each, aiming to enable the object detector to perform image classification.

Step 1: Part embeddings selection We employ the 12 part names (Appendix B) as textual queries
for more precise part localization compared to using part descriptors. The visual part embeddings
encoded by the image encoder are then projected by the linear projection layer to be in the same
dimensional space with text embeddings encoded by the text encoder (Fig. 2, step 1a–b). Subsequently,
we compute the dot product between visual and textual embeddings and then take argmax over m
embeddings to select 12 part embeddings (Fig. 2; step 1c).

Step 2: Part localization and image classification Twelve part embeddings selected in step 1 are
fed to the box MLP and part MLP for part localization and classification, respectively. Specifically,
the box MLP predicts 12 bounding boxes for 12 parts where PEEB looks at when making predictions
(Fig. 2, step 2b). For classification, we compute the dot product between the selected part embeddings
and text embeddings of part descriptors followed by the diagonal sum as a logit for each class and
obtain the prediction by applying argmax over the logits (Fig. 2, step 2a, c–d).

Part MLP layer is essential to learn a mapping between visual parts and descriptions that can be
directly used for classification. Remarkably, we do not use a classification head to enable arbitrary
ways of classification. The box MLP and part MLP layers also enhance the explainability of PEEB
since the same visual embeddings are used for image classification and object detection while the
mappings between predicted boxes and descriptors serve as meaningful explanations for humans.

4.3 TRAINING STRATEGY

We empirically find that solely training the part MLP layer does not achieve the desired classification
accuracy, prompting us to update the image encoder. However, re-training this encoder impacts the
linear projection and box MLP layers. As a result, we have to train all components together. Our
training strategy has two phases: two-stage pre-training on the large-scale Bird-11K dataset and
fine-tuning on downstream tasks.

Objectives There are three objectives to train PEEB: (a) Train the part MLP layer contrastively to
maximize the similarity between related part-descriptor pairs while minimizing the unrelated pairs
using symmetric cross-entropy (CE) loss (Radford et al., 2021); (b) Train the linear projection layer
to mimic OWL-ViT’s behaviors (i.e. the similarity matrix) for part selection with symmetric CE loss;
and (c) Train the box MLP layer for bounding box regression with DETR losses (Zheng et al., 2020)
i.e. a linear combination of ℓ1 corner-to-corner distance loss and GIoU loss (Rezatofighi et al., 2019).

Challenges One of the problems emerges when we jointly train all components together: the model
learns at a significantly slow pace since PEEB needs to learn to optimize two symmetric cross-entropy
losses while maintaining the high-quality predicted boxes. To address this problem, we split the
pre-training phase into two stages: (1) train the image encoder and part MLP layer with the first
objective; then (2) train the linear projection and box MLP layers with the second and third objectives
to accordingly adjust their weights to the changes in the image encoder. Notably, the text encoder is
always frozen because it was designed for open-vocabulary, so its generalizability to unseen texts
(i.e., descriptors of an unseen bird) should be preserved.

4.3.1 PRE-TRAINING ON BIRD-11K DATASET

Stage 1: The image encoder and part MLP layer are jointly trained using the symmetric cross-
entropy loss, which is particularly suitable for PEEB as it learns the mapping between visual parts

5



Under review as a conference paper at ICLR 2024

and descriptors (Fig. 4). In this step, we need to follow the teacher model – OwlViT to select part
embeddings for twelve parts (Fig. 4, step 1) because training the image encoder while freezing the
linear projection layer may result in random part selection.

Stage 2: The main focus is to train PEEB’s linear projection and the box MLP layer to adjust
their weights accordingly to the changes of the image encoder in stage 1 in order to achieve the
similar object detection performance to the original OWL-ViT model (Fig. 5). Specifically, we
rely on the teacher model OWL-ViT to produce “teacher logits” which serve as ground-truths to
contrastively train the linear projection layer using symmetric cross-entropy loss (Fig. 5, 1a–c, 2a–c).
For box MLP, given the absence of human-annotated boxes for individual parts, we obtain pseudo
labels sourced from OWL-ViTlarge as ground-truths for the training with DETR losses (Fig. 5, 2d).
In this training step, the image encoder is frozen while the part MLP layer is not involved. After
two-step training, PEEB can do zero-shot classification while providing the mappings between part
boxes and descriptors as meaningful explanations to humans.

4.3.2 FINE-TUNING ON TARGET DATASETS

We can further fine-tune the pre-trained model on downstream tasks, e.g., CUB, NABirds and
iNaturalist to compare with other baseline approaches. In this phase, all components except the text
encoder are trained jointly to adapt to the downstream tasks. The losses used for fine-tuning the
linear projection and box MLP layers remain unchanged: symmetric cross-entropy and DETR losses
to ensure the box prediction. These layers are trained in the same way as in the pre-training stage
2. Only the part MLP layer is trained using cross-entropy loss to maximize classification accuracy
on both seen and unseen classes. It is important to note that we fine-tune our model from different
pre-trained models, depending on the downstream tasks, to ensure no classes have been exposed
during the training for the ZSL test. For example, the 200 CUB classes were excluded from the
pre-training phase for the ZSL test on CUB (Sec. 3.2).

5 EXPERIMENTS & RESULTS

We conduct systematic experiments to evaluate the generalization ability of our proposed method
on two zero-shot settings: (1) CLIP’s zero-shot (CZSL) (Sec. 5.2), which implies that images from
unseen classes might be available during training; and (2) ZSL (Sec. 5.3) when no images from
unseen classes are available during training. In our comparison with several baselines, we begin with
a notable discovery: Descriptors have minimal impact on CLIP-based classifiers (Sec. 5.1).

In CZSL (Table 2), we mainly focus on two state-of-the-art baselines, which are CLIP and M&V,
and show how our method outperforms those baselines on three well-known benchmarks CUB,
NABirds and iNaturalist. In ZSL (Table 3), four baselines are considered: CLORECLIP (Han et al.,
2022), S2GA-DET (Ji et al., 2018), GRZSL (Zhu et al., 2018), DGRZSL (Kousha & Brubaker, 2021).
Notably, our method demonstrates significantly superior performance on those baselines.

Moreover, following Donnelly et al. (2022), we fine-tune and evaluate PEEB on downstream tasks to
measure the transferability compared to other prototype- and part-based methods (Sec. 5.4). We also
provide the evaluation of part localization (Appendix E) and qualitative analysis (Appendix H).

5.1 CLIP-BASED CLASSIFIERS DEPEND MOSTLY ON CLASS NAMES (NOT PART DESCRIPTORS)

M&V showed that incorporating descriptors generated by GPT-3 (Brown et al., 2020) to class names
increases CLIP accuracy on CZSL setting. Yet, it remains unknown how useful the descriptors are
compared to the randomized descriptors for M&V’s method.

Experiment To address the concern, we randomly swap a set of part descriptors among classes in
CUB, NABirds, and iNaturalist datasets and measure the contribution of descriptions by comparing
model performance for CLIP, M&V, and PEEB based on CUB test set (i.e., 200-way classification)
using original and random descriptions. The swapping aims to assign one bird for the part descriptions
from another bird that incorrectly describes the associated class. For example, House Sparrow might
be paired with American Crow’s descriptions after being swapped.

Results Surprisingly, M&V’s accuracy drops marginally by -0.86 points when randomized descrip-
tions are used, questioning the contribution of descriptions to their model’s classification process

6



Under review as a conference paper at ICLR 2024

Original Descriptors (a) Incorrect Descriptors (b)
Blue Jay Blue Jay 0.0059 Blue Jay 0.0058

M
&

V
0.367

0.360

0.364

0.366

0.363

0.366

0.359

bright blue, white, and black plumage

crest on its head

chunky bird with a full, rounded tail

black band around the neck and head
black, bristle-like feathers covering the
nostrils
blue wings and tail with black banding and white
tips
large, black beak.

0.361
0.326
0.357
0.372
0.363
0.364
0.370
0.364
0.360

bird species
also known as Oriental turtle dove or Rufous
turtle dove
medium-sized dove
predominantly grey or brown body
black and white striped patch on the neck
dark, slender bill
long, rounded tail with a white border
black eyes surrounded by a pale eye-ring
pinkish or reddish legs and feet

Blue Jay 0.6899 (c) Least Tern 0.0611 (d)

PE
E

B

0.871
0.871
0.809
0.876
0.869
0.842
0.828
0.854
0.828
0.857
0.869
0.868

crown: bold blue crest
forehead: vibrant blue hues
nape: transitional blue and white feathers
eyes: curious black orbs
beak: sturdy black bill
throat: white/gray frontal feathering
breast: blended blue and white plumage
belly: white/gray underbelly
back: striking blue feathers
wings: brilliant blue with black bands
legs: strong gray limbs
tail: long, blue, fan-like appendage

0.639
0.502
0.531
0.497
0.721
0.434
0.492
0.423
0.738
0.783
0.441
0.128

crown: deep blue head crest
forehead: small blue patch
nape: blue and smooth
eyes: dark, rounded, expressive
beak: short, sturdy, black
throat: sky-blue feathers
breast: bright blue feathers
belly: light blue-gray plumage
back: vibrant blue feathers
wings: vivid blue with black edges
legs: strong, grayish-black
tail: slender, blue with black tips

Figure 3: Given the correct descriptors, M&V correctly classifies the input image into Blue Jay (a).
Yet, interestingly, when randomly swapping the descriptors of this class with those of other classes,
M&V’s top-1 prediction remains unchanged (b), suggesting that the class names (hidden) in the
prompt have the most influence over the prediction (not the descriptors). In contrast, PEEB changes
its top-1 prediction from Blue Jay (c) to Least Tern when the descriptors are randomized (d).

(Table 1). Interestingly, M&V is better than CLIP even with incorrect descriptions (53.21% vs
52.01%, respectively). In contrast, PEEB’s performance plummets to nearly random chance with
incorrect descriptions, indicating a significant dependence on descriptions for accurate predictions.

By removing class names and retaining only descriptors for M&V’s method, we find that their test
accuracy reduces significantly from 53.92% to 5.89% (Table 1). This finding reveals that CLIP-based
classifiers depend mostly on class names and M&V’s enhanced accuracy is not solely attributed to
the richer information from correct descriptions as shown in Fig. 3.

Table 1: We evaluate model accuracy on the CUB test set using both original and incorrect descriptions.
The results highlight M&V’s minimal dependency on description accuracy in contrast to our method’s
significant performance drop with shuffled descriptions.

CLIP M&V PEEB (ours)

Using class names ✓ ✓ ✗ ✗

Original Descriptions 52.01 53.92 5.89 63.35
Incorrect Descriptions n/a 53.21 0.59 0.88

5.2 PEEB OUTPERFORMS CLIP-BASED CLASSIFIERS ON CLIP’S ZERO-SHOT SETTING

Sec. 5.1 shows that CLIP-based classifiers, including CLIP and M&V, rely heavily on class names.
To gain further insights, we compare the performance of our model PEEB, which relies exclusively
on descriptions for classification, with these CLIP-based models within the CZSL setting.

Experiment We conduct two-stage pre-training (Sec. 4.3.1) for PEEB on Bird-11K[−test] (Sec. 3.2)
where CUB, NABirds, and iNaturalist test sets are excluded. Pre-training on Bird-11K[−test] allows
the comparison with CLIP and M&V on CUB, NABirds and iNaturalist test sets as we hypothesize
that CLIP may see train or even test images of these datasets during the large-scale training. Moreover,
we only leverage the train images for contrastive pre-training and thus, the cross-entropy loss is not
used to maximize the classification accuracy. We tune the following hyper-parameters: batch size,
learning rate, weight decay and a number of in-batch negative classes for both steps and use the best
combination for the final pre-training (Appendix A.4). We select the best checkpoints for step 1 based
on the highest validation accuracy and for step 2 based on the lowest validation loss for balancing
classification (test accuracy) and object detection objectives (predicted boxes).
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Scientific names To test our hypothesis, we replace all original class names with their scientific
names for CUB and NABirds, since CLIP might not be familiar with birds’ scientific names. For
iNaturalist, its original class names are scientific; we substitute them with their associated common
names. The datasets with scientific class names are denoted as CUBsci, NABirdssci and iNaturalistsci.

Results Our pre-trained model outperforms the baselines across all 3 datasets, achieving improve-
ments of (+10 to +12 points), (+28 to +29 points) and (+8 to +9 points) on CUB, NABirds and
iNaturalist, respectively (Table 2). The gaps are even larger on CUBsci, NABirdssci and iNaturalistsci
as both baselines struggle with the scientific names while PEEB derives predictions from descriptions
to maintain the same accuracy. It supports our hypothesis that training or even testing images of
CUB, NABirds and iNaturalist may be a part of CLIP’s training data, reinforcing our selection of the
pre-training dataset Bird-11K[−test]. Remarkably, the major reduction of M&V’s method on scientific
names reveals that descriptions contribute little (+1.5 points) to their overall performance.

Table 2: In a CLIP’s zero-shot setting (CZSL), our method’s top-1 accuracy is +8 to +28 points higher
than the two baselines. When using novel class names (or scientific names which are less common),
our method is around 10× better than the others.

Methods CUB CUBsci NABirds NABirdssci iNaturalist iNaturalistsci
CLIP (Radford et al., 2021) 51.95 5.95 39.35 4.73 16.36 2.03

M&V (Menon & Vondrick, 2022) 53.78 7.66 41.01 6.27 17.57 2.87

PEEB (ours) 64.33 69.03 25.74

5.3 PEEB GENERALIZES TO TRADITIONAL ZERO-SHOT SETTINGS

To further validate our model’s generalization capability, we pre-train, fine-tune and evaluate PEEB
under ZSL setting where the model is never exposed to test classes and images. In our evaluation,
we employ 5 data splits. One set from Akata et al. (2015) includes the CUB-150 train set, CUB-150
(seen), and CUB-50 (unseen) test sets. The remaining four are from Elhoseiny et al. (2017), with 2
splits (SCS (easy) and SCE (hard)) for CUB and 2 other splits for NABirds. In all 5 splits, 50 classes
are reserved for testing, while the remaining classes are included in the training set. These splits are
devised to fairly assess the model’s performance across both seen and unseen classes.

Experiment Depending on the test splits, we remove either all CUB or NABirds classes in Bird-11K
for pre-training, resulting in training set Bird-11K[−CUB] and Bird-11K[−NAB] (Sec. 3.2). We then
conduct two-stage pre-training for PEEB (Sec. 4.3.1), similar to Sec. 5.2 but different pre-training
sets to obtain two pre-trained models: PEEB[−CUB] and PEEB[−NAB] where PEEB are trained on
Bird-11K[−CUB] and Bird-11K[−NAB], respectively. Subsequently, the former is further fine-tuned and
evaluated on 3 CUB splits and the same for the latter but on 2 NABirds splits. The hyper-parameters
tuning and selection of pre-trained checkpoints are the same as in Sec. 5.2. We fine-tune the two
pre-trained models for 5 epochs and select the best checkpoints based on the lowest validation loss.

Results PEEB outperforms all baselines across 5 test splits (from CUB and NABirds) by (+6
to +10 points) in terms of harmonic mean, indicating that PEEB is more generalized to not only
seen classes (80.78 vs 65.80) but also unseen classes (all other results in Table 3). The easy tests
(SCS) guarantee the presence of classes similar to (but distinct from) the ones in the training set.
Therefore, all baselines that learn better on the training set tend to have better accuracy in the easy
test. Conversely, the hard splits (SCE) ensure the test classes are from different categories of the
training classes. This distinction makes the hard test a more accurate metric for assessing a model’s
generalization ability. PEEB excels over all baselines by (+6 to +15 points) (accuracy) for SCE split
and +2.64 points (accuracy) compared to CLORECLIP .

Furthermore, we also evaluate the models that are pre-trained on Bird-11K[−CUB] and Bird-11K[−NAB]
and compare them with CLIP and M&V methods on CUBsci and NABirdssci. Interestingly, PEEB
outperforms both baselines with (+10 to +12) points on CUB and (+1 to +3) points on NABirds
(Appendix C.1). This finding further substantiates the generalization capability of our model.
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Table 3: PEEB consistently outperforms other methods under Harmonic mean and especially in the
hard split (SCE) by (+6 to +15) points, highlighting its generalization capability.

Methods CUB NABirds
Seen Unseen Harmonic Seen Unseen Harmonic

CLORECLIP (Han et al., 2022) 65.80 39.10 49.05 n/aPEEB (ours) 80.78 41.74 55.04

SCS SCE Harmonic SCS SCE Harmonic
(Easy) (Hard) (Easy) (Hard)

S2GA-DET (Ji et al., 2018) 42.90 10.90 17.38 39.40 9.70 15.56
GRZSL (Zhu et al., 2018) 44.08 14.46 21.77 36.36 9.04 14.48
DGRZSL (Kousha & Brubaker, 2021) 45.48 14.29 21.75 37.62 8.91 14.41
PEEB (ours) 44.66 20.31 27.92 28.26 24.34 26.15

5.4 FINETUNING PRE-TRAINED PEEB ON CUB-200 YIELDS A COMPETITIVE CLASSIFIER

To thoroughly assess the efficacy of the pre-trained model for downstream tasks, we adhere to the
conventional pre-training and fine-tuning approach on the CUB dataset. It is interesting to study how
well the pre-trained model can be transferred to downstream tasks.

Experiment We take the model pre-trained on Bird-11K[−test] (Sec. 5.2) and fine-tune all components
on the CUB dataset for comparison with other prototype-based methods. The hyper-parameters
tuning is the same as in Sec. 5.2. We fine-tune the pre-trained model for 30 epochs and select the best
checkpoints based on validation loss.

Results On CUB, our model achieves a state-of-the-art accuracy of 86.73% (Table 4), higher than
Deformable ProtoPNet Donnelly et al. (2022) (86.4%) and other baselines. In some applications,
PEEB might be preferred over others due to its explainability and editability advantages.

Table 4: PEEB is a state-of-the-art model (here, top-1 accuracy on CUB-200) w.r.t. vision-language
and part-based classifiers.

Methods Model size Backbone Accuracy

Base (ViT) (Touvron et al., 2021) 22M DeiT-S (Touvron et al., 2021) 84.28
CLIP (Linear probe) 427M ViT-L/14 84.54
LaBo (Yang et al., 2023) 427M ViT-L/14 81.90
ProtoPNet (Chen et al., 2019) 22M DeiT-S 84.04
Deformable ProtoPNet (Donnelly et al., 2022) 23M ResNet-50 (He et al., 2016) 86.40
ProtoPFormer (Xue et al., 2022) 22M DeiT-S 84.85

PEEB (ours) 155M OWL-ViTbase 86.73

6 DISCUSSION AND CONCLUSION

Limitations First, our text encoder may not fully comprehend all bird descriptions. Being pre-trained
on a large-scale general image-text dataset, it may not capture all the fine details of birds. Second, we
rely on the image encoder to ascertain the visibility of specific parts in a bird image, e.g., we always
assume there are 12 visible parts, and the model needs to provide reasonable scores for incorrect
part predictions. This process lacks direct supervision and leans heavily on unsupervised learning
from the class label, necessitating extensive data. Yet, Bird-11K encompasses just ∼290K training
images—a quantity insufficient to support this unsupervised learning robustly. Another limitation
is that the GPT-4 description of the parts can be erroneous, directly affecting the accuracy of our
model. In our empirical analysis of 20 classes, we find that on average, 45% of the descriptions
inaccurately represent the features of the birds (Appendix F). We discover that by revising certain
descriptions in the CUB dataset, there is a +10 points improvement in the corresponding classes (refer
to Appendix D for details).

We present PEEB, a novel bird classifier utilizing textual descriptions of bird parts, addressing the
interpretability issues of traditional black-box models. PEEB consistently outperforms CLIP-based
classifiers, underscoring their over-reliance on class names. Our Bird-11K dataset enriches the field,
offering a vast array of species for research. PEEB’s results, both in zero-shot and supervised-learning
settings, set a record in bird classification.
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A TRAINING DETAILS

A.1 TWO-STAGE PRE-TRAINING ON BIRD-11K DATASET
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Figure 4: In pre-training stage 1, the objective is to let the Image Encoder learn the general representa-
tion of different parts of the birds. Therefore, in pre-training stage 1, we train the Image Encoder and
part MLP contrastively. During the training, the Step 1 utilizes a teacher model (OWL-ViTbase) to
help PEEB select 12 part embeddings. In Step 2, we update the model with symmetric Cross-Entropy
loss. Here’s the flow of Step 1: (1a) We utilize the teacher model to encode 12 part names and the
image to derive the text embedding t′i, and the patch embedding pi. (1b) Then the patch embeddings
p is forwarded to linear projection to obtain p′, matching the dimension of t′. (1c) We compute
the dot product between p and t′ and apply argmax over p to derive 12 indices. In Step 2: (2a),
We first encode the descriptions and the image with the Text Encoder and Image Encoder to obtain
description embeddings t and patch embeddings q. (2b), Then we select the 12 patch embeddings
based on the 12 indices from (1c). (2c), The 12 patch embeddings then forwarded to part MLP to
derive s, which has the same dimension as t. Then, we compute the similarity matrix for the patch
embedding and the description embedding by computing the dot product between s and t. (2d), we
construct a one-hot encoded matrix based on the descriptions as the ground truth label and minimize
the Symmetric Cross-Entropy loss between the similarity matrix in (2c) and the ground truth label.
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Figure 5: In pre-training stage 2, the goal is to eliminate the teacher model to obtain a standalone
classifier. Therefore, the targeted components are linear projection and box MLP. Since these
two components are taking care of different functionalities for patch embedding selection and box
prediction, respectively, stage 2 training is a multi-objective training. We employ Symmetric Cross-
Entropy loss to learn the patch embedding selection and DETR losses to refine the box predictions.
In Step 1: (1a), We first encode the 12 part names and the image with Text Encoder and Image
Encoder to obtain the text embedding t′i and patch embedding pi. (1b) Then the patch embeddings p
is projected by linear projection to obtain p′. (1c) We then compute dot product between p′ and t′
and one-hot encode the matrix via the dimension of p′ to obtain the “teacher logits”. In Step 2: (2a),
We encoder the image with Image Encoder to obtain patch embedding qi. (2b) The patch embeddings
are then being projected by linear projection to derive q′. (2c), We compute the dot product between
projected patch embeddings q′ and part name embeddings t′ to obtain the similarity matrix. Then,
we employ Symmetric Cross-Entropy loss between the similarity matrix and the “teacher logits”
derived in (1c). (2d), Meanwhile, we select the 12 part embeddings by taking argmax over q′. Then,
the selected part embeddings are forwarded to box MLP to predict the coordinates of each part. We
compute the DETR losses for the predicted coordinates and update the model.
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A.2 BIRD-11K STATISTICS

Table 5: Number of images and species of different bird datasets.

Dataset Images Species
CUB-200-2011 (Wah et al., 2011) 12,000 200
Indian Birds (Vaibhav Rokde, 2023) 37,000 25
NABirds v1 (Van Horn et al., 2015) 48,000 400
Birdsnap v7 (Berg et al., 2014) 49,829 500
iNaturalist 2021-birds (Van Horn et al., 2021) 74,300 1,464
ImageNet-birds (Deng et al., 2009) 76,700 59
BIRDS 525 (Piosenka, 2022) 89,885 525
Macaulay Library at the Cornell Lab of Ornithology* 55,283 10,534

Bird-11K (Raw Data) 440,934 11,097
Bird-11K (pre-training set) 294,528 10,811

* See Appendix I for full list of assets.

A.3 BIRD-11K TRAINING SETS

We provide detailed statistics for the three pre-training sets, Bird-11K[−test], Bird-11K[−CUB], and
Bird-11K[−NAB] in Table 6.

Table 6: Three pre-training splits for PEEB.

Training set Number of images Number of classes

Train Val Train Val

Bird-11K[−test] 234,693 29,234 10,740 9,746

Bird-11K[−CUB] 244,182 28,824 10,602 9,608

Bird-11K[−NAB] 216,588 27,996 10,326 9,332

A.4 MODEL DETAILS

We provide the training details of all models trained in this work in this section. Table 7 shows the
details of the pre-training models. Table 8 presents the details of the fine-tuned models. All trainings
utilize optimizer AdamW with Plateau Scheduler. To simplify our model naming convention, we
adopt a strategy based on the datasets excluded during training. Specifically:

• PEEB[−test] is pre-trained model using Bird-11K[−test] datset.
• PEEB[−CUB] is pre-trained model using the Bird-11K[−CUB] dataset.
• PEEB[−NAB] is pre-trained model using the Bird-11K[−NAB] dataset.

For fine-tuned models, we named them after the pre-trained model and the fine-tuned training set.
For example, PEEBCUB

[−test] is fine-tuned from PEEB[−test], on CUB training set.

B GENERATING PART-BASED DESCRIPTORS

CUB annotations initially comprise 15 bird parts. However, distinctions between the left and right part
are not essential to our method, we merge them into a single part (i.e., “left-wing” and “right-wing”
are merged into “wings”) Hence, we distilled the original setup into 12 definitive parts: back, beak,
belly, breast, crown, forehead, eyes, legs, wings, nape, tail, throat. To compile visual part-based
descriptions for all bird species within Bird-11K, we prompted GPT-4 (OpenAI, 2023) with the
following input template:
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Table 7: Pre-training details of our pre-train models.

Model Epoch Batch size LR Weight decay # in-batch classes Early stop Training set

Train Val Train Val

Pre-training stage 1

PEEB[−test] 32 32 50 2e−4 0.01 48 50 5 Bird-11K[−test]
PEEB[−CUB] 32 32 50 2e−4 0.001 48 50 10 Bird-11K[−CUB]
PEEB[−NAB] 32 32 50 2e−4 0.001 48 50 10 Bird-11K[−NAB]

Pre-training stage 2

PEEB[−test] 32 32 50 2e−5 0.01 48 50 5 Bird-11K[−test]
PEEB[−CUB] 32 32 50 2e−5 0.001 48 50 5 Bird-11K[−CUB]
PEEB[−NAB] 32 32 50 2e−5 0.001 48 50 5 Bird-11K[−NAB]

Table 8: Details of our fine-tuned models.

Model Fine-tune from Epoch Batch size LR Weight decay Early stop Training set

PEEBCUB
[−test] PEEB[−test] 30 32 2e−5 0.001 5 CUB

PEEBAkata
[−cub] PEEB[−CUB] 5 32 2e−5 0.001 5 Akata et al. (2015)

PEEBSCS
[−cub] PEEB[−CUB] 5 32 2e−5 0.001 5 CUB-SCS

PEEBSCE
[−cub] PEEB[−CUB] 5 32 2e−5 0.001 5 CUB-SCE

PEEBSCS
[−nab] PEEB[−NAB] 5 32 2e−5 0.001 5 NABirds-SCS

PEEBSCE
[−nab] PEEB[−NAB] 5 32 2e−5 0.001 5 NABirds-SCE

A bird has 12 parts: back, beak, belly, breast, crown, forehead, eyes, legs, wings,
nape, tail and throat. Visually describe all parts of {class name} bird in a short
phrase in bullet points using the format ‘part: short phrase’

Where {class name} is substituted for a given bird name.

The output is a set of twelve descriptions corresponding to twelve parts of the query species. e.g. The
response for Cardinal is:

Cardinal: {
back: vibrant red feathers ,
beak: stout , conical , and orange ,
belly: light red to grayish -white ,
breast: bright red plumage ,
crown: distinctive red crest ,
forehead: vibrant red feathers ,
eyes: small , black , and alert ,
legs: slender , grayish -brown ,
wings: red with black and white accents ,
nape: red feather transition to grayish -white ,
tail: long , red , and wedge -shaped ,
throat: bright red with sharp delineation from white belly

}
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C ABLATION STUDIES

C.1 PEEB OUTPERFORM M&V IN CUB AND NABIRDS WITHOUT SEEING ANY OF THESE
CLASSES

To rigorously evaluate the ZSL capabilities of our pre-trained models, we introduce a stress test on
the CUB and NABirds datasets. The crux of this test involves excluding all classes from the target
dataset (CUB or NABirds) during the pre-training. The exclusion ensures that the model has no prior
exposure to these classes. Subsequently, we measure the classification accuracy on the target dataset,
comparing our results against benchmarks set by CLIP and M&V in the scientific name test. In this
experiment, we consider the scientific name test a ZSL test for CLIP and use them as the baseline
because the frequencies of scientific names are much lower than common ones.

Experiment To conduct this test, we pre-train our model on Bird-11K[−CUB] and Bird-11K[−NAB],
which deliberately exclude images bearing the same class label as the target dataset. Specifically, we
test on our pre-train model PEEB[−CUB] and PEEB[−NAB] (see Table 7 for details), respectively.

Results The primary objective is to ascertain the superiority of our pre-trained model, PEEB,
against benchmarks like CLIP and M&V. For CUB, our method reported a classification accuracy
of 17.9%, contrasting the 5.95% and 7.66% achieved by CLIP and M&V, respectively, as shown in
Table 9. The PEEB score, which is marginally higher (+10) than M&V, highlights the advantages
of our method that utilizes component-based classification. On the NABirds, our method surpassed
the CLIP and M&V by (+1) point. The performance disparity between CUB and NABirds can be
attributed to two factors: the elevated complexity of the task (555-way classification for NABirds
versus 200-way for CUB) and the marked reduction in training data. An auxiliary observation,
detailed in Appendix C.2, indicates that our pre-trained model necessitates at least 250k images to
achieve admirable classification accuracy on CUB, but we only have 210k images training images in
Bird-11K[−NAB] (Table 6).

Table 9: Stress test results on CUB and NABirds datasets. Despite the ZSL challenge, our method
consistently surpasses CLIP and M&V. This underscores the robust generalization of our approach,
which leverages descriptions for classification.

Method CLIP M&V PEEB (ours)

CUB 5.95 7.66 17.90
NABirds 4.73 6.27 7.47

C.2 NUMBER OF TRAINING IMAGES IS THE MOST CRITICAL FACTOR TOWARDS
CLASSIFICATION ACCURACY

Bird-11K, as shown in Fig. 6a, is a highly imbalanced dataset characterized by a large amount of
long-tailed classes. We conduct a comprehensive study to discern how variations in the number
of classes and images affect the classification accuracy of our pre-trained models. Predictably, the
volume of training images occurred as the most influential factor. However, a noteworthy observation
was that the abundance of long-tailed data enhanced the model’s accuracy by approximately +1.5
points.

Experiment We curated eight training sets based on varying class counts: 200, 500, 1,000, 2,000,
4,000, 6,000, 8,000, and 10,740. For each set, we maximized the number of training images. It is
important to note that a set with a lesser class count is inherently a subset of one with a higher count.
For instance, the 500-class set is a subset of the 2,000-class set. For each split, we apply the same
training strategy as in Sec. 4.3.1, and choose the checkpoint with the best validation accuracy. We
consider the CUB test set as a generic testing benchmark for all variants.

Results As illustrated in Figure Fig. 6b, there is a pronounced correlation between the increase in
the number of images and the corresponding surge in accuracy. For instance, an increment from 106K
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to 164K images led to a rise in classification accuracy from 30.05% to 43.11%. The accuracy appears
to stabilize around 60% when the image count approaches 250K. This trend strongly suggests that
the volume of training images is the most critical factor for the pre-trained model. We believe that the
accuracy of the pre-trained model could be further enhanced if enough data is provided. Interestingly,
a substantial amount of long-tailed data bolsters the model’s performance, evident from +1.5 points
accuracy improvement when comparing models trained on 2,000 classes to those on 10,740 classes.
Note that the additional classes in the latter set averaged merely 2.2 images per class.
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(a) The Cumulative Distribution Function (CDF) plot
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Figure 6: The CDF plot (a), underscores significant imbalance of the Bird-11K dataset. While
the dataset has abundant long-tailed classes, e.g., a striking 80% of the classes contribute to only
13.46% of the entire image count. The plot (b) showcases the correlation between the number of
training images/classes and the resulting classification accuracy. As the image count grows, there is a
noticeable surge in accuracy, which nearly stabilizes upon surpassing 250K images. Additionally, a
significant amount of long-tailed data contributes to a +1.5 points boost in accuracy.

C.3 PERFORMANCE MEASUREMENT ON DIFFERENT NOISY LEVELS

In our evaluations, as indicated in Table 2, we discerned a marked performance disparity between
the iNaturalist dataset and others. Probing this further, we identified image noise as a principal
contributor to these discrepancies.

Experiment A qualitative assessment of the iNaturalist test images revealed a significantly higher
noise level than CUB or NABirds. To systematically study this, we utilize the object detector OWL-
ViTlarge to measure the size of the bird within the images. We formulated two filtered test sets based
on the detector’s output, categorizing them by the bird’s size, specifically, the detected bounding box.
Images were filtered out if the bird’s size did not exceed predetermined thresholds (areas of 1002
or 2002 pixels). Larger birds naturally reduced other content by occupying more image space, thus
serving as a proxy for reduced noise. All three test sets, including the original, were evaluated using
our pre-trained model PEEB[−test], identical to the one used in Sec. 5.2.

Results The results presented in Table 10 reveal a clear trend: as the image noise level decreases,
the classification accuracy consistently improves, with gains ranging from (+6 to +17) points across
the various methods. Notably, cleaner images consistently yield better results. At each noise level,
our method outperforms the alternatives. While our method exhibits an impressive (+17 points)
accuracy boost on the cleanest test set, this substantial gain also indicates that our model is sensitive
to image noise.

C.4 ABLATION STUDY ON THE INFLUENCE OF PARTS UTILIZED

In this ablation study, we aimed to measure the impact of varying the number of distinct “parts”
(back, beak, belly, breast, crown, forehead, eyes, legs, wings, nape, tail, and throat) used in our model.
We experiment with a range from a single part to all 12 identifiable parts. Interestingly, even with
a solitary part, the model could make correct predictions, though there was an evident decline in
performance, approximately -20 points.
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Table 10: The table showcases the classification accuracies on iNaturalist as we vary the noise levels.
The data underscores that the performance disparity on iNaturalist is predominantly due to image
noise. While all methods improve with cleaner images, our model exhibits the most substantial gains,
particularly in the least noisy sets.

Splits CLIP M&V PEEB (ours)

Original 16.36 17.57 25.74

> 1002 pixels 20.18 21.66 35.32

> 2002 pixels 22.88 24.90 42.55

Experiment Our testing ground is the pre-trained model PEEB[−test], evaluated against the CUB
test set. We assessed the model’s prowess utilizing various subsets of parts: 1, 3, 5, 8, and all 12.
These subsets were derived based on the frequency of visibility of the parts within the CUB dataset,
enabling us to compare the model’s performance when relying on the most frequently visible parts
versus the least. For comparison, we also conduct a similar experiment on M&V, where we only use
1, 3, 5, 8, and 12 descriptions (if possible).

Results Relying solely on the most frequent part led to a decline in classification accuracy by around
-20 points, registering at 45.44%. In contrast, utilizing the least frequent part resulted in a sharper
drop of around -27, with an accuracy of 37.02%. As the model was furnished with increasing parts,
its accuracy improved incrementally. The data underscores that optimal performance, an accuracy
of 64.33%, is attained when all 12 parts are included. For M&V, the accuracy keeps increasing
homogeneously from 5 to 12 descriptions, hinting that accuracy may increase further by increasing
the number of descriptions.

Table 11: Classification accuracy on the CUB test set that uses a different number of parts. Perfor-
mance dips significantly with just one part, especially for the least visible ones. Maximum accuracy
is reached with all 12 parts. The last row of the table also shows the accuracy of Menon & Vondrick
(2022) method which employs a different number of parts. It is evident that their method is insensitive
to the number of parts used, which may not reflect a realistic scenario.

Number of Parts (Descriptions) 1 3 5 8 12

Accuracy (most frequent parts) 45.44 56.48 59.89 61.32 64.33
Accuracy (least frequent parts) 37.02 55.51 60.04 61.13 64.33
Accuracy of Menon & Vondrick (2022) 51.93 52.87 52.83 53.33 53.92

C.5 TRAINING IS ESSENTIAL FOR PEEB’S CLASSIFICATION EFFICACY

In this ablation study, we highlight the pivotal role of training in the performance of PEEB on bird
classification tasks. We demonstrate that without adequate tuning, the results are indistinguishable
from random chance.

Experiment We conduct the experiment based on OWL-ViTbase. We retain all components as
illustrated in Fig. 2, with one exception: we substitute the part MLP with the MLP layer present
in the box prediction head of OWL-ViT because the proposed layers require training. The MLP
layers in the box prediction head project the part embeddings to match the dimensionality of the
text embeddings. Our focus is on assessing the classification accuracy of the untuned PEEB on two
datasets: CUB and NABirds.

Results Table 12 reveals the outcomes of our experiment. Without training, PEEB yields classifica-
tion accuracies of 0.55% for CUB and 0.31% for NABirds, both of which are proximate to random
chance (0.5% for CUB and 0.1% for NABirds). However, with training, the model’s performance
dramatically transforms: 64.33% for CUB (an increase of +63.78 points) and 69.03% for NABirds
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(a leap of +68.72 points) for PEEB[−test]. These pronounced disparities underscore the vital role of
training in PEEB.

Table 12: Impact of Training on Classification Accuracies: Untuned PEEB yields 0.55% on CUB and
0.31% on NABirds, almost mirroring random chance. With training (PEEB[−test]), accuracy surges
by +63.78 points on CUB and +68.72 points on NABirds.

CUB NABirds

PEEB (no training) 0.55 0.31

PEEB[−test] pre-trained 64.33 69.03

PEEBCUB
[−test] finetuned 86.73 -

C.6 FAILURE ANALYSIS

Since PEEB has two branches, box detection, and description matching, we would like to find out, in
the failure case, what is the main cause. i.e., is it because of the mismatch in the description to the
part embeddings? Or is it because the box detection is wrong? From our ablation study, it turns out
that most errors come from the description-part matching.

Experiment We conduct the experiment with PEEB[−test] on CUB test set. Specifically, we measure
the box detection accuracy based on the key point annotation in CUB dataset, i.e., We consider the
box prediction as correct if the prediction includes the human-annotated key point. We report the
box prediction error rate (in %) based on parts.

Results As shown in Table 13, the average error rate difference between success and failure cases
is merely 0.38. That is, in terms of box prediction, the accuracy is almost the same, disregarding
the correctness of bird identification. It indicates that the prediction error is predominantly due to
the mismatch between descriptions and part embeddings. Of course, we also noted that some parts,
like Nape and Throat, have a very high average error rate, which may greatly increase the matching
difficulties between descriptions and part embeddings.

Table 13: Error rate of Box Prediction in Failure and Success Cases. We report the box prediction
error rate, depending on whether the prediction box includes ground truth key points. No major
difference is found between them, which means the failure is largely due to the text-description
mismatch.

Body Part Average Back Beak Belly Breast Crown Forehead Eyes Legs Wings Nape Tail Throat

Failure Cases 16.52 23.38 3.28 8.06 15.96 7.41 24.72 7.29 5.63 3.36 64.79 7.25 27.07
Success Cases 16.14 23.03 2.96 7.44 18.64 7.13 21.53 3.93 6.85 2.68 68.66 6.40 24.38
Difference 0.38 0.35 0.33 0.62 -2.68 0.28 3.19 3.36 -1.22 0.68 -3.87 0.85 2.68

D REVISE THE DESCRIPTIONS IMPROVE CLASSIFICATION ACCURACY

As mentioned in the limitation section, the descriptions we used are all generated from GPT-4. They
inevitably include noisy and incorrect descriptions. Given that PEEB accepts open vocabulary inputs
for classification, a natural way to improve classification accuracy is to improve the correctness of the
descriptions.

Experiment We first collect descriptions of 183 CUB classes from AllAboutBirds. We then prompt
GPT-4 to revise our original descriptions by providing the collected description. We revise the
descriptions with the following prompt:

Given the following descriptions of {class name}: {AllAboutBirds descriptions}. Can
you revise the incorrect items below (if any) of this bird, return them as a Python
dictionary, and use the key as the part name for each item? If a partś description
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is not specifically described or cannot be inferred from the definition, use your own
knowledge. Otherwise, leave as is. Note: please use a double quotation mark for each
item such that it works with JSON format.

{Original Descriptions}

Where {class name} the placeholder for the class name, {AllAboutBirds descriptions} is the
description collected from AllAboutBirds, {Original Descriptions} is the descriptions we used for
training.

Due to the errors in the descriptions we used to train PEEB, simply replacing the descriptions with
their revised version does not lead to better performance. Because the incorrect descriptions in
training change the meaning of some of the phrases. For example, the belly of Blue bunting is pure
blue, but the descriptions from GPT-4 is soft, creamy white. In addition, the GTP-4 uses the exact
same description in the belly for other classes, e.g., Blue breasted quail, which should be cinnamon.
Blue Fronted Flycatcher, which should be yellow. Training the same descriptions with different
colors confuses the model, and the model will convey the phrase “creamy white” with a different
meaning to humans. Therefore, simply changing the descriptions to their’ revised version will not
work. We empirically inspect the descriptions that PEEB can correctly respond to and replace the
class descriptions with the revised version. Specifically, we replace the descriptions of 17 classes in
CUB and test the classification accuracy on PEEB[−test].

Results As shown in Table 14, the overall accuracy increase +0.8 points. The average improvement
of the revised class is around +10.8, hitting that if we have correct descriptions of all classes, we may
significantly improve the classification accuracy of the pre-trained model. However, correcting all
11k class descriptions is too expensive and out of the scope of this work. We leave it as a further
direction of improving the part-based bird classification.

Table 14: The revised descriptions result in +0.8 for PEEB[−test] in CUB. In particular, the average
improvement among the 17 revised classes is +10.8, hinting at the large potential of our proposed
model.

Descriptions Original Partially Revised Average Improvement on 17 classes

PEEB[−test] 64.33 65.14 10.80

E EVALUATION OF PREDICTED BOXES FROM PEEB

Our proposed method primarily aims to facilitate part-based classification. While the core objective
is not object detection, retaining the box prediction component is paramount for ensuring model
explainability. This section delves into an evaluation of the box prediction performance of our method
against the OWL-ViTbase model.

Experiment Given our focus on part-based classification, we aimed to ascertain the quality of our
model’s box predictions. To this end, we employed two metrics: mean Intersection over Union (IoU)
and precision based on key points. We opted for mean IoU over the conventional mAP because: (1)
Ground-truth boxes for bird parts are absent, and (2) our model is constrained to predict a single
box per part, ensuring a recall of one. Thus, we treat OWL-ViTlarge’s boxes as the ground truth
and evaluate the box overlap through mean IoU. Furthermore, leveraging human-annotated key
points for bird parts, we measure the precision of predicted boxes by determining if they contain
the corresponding key points. We evaluate our fine-tuned models on their corresponding test sets.
For instance, PEEBAkata

[−cub], fine-tuned based on the CUB split (Akata et al., 2015), is evaluated on the
CUB test set.

Results Our evaluation, as presented in Table 15, shows that PEEB’s box predictions do not match
those of OWL-ViTbase. Specifically, on average, there is a -5 to -10 points reduction in mean IoU for
CUB and NABirds datasets, respectively. The disparity is less distinct when examining precision
based on human-annotated key points; our method records about -0.14 points lower precision for
CUB and -3.17 points for NABirds compared to those for OWL-ViTbase. These observations reinforce
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that while PEEB’s box predictions might not rival these dedicated object detection models, they
consistently highlight the same parts identified by such models as shown in Fig. 7. It is important to
note that our approach utilized the same visual embeddings for both classification and box prediction
tasks. This alignment emphasizes the part-based nature of our model’s predictions.

Table 15: Model evaluation on CUB and NABirds test sets. We evaluate the predicted boxes on two
ground-truth sets; (1) predicted boxes from OWL-ViTlarge as ground-truths, and (2) OWL-ViTlarge’s
boxes that include the human-annotated key points. Our method has slightly lower performance in
terms of mean IoU but comparable precision.

Models Mean IoU

(1) All (2) w/ Keypoints Precision

CUB OWL-ViTlarge 100.00 100.00 83.83
OWL-ViTbase 44.41 49.65 83.53
PEEB (Average) 35.98 40.14 83.39

PEEBCUB
[−test] 37.45 41.79 81.55

PEEBAkata
[−cub] 35.11 39.14 82.72

PEEBSCS
[−cub] 35.77 39.96 84.89

PEEBSCE
[−cub] 35.58 39.67 84.38

NABirds OWL-ViTlarge 100.00 100.00 85.01
OWL-ViTbase 40.14 47.63 83.89
PEEB (Average) 36.47 42.01 80.72

PEEBSCS
[−nab] 36.45 42.03 80.09

PEEBSCE
[−nab] 36.49 41.99 81.34

F NOISE MEASUREMENT IN GPT-4 GENERATED DESCRIPTIONS

In this section, we conduct an empirical analysis to quantify the noise in descriptions generated by
GPT-4 for 20 different classes within the CUB dataset. To achieve this, we manually inspect each
description and tally the instances where at least one factual error is present. Our findings reveal that
every one of the 20 classes contains descriptions with errors, and on average, 45% of the descriptors
necessitate corrections. This substantial noise level underscores the need for further refinement in our
work, particularly in text descriptions.

We observe a notably high error rate in descriptions on the back and wings, with approximately
60% of these containing inaccurate information (refer to Table 16). This could be attributed to the
challenges in distinguishing between the back and wings, given that the back is typically positioned
behind the wings, yet exhibits considerable variability in size and shape. Addressing all description
issues by revising all 11,000 fine-grained descriptors would demand a significant investment of time
and resources, which is beyond the scope of the current work. As such, we identify this as an area for
future research and development, aiming to enhance the quality of the Bird-11K dataset.

Table 16: Summary of manual inspection results for 20 classes, highlighting the need for revision
in GPT-4 generated descriptions. An average error rate of 45% indicates substantial room for
improvement.

Back Beak Belly Breast Crown Forehead Eyes Legs Wings Nape Tail Throat Average

Error Rate 60 30 50 40 50 55 50 20 60 50 35 40 45
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G A COMPREHENSIVE METHOD-BASED COMPARISON ON BIRD
CLASSFICIATION

H QUALITATIVE INSPECTIONS

H.1 VISUAL COMPARISON OF PREDICTED BOXES

We provide a visual comparison of the box prediction from OWL-ViTlarge, OWL-ViTbase, and PEEB
in Fig. 7. We find that despite the fact that our predicted boxes have lower mean IoU compared to
OWL-ViTlarge, they are visually similar to the boxes as OWL-ViTbase.

H.2 QUALITATIVE EXAMPLES OF USING RANDOMIZED DESCRIPTIONS

We visually compare M&V and PEEB based on their utilization of descriptions (Figs. 8 to 10).
Specifically, we randomly swap the descriptions of the classes and then use these randomized
descriptions as textual inputs to the tested models to see how they perform. We observe that the scores
from M&V tend to cluster closely together. Surprisingly, M&V’s prediction remains unchanged
despite the inaccurate descriptions. In contrast, PEEB, when presented with randomized descriptions,
attempts to identify the best match grounded on the given descriptions.

H.3 EXAMPLES OF PEEB EXPLANATIONS

Figs. 11 to 13 are examples of how PEEB makes classification based on the descriptions and how it
can reject the predictions made by M&V. Since we aggregate all descriptions for the final decision,
even if some of them are similar in two classes, our method can still differentiate them from other
descriptions. For instance, in Fig. 11, while other descriptors are similar, PEEB can still reject
chesnut-sided warbler thanks to the distinct features of forehead, throat and belly.

I LIST OF CORNELL LAB IMAGES

We used the following 55,384 recordings from the Macaulay Library at the Cornell Lab of Ornithology
(Please refer to our Supplementary Material for the full list):
ML187387391, ML187387411, ML187387421, ML187387431, ML262407521, ML262407481, ML262407531, ML262407491, ML262407511, ML257194111
ML257194071, ML257194081, ML257194061, ML495670791, ML495670781, ML495670801, ML495670771, ML183436431, ML183436451, ML183436441
ML183436411, ML183436421, ML256545901, ML256545891, ML256545841, ML256545851, ML256545831, ML169637941, ML238083081, ML169637881
ML169637911, ML238083111, ML238083051, ML169637971, ML299670841, ML64989231, ML299670831, ML64989241, ML299670791, ML64989251
ML246866001, ML246865941, ML246866011, ML246865961, ML246865971, ML333411961, ML240835531, ML240835541, ML240835701, ML240835591
ML245260391, ML245260341, ML245260371, ML245260411, ML245260421, ML245260431, ML245260441, ML240866351, ML240866331, ML240866321
ML240866341, ML240866371, ML248318661, ML248318571, ML248318591, ML248318581, ML248318631, ML245204281, ML245204311, ML245204371
ML245204381, ML245204291, ML245603571, ML245603521, ML245603511, ML245603491, ML245603501, ML245603601, ML245257771, ML245257651
ML245257631, ML245257661, ML245257761, ML247221051, ML247221061, ML247221071, ML247221081, ML240365811, ML240365751, ML240365781
ML240365761, ML300579541, ML247298551, ML247298541, ML247298561, ML247298611, ML247298571, ML247298591, ML247298601, ML247298631...
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Original PEEB OWL-ViTbase OWL-ViTlarge

Figure 7: Our predicted boxes (second column) often align closely with those of OWL-ViTbase (third
column). However, slight shifts can lead to significant IoU discrepancies. For instance, in the first
row, both PEEB and OWL-ViTbase accurately identify the tail. Yet, variations in focus yield a stark
IoU contrast of 0.45 versus 0.81.
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Original description Random nonsense description
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cerulean warbler
0.344

0.350

0.346

0.350

0.344

0.351

0.347

Small bird

Distinctive blue color on the upper parts and white
underneath

Thin, pointed beak

Black streaks on the back and flank

Black line through the eyes

Males are brighter blue than females

Often found in trees or shrubs

cerulean warbler | 0.006

0.347

0.347

0.343

0.347

0.351

0.351

long, curved beak

brownish-tan feathers

relatively large size for a shorebird

long legs

a small head in relation to its body

typically found in open grasslands or wetlands.

cerulean warbler | 0.006

 
0.875
0.864
0.865
0.874
0.876
0.843
0.849
0.872
0.838
0.853
0.875
0.866

crown: bright cerulean blue
forehead: blue and unmarked
nape: blue, similar to the crown
eyes: black, round and tiny
beak: small, pointed, and black
throat: clean white contrasting with blue upperparts
breast: blue-gray with dark streaks
belly: white and unmarked
back: deep blue with streaks of black
wings: cerulean blue with black edging
legs: dark gray and slender
tail: blue-black with white edges

cerulean warbler | 0.688
0.310
0.252
0.529
0.810
0.657
0.486
0.557
0.339
0.368
0.665
0.561
0.452

crown: deep blue head crest
forehead: small blue patch
nape: blue and smooth
eyes: dark, rounded, expressive
beak: short, sturdy, black
throat: sky-blue feathers
breast: bright blue feathers
belly: light blue-gray plumage
back: vibrant blue feathers
wings: vivid blue with black edges
legs: strong, grayish-black
tail: slender, blue with black tips

least tern | 0.041

Figure 8: Qualitative example of original descriptions vs. randomized descriptions. Upon swapping
descriptions randomly, the prediction outcomes from M&V exhibit minimal variations.

Original description Random nonsense description

M
&

V
PE

E
B

indigo bunting
0.374

0.372

0.373

0.366

0.371

0.354

Bright blue plumage (in males)

Small, finch-like body

Short, conical beak

Brownish wings and tail (in females and juveniles)

A habitat setting such as open areas with shrubs or trees,
or forest edges

Often seen near bird feeders.

indigo bunting | 0.006
0.378

0.374

0.374

0.368

0.370

0.366

0.376

0.378

medium-sized wading bird

slate-blue plumage

long, slender neck

long, dark legs

sharp, pointed beak

white morph with completely white plumage
often found near bodies of water, such as wetlands or
marshes
may be seen standing or walking slowly while hunting for
prey

indigo bunting | 0.006

 
0.357
0.753
0.748
0.452
0.813
0.676
0.612
0.530
0.568
0.684
0.375
0.492

crown: bold, indigo-blue crest
forehead: deep indigo-blue hue
nape: rich indigo-blue
eyes: small, dark, and alert
beak: short, conical, and silver-gray
throat: vivid indigo-blue with lighter shades
breast: bright indigo-blue plumage
belly: lighter indigo blue shading to white
back: vibrant indigo-blue feathers
wings: striking indigo-blue with black edges
legs: slender grayish-blue
tail: tapered, black with blue edges

indigo bunting | 0.154
0.437
0.387
0.624
0.448
0.663
0.482
0.534
0.370
0.457
0.314
0.753
0.420

crown: deep blue with smooth contour
forehead: bright blue and flat
nape: rich blue and rounded
eyes: black, small and circular
beak: silver-colored, conical shape
throat: bright blue and smooth
breast: vibrant blue feathers
belly: lighter blue plumage
back: deep blue feathers
wings: blue and black striped pattern
legs: dark grey, sturdy
tail: long, dark blue feathers

tennessee warbler | 0.072

Figure 9: Qualitative example of original descriptions vs. randomized descriptions. Since PEEB’s
decision is made by the descriptions, the model will try to find the descriptions that best match the
image. e.g., in the random descriptions, most parts are blue.
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Original description Random nonsense description

M
&

V
PE

E
B

vermilion flycatcher
0.365

0.365

0.376

0.362

0.370

0.366

0.351

small bird species

bright red or vermilion plumage, especially in males

females and juveniles are more brown or grey

black mask around the eyes in adult males

relatively short beak

often perches on branches or wires

native to the Americas, particularly in warmer climates.

vermilion flycatcher | 0.006
0.351

0.376

0.380

0.366

0.366

0.367

0.362

0.364

small bird species (swallow)

glossy blue-black upperparts

pale underparts, usually white or light grey

deeply forked tail with long, slender outer feathers

pointed wings

short, pointed beak

often seen flying or perched near water or open areas

typically found in Africa and Asia

vermilion flycatcher | 0.006

 
0.659
0.440
0.487
0.558
0.775
0.676
0.727
0.293
0.646
0.622
0.541
0.578

crown: intense red-orange plumage
forehead: bright vermilion feathers
nape: striking vermilion feathers
eyes: sharp black beads
beak: short, pointy black beak
throat: vivid red-orange feathers
breast: fiery red-orange coloring
belly: bright vermilion hue
back: vibrant red-orange feathers
wings: black with red-orange highlights
legs: thin dark gray limbs
tail: long black with red-orange edges

vermilion flycatcher | 0.068
0.549
0.775
0.534
0.819
0.781
0.569
0.754
0.589
0.508
0.533
0.635
0.362

crown: deep rusty red
forehead: bright red-orange
nape: rich red hue
eyes: small and black
beak: strong, curved and crossed tip
throat: bright reddish-orange
breast: vibrant reddish-orange
belly: pale red-orange
back: dark rusty red
wings: dark brown with red-orange edges
legs: short and dark
tail: black with reddish tinge

red headed woodpecker | 0.103

Figure 10: Qualitative example of original descriptions vs. randomized descriptions. M&V maintains
similar scores even for mismatched descriptions. For instance, “bright red or vermilion plumage,
especially in males” receives a score lower than “glossy blue-black upperparts”. Conversely, PEEB
leverages the descriptions for classification, consistently relying on the descriptions that most closely
align with the image.

0.637
0.374
0.613
0.430
0.527
0.552
0.596
0.261
0.665
0.618
0.608
0.327

crown: olive-green with faint black crown stripe
forehead: yellowish-green
nape: olive-green
eyes: dark with thin white eye-ring
beak: short, thin, and pointed
throat: yellow-orange
breast: bright yellow-orange with black streaks
belly: creamy white with subtle yellow wash
back: olive-green with black streaks
wings: blue-gray with white wing bars
legs: pale pinkish-gray
tail: blue-gray with white outer tail feathers

Our prediction: bay breasted warbler  0.431
because of the following...

0.433
0.097
0.613
0.480
0.488
0.268
0.339
0.085
0.630
0.585
0.585
0.367

crown: yellow with black stripe
forehead: bright yellow
nape: olive-green
eyes: black with white eye-ring
beak: thin, pointy, and black
throat: bright white
breast: white with distinct chestnut streaks
belly: white and unmarked
back: olive-green with streaks
wings: grayish-blue with two white wing-bars
legs: pale pinkish-brown
tail: grayish-blue, white-edged feathers

M&V's prediction: chestnut sided warbler  0.125
but we rejected it because...

Figure 11: An example of PEEB explanation. We can see that the descriptions of these two classes
are largely similar, but PEEB makes the correct prediction based on the distinctive feature of the
forehead in the two classes.

0.652
0.709
0.578
0.432
0.377
0.568
0.491
0.679
0.545
0.536
0.622
0.514

crown: smooth white with light gray area
forehead: white feathers
nape: white turning to pale gray
eyes: dark and round, surrounded by white
feathers
beak: dark red to orange, sturdy and sharp
throat: white feathers
breast: white feathers with gray shading
belly: white feathers
back: pale gray feathers
wings: pale gray with black tips and a white
trailing edge
legs: pinkish-red and medium-length
tail: white with black terminal band

Our prediction: heermann gull  0.786
because of the following...

0.149
0.676
0.224
0.000
0.000
0.403
0.000
0.180
0.433
0.167
0.112
0.000

crown: grey, subtly streaked
forehead: flat, extended white feathers
nape: white, short plumage
eyes: dark, intelligent gaze
beak: sharp, yellow-tipped hook
throat: white, soft feathering
breast: white, well-rounded
belly: smooth, white plumage
back: sleek, white-grey feathered
wings: long, black-tipped with white-grey
feathers
legs: vibrant red, slender
tail: white, fan-shaped feathers

M&V's prediction: red legged kittiwake  0.006
but we rejected it because...

Figure 12: An example of PEEB explanation. M&V incorrectly classifies it as red-legged kittiwake
where the heermann gull does not have red legs but a red beak. This example shows that CLIP is
strongly biased towards some particular descriptions.
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0.696
0.688
0.722
0.483
0.475
0.672
0.614
0.624
0.688
0.575
0.645
0.699

crown: orange-yellow with pale edges
forehead: yellowish with faint markings
nape: olive-brown, blending into the back
eyes: small and dark, framed by eye-ring
beak: short and sharp, black-colored
throat: bright yellow, blending into the breast
breast: bright yellow with dark streaks
belly: creamy white with faint streaks
back: olive-brown back with streaks
wings: olive-brown with white-edged feathers
legs: long and skinny, with blackish coloring
tail: short and dark, with white outer feathers

Our prediction: palm warbler  0.819
because of the following...

0.000
0.309
0.000
0.212
0.149
0.173
0.551
0.306
0.100
0.220
0.000
0.142

crown: yellowish-green
forehead: yellow with black markings
nape: greenish-yellow
eyes: dark with thin white eye-ring
beak: small and pointed
throat: bright yellow
breast: bright yellow with faint streaks
belly: yellowish with light brown streaks
back: olive-green with faint streaks
wings: dark grayish-brown with white streaks
legs: pinkish-brown
tail: dark grayish-brown with white edges

M&V's prediction: prairie warbler  0.002
but we rejected it because...

Figure 13: An example of PEEB explanation. We can see that when the description does not match
the image, the matching score tends to be zero, e.g., crown: yellowish-green. The clear differences in
scores provide us transparency of the model’s decision.
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