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Abstract001

Large language models (LLMs) have demon-002
strated impressive reasoning capabilities, yet003
they often struggle when dealing with complex,004
ill-formed, or noisy inputs that frequently oc-005
cur in interactions with real users. LLMs typi-006
cally lack crucial refining capabilities needed007
to filter out irrelevant details, restructure key008
points before reasoning over the text and re-009
sponding, resulting in suboptimal performance010
and incorrect answers. From an information011
theory perspective, this behavior is akin to de-012
coding a high-entropy problem without first013
reducing its entropy. In this work, we first intro-014
duce GSM-Noise, a benchmark featuring grade-015
school math problems systematically perturbed016
to reflect real-world input variability. We show017
that the reasoning ability of open-source mod-018
els (e.g., LLaMA and Qwen series) can be com-019
promised by noise, while closed-source mod-020
els are more robust. To improve LLM robust-021
ness under noisy conditions, we propose that022
LLMs first refine inputs — thereby reducing023
their entropy — before engaging in in-depth024
analysis. We investigate three approaches to025
instill this refinement capability: prompt en-026
gineering (PE), supervised finetuning (SFT),027
and reinforcement learning (RL). Experimen-028
tal results show that input refinement leads to029
consistent performance gains: 2–12% with PE,030
4–13% with SFT, and 3–25% with RL. These031
results highlight the importance of incorporat-032
ing an explicit refinement phase to enhance the033
robustness and reliability of LLM reasoning in034
real-world scenarios.035

1 Introduction036

Recent advancements in large language models037

(LLMs) have demonstrated their ability to achieve,038

and in some cases surpass, human-level perfor-039

mance on a variety of benchmarks, including040

mathematical reasoning and code generation tasks041

(Austin et al., 2021; Chen et al., 2021; Cobbe et al.,042

2021; Hendrycks et al., 2021; Achiam et al., 2023;043

Dubey et al., 2024; Team et al., 2023, 2024). How- 044

ever, these notable successes obscure the fragility 045

of LLM reasoning when confronted with ambigu- 046

ous, noisy, or otherwise imperfect input. A growing 047

body of research suggests that current LLMs of- 048

ten rely on surface-level pattern matching rather 049

than robust logical inference (Jiang et al., 2024; 050

Mirzadeh et al., 2024), making them sensitive to 051

subtle variations in the input. Minor changes in 052

statement order, irrelevant distractors, or altered 053

entities in the input can result in dramatically in- 054

consistent and sometimes incorrect outputs (Shi 055

et al., 2023; Chen et al., 2024; Berglund et al., 2023; 056

Jiang et al., 2024), thereby calling into question the 057

reliability of these models in real-world scenarios. 058

This phenomenon can be understood through 059

an information-theoretic lens: directly reasoning 060

over a high-entropy, noisy input is akin to decod- 061

ing a complex message without first simplifying 062

it. While humans naturally reduce cognitive load 063

by filtering out irrelevant information, restructuring 064

key details, and refining their understanding, LLMs 065

do not inherently perform these useful refinement 066

steps. Instead, they attempt chain-of-thought (CoT) 067

reasoning (Wei et al., 2022) directly on the raw 068

input, often leading to suboptimal results. 069

We first demonstrate that users inevitably in- 070

troduce various forms of noise into their prompts 071

in real-world scenarios, as detailed in §3. While 072

prior studies (Shi et al., 2023; Chen et al., 2024; 073

Berglund et al., 2023; Jiang et al., 2024) have ex- 074

plored the effects of specific input variations—such 075

as adding irrelevant context or modifying entity 076

names—they generally focus on a single type of 077

perturbation and thus fall short of simulating the 078

diversity of noise found in real-world conversa- 079

tions. To comprehensively evaluate LLMs’ reason- 080

ing ability in real-world conversations, we intro- 081

duce GSM-Noise, an enhanced benchmark built 082

upon R-GSM (Chen et al., 2024) and GSM8K 083

(Cobbe et al., 2021). Unlike prior work, GSM- 084
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Chain-of-Thought (CoT)

Refine Before CoT

SFT/RL Datasets

Preprocess Instructions

A Coup=le decided to go on 
vacation in the summer. 
Finally, the hotel gave a 35% 
discount on the fe/-es. They 
booked a hotel at $324 per 
night for 5 nights. The hotel 
provide free breakfast valued 
at $34 per person per day 
included in the hotel fees. 
They has monthly savings of 
$2212. How much money did 
the couple pay? 

OR

PE

SFT

RL

Apply CoT to Solve the Question

Step 1: Calculate the hotel base cost: 
$324/night × 5 nights = $1,620
daf

Step 2: Identify the free breakfast value:
$34/person/day × 2 people × 5 days = $340 CoT Examples 

CoT Instructions

Prompt Tuning Step 3: Find the original price before the discount: 
$1,620 - $340 = $1,280
daf

Step 4: Calculate the final amount paid:
$1,280 × 0.65 = $832 

Refine the Question First

 Let's refine the question first:
A Couple decided to go on vacation in 
the summer. They booked a hotel at 
$324 per night for 5 nights. Finally, the 
hotel gave a 35% discount on the fees. 
How much money did the couple pay?

 Step 1: Calculate the total cost of the hotel stay:
Total Cost = Daily Rate * Number Of Days 
= $324 * 5 = $1620
fdasfsaf

Step 2: With the total cost determined, we now 
apply the 35% discount.
Discount Percentage = 35%
Discount Amount = Total Cost * Discount 
 Percentage = $1620 * 0.35 = $567

Apply CoT to Solve the Question

LLM

LLM

Figure 1: An example illustrating CoT and Refine Before CoT. PE, SFT, and RL denote prompt engineering,
supervised fine-tuning, and reinforcement learning. Errors in CoT reasoning are shown in red.

Noise systematically applies a wide spectrum of085

perturbations to the input, including statement shuf-086

fling, irrelevant information injection, and symbol087

or grammatical errors. Specifically, we construct088

problem templates—each capable of generating089

multiple unique variants— to allow GSM-Noise090

more accurately capture the range of complexity091

and noise that LLMs may encounter in real-world092

settings. We test both open-source and closed mod-093

els (e.g., LLaMA3 series, Qwen2.5 series, and094

ChatGPT series). We find that existing LLMs ex-095

hibit varying degrees of vulnerability to noisy in-096

puts, with accuracy decreasing by 5% to 25%.097

To address the vulnerability of LLMs to noisy098

inputs, we investigate three methods–prompt en-099

gineering (PE), supervised finetuning (SFT), and100

reinforcement learning (RL)–to guide LLMs in re-101

fining the input before conducting detailed reason-102

ing, as shown in Figure 1. By reducing the entropy103

of the noisy input, e.g., removing irrelevant details,104

correcting formatting and grammar, and reordering105

statements, LLMs are better positioned to apply106

chain-of-thought (CoT) reasoning effectively. This107

refining process improves robustness, reduces the108

likelihood of confusion, and leads to more accurate109

solutions even under challenging input conditions.110

Our results show that PE (Brown, 2020; Chowd-111

hery et al., 2023), SFT, and RL yield accuracy112

improvements of 2–12%, 4–13%, and 3–25%, re-113

spectively, across various open- and closed-source114

LLMs. We also demonstrate that post-training115

methods without a refinement step fail to match116

the performance of our approach. Our analysis117

shows that refined problems generated by post-118

trained models exhibit significantly lower entropy119

(i.e., perplexity) than the original inputs. These120

findings highlight the importance of a preliminary121

refinement phase, paving the way for more robust,122

reliable, and human-like reasoning in LLMs. 123

2 Related Work 124

Reasoning abilities of LLMs. While LLMs have 125

demonstrated impressive performance on a vari- 126

ety of benchmarks, there is still an ongoing debate 127

about whether they truly possess logical reason- 128

ing abilities or simply rely on pattern matching. 129

Studies have shown that LLMs often struggle when 130

inputs are modified or perturbed, suggesting that 131

their reasoning processes may lack robust logical 132

inference (Jiang et al., 2024; Mirzadeh et al., 2024). 133

To better understand the computational foundations 134

of LLMs, researchers have investigated how trans- 135

former components map onto basic computational 136

primitives (Weiss et al., 2021; Zhou et al., 2023). 137

Some have found that transformers fail to general- 138

ize effectively on non-regular tasks and may require 139

structured memory (e.g., scratchpads) for more 140

complex reasoning (Delétang et al., 2022; Li et al., 141

2024). Techniques like Chain-of-Thought (CoT) 142

(Wei et al., 2022) and auxiliary memory have im- 143

proved LLM performance, but their effectiveness 144

underscores the inherent expressiveness limitations 145

of raw transformers. Recently, (Guo et al., 2025) 146

and (Team et al., 2025) post-train the LLM us- 147

ing reinforcement learning (Kaelbling et al., 1996) 148

(RL) to further enhance its reasoning ability. While 149

these investigations provide valuable insights, they 150

also highlight the persistent uncertainty: even with 151

added memory, sophisticated prompting, and post- 152

training, it is unclear whether LLMs can emulate 153

the kind of stable, formal logical reasoning that 154

humans perform naturally. 155

Prompt engineering and reasoning decomposi- 156

tion. Few-shot prompting (Brown, 2020; Chowd- 157

hery et al., 2023) is a powerful technique to en- 158
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Figure 2: Frequency of common errors in different
prompt lengths.

hance LLM performance by providing minimal yet159

informative examples. A range of methods have160

leveraged this concept to improve reasoning: gen-161

erating intermediate reasoning steps (Ling et al.,162

2017; Cobbe et al., 2021; Nye et al., 2021; Wei163

et al., 2022; Suzgun et al., 2022; Shi et al., 2022b),164

decomposing complex problems into simpler sub-165

problems (Zhou et al., 2022; Drozdov et al., 2022;166

Dohan et al., 2022; Khot et al., 2022; Press et al.,167

2022), and guiding models to produce code or log-168

ical plans (Austin et al., 2021; Chowdhery et al.,169

2023; Gao et al., 2023a; Chen et al., 2022). Other170

strategies include marginalizing over multiple rea-171

soning paths (Wang et al., 2022a; Shi et al., 2022a)172

or ensembling different solutions (Wang et al.,173

2022b; Drozdov et al., 2022). Additionally, provid-174

ing subtle hints or instructions within prompts can175

boost performance (Kojima et al., 2022). In this176

work, we extend this line of research by adding a177

preliminary refinement phase, prompting LLMs to178

refine the inputs themselves.179

Natural language benchmarks with input varia-180

tions. There is a line of work on adding different in-181

put variations for natural language tasks. For exam-182

ple, Liang et al. (2022); Ravichander et al. (2022)183

change the model-agnostic part of the input. Jia and184

Liang (2017); Shi et al. (2018); Morris et al. (2020);185

Wang et al. (2021) generate adversarial examples186

against individual models. Jia and Liang (2017);187

Kassner and Schütze (2019); Pandia and Ettinger188

(2021); Misra et al. (2022); Li et al. (2022) show189

that general-purpose pre-trained language models190

can be significantly affected by adversarial distract-191

ing sentences on factual reasoning tasks. Patel et al.192

(2021); Kumar et al. (2021) construct arithmetic193

reasoning benchmarks by paraphrasing or rewriting194

sentences in the base problems from clean datasets.195

Chen et al. (2024) changes the order in which the196

statements appear in the problem description for197

a math problem, and shows that statement order198

affects LLM reasoning. Besides, Mirzadeh et al. 199

(2024) changes the entities and values in math prob- 200

lem descriptions, and the performance of LLMs 201

significantly drops. They infer that current LLMs 202

cannot perform genuine logical reasoning and pat- 203

tern matching on their training data. Overall, prior 204

works typically focus on a single type of imper- 205

fection variation and cannot control the difficulty 206

of the dataset. Therefore, it is necessary for re- 207

searchers to construct a benchmark with a wider 208

variety of common error types and can introduce 209

diverse variations into inputs. 210

3 Preliminary Experiments 211

To motivate our benchmark design, we conduct 212

an analysis of real-world user inputs to examine 213

the prevalence of common input errors. Based on 214

prior works (Shi et al., 2023; Chen et al., 2024), 215

we identify two frequent issues: the presence of 216

irrelevant information and the incorrect ordering of 217

statements. We further extend this set by incorpo- 218

rating additional error types commonly observed in 219

user inputs, i.e., grammatical mistakes and symbol 220

misuse. We use the WildChat-1M dataset (Zhao 221

et al., 2024), which consists of user-ChatGPT con- 222

versations and reflects the distribution of real-world 223

input scenarios. We first filter out non-English sam- 224

ples, retaining only English ones, which consti- 225

tute 56.2% of the dataset. From this subset, we 226

randomly select 100 user inputs, each of which 227

exceeded 300 and 1,000 words, respectively. It’s 228

worth noting that approximately half of all user 229

inputs exceed 300 words, while a quarter exceed 230

1,000 words. To assess the presence of common in- 231

put errors, we prompt QwQ-32B to verify whether 232

the user inputs contain any of the aforementioned 233

errors. The frequencies of these common errors 234

are shown in Figure 2. We find that longer user 235

inputs consistently show higher error rates across 236

all categories. This trend aligns with expectations, 237

as longer inputs are more prone to irrelevant con- 238

tent and structural inconsistencies. Notably, even 239

in the 300-word group, all error types occur with 240

frequencies above 10%, indicating that such issues 241

are common even in moderately long inputs. There- 242

fore, it is necessary to explore and enhance LLMs’ 243

reasoning ability in real-world conversations. 244

4 The GSM-Noise Benchmark 245

We introduce GSM-Noise, an enhanced benchmark 246

that adds diverse variations of noise to grade school 247
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Example
It takes 50 shell chips to make every square inch of the castle. /# Ethan has had 4 bag@s of shell chips. Every shell chip costs
$30 for Ethan to buy. Ethan is ^making a craft with chips of shell. Ethan wants his craft to be 8 inhces tall_. A bag under shell
chi:ps holds 256 chips. It take 16 shell chips to make square every inch of the craft.  How many inches long can Ethan make
his craft?

Irrelevant Infos
Add to the problem with the probability of  
 - On-topic: It takes 50 material chips to make every square inch
of the castle.
 - Off-topic: Every material chip costs $30 for name to buy.

GSM8K & R-GSM

GSM8K
Milo is making a mosaic with chips of
glass. It takes twelve glass chips to make
every square inch of the mosaic. A bag
of glass chips holds 72 chips. Milo wants
his mosaic to be three inches tall. If he
has two bags of glass chips, how many
inches long can he make his mosaic?

Ground Truth
Calculation  
Each bag has 72 glass chips, so two
bags contain 72 * 2. It takes 12 chips to
make 1 square inch, so Milo can make
(72 * 2) / 12 square inches. Since
the mosaic is 3 inches tall, its length
is (72 * 2) / 12 / 3 = 4 inches.

GSM-Noise

[name] is making a [toy] with chips of [material]. It takes [x] [material] chips to make every square inch of the [toy]. A bag
of [material] chips holds [y] chips. [name] wants his [toy] to be [z] inches tall. [name] has [t] bags of [material] chips. How
many inches long can [name] make his [toy]?
Variables
Randomly select from its feasible domain
 - Entities: name, toy, material = sample(names, materials, toys)
 - Numerics: x, y, z, t = random([5, 35], [50, 500], [2, 10], [1, 10]) 

Ground Truth
Calculation  
Each bag has y material chips, so two bags contain y * t. It takes x chips to make 1 square inch, so name can make (y * t) / x
square inches. Since the toy is z inches tall, its length is (y * t) / x / z = ans inches.

Shuffle
Randomly shuffle all the sentences in the problem

Grammar errors
Randomly add the grammar errors into the problem with
the probability of 
 - Typos: ... to be z inhces tall.
 - Tense error: He has had t bags ...
 - Preposition error: A bag under material chips ...
 - Word order error: ... make square every inch of the toy.
 - Subject-verb agreement error: It take x material ...

Conditions
Ensure the numerics meet the problem 
 - y * t >= x * z # ensure the ans is bigger than 0
 - ans = {(y * t) / x / z} % 1 == 0 # ensure the ans is an integer.

Symbolic errors
Randomly add the non-sense symbol (e.g., #/@^) into the
problem with the probability of 

R-GSM
Shuffle the premises order 
A bag of glass chips holds 72 chips. Milo
 is making a mosaic with chips of glass.
 Milo wants his mosaic to be three inches
tall. It takes twelve glass chips to make
every square inch of the mosaic. If he
has two bags of glass chips, how many
inches long can he make his mosaic?

Figure 3: The problem template.

math problems and is designed to evaluate LLMs’248

performance in real-world input. Our benchmark249

is built upon the R-GSM (Chen et al., 2024) and250

GSM8K (Cobbe et al., 2021) and consists of 220251

math problem templates. We introduce template252

creation and then describe how problems in GSM-253

Noise are generated using templates.254

Template creation. For each problem in R-GSM,255

we manually create a parsable template, as illus-256

trated in Figure 3, following a structured annotation257

process. The annotation begins with identifying258

variables within each problem, including entities259

(e.g., a person’s name) or numerical values (e.g.,260

the number of items). Then, we define the feasible261

domains for each variable. For an entity variable,262

the feasible domain is a set of similar items, e.g.,263

different person names. For a numerical variable,264

we establish its feasible domain as a range (e.g., the265

price of a cup might range from 0 to 100) and/or266

necessary conditions (e.g., the number of people267

should be a positive integer). Next, we introduce268

irrelevant information to enhance the difficulty. We269

create a candidate set of on-topic irrelevant infor-270

mation and a candidate set of off-topic irrelevant271

information. The on-topic candidate set includes272

2 to 4 statements of irrelevant information that are273

closely related to the problem statements, creating274

potential distractions without affecting the ground275

truth answer. The off-topic candidate set includes 1276

to 2 statements of irrelevant information, introduc-277

ing noise without semantic overlap.278

Problem generation. The GSM-Noise benchmark279

is created by generating a number of problems from280

each template defined in the previous step. When281

generating a problem, we first set a value for each 282

variable in the template. For an entity variable, we 283

randomly select a value from its feasible domain set 284

defined in the previous step. For a numerical vari- 285

able, we randomly select a value within its feasible 286

domain, verify if it meets its necessary conditions, 287

and repeat the selection if it does not. 288

We then add (1) irrelevant information to the 289

problem. Specifically, each candidate statement 290

from the on-topic and off-topic sets is indepen- 291

dently selected with probability Pinfo; selected 292

statements are then appended to the problem to 293

introduce irrelevant information. Next, we incorpo- 294

rate grammar and symbol errors into the generated 295

problems. (2) Grammar errors are introduced 296

through various syntactic perturbations, such as 297

modifying subject-verb agreement, tense, prepo- 298

sitions, articles, word order, and character order. 299

For each statement in the problem, we introduce a 300

grammar error with probability Pge. If a grammar 301

error is to be introduced, we randomly select one 302

grammar error type for the statement to simulate 303

realistic mistakes. For (3) symbol errors, we ran- 304

domly insert 1 to 3 meaningless symbols (e.g., @, 305

#, &) before or after each character in each state- 306

ment in the problem according to a probability Pse. 307

Note that we do not add any symbol errors to nu- 308

merical variable in the problem to avoid potential 309

pollution to the ground truth. After this, we (4) 310

shuffle premise order. We shuffle the order of 311

all the statements for each generated problem, and 312

then append the question statement (e.g., “What is 313

the price after discount?”) to the end. 314

Finally, we perform automated and manual 315
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checks on generated problems to ensure each tem-316

plate’s correctness. For every template, we gen-317

erate 10 problems and use QwQ-32B to produce318

the answers. A low accuracy may suggest either319

flaws in the template or limitations in the model’s320

capabilities. To rule out the former, we verify that321

the accuracy drop is not due to template issues.322

If the template is valid, then all generated Q–A323

pairs derived from it can be considered correct. If324

QwQ-32B’s accuracy falls below 80%, we manu-325

ally review and revise the template accordingly.326

5 Refine before Analyze327

In this section, we will demonstrate how to en-328

hance the LLM’s capability to refine a problem329

before analyzing it. We begin by revisiting the330

standard reasoning procedure. Given a problem331

x, the standard approach for generating an an-332

swer y using the autoregressive LLM πθ is de-333

fined as y ∼ πθ(·|x). For prompt-based reason-334

ing techniques such as CoT (Wei et al., 2022), πθ335

is first prompted to generate intermediate reason-336

ing rationales before producing the final response337

x′ := T ⊕ x, z ∼ πθ(· | x′), y ∼ πθ(· | x′ ⊕ z),338

where T represents an input prompt consisting of339

reasoning rationale (i.e., CoT) examples (Wei et al.,340

2022) or instructions (e.g., “Let’s think step by step”341

(Kojima et al., 2022)), z denotes the reasoning ratio-342

nale, and ⊕ is the concatenation operator. Previous343

work has empirically demonstrated that the CoT344

increases the likelihood of πθ generating the de-345

sired answer y∗, compared to directly sampling346

y ∼ πθ(· | x). However, in real-world scenarios,347

most users are not experts or professionally trained.348

Their inputs are often complex, ill-formed, or noisy.349

Therefore, even with CoT, LLMs sometimes strug-350

gle to understand the input or be distracted by noise,351

as CoT does not inherently address these issues.352

We attempt to reinterpret the above issue from an353

information-theoretic perspective (Shannon, 1948).354

User-provided inputs can be seen as high-entropy355

messages containing significant noise. CoT, in356

essence, attempts to directly decode these noisy,357

high-entropy inputs into meaningful responses.358

However, since it does not reduce the entropy or fil-359

ter out the noise in the input, CoT can still produce360

low-quality or incorrect outputs. In contrast, hu-361

mans naturally reduce entropy before tackling prob-362

lems: they filter out irrelevant information, reorga-363

nize key points, and ensure a clear understanding of364

the objectives (Broadbent, 2013; MacLeod, 2007;365

Hirsh et al., 2012). This process increases the ef- 366

fective signal-to-noise ratio, making decoding (e.g., 367

solving the problem) easier from an information- 368

theoretic perspective. We argue that the LLM 369

should emulate this human-like approach by first 370

refining the inputs to simplify and clarify the input 371

representation before engaging in actual analysis 372

and answer generation. This “refinement” phase 373

can help the model focus on the core problem, im- 374

prove the robustness against flaws and noise in the 375

input, and ultimately improve the correctness of 376

its output. Building on this insight, we propose 377

that LLMs should first refine their inputs before 378

analyzing, outlined as: 379

x′ := T ′ ⊕ x, q ∼ πθ(· | x′), (1) 380

z ∼ πθ(· | x′ ⊕ q), (2) 381

y ∼ πθ(· | x′ ⊕ q ⊕ z), (3) 382

where T ′ represents the prompt consisting of refine- 383

ment instructions (e.g., “Let’s refine the problem 384

first.”) and previous reasoning rationale examples 385

or instructions. q is the refined problem generated 386

by the LLM. We provide an example of T ′ and 387

q in Appendix A. To further enhance the LLM’s 388

reasoning capabilities, we employ Supervised Fine- 389

tuning (SFT) using specially curated datasets. We 390

employ the prompt template in Appendix B, and 391

feed each problem x and prompt T ′ to QwQ-32B 392

to generate the refined problem q, reasoning path z, 393

and final answer y. To ensure dataset quality, we 394

implement rejection sampling as our data selection. 395

Specifically, we sample multiple refined problems 396

and reasoning paths for each problem, then filter 397

out low-quality samples where the generated an- 398

swer does not match the ground truth. We then 399

use the dataset to train smaller LLMs. Since our 400

supervision signals come from QwQ-32B, our SFT 401

can be viewed as distillation. 402

Furthermore, we use Reinforcement Learning 403

(RL) to post-train the LLMs to improve their rea- 404

soning ability. We follow DeepSeek-R1 (Guo et al., 405

2025) and use Group Relative Policy Optimization 406

(GRPO) (Shao et al., 2024) with a rule-based re- 407

ward. Unlike DeepSeek-R1, which utilizes both 408

format and accuracy reward, we only employ the 409

accuracy reward and instruct the LLM to generate 410

the refined problem, CoT, and the answer as shown 411

in Appendix B. We find that the LLM still gen- 412

erates each component within its designated tags 413

even without explicitly rewarding the format. 414
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Table 1: Statistics of the GSM-Noisy benchmark
datasets across different noise levels.

Dataset Pinfo Pge Pse Shuffle?

Original 0.0 0.0 0.0 No
Level 1 0.2 0.1 0.004 No
Level 2 0.4 0.2 0.008 Yes
Level 3 0.6 0.3 0.012 Yes
Level 4 0.8 0.6 0.016 Yes
Level 5 1.0 0.8 0.02 Yes

6 Experiments Setup415

In this section, we describe the dataset and models416

used in Section 7, and we provide more training417

details in Appendix C.418

Datasets. We construct our datasets by sampling419

10 problems from each template, yielding a total of420

2,200 problems. The dataset is divided into train-421

ing, validation, and test sets with a ratio of 7:1:2.422

To systematically evaluate model robustness un-423

der different levels of input noise, we create six424

datasets with five different noise levels and one425

without noise in our GSM-Benchmark. The statis-426

tics of six datasets are presented in Table 1. Note427

that both the quantity of problems per template428

and the noise difficulty level can be adjusted to429

accommodate various evaluation scenarios.430

Models. We evaluate both open- and closed-source431

language models. Open-source models include432

LLaMA3.2-1B/3B, LLaMA3.1-8B/72B, Qwen2.5-433

1.5B/3B/7B/72B, and QwQ-32B (Dubey et al.,434

2024; Yang et al., 2024), assessed in main and435

PE experiments. Closed-source models include436

ChatGPT 3.5, 4o, 4o-mini, o3-mini, and Claude3.5437

(Achiam et al., 2023; Jaech et al., 2024; Anthropic),438

evaluated under the same settings. For SFT and439

RL experiments, we focus on smaller models:440

LLaMA3.2-1B/3B, LLaMA3.1-8B, and Qwen2.5-441

1.5B/3B/7B.442

7 Experimental Results443

In this section, we present our main findings on the444

GSM-Noise benchmark, comparing model perfor-445

mance across various noise levels. Next, we detail446

our experiments with prompt engineering and post-447

training (i.e., SFT and RL). Finally, we analyze the448

entropy (i.e., perplexity) of the original problem449

and the refined problem.450

Main results on the GSM-Noise benchmark.451

Our results in Table 2 reveal distinct patterns in452

how different LLMs respond to increasing levels of453

noise in GSM-Noise when using CoT. We observe454

two interesting findings:455

Finding 1: Model accuracy and noise re- 456

silience increase with model scale. Both the 457

LLaMA and Qwen series exhibit a clear positive 458

correlation between model scale and performance 459

robustness under noise. Smaller models in both 460

families, such as LLaMA3.2-1B and Qwen2.5- 461

1.5B, suffer substantial accuracy drops under high 462

noise levels—LLaMA3.2-1B declines from 6.91% 463

(Original) to 1.36% (Level 5), while Qwen2.5-1.5B 464

drops from 37.50% to 20.23%. As models scale 465

up, this degradation becomes less pronounced. For 466

example, Qwen2.5-72B maintains 81.36% accu- 467

racy at Level 5, with only an 8.4% relative drop 468

from its original 88.86%, while LLaMA3.1-70B 469

retains 58.86% at Level 4 from an original 77.27% 470

(a 24% relative drop). Interestingly, some scale 471

inconsistencies exist—for instance, LLaMA3.2- 472

3B slightly outperforms LLaMA3.2-8B at most 473

noise levels—yet the overall trend still supports 474

the conclusion that larger models are more re- 475

silient to noise. Notably, Qwen models consis- 476

tently outperform LLaMA models at comparable 477

scales across all noise levels, suggesting architec- 478

tural or training differences in favor of Qwen. For 479

closed-source models, similar scaling benefits are 480

observed. ChatGPT 3.5 drops from 63.18% to 481

39.77% (a 37% relative decrease), while the more 482

advanced ChatGPT 4o-mini and 4o demonstrate 483

stronger resilience—only a 10.5% and 6.4% rel- 484

ative drop, respectively. Claude 3.5 also reaches 485

similar levels of performance and stability. 486

Finding 2: Long CoT enhances both accu- 487

racy and noise resilience. QwQ-32B demon- 488

strates remarkable consistency across all noise lev- 489

els (84.60% to 85.68%), actually showing slight 490

improvement under noise. Similarly, ChatGPT o3- 491

mini exhibits exceptional stability among closed- 492

source models (87.50% to 85.00%, just a 2.9% 493

relative drop). By examining the reasoning outputs 494

of these models, we find that long CoT models per- 495

form granular statement-level noise removal rather 496

than the problem-level refinement proposed in our 497

work. We show a case study in the Appendix I.1. 498

Experiments on prompt engineering. Building 499

on our CoT analysis across noise levels, we eval- 500

uate the effectiveness of our prompt engineering 501

(PE) method in comparison with CoT (Table 2; 502

prompt template in Appendix A). Among open- 503

source models, both the LLaMA and Qwen series 504

generally benefit from our PE method, especially 505

under mid-to-high noise levels. LLaMA3.2-1B, 506

3B, and 8B show consistent improvements, except 507
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Table 2: Main results and PE experiments results on the GSM-Noise Benchmark.

Model Method Original Level 1 Level 2 Level 3 Level 4 Level 5

LLaMA3.2-1B
CoT 6.91% 2.50% 3.18% 3.41% 2.50% 1.36%
Ours 7.45% 3.18% 3.41% 4.67% 3.23% 1.82%

LLaMA3.2-3B
CoT 22.95% 23.41% 20.23% 17.50% 15.00% 12.50%
Ours 24.77% 25.23% 19.77% 22.95% 19.09% 17.73%

LLaMA3.1-8B
CoT 18.92% 20.00% 21.36% 17.05% 21.59% 14.32%
Ours 26.36% 25.23% 25.34% 18.86% 26.59% 17.50%

LLaMA3.1-70B
CoT 77.27% 68.64% 66.14% 68.41% 58.86% 68.41%
Ours 76.59% 74.77% 74.32% 71.59% 68.41% 73.41%

Qwen2.5-1.5B
CoT 37.50% 32.50% 26.75% 26.36% 18.86% 20.23%
Ours 36.14% 30.40% 26.12% 20.45% 21.36% 17.95%

Qwen2.5-3B
CoT 57.73% 51.82% 48.18% 40.23% 39.55% 33.64%
Ours 58.41% 54.55% 50.00% 43.41% 39.09% 34.95%

Qwen2.5-7B
CoT 71.82% 67.05% 66.36% 61.14% 60.00% 56.14%
Ours 71.82% 66.36% 68.64% 62.95% 62.95% 62.05%

Qwen2.5-72B
CoT 88.86% 82.27% 84.32% 79.77% 70.68% 81.36%
Ours 84.55% 82.27% 83.86% 81.32% 81.82% 83.41%

QwQ-32B
CoT 84.60% 84.55% 81.59% 78.64% 80.68% 85.68%
Ours 84.32% 84.32% 85.00% 81.36% 84.32% 86.14%

ChatGPT 3.5
CoT 63.18% 55.91% 51.59% 48.64% 42.05% 39.77%
Ours 60.45% 55.91% 54.77% 50.00% 46.59% 42.50%

ChatGPT 4o
CoT 88.86% 89.32% 84.77% 82.95% 82.50% 83.18%
Ours 87.50% 85.91% 82.27% 82.73% 82.50% 80.91%

ChatGPT 4o-mini
CoT 80.00% 78.86% 75.00% 73.41% 69.77% 71.59%
Ours 81.59% 76.82% 75.23% 73.64% 74.55% 72.27%

ChatGPT o3-mini
CoT 87.50% 86.36% 85.45% 85.45% 85.00% 85.00%
Ours 88.41% 88.18% 87.05% 85.91% 87.05% 85.91%

Claude 3.5
CoT 87.95% 79.55% 76.36% 75.45% 80.68% 82.27%
Ours 83.64% 82.27% 82.95% 77.50% 80.91% 82.73%

Table 3: Post-training experiments results.

Model Original +SFT +RL

LLaMA3.2-1B 1.36% 9.09% 13.00%
LLaMA3.2-3B 12.50% 34.77% 48.41%
LLaMA3.1-8B 14.32% 36.59% 45.36%
Qwen2.5-1.5B 20.23% 24.32% 23.41%
Qwen2.5-3B 33.64% 41.14% 45.00%
Qwen2.5-7B 56.14% 60.45% 65.21%

for a minor drop in LLaMA3.2-3B on the Level508

2 dataset. LLaMA3.1-70B exhibits notable noise509

resilience, achieving up to 16.2% relative improve-510

ment at Level 4, despite a slight decrease on the511

original dataset. Similarly, Qwen2.5-3B and 7B512

mostly improve (except for Qwen2.5-3B at Level513

4), and Qwen2.5-72B gains significantly at Level514

4 (15.8% relative increase). However, Qwen2.5-515

1.5B consistently degrades, likely due to insuffi-516

cient problem refinement—often repeating the fi-517

nal question statement rather than rephrasing it.518

QwQ-32B, already robust, sees further gains under519

noise with our method. Closed-source models also520

benefit from PE under noise. ChatGPT 3.5 and521

4o-mini show relative improvements of 4.54% and522

6.9%, respectively, at high noise levels. Claude523

Llama3.2-3B Qwen2.5-3B0
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Figure 4: Comparison of post-training methods between
w/ and w/o refining problem.

3.5 generally improves except on the noise-free 524

dataset. Although ChatGPT 4o sees a slight de- 525

cline, the ChatGPT o3-mini improves consistently, 526

suggesting that our method complements long CoT 527

reasoning and enhances robustness. We present 528

few-shot learning experiments in Appendix D and 529

a case study illustrating our prompt engineering 530

in Appendix I.2. We also conduct a preliminary 531

extension to factual QA reasoning in Appendix E 532

to demonstrate the generalizability of our method. 533

Experiments on post-training. We evaluate 534

the effectiveness of post-training techniques—SFT 535
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Table 4: Comparison of entropy between original noisy
input problems and refined problems.

Model Original RQ (SFT) RQ (RL)

LLaMA3.2-3B 67.15 10.33 14.17
Qwen2.5-3B 62.00 10.69 36.64

followed by RL—on our most challenging Level536

5 datasets. The prompt template used for post-537

training is shown in Appendix B. Results sum-538

marized in Table 3 show substantial performance539

improvements across all evaluated models. The540

LLaMA series demonstrates the most significant541

gains. LLaMA3.2-1B improves from 1.36% to542

13.00% after SFT and RL, an 856% relative im-543

provement. LLaMA3.2-3B shows a 287% rela-544

tive increase (from 12.50% to 48.41%), surpass-545

ing Qwen2.5-3B after RL. While improvements546

in the Qwen family are more modest, they remain547

substantial—Qwen2.5-3B relatively improves by548

33.8%, and Qwen2.5-7B achieves the highest over-549

all performance with 65.21% accuracy. Compared550

to prompt engineering, post-training yields stronger551

gains in reasoning robustness under noisy inputs.552

We show a case study in Appendix I.3.553

Ablation Study. To assess the importance of554

problem refinement, we conduct an ablation study555

by post-training LLaMA3.2-3B and Qwen2.5-3B556

without refining the input prompt (Appendix B).557

As shown in Figure 4, omitting problem refinement558

during post-training leads to a around 6% drop559

in accuracy, equivalent to a 16% relative decline.560

These findings highlight the necessity for both in-561

dustry and academic practitioners to implement562

further post-training techniques to achieve more563

robust LLM reasoning capabilities in real-world564

applications where input quality cannot be guar-565

anteed. We present a token usage comparison in566

Appendix F and provide additional experiments567

on out-of-domain (OOD) tasks in Appendix G to568

demonstrate the effectiveness and generalizability569

of our method. An analysis of the impact of each570

error type is included in Appendix H.571

Experiments on entropy comparison. To assess572

whether post-trained models reduce the entropy of573

input problems through refinement, we compare574

the perplexity of refined problems—generated by575

the post-trained checkpoints of LLaMA3.2-3B and576

Qwen2.5-3B—with that of the original noisy in-577

puts. We use the original (pre-trained) versions578

of the same models to measure perplexity. We use579

perplexity as a proxy for entropy, reflecting text pre-580

dictability and coherence—lower values indicate581

more fluent, structured language. As shown in Ta- 582

ble 4, both models produce refined problems with 583

significantly reduced perplexity after SFT, confirm- 584

ing that post-training helps the model transform 585

noisy input into more structured and predictable 586

sequences. Interestingly, RL-trained models ex- 587

hibit higher perplexity compared to their SFT coun- 588

terparts. This is likely due to the absence of ex- 589

plicit format constraints in our RL setup, where the 590

model occasionally refines only the final question 591

rather than the full input, or outputs refined content 592

outside the expected <rq></rq> tags. These results 593

support the view that entropy reduction through re- 594

finement plays a key role in the accuracy gains 595

observed in Section 7. 596

8 Discussion, Limitation, and Conclusion 597

In this work, we introduce GSM-Noise, a bench- 598

mark that systematically evaluates LLM reasoning 599

under realistic inputs. Unlike previous work, our 600

benchmark encompasses a wider variety of com- 601

mon error types and introduces diverse variations 602

into inputs. However, GSM-Noise is limited to the 603

mathematical domain, consists of only 220 tem- 604

plates, and may lack generality. In future work, we 605

plan to extend to other domains, including code, 606

factual QA, writing, and other open-ended tasks. 607

Furthermore, we test a wider range of open-source 608

models and closed-source models from 1B to 70B 609

parameters and beyond. We observe two interesting 610

findings: 1) Model accuracy and noise resilience 611

increase with scale. Closed-source models outper- 612

form open-source models, likely due to this scaling 613

advantage. 2) Long CoT models (e.g., QwQ-32B 614

and ChatGPT o3-mini) exhibit the best accuracy 615

and stability and achieve performance on par with 616

results on the original dataset without noise. To 617

improve LLM performance under noisy inputs, we 618

propose to use PE, SFT, and RL methods. Our re- 619

sults demonstrate improvements of 2-12% with PE, 620

4-13% with SFT, and 3-25% with RL. We further 621

show that refining the problem is a crucial step to 622

achieve these improvements. This refinement step 623

can be regarded as orthogonal to existing methods 624

such as Retrieval-Augmented Generation (RAG) 625

(Gao et al., 2023b; Lewis et al., 2020), LLM Plan- 626

ning (Huang et al., 2022), searching algorithm (Sel 627

et al., 2024; Gandhi et al., 2024), and (long) CoT. 628

We successfully combine problem refinement with 629

(long) CoT in this work and will explore combina- 630

tions with other approaches in future work. 631
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A Example of T ′ and q938

Prompt Template with Refinement Instructions

You are a helpful math assistant. The user asks a noisy math problem. You should first refine the whole math
problem by eliminating irrelevant information, correcting grammar errors, removing nonsensical symbols,
and then reorganizing the premises logically. You should then analyze and solve the refined math problem,
provide a detailed reasoning process, and finally present the answer. The final answer must be wrapped inside
a \boxed{{}} tag for clear extraction.

User: {problem}

Assistant: 

Figure 5: An example of the prompt template consisting of refinement instructions T ′.

Refined Question 

User: The Scie~|nce Center hosted field trips Monday t_hrough Friday last\ week. On Monda|y, 48 classes
visited. the same number as many v\*isited on Tuesday= a?|~nd= three times as many visited on Wednesday.
=S%#=tudents are preparing for the u@+pcoming sc\&ience fair. The @Science Cen!t+er w&i^ll be closed
next week for renovations. M/?eanwhile, a new movie was released in theaters. Last mont~?h's f`%|ield trips
were fewer due to bad we?ather. Another 30 clas@ses visited on Th!ursday and 40 visit+^_ed on Fri/day. In
all, how many classes visited the Science Center last week?

Assistant: ... Last week, the Science Center hosted field trips from Monday through Friday. On Monday, 48
classes visited. On Tuesday, the same number as Monday visited. On Wednesday, three times as many visited
as on Monday. On Thursday, 30 classes visited, and on Friday, 40 classes visited. How many classes visited
the Science Center in total last week?
...

Figure 6: An example of a refined problem q generated by Qwen2.5-3B-SFT.

B Prompt Template for Post-training939

Prompt template used for post-training (SFT and RL) w/ Refinement

A conversation between the User and Assistant. The user asks a noisy math problem. The assistant should first
refine the whole math problem by eliminating irrelevant information, correcting grammar errors, removing
nonsensical symbols, and then reorganizing the statements logically. It should then analyze and solve the
refined math problem, provide a detailed reasoning process, and finally present the answer. The refined
problem should be enclosed within <rq> </rq> tags. The reasoning process should be enclosed within <think>
</think> tags, and the answer should be enclosed within <answer> </answer> tags. The final answer must be
wrapped inside a \boxed{{}} tag for clear extraction.

User: {problem}

Assistant: 

Figure 7: Prompt template used for post-training (SFT and RL) with the problem refinement step.

C Training Setup Details940

For supervised fine-tuning, we train the LLaMA-1B, LLaMA-3B, Qwen-1B, and Qwen-3B models using941

the training data described in Section 6.1. We use bfloat16 precision to improve memory efficiency and942
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Prompt template used for post-training (SFT and RL) w/o Refinement
A conversation between the User and Assistant. The user asks a noisy math problem, and the assistant solves
it. The assistant first thinks about the reasoning process in the mind and then provides the user with the
answer. The reasoning process should be enclosed within <think> </think> tags, and the answer should be
enclosed within <answer> </answer> tags. The final answer must be wrapped inside a \boxed{{}} tag for
clear extraction. 

User: {problem}

Assistant:

Figure 8: Prompt template used for post-training (SFT and RL) without the problem refinement step.

training stability. The maximum input sequence length is set to 2048 tokens. We use a per-device batch 943

size of 4 and apply gradient accumulation over 4 steps, resulting in an effective batch size of 16. Training 944

is conducted for 5 epochs. We adopt a cosine learning rate scheduler with a base learning rate of 1e-7 and 945

a 10% warmup ratio. Model performance is monitored on the validation set, and the checkpoint with the 946

best validation accuracy is used for evaluation on the test set. 947

For reinforcement learning, we adopt the GRPO algorithm as implemented in the VeRL framework. 948

We use Ray for efficient distributed training. The setup uses bfloat16 precision with a per-device batch 949

size of 4 and gradient accumulation over 16 steps, resulting in an effective batch size of 64. We set the 950

maximum prompt length to 500 tokens and the maximum response length to 1508 tokens. The learning 951

rate is set to 1e-6. For each question, 8 rollouts are generated in parallel. To improve generation speed, we 952

utilize vLLM as the backend. Gradient checkpointing is enabled to reduce memory usage. We train for a 953

total of 15 epochs. Both SFT and RL experiments are conducted on 2 NVIDIA A100 GPUs (80GB each). 954
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D Experiments on Few-shot Prompting955

In this section, we conduct additional experiments using few-shot prompting. Specifically, we apply956

one-shot prompts and evaluate all models introduced in Section 6. The results are shown in Table 5.

Table 5: Few-shot prompting results on the GSM-Noise Benchmark.

Model Method Original Level 1 Level 2 Level 3 Level 4 Level 5

LLaMA3.2-1B
CoT 6.53% 2.73% 2.89% 3.11% 2.83% 1.75%
Ours 7.18% 3.25% 3.07% 4.39% 2.67% 1.93%

LLaMA3.2-3B
CoT 24.59% 22.50% 21.47% 18.08% 16.33% 13.51%
Ours 27.56% 25.67% 21.22% 20.15% 17.58% 15.92%

LLaMA3.1-8B
CoT 19.35% 21.42% 20.46% 18.57% 19.30% 15.27%
Ours 25.60% 26.08% 25.44% 20.15% 21.36% 19.63%

LLaMA3.1-70B
CoT 79.57% 70.29% 67.33% 69.30% 57.51% 65.94%
Ours 81.45% 77.21% 75.27% 72.36% 69.25% 73.59%

Qwen2.5-1.5B
CoT 41.58% 33.84% 27.94% 28.95% 21.03% 21.56%
Ours 39.00% 32.67% 25.18% 23.87% 22.64% 20.50%

Qwen2.5-3B
CoT 58.49% 53.56% 50.44% 51.34% 41.67% 35.11%
Ours 57.15% 54.80% 50.93% 50.56% 45.16% 37.97%

Qwen2.5-7B
CoT 72.49% 69.34% 67.58% 62.48% 60.97% 57.80%
Ours 73.97% 70.00% 66.53% 61.07% 61.62% 60.25%

Qwen2.5-72B
CoT 88.16% 83.54% 84.98% 80.33% 73.12% 79.59%
Ours 89.85% 85.11% 85.05% 82.67% 81.24% 80.01%

QwQ-32B
CoT 86.31% 85.67% 82.49% 80.56% 80.34% 83.73%
Ours 85.64% 85.10% 86.28% 82.87% 83.37% 84.80%

ChatGPT 3.5
CoT 62.27% 57.95% 53.41% 49.55% 46.14% 42.95%
Ours 59.32% 54.32% 56.14% 49.77% 46.14% 44.77%

ChatGPT 4o
CoT 91.36% 87.27% 85.91% 83.41% 83.64% 82.27%
Ours 89.27% 87.05% 84.32% 81.59% 83.64% 84.77%

ChatGPT 4o-mini
CoT 78.18% 76.82% 75.23% 70.00% 70.00% 68.64%
Ours 81.14% 76.82% 77.05% 74.32% 74.55% 70.91%

ChatGPT o3-mini
CoT 89.55% 85.68% 85.91% 86.36% 84.32% 85.23%
Ours 90.00% 87.50% 88.18% 87.27% 85.68% 87.50%

Claude 3.5
CoT 86.36% 80.91% 75.45% 80.23% 79.55% 81.59%
Ours 87.05% 83.41% 81.82% 80.45% 80.00% 85.00%

957
First, few-shot prompting improves the accuracy of both CoT and our refinement method across all958

models, with the exception of smaller models (i.e., those with 1B parameters), where the gains are959

negligible or absent. Second, our refinement consistently outperforms CoT on all open-source models.960

For closed-source models, our method surpasses CoT on ChatGPT 4o-mini, o3-mini, and Claude 3.5, but961

underperforms on ChatGPT 3.5 and ChatGPT 4o at Levels 1–3. However, our refinement still outperforms962

CoT at Levels 4–5 for both ChatGPT 3.5 and 4o, demonstrating its robustness and effectiveness in963

reducing hallucinations under high-noise scenarios.964
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E Experiments on Factual QA Domain 965

In this section, to further demonstrate our approach, we conduct a preliminary extension to factual QA 966

reasoning. Specifically, we adapt the AdversarialQA dataset (Bartolo et al., 2020) and design 30 templates, 967

generating 5 questions per template. We then evaluate these questions using both the open-source and 968

closed-source models mentioned in Section 6, applying the PE method. The results are shown in Table 6. 969

Table 6: Main results and PE experiments results on factual QA domain.

Model Method Original Level 1 Level 2 Level 3 Level 4 Level 5

LLaMA3.2-1B
CoT 17.50% 16.17% 14.67% 12.67% 10.00% 7.33%
Ours 17.50% 15.39% 15.83% 12.00% 11.17% 6.67%

LLaMA3.2-3B
CoT 20.83% 20.00% 18.33% 14.33% 12.67% 10.00%
Ours 22.51% 31.67% 23.33% 21.67% 20.00% 19.67%

LLaMA3.1-8B
CoT 21.17% 20.00% 23.67% 16.33% 13.50% 13.67%
Ours 27.67% 25.33% 22.00% 20.67% 19.33% 18.17%

LLaMA3.1-70B
CoT 52.50% 50.00% 43.33% 35.00% 36.51% 33.33%
Ours 74.17% 60.33% 55.00% 51.67% 48.67% 43.33%

Qwen2.5-1.5B
CoT 16.67% 14.33% 14.33% 12.17% 10.00% 8.33%
Ours 17.33% 12.67% 12.00% 10.50% 9.17% 8.33%

Qwen2.5-3B
CoT 38.17% 33.33% 33.33% 28.00% 29.55% 26.67%
Ours 42.33% 41.67% 40.50% 35.33% 35.17% 35.00%

Qwen2.5-7B
CoT 45.83% 57.67% 55.00% 41.33% 39.33% 36.00%
Ours 52.17% 53.33% 50.67% 43.25% 40.60% 38.17%

Qwen2.5-72B
CoT 57.50% 63.33% 51.67% 55.00% 48.67% 47.33%
Ours 69.17% 60.67% 66.25% 50.67% 58.50% 55.25%

QwQ-32B
CoT 55.00% 65.00% 53.33% 46.67% 49.50% 50.00%
Ours 59.17% 60.00% 68.33% 58.33% 47.17% 56.67%

ChatGPT 3.5
CoT 42.50% 56.67% 48.33% 51.67% 48.33% 50.00%
Ours 47.50% 41.67% 45.00% 50.00% 40.00% 46.67%

ChatGPT 4o
CoT 50.00% 50.00% 50.00% 50.00% 50.00% 50.00%
Ours 50.00% 55.00% 51.67% 51.67% 55.00% 56.67%

ChatGPT 4o-mini
CoT 50.00% 51.67% 50.00% 48.33% 48.33% 55.00%
Ours 55.83% 50.00% 48.33% 55.00% 48.33% 56.67%

ChatGPT o3-mini
CoT 62.50% 66.67% 68.33% 63.33% 63.33% 63.33%
Ours 63.33% 70.00% 68.33% 68.33% 70.00% 60.00%

Claude 3.5
CoT 75.00% 76.67% 76.67% 73.33% 78.33% 73.33%
Ours 66.67% 70.00% 68.33% 68.33% 68.33% 70.00%

First, our refinement generally outperforms CoT on open-source models, with the exception of smaller 970

models (e.g., those with 1B parameters). For instance, our approach achieves up to a 20% absolute 971

improvement on the LLaMA3.1-70B model. Second, the results are mixed for closed-source models: 972

our refinement performs better on ChatGPT 4o, 4o-mini, and o3-mini, but underperforms on ChatGPT 973

3.5 and Claude 3.5. Third, in contrast to the accuracy degradation trend observed in GSM-Noise for 974

both open-source and closed-source models, we find that the accuracy of closed-source models remains 975

stable, or even improves, as noise levels increase. We hypothesize that this robustness stems from 976

the fact that closed-source models are generally trained on larger pretraining corpora and with longer 977

context lengths. As a result, they are more capable of generating answers directly from the final question, 978

even without relying heavily on context. Unlike mathematical problems, factual QA often requires less 979

logical reasoning, which may explain the stable performance. We leave a deeper investigation of this 980

phenomenon for future work. Additionally, we plan to further validate our refinement approach using 981

post-training methods; however, these experiments are currently ongoing due to their computational and 982

time complexity. 983
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F Experiments on Token Usage984

In this section, we conduct several experiments to show the number of generation tokens. First, we985

evaluate token usage in prompt engineering (PE) using the Qwen series models on the Level 5 dataset.986

The results are shown in 7. We find that applying refinement increases token usage by approximately 50987

tokens, which is expected, as the refined question typically adds that amount of content.988

Table 7: Token usage comparison with and without refinement using Qwen models on the Level 5 dataset.

Model CoT Ours

Qwen2.5-1.5B 442.95 471.74
Qwen2.5-3B 443.16 489.70
Qwen2.5-7B 418.86 462.30
Qwen2.5-72B 379.36 447.05

Second, we further evaluate token usage in post-trained models. The results are presented in Table 8.989

We observe that the post-trained models exhibit similar token usage patterns to those in the PE experiments.990

The increase in token count is primarily attributed to the question refinement process.991

Table 8: Token usage analysis in post-trained models with and without refinement.

Model CoT Ours

think% total refinement% think% total

Qwen2.5-3B-SFT 0.9351 262 0.2339 0.7251 342
Qwen2.5-3B-RL 0.7702 322 0.1920 0.7421 349

LLaMA3.2-3B-SFT 0.6651 427 0.2729 0.5706 524
LLaMA3.2-3B-RL 0.8069 439 0.2038 0.7958 517

Third, we evaluate the reasoning model (e.g., QwQ-32B) across multiple noise level datasets. The992

results are presented in Table 9. Interestingly, our refinement reduces the number of generated tokens to993

some extent, supporting the interpretation that our method functions as a meta-cognitive step—helping994

the model clarify its reasoning pathway before executing detailed chain-of-thought (CoT) reasoning.

Table 9: Token usage of QwQ-32B across different levels with and without refinement.

QwQ-32B CoT Ours

Original 1045.95 1012.98
Level 1 940.73 937.42
Level 2 950.88 964.15
Level 3 970.47 975.33
Level 4 990.23 974.65
Level 5 980.58 862.18

995
Fourth, we observe mixed results on closed-source models regarding token usage after applying our996

method. For ChatGPT 3.5, token usage increases consistently across all difficulty levels: for example, at997

Level 1, token usage rises from 227 (CoT) to 272 (Ours), and at Level 5, it increases from 246 to 293. A998

similar upward trend is observed for Claude 3.5, where token usage grows from 275 to 318 at Level 1 and999

from 282 to 325 at Level 5. We exclude ChatGPT o3-mini from this analysis, as it typically returns only1000

the final answer without intermediate reasoning steps, making its token usage incomparable. However, the1001

open-source reasoning model QwQ-32B, when combined with our method, exhibits a modest reduction1002

in the number of generated tokens. In contrast, for ChatGPT 4o and ChatGPT 4o-mini, our question1003
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refinement leads to a consistent reduction in token usage. For instance, ChatGPT 4o’s token count at 1004

Level 3 decreases from 341 (CoT) to 333 (Ours), and at Level 5, from 343 to 323. Similarly, ChatGPT 1005

4o-mini shows a drop from 453 to 417 at Level 5. We leave a more thorough investigation on token usage 1006

to the future work. 1007

Table 10: Token usage across different levels for each model, with and without refined questions (rq).

Model Method Original Level 1 Level 2 Level 3 Level 4 Level 5

ChatGPT 3.5
CoT 218 227 229 256 261 246
Ours 254 272 283 284 294 293

ChatGPT 4o
CoT 490 416 483 341 406 343
Ours 447 408 403 333 327 323

ChatGPT 4o-mini
CoT 485 422 456 423 425 453
Ours 413 415 418 421 426 417

ChatGPT o3-mini
CoT 227 241 244 253 273 261
Ours 289 299 300 311 316 311

Claude 3.5
CoT 267 275 277 280 286 282
Ours 312 318 317 319 325 325

G Experiments on Out-of-Domain Tasks 1008

In this section, we evaluate the post-trained models (e.g., LLaMA3.2-3B-SFT and LLaMA3.2-3B-RL) 1009

introduced in our paper on additional datasets, including GSM8K, AIME 2024, and GPQA. The results 1010

are summarized as follows.

Table 11: Evaluation on OOD tasks (GSM8K, AIME 2024, GPQA) using LLaMA3.2-3B SFT and RL.

Model Method GSM8K AIME2024 GPQA

LLaMA3.2-3B-SFT
CoT 70.29% 3.75% 20.71%
Ours 71.74% 3.96% 28.28%

LLaMA3.2-3B-RL
CoT 71.38% 3.56% 21.95%
Ours 72.34% 4.31% 31.31%

1011

We find that models incorporating our refinement method consistently outperform their non-refinement 1012

counterparts on OOD tasks. Specifically, our refinement yields an accuracy improvement of approximately 1013

1–2% on GSM8K and AIME 2024, and a notable absolute gain of around 10% on the GPQA benchmark. 1014

These results highlight the effectiveness of our method in enhancing model generalization on OOD 1015

datasets. 1016

H Experiments on Impact of Each Error Type 1017

In this section, we conduct additional ablation experiments to analyze the impact of each error type. 1018

These experiments are performed on both PE and post-trained models. For the PE setting, we evaluate 1019

LLaMA3.2-3B and LLaMA3.1-72B. For post-trained models, we evaluate LLaMA3.2-3B-SFT and 1020

LLaMA3.2-3B-RL. 1021

Impact of Grammar Errors. In this experiment, we fix the rates of all other error types to 0 and vary the 1022

grammar error rate from 0 (i.e., the original column) to 1.0. The performance of PE is shown in Table 12, 1023

while the results of post-trained methods are presented in Table 13. 1024

The performance of PE models exhibits a gradual decline as the grammar error rate increases. For 1025

instance, LLaMA3.2-3B under our method drops from 24.77% to 21.46% at a full error rate, while the 1026

CoT baseline declines from 22.95% to 20.54%. A similar trend is observed for the larger LLaMA3.1-72B 1027
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Table 12: Impact of grammar error rate for LLaMA3.2-3B and LLaMA3.1-72B using PE.

Model Method Original 0.2 0.4 0.6 0.8 1.0

LLaMA3.2-3B
CoT 22.95% 23.06% 23.06% 21.50% 20.23% 20.54%
Ours 24.77% 24.59% 23.85% 23.22% 21.70% 21.46%

LLaMA3.1-72B
CoT 77.27% 77.27% 76.54% 76.13% 75.60% 75.91%
Ours 76.59% 77.01% 77.26% 75.05% 76.98% 76.83%

Table 13: Impact of grammar error rate for LLaMA3.2-3B-SFT and LLaMA3.2-3B-RL.

Model Original 0.2 0.4 0.6 0.8 1.0

LLaMA3.2-3B-SFT 49.54% 49.87% 46.10% 43.02% 44.23% 44.64%
LLaMA3.2-3B-RL 55.36% 54.05% 50.18% 49.55% 49.55% 49.18%

model, although it demonstrates greater robustness to grammar errors; its performance under our method1028

remains relatively stable, even achieving slight fluctuations (e.g., 77.26% at 0.4 error rate vs. 76.59%1029

at 0). This suggests that larger models may exhibit increased tolerance to isolated syntactic distortions.1030

In post-trained models (Table 13), both LLaMA3.2-3B-SFT and LLaMA3.2-3B-RL show noticeable1031

performance drops as grammar errors increase, with the RL variant being slightly more robust overall.1032

Impact of irrelevant information. In this experiment, we fix the rates of all other error types to 0 and1033

vary the irrelevant information rate from 0 (i.e., original column) to 1.0. The performance of PE is shown1034

in Table 14, while the results of post-trained methods are presented in Table 15.1035

Table 14: Impact of irrelevant information error rate for LLaMA3.2-3B and LLaMA3.1-72B using PE.

Model Method Original 0.2 0.4 0.6 0.8 1.0

LLaMA3.2-3B
CoT 22.95% 23.06% 23.06% 21.50% 18.23% 15.54%
Ours 24.77% 24.59% 23.85% 23.22% 21.70% 19.46%

LLaMA3.1-72B
CoT 77.27% 77.27% 77.73% 71.36% 71.82% 68.64%
Ours 76.59% 77.03% 77.46% 73.82% 72.18% 70.26%

Table 15: Impact of irrelevant information error rate for LLaMA3.2-3B-SFT and LLaMA3.2-3B-RL.

Model Original 0.2 0.4 0.6 0.8 1.0

LLaMA3.2-3B-SFT 49.54% 47.35% 46.26% 46.78% 43.33% 42.94%
LLaMA3.2-3B-RL 55.36% 51.36% 50.05% 49.09% 47.55% 47.29%

The presence of irrelevant information substantially degrades performance for both PE models. For1036

LLaMA3.2-3B, performance under our method drops from 24.77% to 19.46% as the irrelevant information1037

rate increases from 0 to 1.0, while the CoT baseline exhibits an even steeper decline from 22.95% to1038

15.54%. The larger LLaMA3.1-72B model is more robust, but still experiences a performance drop: under1039

our method, accuracy decreases from 76.59% to 70.26%, and under CoT, from 77.27% to 68.64%. This1040

suggests that even large models struggle with distractive content, though their degradation is less severe.1041

In the post-trained models, both SFT and RL variants of LLaMA3.2-3B also show consistent performance1042

degradation. The RL model drops from 55.36% to 47.29%, while the SFT model declines from 49.54%1043

to 42.94%. These findings indicate that irrelevant information is one of the most disruptive error types,1044

highlighting the importance of input clarity and focus for reliable reasoning performance.1045

Impact of symbol error. In this experiment, we fix the rates of all other error types to 0 and vary the1046
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irrelevant information rate from 0 (i.e., original column) to 0.040. The performance of PE is shown in 1047

Table 16, while the results of post-trained methods are presented in Table 17. 1048

Table 16: Impact of symbol error rate for LLaMA3.2-3B and LLaMA3.1-72B using PE.

Model Method Original 0.008 0.016 0.024 0.032 0.040

LLaMA3.2-3B
CoT 22.95% 22.02% 19.67% 18.64% 15.21% 11.26%
Ours 24.77% 25.79% 22.00% 20.67% 17.56% 14.79%

LLaMA3.1-72B
CoT 77.27% 78.15% 76.49% 73.18% 70.33% 66.16%
Ours 76.59% 76.20% 75.87% 73.45% 71.56% 68.30%

Table 17: Impact of symbol error rate for LLaMA3.2-3B-SFT and LLaMA3.2-3B-RL.

Model Original 0.008 0.016 0.024 0.032 0.040

LLaMA3.2-3B-SFT 49.54% 50.24% 49.76% 47.64% 45.91% 42.57%
LLaMA3.2-3B-RL 55.36% 54.89% 53.32% 51.00% 49.67% 47.16%

We find that even small amounts of symbol corruption lead to substantial performance degradation 1049

across all PE models. For LLaMA3.2-3B, our method’s performance drops sharply from 24.77% to 1050

14.79% as the symbol error rate increases to 0.040, while the CoT baseline falls even more drastically from 1051

22.95% to 11.26%. A similar trend is observed in LLaMA3.1-72B, though the degradation is somewhat 1052

less severe—its accuracy under our method decreases from 76.59% to 68.30%. These results suggest 1053

that symbol-level noise, such as altered operators or variables, is particularly disruptive to reasoning, 1054

likely due to its interference with mathematical semantics and logic parsing. In post-trained models, we 1055

observe comparable patterns: LLaMA3.2-3B-SFT declines from 49.54% to 42.57%, and the RL variant 1056

drops from 55.36% to 47.16%. Compared to grammar errors and irrelevant information, symbol errors 1057

consistently lead to the steepest performance decline across both PE and post-trained settings. This 1058

underscores the sensitivity of LLMs to even minor perturbations in symbolic expressions, highlighting the 1059

need for enhanced robustness to syntactic and semantic noise. 1060

Table 18: Impact of input shuffle on LLaMA3.2-3B and LLaMA3.1-72B using PE.

Model Method Original w/ shuffle

LLaMA3.2-3B
CoT 22.95% 18.67%
Ours 24.77% 21.26%

LLaMA3.1-72B
CoT 77.27% 75.46%
Ours 76.59% 75.98%

Impact of shuffling. In this experiment, we fix the rates of all other error types to 0 and compare the 1061

performance with and without shuffling. The performance of PE is shown in Table 18, while the results of 1062

post-trained methods are presented in Table 19. 1063

Table 19: Impact of input shuffle on LLaMA3.2-3B-SFT and LLaMA3.2-3B-RL.

Model Original w/ shuffle

LLaMA3.2-3B-SFT 49.54% 45.68%
LLaMA3.2-3B-RL 55.36% 52.97%

Shuffling leads to a modest performance drop in PE models. For LLaMA3.2-3B, our method sees a 1064

decrease from 24.77% to 21.26%, while the CoT baseline drops from 22.95% to 18.67%. The larger 1065
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LLaMA3.1-72B model demonstrates greater resilience, with less than 2% degradation under both methods.1066

Similarly, in post-trained models (Table 19), LLaMA3.2-3B-SFT and RL show only slight declines (e.g.,1067

49.54% to 45.68% for SFT, and 55.36% to 52.97% for RL). When viewed alongside grammar errors,1068

irrelevant information, and symbol errors, shuffling shows a modest disruptive perturbation. This may be1069

because shuffled inputs retain all original content and, in many cases, allow the model to recover meaning1070

through global reasoning or attention mechanisms.1071

In conclusion, in the case of LLaMA3.2-3B, we observe that irrelevant information and symbol errors1072

have the most significant negative impact, while grammar errors and shuffling lead to more modest1073

performance degradation. LLaMA3.1-72B exhibits a similar trend, demonstrating greater robustness1074

overall but following the same relative ranking of error severity. Across both PE and post-trained models,1075

symbol errors consistently cause the steepest performance drop, likely due to their disruption of core1076

logical and mathematical structures. Irrelevant information also degrades performance substantially,1077

particularly in smaller models, by introducing semantic noise that distracts from the reasoning task. In1078

contrast, shuffling results in more gradual declines, and grammar errors prove to be the least harmful,1079

suggesting that models can often recover from syntactic disfluency or reordered content. These findings1080

highlight the varying sensitivities of reasoning models to different types of noise and underscore the1081

importance of designing robust models capable of handling symbolic and semantic perturbations. We1082

leave a more detailed investigation to future work.1083
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I Case Study 1084

In this section, we present example responses from QwQ-32B, Qwen2.5-3B with prompt engineering, 1085

and Qwen2.5-3B after post-training (i.e., Qwen2.5-3B-RL). 1086

I.1 Example Responses of QwQ-32B 1087

We present the essential portions of the QwQ-32B response with and without reformulating the problem, as 1088

the experimental setups are comprehensively detailed in §6. The original problem is colored in blue. The 1089

key part of the response where the model parses the original problem and does refinement is highlighted 1090

in violet. 1091

USER: (Omit prompt instruction here) Nadine andw̄ere Cindy given the same amount of allowance by 1092

their mother . Nadine and Cindy bes both in grade 5 . The stor?!e was offeri*ng a di@**scount 1093

on candles that day . Nadine and Cindy thought about buying a cake wiht a cost? //of 8but 1094

decided not to . The two girls d!ecide to combi/ne their allowance to surprise their| father on 1095

hi s birth/#_day . They buy a book whi+%ch costs $ 5 . After buyi&ng +boo/k and c andles , 1096

the remianing money was used to bũy 4 packets of cookies for $ 11 each . It aws a sunny day 1097

when Nadine a@-nd Cindy went to the store . Their favorite subject i+!s . scien +ce They also 1098

bought 48 ca‘ndle+s which were s=old fro $ 1.0 for 4 candles . How much did Nadine and 1099

Cindy’s mother give each one of them? 1100

QWQ-32B: Okay, let’s see. I need to figure out how much allowance Nadine and Cindy each got 1101

from their mom. The problem says they were given the same amount, so whatever the total is, 1102

we can divide by two to get each person’s allowance. 1103

First, let me parse all the information given here. The problem is a bit jumbled with some weird 1104

symbols and formatting issues, but I’ll try to extract the key points step by step. 1105

... 1106

Wait, the problem says "After buying the book and candles, the remaining money was used to 1107

buy 4 packets of cookies for $11 each." Wait, but the original thought was to buy a cake but 1108

they didn’t. So maybe the candles they bought are separate? 1109

... 1110

But to find the cost of candles, the problem says: "They also bought 48 candles which were 1111

sold for $1.0 for 4 candles." 1112

... 1113

Wait, but the problem says "After buying the book and candles, the remaining money was used 1114

to buy 4 packets of cookies for $11 each." So that implies that the cookies were bought with 1115

the remaining money after the book and candles. Therefore, the total money they had must be 1116

equal to the sum of the book, candles, and cookies. So total money is indeed 5 +12 +44 = 61. 1117

Since they each got the same amount, each got 61/2 = $30.50. 1118

... 1119

Answer: 1120

30.50 1121

Now, we show the essential portions of QwQ-32B’s response with problem refinement. 1122

USER: (Omit prompt instruction here) Nadine andw̄ere Cindy given the same amount of allowance by 1123

their mother . Nadine and Cindy bes both in grade 5 . The stor?!e was offeri*ng a di@**scount 1124

on candles that day . Nadine and Cindy thought about buying a cake wiht a cost? //of 8but 1125

decided not to . The two girls d!ecide to combi/ne their allowance to surprise their| father on 1126

hi s birth/#_day . They buy a book whi+%ch costs $ 5 . After buyi&ng +boo/k and c andles , 1127

the remianing money was used to bũy 4 packets of cookies for $ 11 each . It aws a sunny day 1128

when Nadine a@-nd Cindy went to the store . Their favorite subject i+!s . scien +ce They also 1129

bought 48 ca‘ndle+s which were s=old fro $ 1.0 for 4 candles . How much did Nadine and 1130

Cindy’s mother give each one of them? 1131
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QWQ-32B: Okay, let me try to figure this out. The problem is a bit messy with all the symbols and1132

extra info, so first I need to clean it up. Let me read through it again and pick out the relevant1133

parts.1134

So, Nadine and Cindy got the same allowance from their mom. They both are in 5th grade. The1135

store had a discount on candles, but they decided not to buy a cake that cost $8. They used their1136

combined allowance to buy a book for $5 and some candles. Then they bought 4 packets of1137

cookies at $11 each. Also, they bought 48 candles which were $1 for 4 candles. The question is1138

how much each got from their mom.1139

Hmm, okay. Let me list the key points:1140

- Both have the same allowance.1141

- They combined their money to buy gifts for their dad’s birthday.1142

- They bought a book costing $5.1143

- 4 packets of cookies at $11 each. So 4 x 11 = $44 for cookies.1144

- 48 candles bought at $1 for 4 candles. So how much did the candles cost? Let’s see: 48 candles1145

divided by 4 per dollar is 12, so 12 dollars for candles.1146

- They decided not to buy the cake that was $8, so that’s not part of the expenses.1147

- After buying the book, candles, and cookies, the remaining money was used for the cookies?1148

Wait, no. Wait, the problem says "After buying the book and candles, the remaining money was1149

used to buy 4 packets of cookies for $11 each." Wait, maybe I misread that part. Let me check1150

again.1151

...1152

Which is the same as adding all expenses. So total expenses are indeed 5 + 12 + 44 = 61.1153

Therefore, their combined allowance is $61. Since they each got the same amount, each got1154

61/2 = $30.50.1155

Answer:1156

30.501157

We observe that QwQ-32B exhibits distinct problem-solving strategies depending on whether problem1158

refinement is applied. Without refinement, the model adopts a statement-level approach—meticulously1159

correcting grammatical and symbolic errors line by line while conducting a detailed step-by-step analysis.1160

It engages in self-reflection and verification, ultimately reorganizing the entire problem structure to1161

arrive at the correct solution. In contrast, when refinement is performed upfront, QwQ-32B shifts to a1162

problem-level strategy, leading to a more streamlined reasoning process and significantly reduced token1163

usage. This contrast suggests that early refinement may offload low-level correction effort and facilitate1164

more efficient reasoning. We plan to further investigate whether combining our problem refinement with1165

long CoT can synergistically improve both accuracy and efficiency.1166

I.2 Example Responses of Qwen2.5-3B1167

We present the Qwen2.5-3B response with and without problem refinement, as the experimental setups1168

are comprehensively detailed in §6. The refined The original problem is colored in blue. The key part of1169

the response where the model parses the original problem and does refinement is highlighted in violet.1170

Incorrect reasoning steps in the response are highlighted in red.1171

USER: (Omit prompt instruction here) There bes 40 students in Nina ’s class% . Nin+#˜a loves1172

to play the piano*# . Each students in N#ina ’s friend class started with 5 penci?/ls . Each1173

?s$tud!ents started last year with 8 penclis ?. Each student started the year with 6 pencils .1174

Nina plans to give each st#/˜udent 4 more pencils next year . After two months , 1/5 of the1175

total pˆencils in class were used /. Nina has a pet ham&ster . Each student al&so received 31176

notebooks at the beginning the of year . At the end of year , only 1/2 of˜ the remaining pencils1177

were left . How many pencils were left?1178

22



QWEN2.5-3B: To solve this problem, we need to carefully follow the steps and calculations provided. 1179

Let’s break it down step by step. 1180

1. Determine the initial number of pencils each student had: 1181

- Each student started with 8 pencils. 1182

- There are 40 students in the class. 1183

- Therefore, the total number of pencils initially is: 1184

8 pencils/student × 40 students = 320 pencils 1185

2. Calculate the number of pencils given to each student next year: 1186

- Each student will receive 4 more pencils. 1187

- Therefore, the total number of pencils each student will have next year is: 1188

8 pencils + 4 pencils = 12 pencils 1189

3. Calculate the total number of pencils after the first year: 1190

- Each student will have 12 pencils. 1191

- There are 40 students. 1192

- Therefore, the total number of pencils after the first year is: 1193

12 pencils/student × 40 students = 480 pencils 1194

4. Calculate the number of pencils used after two months: 1195

- 1
5 of the total pencils were used. 1196

- Therefore, the number of pencils used is: 1197

1

5
× 480 = 96 pencils 1198

5. Calculate the number of pencils remaining after two months: 1199

- The total number of pencils after the first year is 480. 1200

- 96 pencils were used. 1201

- Therefore, the number of pencils remaining is: 1202

480− 96 = 384 pencils 1203

6. Calculate the number of pencils remaining at the end of the year: 1204

- At the end of the year, only 1
2 of the remaining pencils were left. 1205

- Therefore, the number of pencils remaining at the end of the year is: 1206

1

2
× 384 = 192 pencils 1207

Answer: 1208

192 1209

Now, we show the Qwen2.5-3B’s response with problem refinement. 1210

USER: (Omit prompt instruction here) Nadine andw̄ere Cindy given the same amount of allowance by 1211

their mother . Nadine and Cindy bes both in grade 5 . The stor?!e was offeri*ng a di@**scount 1212

on candles that day . Nadine and Cindy thought about buying a cake wiht a cost? //of 8but 1213

decided not to . The two girls d!ecide to combi/ne their allowance to surprise their| father on 1214

hi s birth/#_day . They buy a book whi+%ch costs $ 5 . After buyi&ng +boo/k and c andles , 1215

the remianing money was used to bũy 4 packets of cookies for $ 11 each . It aws a sunny day 1216

when Nadine a@-nd Cindy went to the store . Their favorite subject i+!s . scien +ce They also 1217

bought 48 ca‘ndle+s which were s=old fro $ 1.0 for 4 candles . How much did Nadine and 1218

Cindy’s mother give each one of them? 1219
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QWEN2.5-3B: Let’s refine the math problem logically and eliminate irrelevant information:1220

Refined Problem:1221

There are 40 students in Nina’s class.1222

Each student in Nina’s class started with 6 pencils.1223

Nina plans to give each student 4 more pencils next year.1224

After two months, 1
5 of the total pencils in class were used.1225

At the end of the year, only 1
2 of the remaining pencils were left.1226

We need to find out how many pencils were left at the end of the year.1227

Solution:1228

First, calculate the total number of pencils at the beginning of the year:1229

6 pencils/student × 40 students = 240 pencils1230

After two months, 1
5 of the pencils were used:1231

1

5
× 240 = 48 pencils1232

Pencils remaining after two months:1233

240− 48 = 192 pencils1234

At the end of the year, only 1
2 of the remaining pencils were left:1235

1

2
× 192 = 96 pencils1236

Answer:1237

961238

The results indicate that without problem refinement, Qwen2.5-3B is prone to distraction from irrelevant1239

information. As shown in the highlighted example, the model is misled by mentions such as “the pencil1240

each student had last year,” leading to incorrect calculations. When problem refinement is applied, the1241

model—despite not filtering out all irrelevant content—maintains focus on the core information and1242

successfully computes the correct answer. This suggests that LLMs possess a degree of innate problem1243

refinement ability acquired during pre-training, even in the absence of explicit post-training for this skill.1244

I.3 Example Responses of Qwen2.5-3B-RL1245

We present the response of Qwen2.5-3B with and without problem refinement. The original problem1246

is colored in blue. The key part of the response where the model parses the original problem and does1247

refinement is highlighted in violet. Incorrect reasoning steps in the response are highlighted in red.1248

USER: (Omit prompt instruction here) A bumper car rink has 18 pink . cars The ri+-nk also some1249

has green caˆ@rs . green cars are the oldest ones in the‘ rink . The rink ahs 6 fewer orang&e1250

cars than-ˆ they have pink cars . It was raining on the day the count was made. The r‘=%ink1251

o+wner#¡ also own##s arcade center nearby . The rink has 4 times the number of red cars as1252

they have orange cars . The pink c/?ars$ are most popular among kids . A new shipment of 111253

gray cars will arrive next week. If the rink has 92 cars in total now, how many green cars do1254

they have?1255

QWEN2.5-3B: To solve the problem, let’s denote the number of green cars as G, the number of1256

orange cars as O, and the number of red cars as R.1257

From the problem, we have the following information:1258

1. The number of pink cars is 18.1259

2. The number of orange cars is 6 fewer than the number of pink cars.1260

3. The number of red cars is 4 times the number of orange cars.1261
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4. The total number of cars in the rink is 92. 1262

5. A new shipment of 11 gray cars will arrive next week. 1263

Let’s translate this information into equations: 1264

• O = 18− 6 = 12 (orange cars) 1265

• R = 4×O = 4× 12 = 48 (red cars) 1266

The total number of cars is: 1267

18 (pink) + 12 (orange) + 48 (red) +G (green) + 11 (gray) = 92 1268

Now, solve for G: 1269

90 +G = 92 ⇒ G = 92− 90 = 2 1270

Answer: 1271

2 1272

Next, we show the response of Qwen2.5-3B trained by SFT with problem refinement. 1273

USER: (Omit prompt instruction here) A bumper car rink has 18 pink . cars The ri+-nk also some 1274

has green caˆ@rs . green cars are the oldest ones in the‘ rink . The rink ahs 6 fewer orang&e 1275

cars than-ˆ they have pink cars . It was raining on the day the count was made. The r‘=%ink 1276

o+wner#¡ also own##s arcade center nearby . The rink has 4 times the number of red cars as 1277

they have orange cars . The pink c/?ars$ are most popular among kids . A new shipment of 11 1278

gray cars will arrive next week. If the rink has 92 cars in total now, how many green cars do 1279

they have? 1280

QWEN2.5-3B: Let’s refine the math problem first 1281

Refined Problem: 1282

A bumper car rink has 18 pink cars. The number of orange cars is 6 fewer than the number of 1283

pink cars. The number of red cars is 4 times the number of orange cars. The total number of 1284

cars in the rink is 92. How many green cars are there? 1285

Solution: 1286

1. Define Variables: Let P = 18 (pink cars), Let O = number of orange cars, Let R = number 1287

of red cars, Let G = number of green cars. 1288

2. Given Information: 1289

O = P − 6 = 18− 6 = 12 1290
1291

R = 4×O = 4× 12 = 48 1292
1293

Total cars: P +O +R+G = 92 1294

3. Substitute and Solve: 1295

18 + 12 + 48 +G = 92 1296
1297

⇒ 78 +G = 92 ⇒ G = 92− 78 = 14 1298

Answer: 1299

14 1300

Now, we show the response of Qwen2.5-3B trained by RL with problem refinement. 1301

USER: (Omit prompt instruction here) A bumper car rink has 18 pink . cars The ri+-nk also some 1302

has green caˆ@rs . green cars are the oldest ones in the‘ rink . The rink ahs 6 fewer orang&e 1303

cars than-ˆ they have pink cars . It was raining on the day the count was made. The r‘=%ink 1304

o+wner#¡ also own##s arcade center nearby . The rink has 4 times the number of red cars as 1305

they have orange cars . The pink c/?ars$ are most popular among kids . A new shipment of 11 1306

gray cars will arrive next week. If the rink has 92 cars in total now, how many green cars do 1307

they have? 1308
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QWEN2.5-3B: Let’s refine the math problem first1309

Refined Problem:1310

A bumper car rink has 18 pink cars. The rink also has some green cars. The rink has 6 fewer1311

orange cars than the number of pink cars. It has 4 times as many red cars as orange cars. A new1312

shipment of 11 gray cars will arrive next week. If the rink has 92 cars in total now, how many1313

green cars are there?1314

Solution:1315

Let the variables be defined as:1316

• P = number of pink cars = 181317

• O = number of orange cars = P − 6 = 18− 6 = 121318

• R = number of red cars = 4×O = 4× 12 = 481319

• G = number of green cars (to be determined)1320

The total number of cars currently is given as:1321

P +O +R+G = 921322

Substitute the known values:1323

18 + 12 + 48 +G = 921324
1325

⇒ 78 +G = 92 ⇒ G = 92− 78 = 141326

Answer:1327

141328

As highlighted in red, without problem refinement, Qwen2.5-3B erroneously incorporates irrelevant1329

information—specifically, the new shipment of 11 gray cars—into the total car count, leading to an1330

incorrect answer. After post-training, however, the model is able to identify and exclude all irrelevant1331

details, restructuring the problem statement in a more logical and concise manner—unlike the PE method,1332

which falls short in this aspect. These results demonstrate that post-training methods significantly enhance1333

the ability to refine problems, thereby improving performance on noisy inputs.1334
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