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ABSTRACT

Safety, trust and Artificial General Intelligence (AGI) are aspirational goals in
artificial intelligence (AI) systems, and there are several informal interpretations of
these notions. In this paper, we propose strict, mathematical definitions of safety,
trust, and AGI, and demonstrate a fundamental incompatibility between them. We
define safety of a system as the property that it never makes any false claims, trust
as the assumption that the system is safe, and AGI as the property of an Al system
always matching or exceeding human capability. Our core finding is that—for our
formal definitions of these notions—a safe and trusted Al system cannot be an AGI
system: for such a safe, trusted system there are task instances which are easily
and provably solvable by a human but not by the system. We note that we consider
strict mathematical definitions of safety and trust, and it is possible for real-world
deployments to instead rely on alternate, practical interpretations of these notions.
We show our results for program verification, planning, and graph reachability. Our
proofs draw parallels to Godel’s incompleteness theorems and Turing’s proof of
the undecidability of the halting problem, and can be regarded as interpretations of
Godel’s and Turing’s results.

1 INTRODUCTION

Rapid advancements in artificial intelligence (AI) have intensified focus on Artificial General In-
telligence (AGI) — loosely understood to be systems capable of human-level cognitive function
across diverse tasks (Morris et al., 2024; Feng et al., 2024). AGI systems have the potential for
vast societal benefits through transformative impacts on nearly every aspect of society, including
healthcare (Singhal et al., 2025), scientific research (Wang et al., 2023), education (Wang et al.,
2024), sustainability (Rolnick et al., 2022), and economic growth (Chui et al., 2023). At the same
time, development of such powerful systems necessitates a foundational emphasis on safety and
trustworthiness. Consequently, there has been significant interest in ensuring safety and trust for
Al systems (Bostrom, 2014; Amodei et al., 2016; Russell, 2019; Jacovi et al., 2021; Tegmark &
Omohundro, 2023).

In this work, we point out a fundamental tension between the requirements of an Al system being
safe and trusted, but also matching or exceeding human capabilities, i.e. being an AGI system.
There are several interpretations of safety, trust and AGI and our result does not preclude achieving
these desiderata simultaneously under more relaxed interpretations that could still be useful in
many practical applications. Therefore, to understand the limitations pointed out by our result, it is
important to first understand our formalizations of these notions, and we will immediately proceed
with defining these notions. We start by first defining an Al system for a given task.

Definition 1.1 (Al system). We define an Al system as a system which takes an instance of a task,
and either solves the instance or abstains from giving an answer for the instance (for instance by
outputting ‘don’t know’). We allow the Al system to be randomized, for example it could abstain
with some probability (with respect to its internal randomness) on an instance, and output a solution
otherwise.

Definition 1.1 simply formalizes the notion of a system which solves instances of a task. In this
paper, we will consider the tasks of program verification, planning and determining graph reachability
(defined rigorously later). Note that we allow the system to abstain from providing an answer for
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some instance if it so determines, which could be important from the perspective of safety (Geifman
& El-Yaniv, 2017). Now, we define the notion of safety.

Definition 1.2 (Safety). We define a system to be safe if it does not make any false claims, i.e., for
every instance it either answers the instance correctly or abstains from answering it.

As an example, in the context of verifying that a program has some specified property (such as always
terminating), the system is safe if it does not classify a program as having the desired property if it
does not have that particular property. Our definition allows the system to abstain from answering an
instance if it is uncertain, but it requires the system to be correct whenever it outputs an answer. While
less stringent definitions may suffice for some tasks, small probabilities of error may not be tolerable
for mission-critical tasks, especially as system capabilities grow (Amodei et al., 2016; Tegmark &
Omohundro, 2023). Next, we define trust as simply the assumption of safety.

Definition 1.3 (Trust). We define trust to be the assumption that the system is safe.

To elaborate on the definition, if a system is trusted then it is scientifically accepted (or assumed)
that the system is safe. As a remark, we note that our results are agnostic to whether trust in the
system stems from theoretical proofs, empirical verification, or some combination of these, we only
require that when deploying the system there is an assumption that it is safe. We also note that safety
does not necessarily imply trust, or vice versa. Safety is an underlying property of the system being
consistent and not making false claims. It is possible that some analysis of the system cannot identify
this property or is incorrect, leading to a lack of trust or mistaken trust. For example, a system could
actually be safe but not trusted because existing empirical or theoretical tools are insufficient to
establish safety. Similarly, a system could actually be unsafe but still trusted by users, such as when
the trust rests on empirical evidence which is incomplete, or on incorrect theoretical assumptions.

Finally, we need to formally define an AGI system in order to mathematically investigate its limitations.
This is a challenge, since it is well-accepted that there is no well-accepted definition of AGI—or even
of intelligence itself (Legg & Hutter, 2007; Legg et al., 2007). Nevertheless, we propose a formal
definition, and argue why it captures important aspects of the goal of AGI.

Definition 1.4 (AGI). We define a system to be an Artificial General Intelligence (AGI) system if for
every task instance such that a human has a provably correct solution for that instance, the system
can also solve the instance with some non-zero probability. Similarly, the system is not an AGI system
if there exists some task instance which can be easily and provably solved by a human, but the system
can never solve the instance (for probabilistic systems, the probability of the system solving the
instance is 0).

Our definition draws on the common view that an AGI system for a task such as program verification
should be at least as capable as a human on that task. In particular, if there are explicit task instances
which can be provably solved by humans (for example, explicit programs which the humans can
easily and provably certify as having the desired property) but cannot be solved by the system,
then the system is not an AGI system as per our definition. We note that our definition bears some
similarity to notions of superintelligence (Bostrom, 2014; Morris et al., 2024), and the reader can
regard Definition 1.4 as a definition of superintelligence if they so prefer. For example Bostrom
(2014) defines superintelligence as “any intellect that greatly exceeds the cognitive performance of
humans in virtually all domains of interest”, and Morris et al. (2024) defines Level 5 AGI, which
they term artificial superintelligence, as “outperforming 100% of humans” on a “wide range of
non-physical tasks”. One distinction between these notions of superintelligence and our definition of
AGI is that our definition does not require the Al system to necessarily outperform humans, but it
does require the system to do at least as well as humans on all task instances.

In our definition, when we say that a human has a provably correct solution, we mean that the human
can provide a scientifically acceptable proof. In this paper whenever we make claims about humans
being able to solve problems, we provide such proofs. To probe this point and Definition 1.4 further,
we consider an analogy to chess — a domain for which we have had advanced Al systems for quite
some time. Consider a future proposed AGI system, which is proficient at chess among other things.
If there were explicit chess positions which most human chess players can solve provably without
too much difficulty, but the proposed AGI system struggled on those positions, then the proposed
system does not capture some aspects of human cognition, and hence is arguably not actually an AGI
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system.! Similarly, in our paper we will demonstrate explicit instances of certain tasks for which we
provide solutions with short, scientifically acceptable proofs which are also rather simple, but these
instances cannot be solved by Al systems having certain properties.

We now state our main result, that it is not possible for an AGI system to be both safe and trusted, as
per our definitions of safety, trust and AGI. In other words, the notions of safety, trust and AGI are
mutually incompatible — any system can have at most two of these three properties.

Theorem 1.5. If an Al system is safe and trusted, then it cannot be an AGI system. In particular, it is
not an AGI system for the tasks of program verification, planning and determining graph reachability.

Theorem 1.5 points out a fundamental limitation of an AGI system: such a system cannot be both
safe and trusted. Similarly, if there is some trusted Al system, then either that system is not actually
safe, or it is not an AGI system. We prove this result in Section 3. While much of our proof technique
mimics Godel’s proof of his incompleteness theorems (Godel, 1931) (and also Turing’s proof of the
undecidability of the halting problem (Turing, 1937)), the argument we make is not in the context of
axiomatic system and theorem proving but in the context of an Al system that needs to solve certain
task instances of applications such as program verification or planning. Our proofs are self-contained
in this context and do not require knowledge of formal axiomatic reasoning or logical rules of
deduction. Thus rather than viewing the results as limitations of systems of logic, they should be
viewed as limitations of Al systems.

We also consider a relaxation of safety which requires the Al system to be calibrated with respect to
its predictions, as opposed to Definition 1.2 which requires the system to be always correct unless it
abstains. We call this notion calibration-safety, and for the case of program verification calibration-
safety requires that if the Al system outputs that some program terminates with some probability p,
then that program should actually terminate with probability approximately p. In Section 4 we show
a similar limitation as in Theorem 1.5 for Al systems which satisfy calibration-safety.

2 RELATED WORK

In this section, we discuss some more related work on AGI, safety and trust in Al, and limitations of
Al in the context of Godel’s results.

Artificial General Intelligence. Though not termed as “Artificial General Intelligence (AGI)” until
more recently (Goertzel & Pennachin, 2007), the concept of machines which match or surpass the
cognitive capabilities of humans dates back to the earliest days of Al (Turing, 1950; McCarthy et al.,
1955; Minsky, 1961). Due to recent advances in foundation models such as large language models
(Bommasani et al., 2021), there has been significant interest and capital investments in developing
systems capable enough to be termed as an AGI both from the private sector and from governments
(Maslej et al., 2025).

Safety and Trust in AI.  Safety concerns around advanced Al systems similarly date back to early
days of Al (Turing, 1951; Wiener, 1950). With growing system capabilities, there has been significant
recent focus on ensuring safety and trust to manage risks associated with Al systems (Future of Life
Institute, 2024; for Al Safety, 2025). We refer the interested reader to several recent surveys and
roadmaps for ensuring safety and trust in highly-capable, general purpose Al systems (Bengio et al.,
2024; Chua et al., 2024; Chen et al., 2024; Bengio et al., 2025). It is also important to recognize
that Al safety and trust encompass many facets beyond those considered in our definitions. For
example, even formally specifying safety objectives can be challenging for complex tasks (Amodei
et al., 2016), which introduces additional challenges to develop safe Al systems beyond those pointed
out in our work.

Godel and Turing’s results. Fundamental limits on theorem proving and program verification
were famously established by Godel’s incompleteness theorems and Turing’s undecidability results.

'We note that many current advanced chess engines still struggle to evaluate certain positions which are
relatively easy for human experts (Doggers, 2017; Zahavy et al., 2023). However, this is likely a result of the
these engines being ‘narrow’ in terms of their approach and reasoning, and we believe that a proposed AGI or
superintelligent system which is purported to excel on chess should have the ability to solve such instances.
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Godel showed that in any sufficiently expressive formal system, there exist true statements (also
called Godel statements) that cannot be formally proven within the system (Godel, 1931). Building
on this, Turing proved that the Halting Problem—determining whether an arbitrary program halts
on a given input—is undecidable (Turing, 1937), meaning no algorithm can solve it for all possible
programs. These results imply that fully automatic verification of arbitrary program behavior, such as
ensuring termination, is provably impossible in the general case. Our result uses similar ideas to draw
a separation between the abilities of a safe, trusted Al system and humans.

Penrose-Lucas argument, and implications of Godel’s results for AI.  Several arguments have
been made for why Godel’s result imply that Al can never match humans, the most famous of which
are perhaps due to Penrose (Penrose & Gardner, 1989) and Lucas (Lucas, 1961). To summarize very
briefly, Penrose and Lucas have argued that incompleteness does not apply to humans since they
can see the truth of Godel statements, and therefore humans can have mathematical insights that
Turing machines cannot (Wikipedia). This argument is quite contested, and several objections have
been raised against it (Chalmers, 1995; LaForte et al., 1998; Kerber, 2005) — again going back to
Turing (Turing, 1950) — with a core objection being that humans also cannot be certain that their
own reasoning process is sound.

The goal of our work is distinct from that of Penrose and Lucas, and we do not aim to show a
separation between any Al system and human reasoning. Instead, we prove a more restricted but
rigorous result: that safe, trusted Al systems (under formal definitions of those terms) are necessarily
unable to solve certain problems that humans can solve with provable correctness. The assumption of
safety and trust is crucial (as will be evident from our proofs) — it allows humans to conclude the
correctness of some outputs even when the Al system, by its own constraints, must abstain.

We also note that there are some other limitations of AI which have been pointed out by using Godel
and Turing’s results, such as the impossibility of “containing” superintelligence (Alfonseca et al.,
2021), and the necessity of hallucinations in a certain formal model (Xu et al., 2024), see the survey
Brcic & Yampolskiy (2023) for other results similar to these.

3 TECHNICAL RESULTS

In this section, we discuss our main technical results regarding limitations of safe, trusted, AGI for
program verification, planning, and graph reachability.

3.1 PROGRAM VERIFICATION

The first task we consider is program verification, more specifically the task of determining if a given
program always halts. Program verification (also formal verification) is a foundational problem in
computer science and software engineering, with critical implications for ensuring the reliability,
safety, and correctness of software systems (Hoare, 1969; Clarke et al., 2018)

Definition 3.1 (Program verification). We define a program to be well-behaved if it terminates on
every input (for randomized programs, the program terminates with probability 1). In the program
verification problem, the system is given a program instance and it classifies the instance as being
‘well-behaved’, ‘not well-behaved’ or abstains from making a prediction (outputs ‘don’t know’).
Safety for program verification requires that the system never outputs that a well-behaved program is
not well-behaved, and vice versa. The system is trusted if we assume that the system is safe. Note that
the system is not an AGI system if there is a well-behaved program which can be easily proven to be
well-behaved by a human, but for which the program always abstains from making a prediction.

Our definition of program verification (Definition 3.1) and our results are for the property of the
program halting. We believe it is possible to extend the result for verifying other semantic properties
of programs — analogous to Rice’s theorem (Rice, 1953). We now state our result for program
verification.

Theorem 3.2. [fa system is safe and trusted, then it cannot be an AGI system for program verification.

Proof. Our proof can be regarded as a restatement of Godel’s proof, presented here in the context of
program verification. In Fig. 1 we sketch the basic version of the argument, for the case when the Al
system A is deterministic and well-behaved.



Under review as a conference paper at ICLR 2026

procedure Gédel _program

if A(Godel _program) == ‘well-behaved’
then
Claim (informal): If A is safe then while true do
Godel_program is well-behaved, but A cannot end while
output that Gédel_program is well-behaved. else

return 0

end if

end procedure

Proof sketch:
o If A outputs that Gdel_program is well-behaved, then the program enters an infinite loop.
o If A is safe, this is a contradiction, hence A cannot output Gédel_program is well-behaved.

 If A does not output Gédel program is well-behaved, then the program immediately terminates
and hence is well-behaved.

Figure 1: Sketch of the basic argument for program verification, for the case when the Al system
A is well-behaved (i.e., always terminates) and deterministic. If A is safe, it cannot determine if
Goédel _program is well-behaved. However, since the condition of A being safe is satisfied for a
trusted system, it is possible to prove that Gédel _program is well-behaved for a trusted system.
Therefore, a safe, trusted system cannot solve this instance, even though it is provably solvable.

We now proceed with the proof, which relaxes the assumptions in Fig. 1 of A being deterministic and
well-behaved. Consider any Al system A which takes as input program P and outputs ‘well-behaved’,
‘not well-behaved’ or ‘don’t know’. Our construction will leverage the trace of the system A run on
some program P, which is just the execution trace of the system A when it is given program P as
input. Now consider the program instance in Algorithm 1.

Algorithm 1 Godel_program

1: procedure Godel _program(P,T)
2 if T is not a syntactically-valid trace of the system A evaluated on program P then
3 return 0
4 else if 7" outputs P is ‘well-behaved’ then
5: if (P, T) is a valid input to program P then
6: return concatenation(‘Not ’, P(P,T'))
7 end if
8 else
9: return 0
10: end if

11: end procedure

Note that Gdel_program involves running the program P on the input pair (P, T'). Gédel program
checks that (P, T") is a valid input type to the program P, and we can also regard the input (P, T) as
one input to P that is a pair of entities: a program P and a trace 7. We now show that if A is safe,
then Godel _program is well-behaved.

Lemma 3.3. If A is safe, then Godel _program is well-behaved.

Proof. We first claim that the if and else if conditions in steps 2, 4 and 5 always terminate (if the
program enters those steps). Step 2 always terminates since it involves checking if every step of the
trace T is a valid step which the Al system A can take. Step 4 just involves checking the output of
the trace, and step 5 also terminates since the step involves checking if the input matches the required
format for the program.

Now consider the case when the else if condition in step 4 is satisfied. This happens when the trace T'
concludes that P is well-behaved, and since the system A is safe, then P must be well-behaved in
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that case. Hence the execution in step 6 always terminates, and hence Gédel_program terminates for
that input.

On the other hand, if the trace does not conclude that P is well-behaved, then the program enters
the else condition in lines 8 and 9, and immediately terminates. Therefore if A is safe, then
Goédel_program is well-behaved. 0

We now note that the assumption of A being safe is satisfied for a trusted system A. Therefore, the
proof of Lemma 3.3 provides a short proof that Gédel_program is well-behaved for a safe and trusted
system. In other words, if it is scientifically accepted than A is safe, then the proof of Lemma 3.3
provides a scientifically acceptable proof that Gdel_program is well-behaved. Next, we show that
the system A cannot solve this instance.

Lemma 3.4. A can never output ‘well-behaved’ for Gédel _program.

Proof. The proof is by contradiction. We first note that Gédel _program is a deterministic program,
and can only have a single output for a given input. Suppose there is a valid trace T for the Al system
A which outputs ‘well-behaved’ for Gédel_program. Consider Gédel program(Gddel_program,
T¢). Then the output of step 6 differs from Godel _program(Gédel_program, T¢;), which is also
the output of Godel_program on the input (Godel_program, 7). This is a contradiction since a
deterministic program cannot have two outputs on the same input, and hence A can never output
‘well-behaved’ for Gdel_program. O

Therefore, if A is safe and trusted, then it cannot be an AGI system. O

3.2 PLANNING

The next task we consider is planning, a long-studied task in artificial intelligence (LaValle, 2006;
Russell & Norvig, 2016). Planning is also considered important for general-purpose cognitive
capabilities (Goertzel & Pennachin, 2007).

Definition 3.5 (Planning). In a planning problem we are given a sequence of states, a set of associated
moves, a start state and a desired goal state. For any state u and move pair, there is a an explicit
program (which is provided as part of the problem specification) which returns the next state (certain
moves may be illegal and may return in ‘not allowed’ states). The task is to find a sequence of moves
which end up in the goal state from the start state, or to prove that it is not possible to reach the goal
state from the start state.

For clarity of exposition, we consider deterministic planning instances and deterministic Al systems
in this section. In Appendix A.2, we also consider randomized Al systems and randomized problem
instances.

Theorem 3.6. If a deterministic Al system is safe and trusted, then it cannot be an AGI system for
planning. In particular, for such a system there is a planning problem instance for which the system
outputs ‘don’t know’ but there is a short proof that the planning problem has no winning moves.

We prove this by reduction from a variant of program verification that involves checking whether a
given program, input pair halts.

3.2.1 HALTING FOR A SPECIFIC PROGRAM INPUT INSTANCE

We first define the problem of checking halting for a specific program, input instance.

Definition 3.7 (Halting for a specific program input instance). Given a deterministic program and an
input for the program, check whether the given program halts or does not halt on the given input.
We show the following result for this halting problem.

Theorem 3.8. If a deterministic system is safe and trusted, then it cannot be an AGI system for the
task of determining whether a program halts on a specific input instance.
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We note that Theorem 3.6 follows from Theorem 3.8. This is because we can reduce the halting
problem for a program-input pair to a planning instance. Given a program P and input I, we construct
a planning problem where the states correspond to the configurations of P during its execution on I,
and the moves represent single-step transitions between these configurations. The start state is the
initial configuration of P on input /, and the goal state is a halting configuration of P. The planning
task is to determine whether a sequence of moves exists that leads from the start state to the goal
state—this is equivalent to determining whether P halts on I. Hence, if a safe and trusted system
could solve all such planning instances, it would be able to solve the halting problem in Definition 3.7,
contradicting Theorem 3.8. This establishes that, under our definitions, a safe and trusted system
cannot be an AGI system for planning.

The proof of Theorem 3.8 appears in Appendix A.1, and is similar to the proof of Theorem 3.2, and
also the next result, Theorem 3.12. In Appendix A.2, we prove a similar version of Theorem 3.8
where the program provably halts on the input, but the Al system A cannot determine so. This proof
requires an additional assumption that A is also well-behaved, i.e. it always terminates on an input,
which can be ensured by having a fixed time limit on the execution of A. Note that since determining
halting on a specific program input instance reduces to planning, this shows that for a safe, trusted
and well-behaved system there are planning instances where humans can provably find a feasible
plan, but the system will not be able to solve the instance.

3.3 GRAPH REACHABILITY

We now consider the graph reachability problem. Graph reachability can also be regarded as an
instance of the search problem, another fundamental problem in artificial intelligence with numerous
applications (Russell & Norvig, 2016). Graph reachability is closely connected to the planning
problem that we defined in the previous section, a distinction we make is that for planning problems
the state space can be potentially infinite, whereas for reachability we consider finite-sized graphs.

Definition 3.9 (Graph reachability). Given a (possibly directed) graph G and a source-sink pair u, v,
check whether v is reachable from u. We allow the graph to be defined via an explicit program (which
is provided as part of the problem specification). The program takes any vertex v and returns the
adjacency list of v.

We show that safe, trusted Al systems need time almost as large as the size of the considered graph to
solve certain reachability instances which actually admit a simple, solution. As in Section 3.2, we
consider deterministic Al systems in this section for ease of exposition. In Appendix A.3, we extend
to randomized Al systems.

Theorem 3.10. For any T > 0, a fixed constant ¢, and any safe, trusted, deterministic Al system,
there is a graph reachability problem instance of size T, for which the safe, trusted, deterministic AI
system outputs ‘don’t know’ if it is run for time at most T' — c, but there is a short, constant-sized
proof that the answer is ‘not reachable’.

We prove this by reduction from a variant of program verification that involves checking whether a
given program halts within a fixed amount of time.

3.3.1 TIME-BOUNDED HALTING

Definition 3.11 (Time-bounded halting). Given a deterministic program and an input for the program,
check whether the given program halts or does not halt on the given input in a given number of time
steps T'.

Theorem 3.12. If a deterministic system A is safe and trusted, then it cannot be an AGI system for
time-bounded halting. Specifically for a deterministic, safe, trusted system A and for any T > 0 and
a fixed constant c, there is a program for which there is a short, constant-sized proof that it does not
halt in T steps, but A will output ‘don’t know’ if it runs for time at most T — c.

We note that Theorem 3.10 follows from Theorem 3.12. This is because time-bounded halting can be
reduced to graph reachability (similar to the reduction for planning), where the graph is defined by the
states of the program and the goal is to determine if the program reaches a halting state. Theorem 3.12
shows that there is a graph of size 7" where the Al system needs time nearly 7" to solve reachability,
but a human can prove a constant sized proof that the sink vertex is not reachable from the source.
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We now prove Theorem 3.12.

Proof of Theorem 3.12. Consider any deterministic Al system A which takes as input program P,
input I, and time limit 7" and outputs ‘halts in given time limit’, ‘does not halt in given time limit’ or
‘don’t know’. Consider the program in Algorithm 2, defined for some fixed time limit 7" > 0.

Algorithm 2 Turing_T

1: procedure Turing T(Program P, Input I)

2 if A(P,I,T) == ‘does not halt in given time limit’ then

3 return 0

4 else

5: while true do > run indefinitely
6 end while

7 end if

8: end procedure

We define
self Turing T(P) = Turing T(P, P).

Now consider self Turing T(self Turing T).

Lemma 3.13. If A is safe, then self _Turing T(self _Turing T) does not halt in time T. Moreover,
for a fixed constant ¢, if A is safe and is run for time at most T' — c then A will output ‘don’t know’
on whether self _Turing T(self _Turing T) halts in time at most T.

Proof. If self Turing T(self _Turing. T) halts, it can only be because it enters the if block in
line 3. However, it only enters this block if A determines that it does not halt in time 7. Since
A is safe, if the program enters the if block in line 3 then it must not halt in time 7', and hence
self Turing T(self_Turing. T) cannot halt in time 7.

Note that the execution of steps 2 and 3 of the program only take some fixed constant c steps
outside the execution of A on (self_Turing T,self Turing T,T). Therefore if the Al system A
runs for time 7" and outputs that self _Turing T(self _Turing T) does not halt in time T', then
self Turing T(self Turing T) halts in time 7" + c. If 77 < T — ¢, then the program does halt in
total time 7', which contradicts safety. Therefore, a safe Al system A must output ‘don’t know’ if it
runs for time at most 7' — ¢, for some fixed constant c. O

Finally, note that the assumption of A being safe is satisfied for a trusted system A, therefore for
a trusted system we have a short proof that self Turing T(self _Turing_ T) does not halt in time
T, even though A cannot solve this instance if it is safe and run for time at most 7" — c. Hence the
system cannot be an AGI system if it is safe and trusted. O

At the end of Section 3.2.1, we discussed an additional result about planning in the case where a
feasible plan exists. We also show a similar result for graph reachability. In Appendix A.3, we prove
a similar version of Theorem 3.12 under an additional assumption that A always terminates in time 7.
We show that for such a system A there is an instance which provably halts in time 7" + ¢ (for some
constant c) if A is safe, but the safe system A cannot determine so. As before, since determining
halting within a fixed time limit reduces to graph reachability on finite-sized graphs, this shows
that for a safe, trusted system with an upper bound on its running time, there are graph reachability
instances where humans can provably find a path, but the system will not be able to solve the instance
in time slightly less than the size of the graph.

4 IMPOSSIBILITY RESULT FOR CALIBRATION AS THE NOTION OF SAFETY

In this section, we define a relaxed notion of safety, which we call calibration-safety. The notion is
derived from the usual notion of calibration, a well-studied notion for ensuring reliability of a model’s
prediction (Dawid, 1982; Van Calster et al., 2019).
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Definition 4.1 (Calibration-Safety for Program Verification). We define a system A to be calibration-
safe if for any program P with input I:

1. If A outputs ‘halts’ with some probability p > 0 when given program P and input I, then
the probability of P halting on I lies in [p — 0.25,p + 0.25].

2. If A outputs ‘does not halt’ with some probability p > 0 when given program P and input I,
then the probability of P not halting on I lies in [p — 0.25,p + 0.25].

Note that similar to the definition of safety (Definition 1.2), calibration-safety does not put any
requirement on the system if it decides to abstain with probability 1 on a given input. We show that if
a system is calibration-safe, and in addition is also well-behaved, then it fails on certain instances
which provably terminate with good probability.

Theorem 4.2. [f the Al system A well-behaved and calibration-safe for program verification, then
there is a program P which provably halts with probability at least 0.99, but A abstains with
probability 1 on the program P.

Before proving Theorem 4.2, we note that it implies a similar impossibility result as Theorem 3.2
but with a relaxed notion of safety and a corresponding notion of trust. Similar to how we define
trust in Definition 1.3 as the assumption that the system is safe, we can define calibration-trust as the
assumption that the system is calibration-safe. Then Theorem 4.2 implies that for a well-behaved,
calibration-safe and calibration-trusted system A, there is a program which can be proven to halt
with probability at least 0.99, but A will abstain with probability 1 on the program. Therefore, a
well-behaved, calibration-safe and calibration-trusted system cannot be an AGI system.

Theorem 4.2 is proved in Appendix A.4. The proof is similar to earlier proofs, but requires an extra
step of using a best arm identification algorithm from the multi-armed bandit literature to determine
if the probability of the system giving a certain answer is greater than some threshold.

5 DISCUSSION

Our results show that safety, trust and AGI are mutually incompatible. We further discuss implications
of the result and some possible critiques and clarifications.

» Circumventing the results by appending axioms to the Al system: One may attempt to
circumvent the impossibility result by appending some axioms to the Al system. For
instance, one could solve Gédel_program (Algorithm 1) defined with respect to some Al
system A, by designing a new iteration of A, say A’, which has additional axioms built
in and can solve the Gédel _program instance for A. However, since our construction is
inherently self-referential, this strategy only pushes the problem one step further. For any
such extension A’, we can construct a new version of Gédel_program defined with respect
to A’, and the same impossibility result applies again.

» Worst-case nature of the results: While we demonstrate specific task instances which are
not solvable by certain systems, we note that the system could still solve a vast number
of interesting instances. However, the result still points to certain barriers which cannot
be overcome by safe, trusted systems. Given the significant interest and economic capital
being devoted to building safe AGI or superintelligent systems, we believe it is important to
understand the barriers fundamental to any such technology. Somewhat more speculatively,
note that our constructions rely on self-referential calls to the Al system, and when systems
have general-purpose capabilities, such calls may not be implausible.

* Limitations of human reasoning: We note that there is a long line of work on studying
the limitations of human reasoning in cognitive science and other fields, and it has long
been emphasized that human reasoning is resource-bounded and error-prone (Simon, 1957;
Tversky & Kahneman, 1974). However, our goal is not to argue for strict superiority of
human reasoning over Al, but to show a separation: for safe, trusted Al systems there are
instances that humans can solve, but which are not solvable by the system.
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A ADDITIONAL RESULTS

This section proves some additional results discussed in the main text.

A.1 PROOF OF THEOREM 3.8

Theorem 3.8. If a deterministic system is safe and trusted, then it cannot be an AGI system for the
task of determining whether a program halts on a specific input instance.
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Algorithm 3 Turing_program

1: procedure Turing program(Program P, Input I)

2 if A(P,I)== ‘does not halt’ then

3 return 0

4 else

5: while true do > run indefinitely
6 end while

7 end if

8: end procedure

Proof of Theorem 3.8. Consider any Al system A which takes as input program P and input I and
outputs ‘halts’, ‘does not halt’ or ‘don’t know’. Now consider the program instance in Algorithm 3.

Now define
self Turing program(P) = Turing program(P, P).
We consider:
self Turing program(self _Turing program)

Lemma A.1. If A is safe then self Turing program(self Turing program) does not halt, but
the Al system A cannot prove that it does not halt.

Proof. Note that if A is safe then the program cannot halt because of entering the if block
in line 3, since the program only enters this block if the safe system A determines that
self Turing program(self Turing program) does not halt. If A does not determine that
the program does not halt, then the program enters the infinite loop and never halts. Therefore,
self Turing program(self _Turing program) does not haltif A is safe.

The second part of the lemma has a similar proof. If A determines that the pro-
gram input pair self Turing program(self Turing program) does not halt, then it does
halt and we have a contradiction since A is safe. Therefore if A is safe then
self Turing program(self Turing program) does not halt, but A cannot determine that the
program input pair self _Turing program(self _Turing program) does not halt.

O

Finally, note that the assumption of A being safe is satisfied for a trusted system A, therefore for
a trusted system we have a short proof that self_Turing program(self_Turing program) does
not halt, even though the system cannot solve this instance if it is safe. This completes the proof of
the theorem.

O

A.2 IMPOSSIBILITY OF SOLVING PLANNING WHEN A FEASIBLE PLAN EXISTS

In this section, we prove a similar result to Theorem 3.8, for the case where the program terminates
on the given input. We also strengthen the result in Theorem 3.8 to allow for randomized Al systems,
and randomized programs which may halt with some probability on an input. We first extend
Definition 3.7 to allow for randomized programs.

Definition A.2 (Halting for a specific program input instance for randomized programs). Given a
program, input pair, check whether on the given input the given (possibly randomized) program
‘always halts’, ‘halts on some randomness but not all randomness’ or ‘never halts’.

Theorem A.3. If the Al system A is safe and well-behaved for determining halting on a specific
program input pair, then there is a program input instance pair for which there is a short proof that
the instance always terminates, but A cannot determine that the instance always terminates (the
probability of A giving the answer ‘always halts’ is 0).

Note that the condition ‘If the Al system A is safe’ is satisfied when A is trusted, and hence for a
safe, trusted, well-behaved Al system there are program, input instances which the system cannot
solve, but for which there is a short proof that the instance terminates. We now prove Theorem A.3.

13
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Proof of Theorem A.3. Consider Algorithm 4.

Algorithm 4 Turing_program_v2

1: procedure Turing program v2(Program P, Input I)
2: if A(P,I) == ‘always halts’ then

3 while true do > run indefinitely
4 end while

5 else

6 return 0

7 end if

8: end procedure

Now define
self Turing program v2(P) = Turing program v2(P, P).

We consider:
self Turing program v2(self _Turing program v2)

Lemma A.4. If A is safe and well-behaved then self Turing program v2(self _Turing program v2)
always halts, but the safe Al system A cannot determine that it always halts.

Proof. Note that the if condition in step 2 always terminates if A is well-behaved. Suppose A outputs
‘always halts” on some randomness. Then, self Turing program v2(self Turing program v2)
does not halt on some randomness. If A is safe, then this is a contradiction. Therefore, if A is safe
then it must output ‘always halts’ with O probability.

Note that if A does not output that self Turing program v2(self Turing program v2)
‘always halts’, then the program enters the else condition and immediately ter-
minates, and therefore halts. Therefore if A is safe and well-behaved, then
self Turing program v2(self Turing program v2) always halts.

O
O

A.3 IMPOSSIBILITY OF SOLVING FEASIBILITY WHEN A PATH EXISTS IN THE GRAPH

We prove a similar result to Theorem 3.12 in this section, for the case where the program terminates
on the given input within some time bound. As in Appendix A.2, we also strengthen the result to
allow randomized Al systems. We first extend Definition 3.11 to allow for randomized programs.

Definition A.5 (Time-bounded halting for randomized programs). Given a program, input pair
and a time limit T on the number of execution steps, check whether on the given input the given
(possibly randomized) program ‘always halts in given time limit’, ‘halts in given time limit T on some
randomness but not all randomness’ or ‘never halts in given time limit’.

Theorem A.6. [f an Al system A is safe and always halts in some time T, then for a fixed constant
c and the time limit T + c, there is a program, input pair for which there is a short, constant-sized
proof that the instance always halts in at most T + c steps, but for a safe Al system A which always
halts in time T the probability of A giving the answer ‘always halts in given time limit’ is O.

Proof of Theorem A.6. Consider Algorithm 5, where T is the upper bound on the running time of
the Al system A, and c is some fixed constant which is the running time of executing step 2 after A
terminates and the if condition in step 2 is not satisfied, and then executing steps 5 and 6. Therefore,
T + cis an upper bound of the running time of the program when it enters the else condition in line 5.

We define
self Turing Tv2(P) = Turing T_v2(P, P)

Consider:
self Turing T v2(self Turing T v2)

14
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Algorithm 5 Turing_T_v2

1: procedure Turing T_v2(Program P, Input I)

2 if A(P,I,T + ¢) == ‘always halts in given time limit’ then

3 while true do > run indefinitely
4 end while

5: else

6 return 0

7 end if

8: end procedure

Lemma A7. If A is safe and always terminates in time T, then
self Turing T v2(self Turing T.v2) always halts in time at most T + c¢. Moreover, if
A is safe then it has 0 probability of giving the answer ‘always halts in given time limit’ on whether
self Turing T v2(self _Turing T_v2) halts in time at most T + c.

Proof. Note that by the definition of ¢, the execution of steps 2, 5 and 6 of the program only take ¢
steps outside the execution of A on the input (self_Turing T v2,self Turing T v2,T + ¢).

Suppose A outputs ‘always halts in given time limit’ on the given input on some randomness.
Whenever A outputs ‘always halts in given time limit’, the program enters an infinite loop and never
halts. This is a contradiction if A is safe, and hence if A is safe it outputs ‘always halts in given time
limit” with probability 0.

Now, if A does not output ‘always halts in given time limit’ on the input, then the program will enter
the else block and immediately halt. Since A runs for at most T steps, the program then halts in time
at most 1"+ c. Therefore, if A is safe then the program always halts in time at most 7" + c.

O
O

A.4 PROOF OF THEOREM 4.2

Theorem 4.2. If the Al system A well-behaved and calibration-safe for program verification, then
there is a program P which provably halts with probability at least 0.99, but A abstains with
probability 1 on the program P.

Proof of Theorem 4.2. Consider Algorithm 6. Throughout the proof we assume A is well-behaved,
i.e. it always terminates. Our construction involves a program which does not take any input, i.e.
I = ¢. The program involves identifying whether the probability p of A outputting ‘halts’ when given
Godel_program random as input is greater than 0.5 or not. We use a simple best arm identification
procedure for this, for example the algorithm of Karnin et al. (2013).

Algorithm 6 Godel-program_random

—

: procedure Gédel _program _random
2: Let arm; have the distribution Bernoulli(0.5)
Let arms correspond to running A with Gédel _program random as input, with the result of
the arm pull being 1 if A(Gédel program random) == ‘halts’, and O otherwise.
4: Run Best-Arm-Identification algorithm from Karnin et al. (2013, Algorithm 1) with confi-
dence parameter § = 0.01 to determine whether arms is better than arm;
5 if army is better than arm; then
6 while true do > run indefinitely
7 end while
8: else
9
0
1

w

return 0
end if
: end procedure
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Note that for any € > 0, if p = 0.5 4 € then arm; is better than arm;, otherwise if p = 0.5 — €
then arm; is better than army. While we can use any suitable multi-armed bandit algorithm in our
construction, here we use Karnin et al. (2013), which has the guarantee that if it is provided with two
arms with a gap of e, then it finds the better arm with probability 1 — 6 using O (% log (3 log (1)))
arm pulls. This bound is known to be optimal (Jamieson et al., 2014), though in our case since we do
not care about the optimal rate we could have also used earlier sub-optimal procedures (Even-Dar
et al., 2002). We also note that if € = 0, then the best arm identification procedure will terminate with
probability at most 10d. Though we have not seen the case of € = 0 being directly covered by the
guarantees of best arm identification procedures, this claim for € = 0 follows from a simple argument
which treats the best arm identification procedure as a black-box. To verify, note that the sequence of
observations up to ¢ steps is d-close in TV distance for any p € [0.5 &= 1/poly(t, §)] (where poly(¢, §)
is some polynomial of ¢ and ¢). Therefore for ¢ = 0 and any finite ¢, if the best arm identification
procedure terminates in ¢ steps with probability more than 104, then it will have a failure probability
more than ¢ for some p € [0.5 &+ 1/poly(¢, §)]—which is a contradiction with the guarantee of the
procedure. Therefore, for e = 0 the best arm identification procedure terminates with probability at
most 106.

We are now ready to prove the result.

Lemma A.8. If A is calibration-safe and well-behaved then Godel_program random halts with
probability at least 0.99, but the calibration-safe Al system A will output ‘don’t know’ with probability
1 on Gédel _program_random.

Proof. We consider three cases.

1. p € (0.5,1]: Note that in this case with probability at least 0.99 the best arm identification
procedure determines that arms is better than arm;. Therefore, the program goes into the
infinite while loop and never terminates with probability at least 0.99. In this case, A is not
calibration safe, since it claims that the program terminates with probability p > 0.5.

2. p = 0.5: As argued above, in this case the best arm identification procedure terminates
with probability at most 106 = 0.1. Therefore, Gddel_program_random terminates with
probability at most 0.1. In this case as well, A is not calibration safe, since it claims that the
program terminates with probability p = 0.5.

3. p € (0,0.5): In this case, with probability at least 0.99 the best arm identification procedure
determines that arm; is better than arms. When arm; is determined to be better than arms,,
the program enters the else block in line 9. Therefore, in this case Gédel_program_random
terminates with probability at least 0.99. Here too, A is not calibration-safe, since it claims
that Godel_program_random terminates with probability p < 0.5.

In each of these cases, A is not calibration-safe. Therefore, for A to be calibration-safe, we
must have p = 0, and that A outputs ‘don’t know’ with probability 1. If p = 0, then with
probability at least 0.99 the best arm identification procedure determines that arm; is better
than army, and Godel_program random terminates. Therefore, if A is calibration-safe, then
Gédel_program random halts with probability at least 0.99.

O

O
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