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Abstract

Recent advances in text-to-video diffusion models have enabled high-quality video
synthesis, but controllable generation remains challenging—particularly under
limited data and compute. Existing fine-tuning methods for conditional generation
often rely on external encoders or architectural modifications, which demand large
datasets and are typically restricted to spatially aligned conditioning, limiting
flexibility and scalability. In this work, we introduce Temporal In-Context Fine-
Tuning (TIC-FT), an efficient and versatile approach with temporal reasoning for
adapting pretrained video diffusion models to diverse conditional generation tasks.
Our key idea is to concatenate condition and target frames along the temporal axis
and insert intermediate buffer frames with progressively increasing noise levels.
These buffer frames enable smooth transitions, aligning the fine-tuning process
with the pretrained model’s temporal dynamics. TIC-FT is architecture-agnostic
and achieves strong performance with as few as 10-30 training samples. We
validate our method across a range of tasks—including image-to-video and video-
to-video generation—using large-scale base models such as CogVideoX-5B and
Wan-14B. Extensive experiments show that TIC-FT outperforms existing baselines
in both condition fidelity and visual quality, while remaining highly efficient in
both training and inference. For additional results, visit https://kinam0252,
github.io/TIC-FT/.

1 Introduction

Text-to-video generation models have advanced rapidly, reaching quality levels suitable for profes-
sional applications [1} 2 3} 4] |5 |6]. Beyond basic generation, recent research has increasingly
focused on leveraging pretrained models to enable more precise control and conditional guid-
ance, addressing the growing demand for finer adjustments and more nuanced generation capa-
bilities [[7} 18] 19} [10} (11}, 12} 13} 14} [15} [16].

Despite this progress, current fine-tuning approaches for conditioning video diffusion models face
notable limitations. Many methods require large training datasets and introduce additional archi-
tectural components, such as ControlNet [[7] or other external modules, which impose substantial
memory overhead. Moreover, the reliance on external encoders for conditioning often leads to the
loss of fine-grained details during the encoding process. ControlNet-style methods [16} (17, [14], in
particular, operate within rigid conditioning frameworks: they are primarily designed for spatially
aligned conditions and require conditioning signals to match the target video length. For example,
when conditioning on a single image, common workarounds include replicating the image across
the temporal dimension to align with the video frames or embedding it as a global feature. These
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Prompt: [VIDEO1]: An elderly chef in a white uniform and hat rolls out pizza dough ... Prompt: [STYLE]: A painting in the style of van gogh. Then ...

Figure 1: Demonstration of our method across diverse tasks, including character-to-video, virtual
try-on, ad-video generation, object-to-motion, toonification, and video style transfer.

approaches typically necessitate task-specific adaptations of the conditioning pipeline. Alternative
fine-tuning strategies, such as IP-Adapter [18]] and latent concatenation [10], encounter similar chal-
lenges regarding flexibility and computational cost, as they modify or expand the pretrained model
architectures.

In contrast, in-context learning (ICL) [19] offers a more efficient and versatile paradigm. ICL is
training-free and can be flexibly applied to user-defined tasks by providing examples directly within
the input context, eliminating the need for additional parameter updates. While ICL has shown strong
success in large language models [20], its application to image and video generation has primarily
been explored in autoregressive models [21}, 22]], with limited adaptation to diffusion models.

Efforts to implement ICL in diffusion models [13] have often relied on ControlNet-style training
approaches, which contradict the core advantage of ICL: leveraging pretrained distributions without
additional training. Departing slightly from the pure ICL paradigm, recent work has introduced
in-context LoRA [8]], a related technique that enables consistent image generation by producing
multiple images in a single forward pass arranged in grids, thereby facilitating information sharing
across images. With minimal fine-tuning, this method achieves high-quality and highly consistent
results, benefiting from the inherent in-context generation capabilities of pretrained text-to-image
models, which are naturally suited for grid-based generation.

In contrast, video generation models possess far less of this capability. Although concurrent research
has explored extending in-context LoRA to video generation [24]], these models are poorly suited
to producing grid-like outputs, making the approach significantly more training-intensive and less
effective. Furthermore, these methods are not inherently designed for conditional generation and
often depend on training-free inpainting strategies [25} 26], which tend to degrade performance. They
also lack flexibility in handling mismatches between the condition length and the number of target
frames, as there are no straightforward solutions for general cases. In the simple case of conditioning
on a single image, the image must be redundantly replicated across all frames, resulting in substantial
increases in memory usage and computational overhead.



In this paper, we propose a highly effective and versatile fine-tuning method for conditional video
diffusion models: temporal in-context fine-tuning. Instead of spatially concatenating condition
and target inputs, our approach aligns them temporally—concatenating condition frame(s) and
target frame(s) along the time axis—and fine-tunes the model using only a minimal number of
samples. This design leverages the inherent capability of pretrained video diffusion models to
process temporally ordered inputs, enabling effective generation when condition and target frames
are arranged sequentially.

To ensure a smooth transition between the condition and target frames, we introduce buffer
frames—intermediate frames with monotonically increasing noise levels that bridge the gap be-
tween the clean condition frames and the fully noised target frames. These buffer frames facilitate
smooth, natural fade-out transitions from condition to generated frames, preventing abrupt scene
transitions and preserving consistency with the pretrained model’s distribution. Combined with this
design, our method enables fine-tuning with as few as 10-30 training samples. Additionally, our
method preserves the original model architecture without introducing additional modules, thereby
reducing VRAM requirements.

The proposed approach also allows the model to leverage condition frames directly through unified 3D
attention, avoiding the detail loss typically introduced by external encoders. Furthermore, it enables
versatile conditional generation by eliminating the need for spatial alignment and accommodating a
wide range of condition lengths—from single images to full video sequences—thereby supporting
diverse video-to-video translations and image-to-video generation tasks.

In summary, our main contributions are as follows:

* We propose temporal in-context fine-tuning, a simple yet highly effective method for con-
ditional video diffusion that minimizes the distribution mismatch between pretraining and
fine-tuning, without requiring architectural modifications.

* We demonstrate strong performance with minimal training data (10-30 samples), offering a
highly efficient fine-tuning strategy.

* Our method enables versatile conditioning, supporting variable-length inputs and unifying
diverse image- and video-conditioned generation tasks within a single framework.

» We validate our method across a wide range of tasks, including reference-to-video generation,
motion transfer, keyframe interpolation, and style transfer with varying condition content
and lengths.

2 Related work

Conditional Video Diffusion Models. Many conditional video generation methods [7, 8}, 9} [10, [11}
1201131 114} 15} [16] rely on auxiliary encoders (e.g., ControlNet [7]) or architectural modifications
(e.g., IP-Adapter [18]), which prevent full exploitation of the pretrained model’s capabilities. These
approaches typically require larger datasets, longer training, and incur significant memory overhead.
Moreover, they are often limited to spatially aligned conditioning, making them less suitable for
variable-length or misaligned condition—target pairs.

In-Context Learning for Diffusion Models. Inspired by its success in language models [[19} 20],
in-context finetuning (IC-FT) has been explored in visual domains via grid-based generation [} 24],
but its extension to video is limited. Videos rarely follow grid layouts, and inference methods like
SDEdit [25] degrade output quality. Moreover, these approaches assume strict condition—output
alignment, making them unsuitable for flexible conditional video generation.

Diffusion with Heterogeneous Noise Levels. Recent works such as FIFO-Diffusion[27] and
Diffusion Forcing[28] demonstrate that diffusion models can effectively operate on sequences with
varying noise levels across frames or tokens—challenging the conventional assumption of uniform
noise and motivating our use of buffer frames with progressively increasing noise.

Building on these ideas, we propose Temporal In-Context Fine-Tuning (TIC-FT)—a simple yet
effective method that temporally concatenates condition and target frames, inserting buffer frames
with increasing noise levels to smooth abrupt transitions in both scene content and noise levels. Unlike



ControlNet-style methods, TIC-FT is architecture-agnostic and naturally supports variable-length,
spatially misaligned condition—target pairs.

3 Method

3.1 Preliminaries

We briefly review diffusion-based text-to-video generation. A video with Fj, RGB frames is x1.5, €
RFnx3x HyxxWeix A gpatio-temporal encoder ¢ maps it to latents z(®) = zgo} = ¢(x1.r,) €
REXCXHXW wwith F < Fy,, H < Hyix, and W < Wiy, and a decoder v approximately inverts ¢.
Latent frames are diffused by ¢(z(?,t) := 2 = 0,z(") + gye fort € {0,...,T} and e ~ N(0,1),
with a predefined schedule (o, 0¢). A DiT[29] backbone €y predicts the noise and is trained with

Laitt = Ep0) cet [HE - GH(Z(t)’ t C)Hﬂ ) M

where latent frames and paired text condition c is sampled from the dataset. Generation starts
from z(7) ~ N(0,1) and iteratively applies a sampler 21 = S(z(t), t,c; 69) until z(9), which v
decodes to video.

3.2 Temporal concatenation

Overview We introduce overall pipeline of the proposed temporal in-context fine-tuning (TIC-FT)
in this section. We first detail the temporal concatenation of condition and target latents- with buffer
frames that ease the abrupt scene and noise-level transition—followed by the inference and training
procedures formalized in Algorithms[TH2]

Setup. The task is to generate a sequence of target frames of length K, denoted as z(*) =
[Z(LOL, . .i(Loj_K], conditioned on a set of input frame(s): z() = [Zgo), e Zg))]. Our approach
concatenates the condtion and target frames along the temporal axis. A naive formulation simply
places the clean condition frames directly before the noisy target frames:

z(® =(0)

= 2z | Q(Ltll:LJrK € RULAK)XCXHXW . )
~~ ——

condition target
Here, 222-1; 1+ i Tepresents the target latent frames at denoising timestep .

At inference time, we initialize with z(*)||z(") and iteratively denoise the concatenated frames with
20|27 = S(z |2, 1, ¢; e0) 3)

until reaching z(?) = z(9)|2(9), At each denoising step, only the K target frames are denoised, while
the condition frames are fixed to enforce consistency. The final output video corresponds to the target

slice z(LOJ)rl:L+K.
The flexibility of varying L allows this formulation to generalize across a wide range of conditional
video generation tasks. When L = 1, the problem becomes an image-to-video generation task:

producing a full video sequence from a single reference image together with a text description of the
sequence.

3.3 Buffer frames

Unlike conventional image-to-video (I2V) approaches, where the condition acts as the first frame of
the output, our setup also allows for discontinuous conditioning, broadening its applicability. For
L > 1, the method naturally extends to video-fo-video generation. A reference clip can perform
video style transfer by transferring its appearance onto a new motion sequence. Likewise, providing
an action snippet along with a query frame enables in-context action transfer, where the observed
motion is adapted to a novel scene. Supplying sparsely sampled frames supports keyframe inter-
polation, allowing the model to smoothly generate intermediate transitions between distant frames.



Thus, simple temporal concatenation serves as a unified and highly versatile framework for diverse
conditional video generation tasks.

However, this naive approach is suboptimal for fully leveraging the capabilities of the pretrained
video diffusion model. Aligning the finetuning task as closely as possible with the pretrained model’s
distribution is essential to achieve high efficiency—enabling strong performance with minimal data
and computational resources. Thus, it is desirable to design the finetuning process around tasks the
model is already proficient at.

Direct concatenation violates this principle in two key ways. First, in scenarios where the target frames
do not naturally continue from the condition frames—i.e., when there is an abrupt scene transition
between the last condition frame and the first target frame—the model is forced to synthesize highly
discontinuous content. Pretrained video diffusion models are typically trained on smoothly evolving
sequences and lack the inherent capability to handle such abrupt transitions, as datasets with sudden
scene changes are commonly filtered out during data curation. Second, diffusion models are not
designed to denoise sequences containing frames with heterogeneous noise levels, as would occur
when combining clean condition frames with noisy target frames during the sampling process.

We therefore introduce B intermediate buffer frames that perform temporal reasoning, whose noise
levels 7y, linearly bridge 0 and T

5(7m) — [5(7) 5(75) - _ b 4 4

Z [z1 y ey Zp ], Tp Bril (@]
There can be different design choices for the buffer frames, and we empirically find that using the
noised condition frames, z(*) = z(®, yields a good performance. Then the full initial latent sequence
becomes

() _ (0 ~(71.8) - (T)

z) = 2z, | Z1,41:1+B [ 21, {B+1:L+B+K * &)
~—~ N —— N— —
condition buffer target

3.4 Inference

Let 7 (z")) be a noise level list corresponding to the latent sequence z): T : RFXCxHxW
{0,..., T} The initial noise level list at t = T is

T(z") = [0, #1,..., 75, T,...,T] € {0,..., T}TB+E, (6)
At any global timestep ¢, we define the noise levels as:
T(z") = [0, 7i(t),...,76(t), t,...,t], @)

where 7,(t) = 7 if 7, < t, and 7, (t) = ¢ otherwise.

Our inference algorithm proceeds by iteratively identifying the frames currently at the maximal noise
level ¢ and applying the video diffusion sampler exclusively to those frames. This process continues
from ¢ = T down to £ = 0. The full inference procedure is detailed in Algorithm

3.5 Training

For each video—text pair (Z(O), 200, c) ~ D, the training proceeds as follows. First, we randomly
sample a global timestep ¢ ~ U{1, ..., T} and Gaussian noise € ~N (0, I). Next, we construct the
noised model input sequence z(*) with the noise level defined in Eq.

The model then predicts the noise & = ¢4(z("), ¢, c) for all frames. However, the loss is computed
only over the target frames to avoid enforcing supervision for the buffer frames. Specifically, we
minimize the mean squared error between the true noise and the predicted noise over the target

frame indices, defined as £ = & ZiLjLigil ’ei —&; |§ The model parameters ¢ are updated via
a gradient step computed from this loss. By excluding the buffer frames from the loss calculation,
the network is free to predict whatever is most natural for these frames, thereby preventing spurious
gradients that could shift the model away from the pretraining distribution. In practice, we observe
that the buffer frames often evolve into a smooth fade-out and fade-in transition between the condition

and target frames. The full training procedure is summarized in Algorithm 2]




Algorithm 1: TIC-FT inference

Input: Clean condition latents Z(O); buffer noise levels 71.p; text prompt c; denoiser g

Output: Denoised target latents 20 = zéol B4l:L+BAK

Generate buffer latents z(71:8) = q(Z(O), ﬁ;B); // add noise
Sample target latents z(7) ~ N(0,1);
Concatenate z(7) « z(© || z(71:8) || z(1);

fort =T to1do // global time descending
t  7(2); // noise-level vector
A—{ilti=t}h

zfﬁ_l) — S(Z(t),t,C;ég)A;

return z<0>
L+B+1:L+B+K

Algorithm 2: TIC-FT training

Input: Dataset D with tuples (2(0>, 2(0>, c); buffer levels 71.5; noise schedule (o, o)
Output: Fine-tuned parameters 6

foreach minibatch (z(*),2(”), ¢) ~ D do

foreach sample in minibatch do

Sample t ~ U{1,...,T} ande ~ N(0,1);

Zms®) (70 15(0));

72— 0,29 4 g6,

7z Z(O)|‘Z(T1;B(t))||2(t);

&+ eg(z(t)7 t,c);

L+B+K .
L« %Zi;L++B+1 lle: — Eng;

| Update 6 using gradients of £;

4 Experiments

4.1 Overview

We evaluate our proposed method on two recent large-scale text-to-video generation models:
CogVideoX-5B and Wan-14B. Our experiments span a diverse range of conditional generation
tasks, including:

» Image-to-Video (I2V): e.g., character-to-video generation, object-to-motion, virtual try-on,
ad-video generation.

* Video-to-Video (V2V): e.g., video style transfer, action transfer, toonification.

A key strength of TIC-FT is its ability to operate in the few-shot regime. We fine-tune models with as
few as 10-30 training samples and fewer than 1,000 training steps—requiring less than one hour of
training time for CogVideoX-5B on a single A100 GPU.

We use both real and synthetic datasets for evaluation and demonstrations. Real datasets include
SSv2 [30] and manually curated paired videos, while synthetic datasets are created using models such
as GPT-40 image generation [31]] and Sora [32] (e.g., translating real images into stylized videos).
Each task is provided with 20 condition—target pairs. Additional details are provided in the Appendix.

We compare TIC-FT with three representative fine-tuning methods for conditional video generation.
While CogVideoX-5B and Wan-14B are among the most recent and powerful text-to-video diffusion
models, most existing editing or fine-tuning approaches have not been evaluated on such large-
scale backbones. To ensure meaningful comparisons, we reimplement the following representative
baselines.

ControlNet [7,9]. We include ControlNet as a baseline because a large number of recent methods
are built upon it or extend its core architecture [[16} 17, [14]. It is a widely adopted framework that
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Figure 2: (a) Zero-shot comparison of our method (last row) with variants: without buffer frames and
with an SDEdit-style inpainting strategy (“Replace”, second row). Buffer frames enable smoother
transitions and better condition preservation. (b) Corresponding results after fine-tuning.

introduces an external reference network and zero-convolution layers to inject conditioning signals,
enabling the model to preserve fine-grained visual details while integrating external guidance.

Fun-pose[10]. A simple yet widely adopted strategy is to concatenate the condition and target
latents, as seen in many recent methods[33] 341 35]]. However, this approach requires architectural
modifications and extensive retraining, which is infeasible in low-data regimes (e.g., 20 samples).
Since training such a model from scratch yields extremely poor results, a direct comparison would
be uninformative. Instead, we adopt Fun-pose—a variant of CogVideoX and Wan that has already
been finetuned to accept reference videos—effectively giving it a significant advantage.

SIC-FT-Replace[8, 24]]. This method performs spatial in-context fine-tuning by training the model
to predict videos arranged as spatial grids. At inference time, the ground-truth condition is noised
and repeatedly injected into the condition grid slot at each denoising step, following an SDEdit-
style replacement strategy[25]], while the remaining grid elements are progressively denoised. This
approach represents a recent trend in applying in-context fine-tuning techniques to diffusion models.

4.2 Results

We conduct quantitative evaluations using CogVideoX-5B as the base model, focusing on two
I2V tasks—object-to-motion and character-to-video—as shown in Table[I] For V2V, we evaluate
performance on a style transfer task (real videos to animation), summarized in Table[2] All models
are fine-tuned using LoRA (rank 128) with 20 training samples over 6,000 steps, a batch size of 2,
and a single NVIDIA H100 80GB GPU. Inference is conducted with 50 denoising steps.

To assess video quality comprehensively, we use three categories of evaluation metrics: VBench [36],
GPT-4o0 [31]], and Perceptual similarity scores. VBench provides human-aligned assessments of
temporal and spatial coherence, including subject consistency, background stability, and motion
smoothness. GPT-40 leverages a multimodal large language model to rate aesthetic quality, structural
fidelity, and semantic alignment with the prompt. Perceptual metrics quantify low- and high-level
visual similarity between condition and target frames, including CLIP-I and CLIP-T (for image/text
alignment), LPIPS and SSIM (for perceptual similarity), and DINO (for structural consistency).
However, we omit Perceptual metrics when evaluating tasks like object-to-motion, where different
viewpoints may reduce similarity scores despite correct semantics.

Our model achieves strong performance even with limited training, showing competitive results after
only 2,000 training steps—unlike other baselines that require significantly more optimization to reach
similar quality. Additional comparisons under this low-data, low-compute regime are presented in
the Appendix. Despite being conditioned on reference frames, Fun-pose and ControlNet exhibit poor



Table 1: Comparison on VBench, GPT-40, and perceptual similarity metrics for I2V tasks.

VBench ‘ GPT-40 ‘ Perceptual similarity

Method N N ) N

sullzject background motion aesthejttc stlru.ctur'al s.em'antvtc CLIP-I CLIP-T LPIPS| SSIM DINO

consistency consistency smoothness | quality  similarity similarity

ControlNet [7]19] 0.9658 0.9600 0.9926 3.87 2.69 2.69 0.7349  0.2903  0.6535 0.3477 0.3427
Fun-pose [10] 0.9508 0.9598 0.9910 4.09 2.87 321 0.7714  0.3099  0.6339 0.3575 0.3866
SIC-FT-Replace [8124]  0.9513 0.9676 0.9921 4.10 2.42 2.95 0.7993 03064 0.6190 0.4455 0.4246
TIC-FT-Replace 0.9580 0.9702 0.9926 4.08 2.00 2.48 0.7925 0.3127 0.6165 0.4123 0.4221
TIC-FT (w/o Buffer) 0.9474 0.9686 0.9892 4.05 3.05 3.53 0.7573  0.2986  0.6242 0.4058 0.4160
TIC-FT (2K) 0.9505 0.9696 0.9920 4.03 3.08 3.54 0.8066 0.3135 0.6162 0.4203 0.4240
TIC-FT (6K) 0.9672 0.9729 0.9930 4.13 3.14 3.63 0.8329 0.3143  0.4332  0.5917 0.5530

Table 2: Comparison on VBench, GPT-40, and perceptual similarity metrics for V2V tasks.

VBench | GPT-40 | Perceptual similarity

Method N N N "

sul?/ect background motion aesthgttc stfu_cturgl s_em'ant.zc CLIPI CLIP-T LPIPS, SSIM DINO

consistency consistency smoothness | quality  similarity similarity

ControlNet [7]0] 0.9553 0.9545 0.9854 3.44 2.23 2.41 0.6221  0.2727  0.5434  0.3494 0.2839
Fun-pose [10] 0.9679 0.9675 0.9902 4.24 2.68 3.23 0.7260  0.3018  0.5179 0.3328 0.4369
SIC-FT-Replace [8124]  0.9609 0.9655 0.9853 3.99 2.44 2.94 0.7368  0.3198  0.5998 0.2192 0.4025
TIC-FT-Replace 0.9584 0.9696 0.9802 3.93 2.33 2.92 0.7305 0.3015  0.6373 0.2526 0.3673
TIC-FT (w/o Buffer) 0.9479 0.9571 0.9744 3.81 2.66 3.20 0.7471  0.3020  0.4687 0.3800 0.4429
TIC-FT (2K) 0.9439 0.9600 0.9865 3.85 3.67 4.37 0.8174 0.3132  0.2970 0.5546 0.6089
TIC-FT (6k) 0.9736 0.9743 0.9935 3.99 3.90 441 0.8794 03118  0.2251 0.6541 0.6745

condition fidelity. While their outputs appear visually plausible—as indicated by favorable VBench
and GPT-40 scores—they consistently underperform in Perceptual similarity metrics, highlighting a
lack of alignment with the conditioning input. This is especially problematic for ControlNet, which
relies on strict spatial alignment and thus struggles in tasks such as character-to-video and object-to-
motion, where viewpoint shifts are common. SIC-FT-Replace[8] also performs suboptimally in
12V settings, as it requires replicating a single frame across a spatial grid—leading to high memory
usage and inefficient training. Furthermore, its reliance on SDEdit [23]-style sampling during
inference degrades generation quality and weakens condition adherence.

We supplement quantitative results with qualitative comparisons across I2V and V2V tasks in
Figure[3] We also present additional scenarios—including virtual try-on, ad-video generation, and
action transfer—are illustrated in Figures[T|and 4]

Overall, our proposed TIC-FT consistently outperforms prior methods across diverse tasks, with
both quantitative metrics and qualitative examples supporting its superior condition alignment and
generation quality. More results and task-specific details are provided in the Appendix.

Ours

Fun-pose
Fun-pose

ConrolNet
ControlNet
"y

?

SIC-FT
SIC-FT

(a) 12V

Figure 3: Qualitative comparison between our method and baseline approaches.



Table 3: Quantitative comparison of varying numbers of condition and buffer frames on 12V task.

#Cond ‘ CLIP-I1T LPIPS| SSIM{1 DINO T ‘ #Buffer ‘ Dynamic Degree © CLIP-I1 LPIPS| SSIM{ DINO 1

1 0.8329 0.7493 0.5917 0.5530 1 0.72 0.7864 0.6123 0.4128 0.4237
3 0.8332 0.7390 0.5918 0.5531 3 0.73 0.7812 0.6112 0.4130 0.4259
6 0.8371 0.7360 0.6078 0.5606 6 0.77 0.7695 0.6121 0.4127 0.4170
9 0.8396 0.7346 0.6083 0.5643 9 0.82 0.7544 0.6232 0.3952 0.4152

Prompt: [REFERENCE VIDEO] A video of a mug being turning the camera leftwhile filming mug. Then transitionto...
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Prompt:[IMAGE] A young woman smiles with hands raised near her shoulders, dressed in a short-sleevedwhite blouse, blue ...
Figure 4: Demonstration of our method on character-to-video, action transfer, and virtual try-on.
4.3 Ablation study

Zero-Shot Validation of Temporal Concatenation We validate the effectiveness of our temporal
concatenation design with buffer frames by assessing its zero-shot performance. If the model
successfully leverages the pretrained capabilities of video diffusion models, it should generate
plausible outputs even without any additional training.

As shown in Figure IZ[a), our method with buffer frames (last row) generates target frames that align
well with the given condition—demonstrating strong zero-shot performance. In contrast, removing
the buffer frames leads to abrupt noise-level discontinuities between condition and target regions,
causing the target frames to degrade and the condition information to be poorly preserved. We also
compare with zero-shot inpainting methods similar to SDEdit, denoted as “Replace” (second row),
which similarly fails to propagate condition signals into the generated frames.

Furthermore, in Figure 2(b), we observe that strong zero-shot performance correlates with better
results after fine-tuning. Our method with buffer frames consistently outperforms other variants:
models trained without buffer frames begin with blurry target frames, and the “Replace” strategy fails
to apply condition information effectively even after training.



Impact of Condition and Buffer Frames. We additionally perform quantitative analysis to in-
vestigate how the numbers of condition and buffer frames affect performance. As shown in Table 3]
increasing condition frames slightly improves condition fidelity, while more buffer frames enhance
video dynamics at the cost of condition adherence. Using one condition frame and three buffer frames
achieves the best balance between visual quality, motion dynamics, and efficiency.

5 Conclusion and Limitation

Conclusion. Temporal In-Context Fine-Tuning (TIC-FT) offers an efficient framework for adapting
pretrained text-to-video diffusion models to diverse conditional video generation tasks that leverage
contextual information from demonstrations. TIC-FT temporally concatenates condition and target
frames with intermediate buffer frames to better align with the pretrained model distribution. This
design enables a unified and efficient framework for diverse conditional video generation tasks,
consistently outperforming existing methods in both condition fidelity and visual quality. TIC-
FT achieves these gains without architectural modification and operates with significantly lower
computational cost.

Future Directions. TIC-FT currently assumes paired condition—target data per task. Generalizing
to multi-task or zero-shot settings, where a single TIC-FT model can adapt to heterogeneous tasks
without retraining, represents an exciting avenue for future research. Furthermore, while our method
has been validated on both synthetic and real-world datasets (e.g., SSv2), expanding datasets to more
complex human motion and long-horizon dynamics will further strengthen its generalization ability.

Limitations. Unlike In-Context Learning (ICL) in Large Language Models (LLMs), which infers
patterns through contextual reasoning without updating model parameters, TIC-FT requires actual fine-
tuning during adaptation—similar to In-Context Fine-Tuning approaches used in image generative
models [8] . Exploring In-Context Learning (ICL) in video diffusion models could be an interesting
future direction.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes], ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).
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The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction clearly state that the paper proposes Temporal

In-Context Fine-Tuning (TIC-FT) as a simple yet effective method for conditional video
generation.

Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper includes a limitation in the conclusion, noting that the method
cannot handle long condition sequences (>10s) due to memory constraints, and identifies
this as a direction for future work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not present any theoretical results, assumptions, or formal
proofs. It focuses on a practical fine-tuning method for video diffusion models.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides sufficient details to reproduce the main experimental results,
including the number of training samples, model backbones and experimental settings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
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of a large language model), releasing of a model checkpoint, or other means that are

appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will provide open access to the code and data used in the experiments via
anonymized links in the supplemental material.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides key experimental settings in Section 4, including model
backbones, dataset types, number of training samples, batch size, number of steps, and GPU
configurations.

Guidelines:
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* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The paper reports quantitative results using multiple metrics (e.g., VBench,
GPT-40, CLIP-I, LPIPS), but does not include error bars, confidence intervals, or statistical
significance tests.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies the compute resources used for experiments, including
GPU types (NVIDIA A100 and H100), training steps (e.g., 2K, 6K), batch size (2), and
training time.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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10.

11.

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics. It does not involve human
subjects, private or sensitive data, or ethically concerning applications. All experiments are
conducted on publicly available or synthetic datasets, and the paper preserves anonymity in
compliance with submission guidelines.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: This paper discusses broader societal impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper releases models and datasets and describes about risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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12.

13.

14.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The paper mentions the licenses and terms of use explicitly.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce new assets (code and training scripts) and provide documentation
in the appendix and supplemental material.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve any crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve research with human subjects or crowdsourced
data collection

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
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Answer: [NA]
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A Technical Appendices and Supplementary Material

A.1 Training Details

All models are fine-tuned using an NVIDIA H100 GPU. Our method builds on the CogVideoX-
5B backbone and is fine-tuned with LoRA (rank 128), resulting in approximately 130M trainable
parameters. Training with 49 frames requires roughly 30GB of GPU memory. For ControlNet,
we apply LoRA with the same rank, yielding a comparable parameter count of around 150M, and
requiring approximately 60GB of GPU memory. For Fun-pose, we use the official full fine-tuning
setup, which consumes around 75GB of GPU memory.

A.2 Training Amount vs. Performance

This section demonstrates the training efficiency of our method compared to ControlNet. Figure 3]
presents performance curves for various metrics—including CLIP-T, CLIP-I, SSIM, DINO, and
LPIPS—plotted against training time. Our method consistently outperforms ControlNet across all
metrics at equivalent training durations. Moreover, with the exception of CLIP-T, all metrics show a
clear upward trend, indicating continued improvement with more training. In contrast, ControlNet
exhibits no such trend, suggesting that its training style tends to overfit and struggles to generalize
under limited data regimes.

A.3 Ablation Study

We conduct ablation study on various buffer frame designs. Specifically, we compare our default
setting—using a uniformly increasing noise schedule—with alternative strategies: (1) a constant
noise level t for all buffer frames (denoted as Constant-¢, where 7' = 100), and (2) linear-quadratic
schedules with concave or convex profiles. Figure[6] presents both zero-shot and fine-tuned results for
these configurations. While all variants produce reasonable target frames, we observe that the convex
schedule and the constant-25 baseline exhibit poor condition alignment and noticeable artifacts in
the zero-shot setting. After fine-tuning, all methods perform comparably, though our default setting
with uniformly increasing noise remains preferred. Quantitative results after training are presented in
Table @ and Table [5]for the I2V and V2V tasks, respectively.

We also evaluate the effect of varying the number of buffer frames, ranging from 1 to 5, denoted as
Buffer-n in Figure (/| In the zero-shot setting, we observe that all configurations perform comparably
overall; however, shorter buffers tend to produce noisier transitions, likely due to abrupt scene
changes. Conversely, longer buffers show a tendency to weaken the influence of the condition. After
fine-tuning, all variants produce similarly high-quality results.

A.4 Dataset

For the object-to-motion task, we use the DTU dataset [37] (License: Non-commercial research use
only). For character-to-video, keyframe interpolation, and ad video generation tasks, we manually
collected condition—video pairs tailored to each task. For action transfer, we curate videos from
SSv2 [30] (License: Research use only, non-commercial). In the video style transfer task, we
first synthesize starting frames using FLUX.1-dev [38] (License: Non-commercial License), and
then generate paired videos using SoRA [32] (License: Proprietary; use governed by OpenAl
terms of service), and Wan2.1 [6] (License: Apache 2.0). Each task is trained on 30 samples. All
videos contain 49 frames at 10 frames per second (fps), resized to either 480x480 or 848x480 while
preserving the original aspect ratio.

For evaluation and demonstration, we use image and video conditions that are not part of the training
set. These include both manually collected images and synthesized ones generated using GPT-
40, FLUX, and Sora. For the action transfer task, we use unseen video samples from SSv2 [30]].
Quantitative evaluations are conducted on 100 samples. For image-based metrics such as CLIP and
LPIPS, scores are computed on a per-frame basis and then averaged to obtain the final results.

Training and evaluation prompts are generated using GPT-4o0. Each prompt is structured to encompass
the condition, buffer, and target frames, with condition and buffer frames denoted as [CONDITION]
and target frames as [VIDEO]. Below is the full prompt used for the sample in the ablation study:
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TIC-FT prompt

This animated clip demonstrates the transformation of a static character illustration into
a lively and expressive animated figure; [ CONDITION] the condition image showcases a
cheerful cartoon-style young buffalo with thick brown fur, curved yellow horns, and a big,
friendly smile. The character’s wide eyes and upright posture are set against a warm orange
background, giving it a lively and playful presence. [VIDEQO] the video animates the buffalo
inside a grand museum, where it wears a red t-shirt and points excitedly at a large dinosaur
skeleton behind glass. Its eyes are wide with curiosity and its mouth open in awe, while
elegant stone columns and soft lighting emphasize the sense of wonder and fascination with
history.

A.5 Task Descriptions

We detail the construction of data and latent sequences for each conditional video generation task used
in our experiments. All tasks are configured with a total of 13 latent frames, corresponding to 49 video
frames. While this number can be adjusted based on application needs, we adopt the 13-frame setting
throughout for implementation simplicity and consistency. The initial latent sequence comprises
condition frames, intermediate buffer frames, and noised target frames. An exception is the action
transfer task, where buffer frames are omitted, as the last condition frame serves as the starting frame
of the target sequence. The specific configurations for each task are described below.

Image-to-Video This task aims to generate a full video conditioned on a single image. The video
need not begin directly from the image’s visual content; instead, the image may represent a high-level
concept such as a character profile or an object viewed from the top, with the video depicting novel
dynamics (e.g., a rotating 360° view).

A single reference image is replicated to occupy the first 4 latent frames, followed by 9 target frames.

* Clean condition: 1 frame (from the image)
¢ Buffer: 3 frames (noised condition)

 Target: 9 frames (pure noise)

We visualize the initial latent frames and their denoising process in Figure 8]
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Figure 5: Performance curves for CLIP-T, CLIP-I, SSIM, DINO, and LPIPS metrics plotted against
training time. Our method consistently outperforms ControlNet across all metrics at equivalent
training durations.
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Table 4: Ablation study of constant noise scheduling for buffer frames, evaluated on 12V tasks using
VBench, GPT-40, and perceptual/similarity metrics.

VBench ‘ GPT-40 ‘ Perceptual similarity

Method , , N N

Sukqect backgmund motion aesthej’tlc s{rulc‘tuiial s?mantfc CLIP-I CLIP-T LPIPS| SSIM DINO

consistency consistency smoothness | quality  similarity similarity

Ours 0.9672 0.9729 0.9930 4.13 3.14 3.63 0.8329 0.3143  0.4332  0.5917 0.5530
Constant-25  0.9516 0.9724 0.9920 4.09 2.81 3.45 0.7734  0.3062  0.6088 0.4240 0.4202
Constant-50  0.9509 0.9740 0.9915 4.05 3.01 3.51 0.7760  0.3010  0.6157 0.4188 0.4228
Constant-75  0.9511 0.9722 0.9917 4.02 3.07 3.68 0.7725 0.3003  0.6148 0.4250 0.4259

Table 5: Ablation study of constant noise scheduling for buffer frames, evaluated on V2V tasks using
VBench, GPT-40, and perceptual/similarity metrics.

VBench ‘ GPT-40 Perceptual similarity

Method ; ; N N

SL{['JJECI background motion aesthefttc xr'ru.clur'al s'em'ant'lc CLIP-I CLIP-T LPIPS| SSIM DINO

consistency consistency smoothness | quality  similarity similarity

Ours 0.9736 0.9743 0.9935 3.99 3.90 441 0.8794 0.3080  0.2298 0.6541 0.6596
Constant-25 0.9539 0.9652 0.9873 3.90 3.55 4.20 0.8037 0.3103  0.2744 0.5785 0.6083
Constant-50  0.9524 0.9652 0.9886 3.88 3.86 431 0.8460 0.3153 0.2364 0.6039 0.6528
Constant-75 0.9327 0.9552 0.9821 3.69 3.60 4.25 0.8330 0.3142  0.2797 0.5707 0.6368

Video Style Transfer This video-to-video task transforms the visual style of a source video into
that of a target domain (e.g., converting a realistic video into an animated version) while preserving
motion and structure.

The first 7 latent frames are taken from a source video and the remaining 6 from a style-transferred

version.

¢ Clean condition: 4 frames (from the source video)
¢ Buffer: 3 frames (noised condition)

* Target: 6 frames (pure noise)

We visualize the initial latent frames and their denoising process in Figure 9]

In-Context Action Transfer This task generates a video that continues a novel scene using motion
inferred from a source video. Given a reference action and the first frame of a new environment, the
model synthesizes future frames that imitate the observed motion within the new context.

The first 6 latent frames are from a reference action video, the 7th is the first frame of a novel scene,
and the rest are the continuation.

¢ Clean condition: 6 frames (from the reference action video)
* Query frame: 1 clean frame (from the novel scene)

* Target: 6 frames (pure noise)

No buffer frames are used in this task, as the first frame of the target video is explicitly provided as
part of the condition. We visualize the initial latent frames and their denoising process in Figure[I0]

Keyframe Interpolation This task fills in intermediate frames between sparse keyframes to produce
a temporally coherent video. The goal is to ensure smooth transitions between given keyframes.

Four keyframes are replicated to fill the first 7 latent frames, and the remaining 6 are interpolated.

* Clean condition: 4 frames (replicated keyframes)
¢ Buffer: 3 frames (noised condition)

* Target: 6 frames (pure noise)

We visualize the initial latent frames and their denoising process in Figure[TT]

Multiple Image Conditions This task takes two distinct types of image conditions—such as a person
and clothing, or a person and an object—and generates a target video that reflects the combination of
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both. This setup is useful for applications like virtual try-on (VITON) or ad video synthesis, where
two semantic entities must be jointly represented in motion.

The first 3 latent frames are derived from the first condition image, and the next 4 from the second
condition image.

* Clean condition: 4 frames (3 from the first image, 1 from the second)

¢ Buffer: 3 frames (noised condition)

* Target: 6 frames (pure noise)

Note that the number of condition sources is not limited to two; the framework supports arbitrary
multi-condition setups. We visualize the initial latent frames and their denoising process in Figure[T2]

A.6 Broader Impacts and Misuse Discussion

Our TIC-FT method enables efficient adaptation of video diffusion models with minimal data.
However, this ease of fine-tuning also introduces risks, particularly the potential misuse for creating
deepfakes or misleading synthetic media. Clear usage policies and responsible deployment practices
are essential to mitigate societal risks.

23



No Cond

Replace

Qurs Clean Cond

Constant-75 Constant-50 Constant-25

Concave

Convex

Cond Buffer Targe frames Cond Buffer Target frames
(a) Zero-shot (b) Trained

Figure 6: Qualitative comparison of buffer frame designs in zero-shot and fine-tuned settings.
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Figure 7: Qualitative comparison of buffer frame designs in zero-shot and fine-tuned settings.
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Denoise

Condition Buffer Target frames

Figure 8: Visual results for initial frames and their denoising process on image-to-video generation.
Prompt: [Character] A clear, high-resolution front-facing close-up of a cheerful cartoon-style wolf
character, centered against ...

Denoise

T T
Condition Buffer Target frames

Figure 9: Visual results for initial frames and their denoising process on video style transfer task.
Prompt: [VIDEOI] A woman in a tan cloak walks gracefully along a forest path. Her hair flows
gently with her movement, and the ...
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Condition Novel Scene Target frames

Figure 10: Visual results for initial frames and their denoising process on in-context action transfer
task. Prompt: [REFERENCE VIDEO] A white paper is folded in half by a person wearing black
sleeves in a dark indoor environment. ...
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Figure 11: Visual results for initial frames and their denoising process on keyframe interpolation task.
Prompt: [VIDEOI] A cartoon woman with red hair and a jeweled headpiece slowly tilts her head
and changes facial expressions ...

27



Denoise

T N T . T — _’
Condition 1 Condition 2 Buffer Target frames

Figure 12: Visual results for initial frames and their denoising process on virtual try-on task. Prompt:
[IMAGE] A young woman with long black hair, wearing a cream blouse, blue jeans, and black
sandals, smiles with both ...
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