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ABSTRACT

We present the “Law of Vision Representation” in multimodal large language
models (MLLMs). It reveals a strong correlation between the combination of
cross-modal alignment, correspondence in vision representation, and MLLM per-
formance. We quantify the two factors using the cross-modal Alignment and
Correspondence score (AC score). Through extensive experiments involving thir-
teen different vision representation settings and evaluations across eight bench-
marks, we find that the AC score is linearly correlated to model performance. By
leveraging this relationship, we are able to identify and train the optimal vision
representation only, which does not require finetuning the language model every
time, resulting in a 99.7% reduction in computational cost.

1 INTRODUCTION

Current multimodal large language models (MLLMs) (Chen et al., 2024a; Liu et al., 2024e;d) have
achieved remarkable advancements by integrating pretrained vision encoders with powerful lan-
guage models (Touvron et al., 2023; Zheng et al., 2023). As one of the core components of a general
MLLM, the vision representation is critical. Many researchers have utilized CLIP (Radford et al.,
2021) as the primary image feature encoder, but its limitations are increasingly noticeable (Tong
et al., 2024b; Geng et al., 2023; Yao et al., 2021). As a result, alternative vision representations
and the combination of multiple vision encoders are being actively explored (Tong et al., 2024a; Lin
et al., 2023).

Despite this growing attention, the selection of vision representation has largely been empirical.
Researchers typically test a set of vision representations on a specific MLLM and choose the one
that yields the highest performance on benchmark tasks. This approach, however, is constrained by
the number of representations tested and does not address the underlying factors that make certain
feature representations perform better than others. As a result, the optimal vision representation for
a specific MLLM is often determined by empirical performance rather than a deep understanding
of the features that contribute to success. The question of what fundamentally makes a feature
representation achieve the highest performance remains largely unanswered.

To address this gap in understanding what makes a vision representation optimal for MLLMs, we
propose the Law of Vision Representation in MLLMs. It aims to explain the key factors of vision
representation that impact MLLM benchmarks performance. Our findings reveal that the cross-
modal Alignment and Correspondence (AC) of the vision representation are strongly correlated
with model performance. Specifically, an increase in the AC of the selected vision representation
leads to improved model performance. To quantify this relationship, we define an AC score that
measures cross-modal alignment and correspondence in vision representation. The AC score and
model performance exhibit a linear relationship, with a coefficient of determination of 95.72%.

Furthermore, the Law of Vision Representation guides the selection of an optimal vision represen-
tation for MLLMs. Originally, this process was extremely costly because even subtle changes in
vision encoding methods—such as switching encoder types, altering image resolution, or testing
feature combinations—require finetuning the language model (Lin et al., 2024). For example, using
a top data-efficient MLLM pipeline with a 7B language model requires 3,840 NVIDIA A100 GPU
hours to test the 10 encoders used in this study, amounting to a cost of approximately $20,0001.
Testing additional encoders leads to a linear increase in cost. Moreover, the recent trend of feature
combination, which often results in better performance, necessitates combinatorial testing of vision

1https://replicate.com/pricing
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Law of Vision Representation in MLLMs
models and predicts MLLM performance with different vision representations
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Figure 1: Visualization of the Law of Vision Representation in MLLMs.

encoders. Testing all possible combinations of 10 encoders results in 1023 combinations, exponen-
tially increasing the cost and energy consumption. This process consumes approximately 100,000
kilowatt-hours2, enough to drive an electric vehicle around the Earth 13 times.

Thus, we are the first to propose a policy, AC policy, that selects the optimal vision representation
using AC scores within the desired search space. Unlike traditional methods that rely on bench-
marking performance, the AC policy enables the expansion of the search space—allowing for an
increased number of vision representations to be considered—without incurring additional costs.
We demonstrate that this approach enhances both accuracy and efficiency compared to randomly
searching for the optimal representation. The policy successfully identifies the optimal configu-
ration among the top three choices in 96.6% of cases, with only three language model finetuning
across a 13-setting search space.

2 RELATED WORKS

2.1 VISION FOR MLLMS

Recent studies have explored various vision representations in MLLMs (Beyer et al., 2024; Ge et al.,
2024; Liu et al., 2024e; Wang et al., 2024b; Sun et al., 2023; Luo et al., 2024). Interestingly, some
findings indicate that relying solely on encoders outside of the CLIP family (Cherti et al., 2023; Zhai
et al., 2023b; Li et al., 2022), such as DINOv2 (Oquab et al., 2023) and Stable Diffusion (Rombach
et al., 2021), often leads to lower performance scores (Karamcheti et al., 2024; Tong et al., 2024a).
However, combining features from these encoders with CLIP features—such as concatenating im-
age embeddings in the token or channel dimension—significantly enhances performance beyond
using CLIP alone (Tong et al., 2024a;b; Liu et al., 2024c; Kar et al., 2024). Researchers intuitively
suggest that these additional encoders provide superior detail-oriented capabilities, but no studies
have thoroughly analyzed the underlying causes of the performance change (Wei et al., 2023; Lu
et al., 2024a). This suggests that the attributes of an optimal vision representation remain not fully
understood.

2https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
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2.2 CROSS-MODAL ALIGNMENT

Cross-modal alignment refers to the alignment between image and text feature spaces (Duan et al.,
2022). This concept emerged with the introduction of text-image contrastive learning (Radford et al.,
2021; Jia et al., 2021). Although current MLLMs utilize contrastively pretrained image encoders,
the challenge of achieving effective alignment persists (Ye et al., 2024; Zhai et al., 2023a; Woo et al.,
2024). Despite efforts to critique the limitations of CLIP family representations and explore alterna-
tive vision representations, many approaches continue to rely on contrastively pretrained encoders
or adding contrastive loss without fully eliminating them (Zhang et al., 2024b; Lu et al., 2024a; Tong
et al., 2024a;b; Liu et al., 2024b). In our work, we point out that alignment in vision representation is
essential for improved model performance and is crucial for data efficiency. Without pre-aligned vi-
sion representations, extensive data pretraining is required to achieve cross-modal alignment within
the language model (Ge et al., 2024; Chen et al., 2024b; Li et al., 2024c).

2.3 VISUAL CORRESPONDENCE

Visual correspondence is a fundamental component in computer vision, where accurate correspon-
dences can lead to significant performance improvements in tasks, such as image detection (Xu
et al., 2024; Nguyen & Meunier, 2019), visual creation (Tang et al., 2023; Zhang et al., 2024c),
and MLLMs (Liu et al., 2024a), etc. Correspondences are typically categorized into semantic- and
geometric-correspondences. Semantic correspondences (Zhang et al., 2024c; Min et al., 2019) in-
volve matching points that represent the same semantic concept not necessarily representing the
same instance. Geometric correspondences (Sarlin et al., 2020; Lindenberger et al., 2023), on the
other hand, require matching the exact same point across images, which is often crucial for low-level
vision tasks, such as pose estimation (Sarlin et al., 2020; Lindenberger et al., 2023; Zhang & Vela,
2015),and SLAM tasks, etc.

Several studies have pointed out that the CLIP family’s vision representation ”lacks visual de-
tails” (Lu et al., 2024a; Tong et al., 2024b; Ye et al., 2024). We explain this observation through the
concept of correspondence. Current multi-modal large language models (MLLMs) convert images
into embeddings, with each embedding representing a patch of the image. Image features with high
correspondence increase the similarity within internal image patches on similar semantics, thereby
enabling the retrieval of more detailed information.

3 LAW OF VISION REPRESENTATION IN MLLMS

We introduce the Law of Vision Representation in Multimodal Large Language Models (MLLMs).
It states that the performance of a MLLM, denoted as Z, can be estimated by two factors: cross-
modal alignment (A) and correspondence (C) of the vision representation, assuming vision represen-
tation is the sole independent variable while other components (e.g., language model and alignment
module) remain fixed. This relationship can be expressed as:

Z ∝ f(A,C) (1)

where f is a linear function on second-degree polynomial transformations of A and C.

3.1 ASSUMPTIONS

Following NVLM (Dai et al., 2024), we categorize MLLMs into the following types: (1) Decoder-
only MLLMs (Tong et al., 2024a; Liu et al., 2024e; Li et al., 2024a; Liu et al., 2024f; Dai et al.,
2024; Lu et al., 2024b; Zhang et al., 2024a; Wang et al., 2024a): These MLLMs consist of vision
encoder(s) and an alignment module, such as a multilayer perceptron (MLP), which maps the vision
representation into vision tokens. These tokens are designed to have a similar distribution as lan-
guage tokens and are directly input into a language model in the same manner as language tokens.
(2) Cross-attention-based MLLMs (Dai et al., 2024; Bai et al., 2023; Alayrac et al., 2022; Laurençon
et al., 2024; Chen et al., 2024c): These MLLMs include vision encoder(s) and an additional mod-
ule, often serving as a downsampling component, such as a perceiver resampler. The vision tokens
generated are integrated into the language model through cross-attention mechanisms.

3
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• The Law of Vision Representation specifically focuses on decoder-only MLLM architec-
ture due to their widespread adoption and their simplicity, which facilitates controlling
variables in training recipes and enables clear mathematical modeling.

• We further assume vision representation is the only independent variable, while the align-
ment module and LLM architecture remain fixed. In the case of a unfrozen vision encoder,
we cannot guarantee that the vision encoder does not take the function of the alignment
module. This causes the architecture and role of the alignment module to change alongside
the encoder, making the experiment uncontrolled and the models no longer comparable.

3.2 THEORETICAL JUSTIFICATION

In this section, we theoretically analyze how an increase in A and C leads to improved model
performance. When a vision representation demonstrates high cross-modal alignment and accurate
correspondence, the MLLM exhibits the following desired properties:

• When training a MLLM, if the vision representation is closely pre-aligned with the language
distribution, the pretrained language model requires less computational effort to bridge the
gap between different modalities during finetuning. In Section A.1, we provide theoretical
justification that finetuning on well-aligned multimodal data is about equivalent to fine-
tuning on text-only data, eliminating additional effort beyond language finetuning. This
efficiency can lead to improved performance, especially in scenarios where the available
training data for finetuning is limited.

• If the vision representation ensures accurate correspondence, the attention within the im-
age embeddings is precise. Consequently, the MLLM develops a refined focus on visual
content, capturing even details that cannot be derived solely from text-to-image attention,
leading to a more detailed interpretation of the image. We provide theoretical justification
in Section A.2.

3.3 EMPIRICAL JUSTIFICATION

In this section, we empirically show that AC is strongly correlated to model performance. To quan-
tify the correlation between AC and model performance, we first propose methods to measure cross-
modal alignment and correspondence within the vision representation:

• To quantify cross-modal alignment, we aim to compare the image and text embeddings of
the same concept. However, finding the same concept is difficult since it requires align-
ment. To address this, we use the CLIP vision embedding as a reference. We calculate
the maximum cosine similarity SC between vector pairs from the CLIP embedding Ê and
target vision representation embedding E:

A SCORE =
1

n

n∑
i=1

1

|Ei|

|Ei|∑
v=1

max
u

SC(Ê
(u)
i , E

(v)
i ) (2)

where n is the total number of image samples, |Ei| is the number of vectors in the embed-
ding Ei, and E

(v)
i = MLP (Fi)

(v) is the v-th embedding vector, resulting from the vision
feature F of the i-th image.

• To compute the correspondence score, we extract features from n pairs of images, resulting
in F s

i and F t
i from the i-th source and target image pair. Given ground truth key points

{psi1, . . . , psim}, we obtain the predicted key points {pti1, . . . , ptim} using the features. The
correspondence score is the Percentage of Correct Keypoints (PCK) calculated using the
following equation:

C SCORE =
1

n

n∑
i=1

1

m

m∑
j=0

1∥pt
ij−ps

ij∥2<T (3)

where T is a threshold defined as proportional to the bounding box size of the object in-
stance in the image.
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Finally, AC score is a second-degree polynomial transformation of the A and C score:

AC SCORE =

2∑
α=0

2−α∑
β=0

wαβA
αCβ (4)

Figure 2: R2 values for linear regression models
fitted on various scores.

Results. We fit a simple linear regression
model using 13 vision representations across 4
vision-based MLLM benchmarks. As shown
in Figure 2, the average coefficient of deter-
mination (R2) obtained is 95.72% when us-
ing the AC score of the vision representations.
For comparison, we also fit models using 13
random scores, the A score alone, and the C
score alone, all with polynomial transforma-
tions. The random scores and single-factor
models show significantly lower correlations
with performance. This result highlights the
strong correlation between the AC score and
MLLM performance, validating the Law of Vi-
sion Representation. Refer to Section 5.4 for
details.

4 AC POLICY
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Image Features
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Cross-modal Alignment = ?
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Vision Model

Connector

LLM

Figure 3: Overall framework of AC policy.

Problem Formulation. The MLLM architecture assumed in this framework consists of a frozen
vision encoder, followed by a trainable connector (alignment module) and the language model. To
determine the optimal out of k vision representations, we originally needs finetune LLM k times,
making the scaling of k difficult. Therefore, we propose AC policy, as illustrated in Figure 3, to
efficiently estimate the optimal vision representation from a search space consisting of k out of all
2N−1 possible vision representations, given N vision encoders. We finetune only k′ LLMs to obtain
downstream performance, allowing k to scale without significant cost, where k′ ≪ k. The value of
k′ is determined based on the computational budget allocated for vision representation selection.

Policy Fitting. Let X ∈ Rk×6 be the matrix containing AC scores of vision representation in the
search space. We subsample k′ data points from X, denoted as Xs ∈ Rk′×6, to serve as the input to
the linear regression model:

y = Xsw + ϵ (5)
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Here, w ∈ R6 is the vector of model parameters, ϵ ∈ Rk′
is the vector of error terms, and y ∈ Rk′

represents the downstream performance on a desired benchmark.

Sampling Strategy. The selection of k′ can impacts the function fit and, consequently, the accu-
racy of predictions. To avoid sampling points that are too close in terms of their A and C scores, we
employ a sampling strategy based on the coordinates.

The normalized A and C score pairs of k vision representation can be plotted on a 2D graph as
coordinates (A,C), To ensure diverse sampling, we divide the graph into regions. For each iteration
j in which the total sampled points do not yet fulfill k′, we divide the graph into 4j equal regions.
We then remove empty regions and those that contain previously sampled points. The next data
point is randomly selected from a remaining region.

Benchmark Number of Finetuning Recall@3
Random 12 92.04%

MMBench 4 90.1%
MME 3 90.6%
OKVQA 3 90.0%
SEED-Bench 3 86.0%
MMMU 7 96.5%
TextVQA 5 83.1%
VizWiz 3 84.6%
ScienceQA 3 96.6%

Average 3.88 89.69%

Table 1: Number of LLM finetunings required to achieve
approximately 90% Recall@3 in predicting the optimal vi-
sion representation.

Results. In Table 1, we show that
AC policy consistently predicts the
optimal vision representation with
minimal resources, given a finite
search space—in this case, 13 set-
tings. Our goal is to finetune only
a small subset of the search space
while still identifying the optimal vi-
sion representation within the top-3
predictions (Recall@3). However, if
we randomly select a subset to train
on, we need 12 out of 13 finetuning
to achieve over 90% Recall@3. In
contrast, the AC policy requires only
3.88 full training runs on average to
reach 89.69% Recall@3. Refer to
Section 5.5 for details.

5 EMPIRICAL
RESULT DETAILS

5.1 EXPERIMENT SETTINGS

Vision Representation Resolution
Single vision encoder: feed-forward models
OpenAI CLIP ViT-L/14 224
OpenAI CLIP ViT-L/14 (Radford et al., 2021) 336
OpenCLIP ViT-L/14 (Cherti et al., 2023) 224
SigLIP ViT-L/16 (Zhai et al., 2023b) 224
DINOv2 ViT-L/14 (Oquab et al., 2023) 224

Single vision encoder: diffusion models
SD 1.5 (Rombach et al., 2022) 768
SD 2.1 (Rombach et al., 2022) 768
SD Image Variations 768
SD XL (Podell et al., 2023) 512
DiT (Peebles & Xie, 2023) 512
SD 3 (Esser et al., 2024) 512

Multiple vision encoders: feature combination
CLIP+DINOv2 ViT-L/14 224
CLIP+DINOv2 ViT-L/14 336

Table 2: Vision representation explored.

For our specific MLLM pipeline, we
follow the training procedure, gen-
eral architecture, and dataset out-
lined in LLaVA (Liu et al., 2024e).
The training process consists of two
stages: in the first stage, we train
a 2-layer GeLU-MLP connector us-
ing the LLaVA 1.5 dataset with 558K
samples. In the second stage, we
train both the connector and the lan-
guage model, Vicuna-7B 1.5 (Zheng
et al., 2023), on the expanded LLaVA
1.5 dataset with 665K samples. We
also conduct experiments on LLMs
with different size and type shown
in Section A.7. It is important to
note that for each training, all fac-
tors are held constant except for the
vision representation being changed.
The 13 vision representation in this
paper are outlined in Table 2. The
MLLM benchmarks used in this pa-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

per includes 4 vision-based benchmarks, MMBench (Liu et al., 2023), MME (Fu et al., 2023),
OKVQA (Marino et al., 2019), SEED-Bench (Li et al., 2024b), and 4 QCR-based benchmarks in-
cluding, MMMU (Yue et al., 2024), TextVQA (Singh et al., 2019), VizWiz (Gurari et al., 2018),
ScienceQA (Lu et al., 2022).

5.2 AC SCORE

To compute the cross-modal alignment score, we perform stage 1 training with all the vision rep-
resentations to obtain the MLPs. This process requires significantly less computation than stage
2, involving only 0.298% of the trainable parameters. The alignment score for each benchmark is
averaged across 100 randomly sampled images. For the correspondence score, we follow common
practices using the SPair-71k (Min et al., 2019) dataset. Consequently, each benchmark has its own
alignment score, while the correspondence score remains consistent across all representations.

5.3 FEATURE EXTRACTION

Both MLLM training and score computation involve image feature extraction. Below, we introduce
the approach for obtaining two types of vision representations.

Vision Representation from Feed-forward Models. Given an image I ∈ RH×W×3 we process
it either in its raw form for U-Net models or in a patchified form for transformer models. For trans-
formers, we extract the last hidden state F ∈ Rl×c where l is the sequence length and c is the hidden
dimension. In the case of the U-Net model, we take the intermediate activation F ∈ RĤ×Ŵ×c after
the first upsampling block. Note that the features from these two types of models are interchangeable
between sequence and grid formats through reshaping and flattening. For consistency, the following
sections assume that all features have been pre-converted into the same format.

Vision Representation from Diffusion Models. Diffusion model is primarily used for generating
images via multi-step denoising, yet a recent trend is to use diffusion model as the vision representa-
tion model (Xu et al., 2024; 2023; Zhang et al., 2024c; Tong et al., 2024a). Specifically, for diffusion
models, given an image I ∈ RH×W×3, we first add noise to the VAE-encoded representation of I:

xt =
√
at · VAE(I) + (

√
1− at) · ϵ (6)

where ϵ ∼ N (0, I) and at is determined by the noise schedule. Note that we utilize the little-noise
strategy by setting the t = 1. In that case, the diffusion model only denoises the noise-latents once
and we treat the one-step denoising latents as the vision representation features.

5.4 ADDITIONAL RESULTS ON THE LAW OF VISION REPRESENTATION

Fitting Data R2 (Vision) R2 (OCR)
No transformation on fitting data
Random 2.94% 5.08%
A Score 50.80% 55.06%
C Score 46.12% 19.45%
AC Score 83.24% 66.18%

Polynomial transformation on fitting data
Random 45.09% 35.77%
A Score 76.56% 77.45%
C Score 56.91% 29.07%
AC Score 95.72% 85.21%

Table 3: Averaged R2 results of AC and
other baselines fitting on MLLM bench-
marks.

In Section 3, we demonstrate the strong correlation be-
tween the AC score and MLLM performance by analyz-
ing the coefficient of determination (R2) obtained from
fitting a linear regression model. In this section, we fur-
ther ablate the experiments by adding baselines, fitting
model performance with random scores, A scores, and
C scores separately. Additionally, we explored the re-
lationship between the A score and C score by apply-
ing two different data transformations: no transforma-
tion and second-degree polynomial transformation. We
avoid higher-degree transformations to prevent overfit-
ting, which could obscure the true relationship between
A and C scores.

As shown in Table 3, the results indicate that using the AC
score consistently outperforms all other settings in terms
of R2 values. While this observation holds regardless
of transformation, applying a second-degree polynomial

7
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transformation to the A and C scores yields the highest correlation with model performance. This
suggests an inherent trade-off between A and C scores: vision representations with high cross-modal
alignment often exhibit lower correspondence, and vice versa.

Interestingly, we observe a lower correlation between OCR-based benchmark performance and C
scores, which leads to a reduced correlation between the AC score and OCR-based benchmark
performance. In Section 7.2, we discuss how the use of the SPair-71k correspondence dataset across
all benchmarks fails to adequately capture correspondence in images containing text.

5.5 ADDITIONAL RESULTS ON THE AC POLICY
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Figure 4: Number of full training (LLM finetuning) cycles required to include the optimal vision
representation within the top-3 predictions (Recall@3).

In Section 4, we demonstrate that fitting the AC score consistently predicts the optimal vision rep-
resentation with minimal resources, given a finite search space—in this case, 13 settings. In this
section, we provide detailed visualization for Table 1.

When performing ablation experiments on vision encoders, it’s common to randomly select a subset
to train on. However, as shown in Figure 4, with 1000 runs of simulated ablation experiments, we
found that to include the optimal vision representation 81.2% of the time, at least 11 out of the 13
settings need to be trained. This suggests that running a small subset of vision representations is
unreliable, especially as the search space expands, making it increasingly unlikely to identify the
true optimal representation by training only a subset.

In contrast, the AC policy requires only 3.88 full training runs on average to reach 89.69% Recall@3.
For the most successful prediction benchmark, ScienceQA, the policy successfully identifies the
optimal configuration among the top three choices in 96.6% of cases, with only three language model
finetuning runs across a 13-setting search space. This result shows that AC policy significantly
reduces the effort and cost of exploring vision representations for MLLMs.

6 DISCUSSION

6.1 FINDING VISION REPRESENTATIONS WITH HIGH AC

Since AC score is highly correlated with MLLM benchmark performance, to improve MLLM from
the vision side, it is essential to identify vision representations with high AC scores and add them
into the search space. We suggest two strategies to achieve this: increasing resolution and combining
features.

Figure 5 shows the normalized performance improvement summed across eight benchmarks. In-
creasing the resolution of well-aligned features directly enhances correspondence. For example,
increasing the image resolution from 224 to 336 for CLIP, while maintaining cross-modal align-
ment, resulted in a performance increase from 7.1 to 7.3 out of 8.

Additionally, feature combination—merging two features with high A and C scores along the chan-
nel dimension—can enhance cross-alignment while preserving correspondence. We chose to con-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Correspondence (PCK@0.10)

Pe
rf

or
m

an
ce

OpenAI CLIP ViT-L/14@224
OpenAI CLIP ViT-L/14@336

Pe
rf

or
m

an
ce

A Fixed; C Increase C Fixed; A Increase

Cross-modal Alignment

DINOv2 ViT-L/14@224
OpenAI CLIP + DINOv2 ViT-L/14@224

Figure 5: Normalized performance improvements across 8 benchmarks by increasing resolution and
combining features, thereby enhancing correspondence and cross-modal alignment.

catenate features along the channel dimension to preserve context length and to align with the intu-
ition from our high correspondence attention proof in Appendix A.2. Specifically, the high corre-
spondence feature can support the retrieval of information in the attention mechanism for the feature
with high cross-modal alignment. Combining CLIP with DINOv2, for instance, leads to an increase
in cross-modal alignment, thereby improving model performance.

6.2 ANALYSIS OF POLICY FITTING COEFFICIENTS

Benchmark Fitted Equation

MMBench −0.127 + 3.191A+ 0.910C − 0.721A2 − 1.570A · C − 0.189C2

MME −0.163 + 1.915A+ 1.591C − 1.318A2 − 0.073A · C − 1.075C2

OKVQA −0.121 + 2.367A+ 0.933C − 1.804A2 + 0.156A · C − 0.503C2

SEED-Bench 0.938 + 1.740A+ 1.345C − 1.271A2 + 0.322A · C − 0.856C2

MMMU −0.241 + 2.747A+ 1.416C − 2.145A2 − 0.242A · C − 1.212C2

TextVQA −0.065 + 0.842A+ 0.756C − 1.519A2 + 2.943A · C − 1.062C2

VizWiz 0.069 + 2.145A− 0.102C − 1.772A2 + 0.720A · C + 0.116C2

ScienceQA 0.013− 0.198A+ 1.422C − 0.487A2 + 2.400A · C − 1.409C2

Table 4: Fitted equations for each benchmark. The equations describe the policy fitted to perfor-
mance, where A and C represent specific variables contributing to the benchmarks.

• Positive coefficient for A and C terms: As A and C scores increase, benchmark perfor-
mance increases proportionally to the coefficients of these terms.

• Negative coefficient for A2 and C2 terms: This indicates a diminishing return or saturation
effect—while increasing A and C initially improves performance, their positive impact
decreases as the scores grow larger.

• Positive A and C interaction term (A · C): A positive coefficient for the interaction term
implies that simultaneous increases in A and C magnify their combined effect on perfor-
mance, resulting in a synergistic boost.

Comparing across benchmarks, we observe that for vision-based benchmarks (MMBench, MME,
OKVQA, SEED-Bench), the coefficients for A and C terms are consistently positive, indicating that
cross-modal alignment and correspondence are positively correlated with performance. They all
have a heavier weight on A than C. However, we also note that the effect diminishes as A and C
scores continue to increase, eventually plateauing (at the maximum score for the benchmark). This
is due to the negative coefficients for the square terms, which represent a saturation effect where
performance gains slow down as A and C scores grow.

For OCR-based benchmarks, such as VizWiz and ScienceQA, we observe unexpected coefficients.
We attribute this to the issue discussed in Section 7.2. Specifically, our correspondence calculation
image set is based on natural images rather than images containing text, which leads to inaccuracies
in measuring correspondence for these tasks. As a result, the fitted function is less effective for
OCR-based benchmarks.
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7 LIMITATIONS

7.1 REFINING A SCORE DESIGN

We design the A score calculation as the maximum cosine similarity between each pair of embedding
vectors from the CLIP embedding and the target embedding. However, correspondence effects and
other bias can be unintentionally included if the features obtained from CLIP and the target encoder
differ in resolution. For example, the A score computed for CLIP@224 with CLIP@336 is not
the same, although they share the same architecture. This shows that correspondence is not fully
disentangled in the A score calculation in this scenario. The best practice is to always use the same
input resolution for both CLIP and the target encoder.

Another limitation is the use of CLIP as a reference metric. This could be problematic if another
encoder with better cross-modal alignment exists in the search space. However, we believe the error
should not be significant enough to cause the predicted optimal vision representation to fall outside
the top-3 or top-5. Our main purpose of this work is to model the relationship between performance,
alignment, and correspondence, so that we use A score as an initial approach to quantify the concept
of alignment in the field of MLLM. A score is designed to be flexible and can be adjusted based
on individual preferences. In practice, we use an average of A score from both CLIP@224 and
CLIP@336, aiming to average out the influence of correspondence.

7.2 REFINING C SCORE DESIGN

Correspondence of Nature Image Correspondence of Image with Text 

CLIP DINOv2 CLIP DINOv2

Figure 6: Visualization of correspondence on natural images and images containing text for CLIP
and DINOv2. The left image shows the source image, while the right one shows the target image.
Blue dots indicate key points with the highest similarity, and the green areas represent regions with
relatively high similarity.

We have noted that OCR-based benchmark performance shows a weaker correlation with the AC
score compared to vision-based benchmarks. The primary cause of this discrepancy lies in the
correspondence dataset we selected to compute the C score. The SPair-71k dataset measures fea-
ture correspondence for natural images, such as objects like cats and trains. In Figure 6, the CLIP
encoder demonstrates poorer correspondence in natural images compared to DINOv2. However,
when it comes to images containing text, CLIP exhibits significantly better correspondence than
DINOv2 or any other encoders. Therefore, using SPair-71k to calculate the C score does not ac-
curately capture true correspondence across all scenarios. Ideally, each benchmark should have its
own keypoint-labeled images for correspondence evaluation. At a minimum, an OCR-specific cor-
respondence dataset would be highly beneficial for assessing MLLMs. To our knowledge, no such
dataset currently exists. We encourage further investigation in this direction, as it would be valuable
across fields in MLLM, particularly for understanding tables and charts—a fundamental capability.

8 CONCLUSION

In conclusion, we introduce the Law of Vision Representation for decoder-only MLLMs, highlight-
ing the strong correlation between cross-modal alignment, vision representation correspondence,
and MLLM performance. Using the AC score to quantify these factors, we demonstrate its linear
relationship with performance across extensive experiments. Its application, AC policy, enables the
efficient identification and training of the optimal vision representation without repeated fine-tuning
of the language model, achieving a 99.7% reduction in computational cost.
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A APPENDIX

A.1 THEORETICAL JUSTIFICATION OF VISION REPRESENTATION WITH HIGH
CROSS-MODAL ALIGNMENT

In Section 3.2, we state that when training an MLLM, if the vision representation is closely pre-
aligned with the language distribution, then the pretrained language model requires less computa-
tional effort to bridge the gap between different modalities during finetuning. In this section, we
show that using well-aligned vision representation, finetuning on multimodal data is about equiva-
lent to finetuning on text-only data, eliminating additional effort beyond language finetuning.

Assume the vision embedding distribution Dimage and text embedding distribution Dtext are well-
aligned in the MLLM. For a shared concept c, the image embedding after the alignment module
and its corresponding text embedding, Eimage

c ∼ Dimage and Etext
c ∼ Dtext, are close in distance,

meaning:
∥Eimage

c − Etext
c ∥ ≤ ϵ (7)

where ϵ is a small constant. Given this condition, we can show that the output of the MLLM with
multimodal embeddings [Eimage

c , E1, E2, . . . , En] is close to the output with text-only embeddings
[Etext

c , E1, E2, . . . , En].

Since our language model f is well-trained and pre-normed, the input space to each transformer
layer is bounded and compact, meaning that the values of the input are bounded by c, a small
constant. This implies that the continuously differentiable function f is Lipschitz (Kim et al., 2021).
This property ensures that small changes in the input of the language model of the MLLM result in
small, controlled changes in the output:

∥f([Eimage
c , E1, E2, . . . , En])− f([Etext

c , E1, E2, . . . , En])∥ ≤ L∥[Eimage
c , E1, E2, . . . , En] (8)

− [Etext
c , E1, E2, . . . , En]∥ (9)

≤ Lϵ (10)

where L is the Lipschitz constant. This closeness in output distance implies that even with multi-
modal data, the pretrained language model mimics the training dynamics closely resemble language-
only finetuning.
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A.2 THEORETICAL JUSTIFICATION OF VISION REPRESENTATION WITH ACCURATE
CORRESPONDENCE

In Section 3.2, we state that if the vision representation ensures accurate correspondence, the atten-
tion within the image embedding is precise. In this section, we show that vision representation with
accurate correspondence can help vision information retrieval in the attention mechanism. There-
fore, more visual details are considered even if not attended by the text token.

Consider an input [Eimage
0 , Eimage

1 , E2, . . . , En] to the transformer, where the image embeddings
Eimage

0 and Eimage
1 are derived from different patch of a high correspondence vision representation.

By definition, the dot product Eimage
0 ·Eimage

1 is large if the two corresponding original image patches
share related information.

Suppose a text token E2 attends to Eimage
0 . We show that it is also able to retrieve Eimage

1 and vice
versa. This can be demonstrated as follows:

score(E2, E
image
0 ) =

(E2W
Q) · (Eimage

0 WK)√
dk

(11)

If score(E2, E
image
0 ) is high, and (Eimage

0 WK)⊤(Eimage
1 WK) is also large (assuming WK does not

distort the vectors drastically), then by transitivity, score(E2, E
image
1 ) is also likely to be high. This

transitivity ensures that attention is effectively spread across related visual information, enhancing
the model’s ability to interpret visual content in greater detail.

A.3 ALL SETTINGS BENCHMARK PERFORMANCE

In this section, we present the performance results of all 13 vision representation settings, as sum-
marized in Table 5. The benchmarks we evaluated include:

• MMBench (Liu et al., 2023): A set of multiple-choice questions designed to assess 20
different ability dimensions related to perception and reasoning.

• MME (Fu et al., 2023): A dataset focused on yes/no questions, covering areas such as
existence, counting, position, and color, primarily based on natural images.

• MMMU (Yue et al., 2024): Multiple-choice questions targeting college-level subject
knowledge and deliberate reasoning, primarily testing the language model’s abilities.

• OKVQA (Marino et al., 2019): Open-ended questions based on the MSCOCO (Lin et al.,
2014) dataset, spanning 10 different knowledge categories.

• TextVQA (Singh et al., 2019): Open-ended questions designed to evaluate the model’s
OCR capabilities.

• VizWiz (Gurari et al., 2018): Open-ended questions sourced from people who are blind,
aimed at testing the model’s OCR capabilities.

• ScienceQA (Lu et al., 2022): A multiple-choice science question dataset, with 86% of the
images being non-natural, covering topics in natural science, social science, and language
science.

• SEED-Bench (Li et al., 2024b): A benchmark consisting of multiple-choice questions de-
signed to assess both spatial and temporal understanding.

A.4 ALL SETTINGS AC SCORES

We provide the AC scores of all 13 vision representation settings, as summarized in Table 6. Ad-
ditionally, we provide a case analysis comparing the A and C scores of CLIP@224 and CLIP@336
from an intuitive perspective. When comparing these scores, CLIP@224 exhibits a significant drop
of 8.7% in the C score compare to CLIP@336, while CLIP@336 shows a slight decrease of 3.0%
in the A score. Since CLIP has a high A score, and the effect of A diminishes as it enters the high
range as detailed in Section 6.2, this slight drop is expected to have minimal impact on the predicted
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CLIP@336 CLIP@224 OpenCLIP DINOv2 SDim SD1.5 SDXL

MMBench 64.26 64.18 63.406 58.51 52.84 42.53 43.73
MME 1502.70 1449.64 1460.28 1295.47 1205.33 1163.90 1212.69
MMMU 35.0 36.2 37.2 34.6 33.7 33.9 32.8
OKVQA 53.20 56.13 56.36 54.78 46.04 39.14 41.78
TextVQA 46.04 42.67 40.13 14.27 13.77 11.64 11.81
VizWiz 54.27 51.69 52.11 49.69 47.33 50.14 47.14
ScienceQA (Full) 69.97 70.23 69.78 68.17 68.66 66.75 67.72
ScienceQA 70.31 70.90 70.69 69.60 69.77 68.38 68.90
ScienceQA (Img) 69.26 68.82 67.87 65.15 66.34 63.31 65.25
SEED-Bench (Img) 66.09 65.13 64.71 61.39 50.33 50.00 53.78
SEED-Bench 60.44 60.28 59.31 57.13 46.60 46.45 49.09
SEED-Bench (Video) 39.02 41.90 38.86 41.02 32.50 33.01 31.33

DiT SD3 SD2.1 SigLIP C+D@224 C+D@336

MMBench 33.68 32.82 28.87 61.86 65.72 65.12
MME 902.00 843.43 905.27 1425.00 1436.42 1475.19
MMMU 32.7 32.4 32.8 35.8 36.9 34.6
OKVQA 33.75 34.95 34.41 54.01 55.94 56.92
TextVQA 10.82 10.77 10.46 36.00 40.04 46.17
VizWiz 49.92 47.12 46.59 53.17 54.04 53.44
ScienceQA (Full) 66.62 66.14 65.69 69.11 70.87 69.45
ScienceQA 68.12 67.98 67.13 70.17 71.70 70.31
ScienceQA (Img) 63.46 62.27 62.67 66.88 69.11 67.63
SEED-Bench (Img) 40.66 38.94 38.82 64.40 65.39 66.38
SEED-Bench 38.31 36.96 36.84 59.41 60.47 61.39
SEED-Bench (Video) 29.41 29.46 29.33 40.48 41.84 42.48

Table 5: Benchmark performance of all 13 settings. C+D means feature combination of CLIP and
DINOv2. The table provides data points for function fitting and is not intended for comparison.

performance. However, we caution against using A and C scores alone to infer performance without
fitting a regression function.

The higher C score for CLIP@336 compared to CLIP@224 is reasonable, as the higher resolution
better preserves visual details, resulting in stronger correspondence. Conversely, the higher A score
for CLIP@224 compared to CLIP@336 reflects an underexplored area: to our knowledge, no prior
work has attempted to measure cross-modal alignment in the same contrastive learning model under
varying input resolutions. As a result, it is challenging to draw definitive conclusions about the true
cross-modality behavior in this case.

A.5 MORE VISUALIZATION OF CORRESPONDENCE

We provide additional visualizations of correspondence for four different vision representations:
CLIP, SigLIP, DINOv2, and Stable Diffusion 1.5. Figures 7 and 8display pairs of source-target
images for each of the four vision representations. In each pair, the left image is the source, and the
right image is the target. The red dot on both images indicates the predicted key points using the
vision representation. Ideally, these key points should correspond to the same semantic meaning.
For example, a red dot on the ”left cat ear” in the source image should correspond to the ”left cat
ear” in the target image. The green areas highlight regions of relatively high similarity with the
source points.

In Figure 7, DINOv2 demonstrates superior correspondence for natural images compared to the
other vision representations. It accurately matches small parts of the cat between the left and right
images, whereas CLIP struggles to correctly identify and align features such as left, right, front, and
back.

In Figure 8, , the CLIP family shows precise correspondence for text within images. For instance,
when the source image points text like “LLaVA” or “VQAv2”, CLIP accurately matches all in-
stances of the text in the target image. In contrast, other vision representations known for ”accurate
correspondence” in computer vision, such as DINOv2 and Stable Diffusion, fail to provide the same
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CLIP@336 CLIP@224 OpenCLIP DINOv2 SDim SD1.5 SDXL

Correspondence
PCK@0.10 15.66 14.3 16.22 24.51 20.9 22.02 16.52

Cross-modal Alignment
MMBench 0.788 0.815 0.524 0.462 0.349 0.351 0.357
MME 0.791 0.818 0.532 0.472 0.370 0.366 0.358
MMMU 0.782 0.813 0.512 0.464 0.356 0.353 0.358
OKVQA 0.801 0.825 0.543 0.472 0.379 0.375 0.353
TextVQA 0.797 0.820 0.536 0.458 0.374 0.367 0.347
VizWiz 0.794 0.815 0.530 0.469 0.370 0.372 0.360
ScienceQA (Img) 0.799 0.826 0.541 0.472 0.371 0.356 0.342
SEED-Bench (Img) 0.810 0.829 0.554 0.491 0.376 0.359 0.342

DiT SD3 SD2.1 SigLIP C+D@224 C+D@336

Correspondence
PCK@0.10 1.91 3.09 6.99 12.89 23.62 26.08

Cross-modal Alignment
MMBench 0.387 0.374 0.348 0.505 0.537 0.512
MME 0.392 0.377 0.338 0.526 0.536 0.511
MMMU 0.398 0.363 0.333 0.499 0.526 0.504
OKVQA 0.366 0.390 0.351 0.540 0.537 0.514
TextVQA 0.368 0.387 0.347 0.532 0.530 0.506
VizWiz 0.383 0.401 0.348 0.527 0.525 0.505
ScienceQA (Img) 0.363 0.383 0.358 0.541 0.537 0.512
SEED-Bench (Img) 0.367 0.388 0.371 0.549 0.545 0.525

Table 6: AC scores of all 13 settings. C+D means feature combination of CLIP and DINOv2. The
table provides data points for function fitting and is not intended for comparison.

level of accuracy when dealing with images containing text. This emphasizes a key distinction in
selecting vision representations for computer vision tasks versus multimodal large language models
(MLLMs).

DINOv2CLIP SigLIP SD1.5

Figure 7: Correspondence of natural images for different vision representations.
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DINOv2CLIP SigLIP SD1.5

Figure 8: Correspondence of images with text for different vision representations.

A.6 PSEUDO CODE

Algorithm 1: COMPUTE A SCORE

Input: 100 images I from benchmark B; vision encoders CLIP224, CLIP336, and target
with pretrained projectors

Output: A score for target vision representation on benchmark B
clip224 tensors← CLIP224(I) ; // Shape: [100, sequence length,
hidden dimension]
clip336 tensors← CLIP336(I);
target tensors← target(I);
cosine similarities 336← [];
cosine similarities 224← [];
for clip336 tensor, clip224 tensor, target tensor ∈
zip(clip336 tensors, clip224 tensors, target tensors) do

clip336 tensor ← normalize feature(clip336 tensor);
clip224 tensor ← normalize feature(clip224 tensor);
target tensor ← normalize feature(target tensor);
similarity 336← cosine similarity(clip336 tensor, target tensor);
similarity 224← cosine similarity(clip224 tensor, target tensor);
max similarity 336← max(similarity 336, dim = 1);
max similarity 224← max(similarity 224, dim = 1);
cosine similarities 336.append(mean(max similarity 336));
cosine similarities 224.append(mean(max similarity 224));

A score← (mean(cosine similarities 336) + mean(cosine similarities 224))/2;
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Algorithm 2: COMPUTE C SCORE

Input: Set of paired images with key points S from SPair-71k, vision encoder E, threshold
threshold

Output: C score for vision encoder E
gt correspondences← [] ; // Ground truth keypoint correspondences
pred correspondences← [] ; // Predicted keypoint correspondences
foreach (img1, kp1, img2, kp2) ∈ S do

image tensor 1← E(img1);
image tensor 2← E(img2);
sim matrix← image tensor 1 · image tensor 2T ; // Compute similarity
matrix

kps 1 to 2← calculate keypoint transformation(sim matrix, kp1) ; // Transform
keypoints from img1 to img2

gt correspondences.append(kp2);
pred correspondences.append(kps 1 to 2);

error ← Euclidean distance(pred correspondences, gt correspondences);
correct← sum(error < threshold);
C score← correct/total keypoints in kp2;

Algorithm 3: REGION-BASED SAMPLING

Input: k A and C score pairs from models ACs; past sampled models; current sampling level
(1 to k′, increments when regions are exhausted as each region is sampled only once)

Output: Sampled model to train next
regions← {};
for AC ∈ ACs do

region key ← determine region(A,C, level) ; // Identify the region based
on A and C coordinates

regions[region key].append((model, A,C));
Remove models in past sampled from regions;
remaining regions← keys of regions;
chosen region← randomly select from remaining regions;
model← randomly select from regions[chosen region];

Algorithm 4: AC POLICY

Input: k vision encoders with pretrained projectors V ; computation budget k′
Output: A ranking of k MLLMs based on performance
ACs← [(Compute A Score(v),Compute C Score(v)) | v ∈ V ];
past sampled← [];
train ACs← [];
train performance← [];
for i← 1 to k′ do

model← Region based Sampling(ACs, past sampled);
performance← Fully train model;
train ACs.append(AC of model);
train performance.append(performance);
past sampled.append(model);

poly ← PolynomialFeatures(degree = 2);
transformed train ACs← poly.fit transform(train ACs);
regression← LinearRegression();
regression.fit(transformed train ACs, train performance);
ranking ← Rank V by regression predictions on ACs;
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A.7 FITTING THE LAW OF VISION REPRESENTATION ON MLLM WITH DIFFERENT LLMS

In this paper, we demonstrate the relationship between the AC score and performance by fitting a
regression model and reporting the R2 value. As shown in Table 7, the R2 achieves 95.72% when
averaged across four vision benchmarks under the LLaVA 1.5 setting, where the LLM is Vicuna-7B
1.5.

LLM R2 (Vision) R2 (OCR)
Vicuna-7B 1.5 95.72% 85.21%
Llama2-7B 98.01% 87.91%
Vicuna-13B 1.5 95.17% 88.50%

Table 7: Averaged R2 values for AC score fitting across vision and OCR benchmarks using different
LLMs.

In additional experiments, we show that the fitting R2 remains strong, and in some cases even higher,
when using different LLM types and sizes. The variation in R2 falls within a reasonable range,
indicating that the effect of LLM and vision representation compatibility, if it exists, is negligible
compared to the influence of the A and C factors. These results demonstrate that the Law of Vision
Representation relationship holds across different LLMs.

A.8 AC POLICY EVALUATION ON RECALL@1 AND RECALL@2

In Table 1, we demonstrate that, on average, only 3.88 fine-tuning runs are required to achieve
89.69% Recall@3 in identifying the optimal vision representation. This means that, with a compu-
tation budget of at most 7 runs, we can find the optimal vision representation in almost 90% of the
time. Using this same budget, we further evaluate other metrics, such as Recall@1 and Recall@2,
to provide a comprehensive assessment.

Metric Average Finetuning Runs Total Budget Chance of Finding Optimal VR
Random 6 7 Runs (out of 13) 48.2%
Recall@1 6 7 Runs 68.23%
Recall@2 5 7 Runs 81.01%
Recall@3 3.88 6.88 Runs 89.68%

Table 8: Comparison of average finetuning runs and chances of finding the optimal vision represen-
tation under different metrics.

We observe in Table 8 that, given the same computation budget where only 7 of the vision representa-
tions in the search space can be tested, using Recall@1 provides a significant 20% improvement over
random trials in the chance of finding the optimal vision representation. However, using Recall@3
as a metric further optimizes this chance, demonstrating its practicality. This observation implies
that, rather than assuming an absolute ”optimal vision representation,” we should acknowledge that
each fine-tuning and inference process is subject to fluctuations, making ”optimal” predictions in-
herently challenging. Employing Recall@3 accounts for these fluctuations, providing a more robust
and practical approach without increasing computation costs.

Additionally, we provide the average performance difference between the Top-1 and Top-2 vision
representations trained MLLM in Table 9 to illustrate that, in most cases, the performance differ-
ences are minimal and their order can be attributed to fluctuations.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Benchmark Percentage Difference Between Top-1 and Top-2 VR
MMBench 0.915%
MME 1.83%
OKVQA 1.39%
Seed-Bench 0.434%
MMMU 0.806%
TextVQA 0.269%
VizWiz 0.410%
ScienceQA 0.215%

Table 9: Percentage performance difference between the Top-1 and Top-2 vision representations
across various benchmarks. The differences are minimal, often within a small margin, indicating
fluctuations.
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