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Abstract. Recent advances in neural networks have solved common
graph problems such as link prediction, node classification, node clus-
tering, node recommendation by developing embeddings of entities and
relations into vector spaces. Graph embeddings encode the structural
information present in a graph. The encoded embeddings then can be
used to predict the missing links in a graph. However, obtaining the op-
timal embeddings for a graph can be a computationally challenging task
specially in an embedded system. Two techniques which we focus on
in this work are 1) node embeddings from random walk based methods
and 2) knowledge graph embeddings. Random walk based embeddings
are computationally inexpensive to obtain but are sub-optimal whereas
knowledge graph embeddings perform better but are computationally
expensive. In this work, we investigate a transformation model which
converts node embeddings obtained from random walk based methods
to embeddings obtained from knowledge graph methods directly with-
out an increase in the computational cost. Extensive experimentation
shows that the proposed transformation model can be used for solving
link prediction in real-time.
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1 INTRODUCTION

With the advancement in internet technology, online social networks have be-
come part of people’s everyday life. Their analysis can be used for targeted
advertising, crime detection, detection of epidemics, behavioural analysis etc.
Consequently, a lot of research has been devoted to computational analysis of
these networks as they represent interactions between a group of people or com-
munity and it is of great interest to understand these underlying interactions.
Generally, these networks are modeled as graphs where a node represents peo-
ple or entity and an edge represent interactions, relationships or communication

⋆ Work done while A. Parnami was as an intern at Siemens.
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between two of them. For example, in a social network such as Facebook and
Twitter, people are represented by nodes and the existence of an edge between
two nodes would represent their friendship. Other examples would include a net-
work of products purchased together on an E-commerce website like Amazon,
a network of scientists publishing in a conference where an edge would repre-
sent their collaboration or a network of employees in a company working on a
common project.

Inherent nature of social networks is that they are dynamic, i.e., over time
new edges are added as a network grows. Therefore, understanding the likeli-
hood of future association between two nodes is a fundamental problem and is
commonly known as link prediction [19]. Concretely, link prediction is to predict
whether there will be a connection between two nodes in the future based on
the existing structure of the graph and the existing attribute information of the
nodes. For example, in social networks, link prediction can suggest new friends;
in E-commerce, link prediction can recommend products to be purchased to-
gether [11]; in bioinformatics, it can find interaction between proteins [2]; in
co-authorship networks, it can suggest new collaborations and in the security
domain, link prediction can assist in identifying hidden groups of terrorists or
criminals [3].

Over the years, a large number of link prediction methods have been pro-
posed [21]. These methods are classified based on different aspects such as the
network evolution rules that they model, the type and amount of information
they used or their computational complexity. Similarity-based methods such as
Common Neighbors [19], Jaccard’s Coefficient, Adamic-Adar Index [1], Prefer-
ential Attachment [4], Katz Index [16] use different graph similarity metrics to
predict links in a graph. Embedding learning methods [18,2,13,25] take a ma-
trix representation of the network and factorize them to learn a low-dimensional
latent representation/embedding for each node. Recently proposed network em-
beddings such as DeepWalk [25] and node2vec [13] are in this category since
they implicitly factorize some matrices [27].

Similar to these node embedding methods, recent years have also witnessed
a rapid growth in knowledge graph embedding methods. A knowledge graph
(KG) is a graph with entities of different types of nodes and various relations
among them as edges. Link prediction in such a graph is known as knowledge
graph completion. It is similar to link prediction in social network analysis, but
more challenging because of the presence of multiple types of nodes and edges.
For knowledge graph completion, we not only determine whether there is a link
between two entities or not, but also predict the specific type of the link. For this
reason, the traditional approaches of link prediction are not capable of knowl-
edge graph completion. Therefore, to tackle this issue, a new research direction
known as knowledge graph embedding has been proposed [24,8,31,20,15,7,28].
The main idea is to embed components of a KG including entities and relations
into continuous vector spaces, so as to simplify the manipulation while preserving
the inherent structure of the KG.
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Neither of these two approaches, however, can generate “optimal” embed-
dings “quickly” for real-time link prediction on new graphs. Random walk based
node embedding methods are computationally efficient but give poor results
whereas KG-based methods produce optimal results but are computationally
expensive. Thus, in this work, we mainly focus on embedding learning methods
(i.e., Walk based node embedding methods and knowledge graph completion
methods) which are capable of finding optimal embeddings quickly enough to
meet real-time constraints for practical applications. To bridge the gap between
computational time and performance of embeddings on link prediction, we pro-
pose the following contributions in this work:

– We compare the embedding’s performance and computational cost of both
Random walk based node embedding and KG-based embedding methods and
empirically determine that Random walk based node embedding methods
are faster but give sub-optimal results on link prediction whereas KG based
embedding methods are computationally expensive but perform better on
link prediction.

– We propose a transformation model that takes node embeddings from Ran-
dom walk based node embedding methods and output near optimal embed-
dings without an increase in computational cost.

– We demonstrate the results of transformation through extensive experimen-
tation on various social network datasets of different graph sizes and different
combinations of node embeddings and KG embedding methods.

2 Background

2.1 Problem Definition

Let Ghomo = ⟨V,E,A⟩ be an unweighted, undirected homogeneous graph where
V is the set of vertices, E is the set of observed links, i.e., E ⊂ V × V and
A is the adjacency matrix respectively. The graph G represents the topological
structure of the social network in which an edge e = ⟨u, v⟩ ∈ E represents an
interaction that took place between u and v. Let U denote the universal set
containing all (|V | × (|V | − 1))/2 possible edges. Then, the set of non-existent
links is U −E. Our assumption is that there are some missing links (edges that
will appear in future) in the set U − E. Then the link prediction task is given
the current network Ghomo, find out these missing edges.

Similarly, let Gkg = ⟨V,E,A⟩ be a Knowledge Graph (KG). A KG is a
directed graph whose nodes are entities and edges are subject-property-object
triple facts. Each edge of the form (head entity, relation, tail entity) (denoted
as ⟨h, r, t⟩) indicates a relationship r from entity h to entity t. For example,
⟨Bob, isFriendOf, Sam⟩ and ⟨Bob, livesIn,NewY ork⟩. Note that the entities
and relations in a KG are usually of different types. Link prediction in KGs aims
to predict the missing h or t for a relation fact triple ⟨h, r, t⟩, used in [9,6,8]. In
this task, for each position of missing entity, the system is asked to rank a set
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of candidate entities from the knowledge graph, instead of only giving one best
result [9,8].

We then formulate the problem of link prediction on graph G such that
G ≡ Ghomo ≡ Gkg, i.e., KG with only one type of entity and relation. Link
prediction is then to predict the missing h or t for a relation fact triple ⟨h, r, t⟩
where both h and t are of same kind. For example ⟨Bob, isFriendOf, ?⟩ or
⟨Sam, isFriendOf, ?⟩.

2.2 Graph Embedding Methods

Graph embedding aims to represent a graph in a low dimensional space which
preserves as much graph property information as possible. The differences be-
tween different graph embedding algorithms lie in how they define the graph
property to be preserved. Different algorithms have different insights of the node
(/edge/substructure/whole-graph) similarities and how to preserve them in the
embedded space. Formally, given a graph G = ⟨V,E,A⟩, a node embedding is
a mapping f1: vi → yi ∈ Rd ∀i ∈ [n] where d is the dimension of the embed-
dings, n the number of vertices and the function f preserves some proximity
measure defined on graph G. If there are multiple types of links/relations in the
graph then similar to node embeddings, relation embeddings can be obtained as
f : rj → yj ∈ Rd ∀j ∈ [k] where k the number of types of relations.

Node Embeddings using Random Walk Random walks have been used to
approximate many properties in the graph including node centrality [23] and
similarity [26]. Their key innovation is optimizing the node embeddings so that
nodes have similar embeddings if they tend to co-occur on short random walks
over the graph. Thus, instead of using a deterministic measure of graph proximity
[5], these random walk methods employ a flexible, stochastic measure of graph
proximity, which has led to superior performance in a number of settings [12].
Two well known examples of random walk based methods are node2vec [13] and
DeepWalk [25].

KG Embeddings KG embedding methods usually consists of three steps. The
first step specifies the form in which entities and relations are represented in
a continuous vector space. Entities are usually represented as vectors, i.e. de-
terministic points in the vector space [24,8,31]. In the second step, a scoring
function fr(h, t) is defined on each fact ⟨h, r, t⟩ to measure its plausibility. Facts
observed in the KG tend to have higher scores than those that have not been
observed. Finally, to learn those entity and relation representations (i.e., embed-
dings), the third step solves an optimization problem that maximizes the total
plausibility of observed facts as detailed in [30]. KG embedding methods which
we use for experiments in this paper are TransE [8], TransH [31], TransD [20],
RESCAL [32] and SimplE [17].
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Fig. 1: Transformation Model. Input Graph: Green edges are missing links and
red edges represents present links. First, a random walk method outputs node
embeddings (source) for a graph. These embeddings are then used to initialize
KG embedding method, which outputs finetuned embeddings. A transformation
model is then trained between source and finetuned embeddings.

3 Methodology

Transformation model is suggested to expedite fine-tuning process with KG-
embedding methods. Let Gn,m be a graph with n vertices and m edges. Given
the node embeddings of the graph G, we would want to transform them to
optimal node embeddings.

3.1 Node Embedding Generation

The input graph Gn,m is fed into one of the random walk based graph embed-
dings methods (node2vec [13] or DeepWalk [25]), which gives us the node em-
beddings. Let f be a random walk based graph embedding method and Ei

source

denotes the output node embeddings:

Ei
source = f(Gi) (1)

where Gi is the ith graph in the dataset of graphsD = {G1, G2, ...} and Ei
source ∈

Rn×d with the embedding dimension d.

3.2 Knowledge Embedding Generation

In a KG-based embedding algorithm (such as TransE), the input is a graph and
the initial embeddings are randomly initialized. The algorithm uses a scoring
function and optimizes the initial embeddings to output the trained embeddings
for the given graph. Since we are working with homogeneous graph with only
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one type of relation, we don’t need to learn the embeddings for the relation,
hence they are kept constant and only node embeddings are learnt. Let Ei

initial

be the initial node embeddings, Ei
target be the trained embeddings and g the KG

method with parameters α.

Ei
target = g(Gi, Ei

initial;α) (2)

where Ei
target ∈ Rn×d and Ei

initial ∈ Rn×d.

Instead of using randomly initialized embeddings Ei
initial to obtain target

embeddings Ei
target, we can initialize with Ei

source in Eq. (1) as

Ei
finetuned = g(Gi, Ei

source;α) (3)

where Ei
finetuned ∈ Rn×d are fine tuned output embeddings. This idea of better

initialization has also been explored previously in [22,10] where it has been shown
to result in embeddings of higher quality.

3.3 Transformation Model with Self-Attention

Using the node embeddings Ei
source from Eq. (1) and fine-tuned KG embed-

dings Ei
finetuned from Eq. (3), we train a transformation model which can learn

to transform the node embeddings from a node-based method to KG embed-
dings. We adopt self-attention [29] on graph adjacency matrix as explained in
Algorithm 1:

Ei
transformed = SelfAttention(Gi, Ei

source; θ) (4)

where Ei
transformed ∈ Rn×d are the transformed embeddings and θ are the pa-

rameters of the self-attention model.
The error between the fine-tuned and transformed embeddings is calculated

using squared euclidean distance as:

Ei
error = 1/n

∑
||Ei

transformed − Ei
finetuned||2. (5)

The loss on batch X of graphs is measured as:

Loss(X) = 1/b

b∑
i=1

Ei
error (6)

where X = {(Ei
transformed, E

i
finetuned)} and b is the batch size. Since KG em-

beddings are trained from facts/triplets which are obtained from the adjacency
matrix of the graph, a self-attention model reinforced with information of the
adjacency matrix when applied to node-embeddings is able to learn the trans-
formation function as observed in our experiments (Figure 3). The proposed
algorithm is summarized in Algorithm 2.
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Algorithm 1: Self-attention on graph adjacency matrix

1 Function SelfAttention(Gn,m, En×d)
2 An×n = Adjacency Matrix of Gn,m

3 Kn×d = affine(E, d)
4 Qn×d = affine(E, d)
5 Logitsn×n = matmul(Q, transpose(K))
6 AttendedLogitsn×n = Logits + A
7 Vn×d = affine(E, d)
8 Outputn×d = matmul(AttendedLogits, V)
9 return Output

Algorithm 2: Training the transformation model

Input: Dataset of Graphs Dtrain = {G1, G2, ..., Gn}
1 foreach Gi in Dtrain do
2 Ei

source ← f(Gi)
3 end
4 foreach Gi in Dtrain do
5 Ei

finetuned ← g(Gi, Ei
source;α)

6 end
7 while true do
8 B = {(Ei

source, E
i
finetuned)} ▷Sample batch

9 foreach Ei
source in B do

10 Ei
transformed = SelfAttention(Gi, Ei

source; θ)

11 end
12 X = {(Ei

transformed, E
i
finetuned)}

13 θ ← θ − β∇θLoss(X) ▷Update

14 end

4 Experiments

4.1 Datasets

Yang, et. al [33] introduced social network datasets with ground-truth commu-
nities. Each dataset D is a network having a total of N nodes, E edges and a
set of communities (Table 1).

Dataset Description Nodes Edges Communities

YouTube Friendship 1,134,890 2,987,624 8,385
DBLP Co-authorship 317,080 1,049,866 13,477

Amazon Co-purchasing 334,863 925,872 75,149
LiveJournal Friendship 3,997,962 34,681,189 287,512

Orkut Friendship 3,072,441 117,185,083 6,288,363

Table 1: Datasets
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Fig. 2: Histogram showing community size vs its frequency. DBLP, YouTube and
Amazon datasets have smaller size communities and LiveJournal and Orkut have
larger size communities.

The communities in each dataset are of different sizes. They range from a
small size (1-20) to bigger sizes (380-400). There are more communities with
small sizes and their frequency decreases as their size increases. This trend is
depicted in Figure 2.

YouTube3, Orkut3 and LiveJournal3 are friendship networks where each com-
munity is a user-defined group. Nodes in the community represent users, and
edges represent their friendship.

DBLP3 is a co-authorship network where two authors are connected if they
publish at least one paper together. A community is represented by a publication
venue, e.g., journal or conference. Authors who published to a certain journal or
conference form a community.

Amazon3 co-purchasing network is based on Customers Who Bought This
Item Also Bought feature of the Amazon website. If a product i is frequently
co-purchased with product j, the graph contains an undirected edge from i to
j. Each connected component in a product category defined by Amazon acts as
a community where nodes represent products in the same category and edges
indicate that we were purchased together.

4.2 Training

We consider each community in a dataset as an individual graph Gn,m with
vertices representing the entity in the community and edges representing the
relationship. For training the transformation model, we select communities of
particular size range which acts as dataset D of graphs (Table 2). We randomly
disable 20% of the links (edges) in each graph to act as missing links for link
prediction. In all the experiments, the embedding dimension is set to 32, which

3 http://snap.stanford.edu/data/index.html#communities
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Dataset
Graph
Size

Number of
Graphs

Average
Degree

Average
Density

YouTube 16-21 338 3.00 0.17
DBLP 16-21 654 4.93 0.29

Amazon 21-25 1425 4.00 0.18
LiveJournal 51-55 1504 6.11 0.12
LiveJournal 61-65 1101 7.20 0.11
LiveJournal 71-75 806 7.53 0.10
LiveJournal 81-85 672 6.58 0.08
LiveJournal 91-95 497 8.01 0.08
LiveJournal 101-105 400 6.85 0.06
LiveJournal 111-115 351 5.89 0.05
LiveJournal 121-125 332 7.67 0.06

Orkut 151-155 1868 7.20 0.04
Orkut 251-255 654 7.21 0.028
Orkut 351-355 335 7.33 0.020

Table 2: Selected datasets and graph size for experiments.

works best in our pilot test. We used OpenNE4 for generating node2vec and
DeepWalk embeddings and OpenKE [14] for generating KG embeddings. The
dataset D of graphs is split into train, validation and test split of 64%, 16%, and
20% respectively.

4.3 Evaluation Metrics

For evaluation, we use MRR and Precision@K. The algorithm predicts a list
of ranked candidates for the incoming query. To remove pre-existing triples in
the knowledge graph, filtering operation cleans them up from the list. MRR
computes the mean of the reciprocal rank of the correct candidate in the list,
and Precision@K evaluates the rate of correct candidates appearing in the top
K candidates predicted. Due to space constraints, we only present the results for
MRR. Results of Precision@K can be found at our GitHub5.

5 Results & Discussions

From the results depicted in Figure 3, we observe that the target KG embeddings
(TransE, TransH, etc.) almost always outperforms random-walk based source
embeddings (node2vec and DeepWalk) except in case of SimplE and DistMult
where both the methods perform poorly. This can also be observed in Figure 4.

Finetuned KG embeddings achieved better or equivalent performance as com-
pared to target KG embeddings. This can be confirmed by ANOVA test in
Figure 4 where there is no significant difference between the MRRs obtained

4 https://github.com/thunlp/OpenNE
5 https://github.com/ArchitParnami/GraphProject
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Fig. 3: Performance evaluation of different embeddings on link prediction us-
ing MRR (y-axis). Source (green) refers to embeddings from node2vec (left)
and DeepWalk (right). Target (brown) refers to KG embeddings from TransE,
TransH, TransD, SimplE, RESCAL, or DistMult. For each source and target
pair, we evaluate finetuned (orange) embeddings (obtained by initializing target
method with source embeddings) and transformed (red) embeddings (obtained
by applying transformation model on source embeddings). Results are presented
on different datasets of varying graph sizes.
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Fig. 4: ANOVA test of MRR scores from two embedding methods (Method 1 and
Method 2). The difference of MRR scores between the two methods is significant
when their p-values are <0.05 (light green) and not significant otherwise (light
red). The values in each cell are the difference between the means of MRR
scores from two methods (Method 2 − Method 1). The text in bold represents
when Method 2 did better than Method 1. Source method refers to node2vec
(left) and DeepWalk (right). Target method refers to TransE, TransH, TransD,
SimplE, RESCAL, or DistMult in each row.
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Fig. 5: CPU Time (left y-axis) vs Graph Size (x-axis) and Mean MRR (right y-
axis) vs Graph Size comparison of finetuned (TransE finetuned from node2vec)
and transformed embeddings (from node2vec). As the graph size increases the
time to obtain embeddings from KG methods (TransE) also increases signifi-
cantly. However, there is no significant increase in time for the transformation
(from node2vec) once we have the transformation model. The Mean MRR scores
of both finetuned and transformed embeddings also drop with the increase in
graph size, however, they perform equally good (for graphs <76). Note that
finetuning time and transformation time both include time to obtain node2vec
embeddings as well.
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from finetuned and target KG embeddings in most cases. Specifically, trans-
lational based methods such as TransE, TransH, and TransD have equivalent
performance for finetuned and target embeddings whereas SimplE, RESCAL,
and DistMult have better finetuned embeddings than target embeddings as the
graph size grows.

Transformed embeddings consistently outperform source embeddings and
have similar performance to finetuned embeddings at least for graphs of sizes
up to 65. The performance drop starts from graph size 71-75 in the transforma-
tion to TransD from DeepWalk whereas 81-85 in the transformation to TransE
from node2vec. For RESCAL, the transformation works for larger sized graphs
in node2vec and till 121-125 in DeepWalk.

As the graph size increases (top to bottom), the overall MRR scores decrease
for all the embeddings as expected. In Figure 5, we compare computation time
and MRR performance of transformed embeddings and finetuned embeddings
where source method is node2vec and target method is TransE. It can be seen
that the transformed embeddings give similar performance as finetuned embed-
dings (without any significant increase in computational cost) up to graphs of size
71-75. Thereafter the transformed embeddings perform poorly, we attribute this
to poor finetuned embeddings on which the transformation model was trained.

6 Conclusion

In this work, we have demonstrated that random-walk based node embedding
(source) methods are computationally efficient but give sub-optmial results on
link prediction in social networks whereas KG based embedding (target & fine-
tuned) methods perform better but are computationally expensive. For our re-
quirement of generating optimal embeddings quickly for real-time link prediction
we proposed a self-attention based transformation model to convert walk-based
embeddings to optimal KG embeddings. The proposed model works well for
smaller graphs but as the complexity of the graph increases, the transformation
performance decreases. For future work, our goal is to explore better transfor-
mation models for bigger graphs.
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