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ABSTRACT

In recent years, prompt tuning has set off a research boom in the adaptation of
pre-trained models. In this paper, we propose Graph Prompt as an efficient and
effective alternative to full fine-tuning for adapting the pre-trianed GNN models
to downstream tasks. To the best of our knowledge, we are the first to explore the
effectiveness of prompt tuning on existing pre-trained GNN models. Specifically,
without tuning the parameters of the pre-trained GNN model, we train a task-
specific graph prompt that provides graph-level transformations on the downstream
graphs during the adaptation stage. Then, we introduce a concrete implementation
of the graph prompt, called GP-Feature (GPF), which adds learnable perturbations
to the feature space of the downstream graph. GPF has a strong expressive ability
that it can modify both the node features and the graph structure implicitly. Accord-
ingly, we demonstrate that GPF can achieve the approximately equivalent effect
of any graph-level transformations under most existing pre-trained GNN models.
We validate the effectiveness of GPF on numerous pre-trained GNN models, and
the experimental results show that with a small amount (about 0.1% of that for
fine-tuning ) of tunable parameters, GPF can achieve comparable performances as
fine-tuning, and even obtain significant performance gains in some cases.

1 INTRODUCTION

Graph neural networks (GNNs) have achieved great success in graph representation learning (Kipf
& Welling, 2017; Hamilton et al., 2017; Xu et al., 2019), which attract extensive attention from
researchers. However, two fundamental challenges hinder the large-scale practical applications of
GNNs. One is the scarcity of labeled data in the real world, which means the labeled data is only
a tiny fraction of all collected data. In many practical situations, the acquisition of node labels is
rather resource-consuming (Zitnik et al., 2018), and the lack of labeled data greatly degrades the
performance of GNN models. The other challenge is low out-of-distribution generalization ability (Hu
et al., 2020a; Knyazev et al., 2019; Yehudai et al., 2021; Morris et al., 2019). To be specific, if there
exists a distribution shift between the training and testing data, the GNN model can no longer obtain
satisfactory performance.

To overcome these challenges, recent efforts have been devoted to designing pre-trained GNN
models (Xia et al., 2022b; Hu et al., 2020a;b; Lu et al., 2021). Similar to the pre-trained models
in the language field, pre-trained GNN models are also trained on a large number of pre-training
datasets, and then adapted to certain downstream tasks. Most existing pre-trained GNN models obey
the “pre-train, fine-tune” learning strategy (Sun et al., 2022). Specifically, we train a GNN model with
a massive corpus of pre-training graphs, then we apply the pre-trained GNN model as initialization
and fine-tune the model parameters according to the downstream task.

The “pre-train, fine-tune” framework of pre-trained GNN models also arouses several crucial is-
sues (Jin et al., 2020a). First, compared to ordinary GNN models, pre-trained GNN models usually
contain several times the parameters of the normal one, which leads to high training overhead for
adapting the pre-trained models on downstream tasks. Fine-tuning such models is quite difficult,
time-consuming and space-consuming. Besides, it is difficult to guarantee that the model retains
the generalization ability evaluated on the massive corpus of graphs. This problem is particularly
acute when the downstream data is small in scale. In this case, the model is easy to over-fit on the
downstream task, which makes the pre-training meaningless.
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Figure 1: Comparison between graph prompt tuning and fine-tuning. (a) Current fine-tuning
updates the parameters of the pre-trained GNN model. (b) Graph prompt tuning adds extra parameters
in the input space while keeping the parameters of the pre-trained GNN model frozen. (c) Performance
of different tuning methods on biology datasets (PPI) with the models pre-trained by different
strategies in Hu et al. (2020a).

Inspired by the great success of natural language prompting (Li & Liang, 2021; Lester et al., 2021a;
Liu et al., 2022a;b), we aim to investigate the effectiveness of prompt tuning on pre-trained GNN
models. Prompt tuning brings us an alternative for the adaptation of pre-trained model on the
downstream task: it freezes the parameters of the pre-trained model and modifies the input data.
Unlike fine-tuning, prompt tuning does not change the pre-trained model but performs the data-space
adaption by transforming the input of the downstream task. Such tuning strategy greatly reduces the
overhead and difficulty of the adaptation on the downstream task.

However, applying prompt tuning in pre-trained GNN models is non-trivial and faces many challenges.
First, compared to text data and image data, graph data is more irregular. Specifically, there does
not exist a predetermined order for the nodes in graph, and the number of nodes in a graph and
the number of the neighbors each node obtains are uncertain. These properties prevent existing
prompt tuning methods from being directly transferred to graph data. Furthermore, graph data usually
contains both structure information and node feature information, and they play different roles in
different downstream tasks. For example, in social networks, the node features have a great impact
on the classification results, while in protein networks, the graph structure plays a more essential
role. Therefore, graph prompt tuning should consider both node feature information and structure
information, and have the ability to transform any of them adaptively.

In this paper, we explore how to employ prompt tuning on pre-trained GNN models. We first
propose a universal framework to express general prompt tuning on graph data, called Graph
Prompt (GP). Specifically, GP works on the input space and is defined as a learnable graph-level
transformation. When adapting the pre-trained model on a certain downstream task, the input graph
is first transformed by GP, then the prompted graph is processed through the pre-trained GNN
model. During the adaptation stage, we keep the parameters of the pre-trained model frozen and
only update the parameters of GP. After formally defining GP, we introduce a simple yet efficient
implementation of GP, which we called GP-Feature (GPF). GPF adds a shared learnable vector to
all node features in the graph, which is easy to apply and can be used on most existing pre-trained
GNN models. Figure 1 illustrates the difference of our proposed graph prompt tuning compared to
traditional fine-tuning. Although GPF works directly on the feature space, we prove that it can also
change the structure information of the graph implicitly. Specifically, we demonstrate that GPF can
achieve approximately equivalent effect of any graph-level transformation theoretically under the
architectures of most existing pre-trained GNN models. We validate the effectiveness of GPF on
various existing pre-trained GNN models, pre-training and downstream datasets. The experimental
results indicate that GPF can achieve satisfactory performances compared to fine-tuning. Overall, the
contributions of our work can be summarized as follows:

• To the best of our knowledge, we are the first to investigate the universal prompt tuning on
existing pre-trained GNN models, and we propose a framework called Graph Prompt (GP)
to describe how to apply prompt tuning on pre-trained GNN models.
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• We propose a concrete implementation of GP, called GP-Feature (GPF), which works on the
feature space of the input graph. By summarizing the architectures of existing pre-trained
GNN models, we demonstrate that GPF can achieve the approximately equivalent effect
of any graph-level transformation theoretically under the architectures of most existing
pre-trained GNN models.

• We conduct extensive experiments on various pre-trained GNN models, pre-training and
downstream datasets to validate the effectiveness of GPF. The experimental results indicate
that with a small amount (about 0.1% of that for fine-tuning) of tunable parameters, GPF can
achieve comparable performances of fine-tuning, and even obtain significant improvement
in some cases.

2 RELATED WORKS

2.1 PRE-TRAINING ON GRAPHS

PGMs Base Model Optimal Pooling

Hu et al. GIN Mean/Sum
GPT-GNN HGT MLP

GCC GIN Sum
GraphCL GIN Sum

JOAO GIN Mean
AD-GCL GIN Mean/Sum
GROVER GTransformer Mean

DGI GCN Mean
LP-Info GIN Mean

SimGRACE GIN Sum

Table 1: Overview of pre-trained GNN models.

Pre-trained Language Models have rev-
olutionized the landscape of natural
language processing (NLP). Stimulated
by that, tremendous efforts have been
devoted to pre-trained graph models
(PGMs). Supervised pre-training strate-
gies are popular in the biochemical do-
main. Hu et al. (2020a) propose to
pre-train GNNs for the prediction of
molecules properties and protein func-
tions existence. Both GROVER (Rong
et al., 2020) and MGSSL (Zhang et al.,
2021) propose to predict the presence of
the motifs or generate them with the con-
sideration that rich domain knowledge
of molecules hides in the motifs. These
works require domain-specific knowledge which limits their application areas. In light of this, unsu-
pervised pre-training strategies proliferates recently. Graph Contrastive Learning (GCL) takes a large
proportion of all the unsupervised strategies. DGI (Velickovic et al., 2019) and InfoGraph (Sun et al.,
2019) are proposed to garner nodes or graphs representations via maximizing the mutual information
between graph-level representations and substructure-level representations of different granularity.
GraphCL (You et al., 2020) and its variant JOAO (You et al., 2021) propose various augmentations
strategies for graph-level pre-training, creating different augmented views for contrastive learning.
Apart from GCL, Masked Components Modeling (MCM) and Graph Context Prediction (GCP) are
frequently adopted in unsupervised pre-training strategies (Xia et al., 2022b). MCM masks out some
components of the graphs and trains the pre-training model to predict them. GCP is proposed to
predict the context-aware properties of targets or their surrounding graph structures.
Most of model architectures of present PGMs are GCNs (Kipf & Welling, 2017) and GINs (Xu
et al., 2019) according to Table 1. Besides, we can assert according to Table 1 that a majority of
previous models take mean or sum as their graph pooling methods (or readout functions). Though
more sophisticated pooling methods exist, Mesquita et al. (2020) propose that convolutions play a
leading role in the learned representations, while graph pooling is not responsible for the success
of GNNs on relevant and widely-used benchmarks. Linear graph pooling methods are effective and
sufficient for learning representations.

2.2 PROMPTING METHODS

Taking its rise from natural language processing (NLP), prompt-based learning is utilized to help
pre-trained language models (LMs) “understand” the different downstream tasks (Liu et al., 2021a). It
allows LM to be pre-trained on a massive amount of data. And by defining a new prompting function,
the model can perform few-shot and even zero-shot learning, adapting to new scenarios with few data.
Originally, Schick & Schütze (2020) propose a manually designed prompt pattern for NLP tasks,
which is a language instruction prepended to the input text. Liu et al. (2021c) then propose a P-tuning
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method to use the soft prompt instead of the previous manually designed prompt. P-tuning treats
the prompts as task-specific continuous vectors and optimizes them via gradients during fine-tuning.
Recently, prompting methods are further discussed on how to fix pre-trained models, while only
updating the parameters of soft prompts to achieve excellent performance (Lester et al., 2021b; Liu
et al., 2021b).
Benefiting from the success of prompts in NLP, the prompting method is then utilized in other
areas. Jia et al. (2022) and Bahng et al. (2022) investigate the efficacy to adapt large-scale models in
vision, such as CLIP (Radford et al., 2021) and other Transformer models like Vision Transformers
(Dosovitskiy et al., 2021) and Swin Transformers (Liu et al., 2021d). Prompting methods have
also brought great improvement on few-shot learning for Visual Language Models (VLMs). Frozen
(Tsimpoukelli et al., 2021) and Flamingo (Alayrac et al., 2022) devote to stand on the shoulder of
large pre-trained LMs, rapidly adapting to a variety of image and video understanding benchmarks.
This pattern achieves a new state of the art for few-shot learning, simply by prompting the model
with task-specific examples. However, the application of prompting methods in GNNs is still open.
GPPT (Sun et al., 2022) is proposed to bridge the gap between pretext tasks and downstream tasks.
It reformulates the downstream node classification looking the same as edge prediction, which is
utilized as the pretext task during pre-training. To the best of our knowledge, we are the first to
propose a general prompt tuning method for existing pre-trained GNN models.

3 METHODS

We propose the Graph Prompt (GP) for adapting pre-trained GNN models to downstream tasks.
Specifically, during the downstream training stage, we keep the pre-trained model frozen and apply a
learnable GP that transforms the input graph. Compared to fully fine-tuning the pre-trained models,
GP only contains a small number of tunable parameters. We first define the notations in Section
3.1, then describe the definition of GP and GPF in Section 3.2. Finally, we provide some theoretical
analysis of GPF in Section 3.3.

3.1 PRELIMINARIES

Let G = (V, E) ∈ G represent a graph, where V = {v1, v2, . . . , vN}, E ⊆ V ×V denote the node set
and edge set respectively. The node features can be denoted as a matrix X = {x1, x2, . . . , xN} ∈
RN×F , where xi ∈ RF is the feature of the node vi, and F is the dimensionality of node features.
The adjacency matrix A ∈ {0, 1}N×N describes the structure relation between nodes, where Aij = 1
if (vi, vj) ∈ E . It is worth mentioning that there are many kinds of downstream tasks on graph,
including node classification, link prediction, and graph classification. Our paper focuses on the
graph classification task.

Pre-trained GNN Models. With the pre-training dataset Dpt = {Gpt} and the specific pre-
training task loss Lpt (Xia et al., 2022b), we obtain a pre-trained GNN encoder f by minimizing the
pre-training loss on the pre-training dataset:

min
f

Lpt (1)

Fine-Tuning Pre-trained Models. Given a pre-trained GNN encoder f and a downstream task
dataset D = {(G1, y1), . . . , (Gm, ym)}, usually, we fine-tune the parameters of the pre-trained model
and maximize the likelihood of predicting the correct labels y:

max
f

Pf (y|G) (2)

3.2 GRAPH PROMPT

Graph Prompt Tuning. Drawing on the design of the prompt tuning in the NLP field (Liu et al.,
2022a), we propose a GP that works on the input space. Given a frozen pre-trained GNN model f and
a downstream task dataset D = {(G1, y1), . . . , (Gm, ym)}, our target is to obtain a task-specific GP
gϕ : G → G parameterized by ϕ. The GP gϕ transforms the input graph G into the prompted graph
gϕ(G). During the downstream task training, we select the optimal parameters of ϕ that maximizes
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the likelihood of predicting the correct labels y without tuning the pre-trained model f , which can be
formulated as:

max
ϕ

Pf,ϕ(y|gϕ(G)) (3)

During the evaluation stage, the input graph G is first transformed by GP gϕ, then the prompted graph
gϕ(G) is processed through the frozen GNN model f .

Graph Prompt Design. Our goal is to explore GP as a practical adaptation method, thus, we
discuss the concrete design of GP in this part. According to Formula 3, any learnable graph-level
transformation can be designed as a GP. In this paper, we propose a simple yet efficient GP architecture,
called GP-Feature (GPF), to adapt pre-trained models for specific downstream graph classification
tasks. GPF concentrates on the transformations of the feature space for the input graph, and it is a
learnable F -dimensional vector, which can be denoted as:

p ∈ RF (4)
This GPF is added to the input graph features X and generate the prompted features X∗:

X = {x1, x2, . . . , xN} (5)
X∗ = {x1 + p, x2 + p, . . . , xN + p} (6)

Then, the prompted features X∗ replace the initial features X and are processed by the pre-trained
model.

3.3 PROMPT ANALYSIS

In this section, we further elaborate the properties of our proposed GPF, which guarantee its practical
effectiveness.

Availability. GPF has high availability, because it works on the feature space of the input graph.
As long as the pre-trained model supports the input node features, GPF can be easily adapted to
this model. It is worth mentioning that some pre-trained GNN models focus on the graphs without
initial node features (e.g., GCC (Qiu et al., 2020)). In this case, the node features are generated by
artificially synthesized representations, such as random features (Sato et al., 2021), and positional
encoding (Wang et al., 2022; You et al., 2019). GPF can also be applied to these synthetic node
features.

Transformation Diversity. According to Formula 3, GP is essentially a learnable graph-level
transformation, which searches suitable adjustments of the downstream task graph for particular
pre-trained model. In order to find the optimal transformation, GP should have a large enough
transformation space. Now we will demonstrate that our proposed GPF is able to provide sufficiently
complex transformations for most existing pre-trained GNN models.

From the Table 1, we can find that a large part of existing pre-trained GNN models apply GCN (Kipf
& Welling, 2017) or GIN (Xu et al., 2019) as their backbone models. A single layer of these two
models can be expressed as follows respectively:

H = D̃− 1
2 ÃD̃− 1

2XΘ (GCN) (7)
H = hΘ((A+(1 + ϵ) · I) ·X) (GIN) (8)

where Ã = A+I represents the adjacency matrix with inserted self-loops, D̃ii =
∑

j Ãij represents
the diagonal degree matrix, Θ denotes a linear transformation layer and hΘ denotes a MLP. Except
for the selection of the backbone model, the pooling strategies of the pre-training models are also
similar. For GNN models, hierarchical pooling is not as effective as that in the image field. Previous
work (Mesquita et al., 2020) indicates that GNN models do not need such complex pooling, and
simple readout functions can achieve better performances. Consequentially, according to Table 1,
most existing pre-trained GNN models use mean or sum readout function to calculate the graph
representations, which can be expressed as follows:

hG =
∑
vi∈V

hi (sum) (9)

hG =
1

|V|
∑
vi∈V

hi (mean) (10)
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Next, we prove that for a pre-trained GNN model with GCN/GIN as the backbone model and mean
or sum as the readout function, our proposed GPF can reach approximate results with arbitrary
graph-level transformations.
Proposition 1. For a frozen pre-trained GNN model f∗ with GCN/GIN as the backbone model and
mean or sum as the readout function, an input graph G = {A,X} and an arbitrary graph-level
transformation gϕ∗ : G → G, there exists a GPF p∗ that satisfies:

f∗(A,X+ p∗) ≈ f∗(gϕ∗(A,X))

For analytical simplification, we consider a single layer GIN with sum readout function, and replace
the MLP with a linear transformation layer. Such pre-trained GNN model f can be expressed as:

H = (A+ (1 + ϵ) · I) ·X ·Θ (11)

hG =
∑
vi∈V

hi (12)

where Θ is a linear transformation layer. we assume this model is pre-trained as f∗ in advance, which
means the learnable parameters ϵ and Θ are preset as ϵ∗ and Θ∗ respectively by the pre-training tasks.
When we apply graph prompt tuning to adapt the pre-trained model to specific downstream tasks,
these learnable parameters are frozen.
Proposition 2. With an input graph G = {A,X}, an arbitrary graph-level transformation gϕ can be
decoupled to a series of following transformations:

Feature transformations. Changing the node features gft(X) = X′.

Link transformations. Adding or removing edges glt(A) = A′.

Isolated component transformations. Adding or removing isolated components (sub-graphs)
gict(A,X) = (A′,X′). The word “isolated” here means that the component (sub-graph) does
not have any links with the rest of the graph.

Proposition 2 indicates that an arbitrary graph-level transformation is a combination of above three
transformations. For example, removing one node from the initial graph can be regarded as removing
its connected edges first, and then removing the isolated node.
Proposition 3. For a frozen pre-trained model f∗, an input graph G = {A,X} and an arbitrary
feature transformation gft∗ : gft∗(X) = X′, there exists a GPF p∗ that satisfies:

f∗(A,X+ p∗) = f∗(A, gft∗(X))

The proof of Proposition 3 can be found in Appendix A.1. Proposition 3 indicates that our proposed
GPF can cover all the feature transformations on the graph level. GPF adds the same feature
perturbation p ∈ RF to every node on the graph, but it can achieve the same effect as adding
independent feature perturbations to each node respectively under the pre-trained GNN models
described above. To achieve arbitrary feature transformations, a direct way is training a learnable
matrix ∆X ∈ RN×F , then calculating the transformed feature matrix X′ = X+∆X. Our proposed
GPF can achieve a completely equivalent effect to this approach but reduces the number of learnable
parameters from N × F to F , which indicates a huge gap in practical resource usage.
Proposition 4. For a frozen pre-trained model f∗, an input graph G = {A,X} and an arbitrary
link transformation glt∗ : glt∗(A) = A′, there exists a GPF p∗ that satisfies:

f∗(A,X+ p∗) = f∗(gft∗(A),X)

More detailed proof can be found in Appendix A.2. Proposition 4 indicates that GPF can also
cover all the link transformations. Intuitively, link transformations have a close connection with the
change of the adjacency matrix, which is independent of the node features. However, our conclusion
demonstrates that under the architecture of most existing GNN models, changes in the feature space
and changes in the structure space can achieve equivalent effects. Learnable link transformations are
also closely related to graph structure learning (Zhu et al., 2021; Gao et al., 2020; Jin et al., 2020b;
Xu et al., 2021). These approaches treat the adjacency matrix as learnable variables, and add extra
regularization to make it trainable. Our proposed GPF works on the feature space. It requires no
training tricks, and reduces the number of parameters from N ×N to F , but maintains the ability to
achieve an equivalent effect with arbitrary link transformation.
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Proposition 5. For a frozen pre-trained model f∗, an input graph G = {A,X} and an arbitrary
isolated component transformation gict∗ : gict∗(A,X) = (A′,X′), there exists a GPF p∗ that
satisfies:

f∗(A,X+ p∗) = f∗(gict∗(A,X))

The detailed proof is presented in Appendix A.3. Isolated component transformation has the ability to
change the graph scale, and this kind of graph-level transformation is rarely considered by previous
works. Proposition 5 expounds that GPF can also cover isolated component transformations.
Proposition 6. For a frozen pre-trained model f∗, an input graph G = {A,X} and a series of
transformations g = {g1, g2, · · · , gk} composed of gft, glt and gist, there exists a GPF p∗ that
satisfies:

f∗(A,X+ p∗) = f∗(g(A,X))

The detailed proof can be found in Appendix A.4. From the above discussion, we demonstrate that
GPF can achieve the same effect with any graph-level transformation for the pre-trained GNN model
described as Formula 11 and Formula 12. GPF works directly on the feature space on the input graph,
but it can provide the transformation space that covers all graph-level transformations. In practice,
the pre-trained GNN models apply non-linear activation layers between GNN layers and may replace
the linear transformations with MLPs, so Proposition 1 uses ≈ rather than =.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Pre-trained GNN models. We employ four different pre-trained GNN models, and all of them use
GIN (Xu et al., 2019) as the backbone model. These pre-trained models can be divided into following
two collections according to whether they use node features during pre-training:

• Pre-training with raw features. This kind of pre-trained model uses raw node features during
the pre-training process. We experiment with the pre-trained models proposed in Hu et al.
(2020a), GraphCL (You et al., 2020), and SimGRACE (Xia et al., 2022a).

• Pre-training without raw features. This kind of pre-trained model does not use raw node
features during the pre-training process. They generate synthesized node representations to
replace raw node features, such as random features or Laplacian features. We experiment
with GCC (Qiu et al., 2020) of this kind.

Pre-training datasets. For the pre-trained model proposed in Hu et al. (2020a), GraphCL and
SimGRACE, we use the datasets that are published by Hu et al. (2020a) to pre-train the models, which
include a dataset for the chemistry domain and a dataset for the biology domain. The dataset of the
chemistry domain contains 2 million unlabeled molecules sampled from the ZINC15 database (Ster-
ling & Irwin, 2015) an 256K labeled molecules from preprocessed ChEMBL dataset (Mayr et al.,
2018; Gaulton et al., 2012). The dataset of the biology domain contains 395K unlabeled and 88K
labeled protein ego-networks from PPI networks. To pre-train GCC, we follow the instructions in
its paper and use the datasets of Academia (Ritchie et al., 2016), DBLP (SNAP) (Yang & Leskovec,
2012), DBLP (NetRep) (Ritchie et al., 2016), IMDB (Ritchie et al., 2016), Facebook (Ritchie et al.,
2016) and LiveJournal (Backstrom et al., 2006) to pre-train the model.

Downstream datasets. We select the downstream datasets for the pre-trained model according
to its pre-training datasets. For the models pre-trained on the chemistry dataset, we use 8 binary
classification datasets published by Hu et al. (2020a) as downstream tasks, which is contained
in MoleculeNet (Wu et al., 2017). For the models pre-trained on the biology dataset, we apply
the pre-trained models to 40 binary classification tasks, and each task is to predict a fine-grained
biological function. These downstream tasks are also provided by Hu et al. (2020a). As for GCC,
we apply two graph classification datasets IMDB-BINARY and IMDB-MULTI from Yanardag and
Vishwanathan (Yanardag & Vishwanathan, 2015) as downstream tasks.

More details about the experiments can be found in Appendix.
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Dataset BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE
Pre-trained model FT GP Out-of-distribution prediction (scaffold split)

– ✓ 65.87 ±2.28 74.69 ±0.78 62.59 ±1.10 58.74 ±1.74 59.36 ±4.13 72.40 ±3.16 74.08 ±1.78 69.44 ±6.23

Infomax ✓ 70.12 ±0.76 74.93 ±0.37 62.25 ±0.55 57.43 ±0.85 68.82 ±2.94 75.87 ±1.54 76.21 ±0.81 77.79 ±0.56
✓ 60.85 ±0.74 67.75 ±0.60 58.75 ±0.17 58.05 ±0.31 61.62 ±1.51 75.35 ±1.33 71.90 ±0.28 65.98 ±0.43

EdgePred ✓ 68.11 ±3.20 76.28 ±0.42 64.03 ±0.56 60.55 ±0.59 64.57 ±2.94 74.10 ±1.98 78.18 ±0.82 79.47 ±1.29
✓ 55.88 ±2.19 63.14 ±0.52 55.70 ±0.47 51.48 ±0.72 50.77 ±5.06 63.13 ±2.10 65.96 ±1.71 68.03 ±2.43

AttrMasking ✓ 64.18 ±1.57 76.61 ±0.36 64.24 ±0.29 60.83 ±0.72 70.77 ±2.05 74.84 ±2.05 76.78 ±1.27 78.46 ±1.38
✓ 54.30 ±0.34 69.18 ±0.28 58.06 ±0.31 52.03 ±0.24 56.43 ±1.23 62.93 ±1.88 64.02 ±2.17 61.74 ±0.33

ContextPred ✓ 65.27 ±2.53 75.43 ±0.76 64.11 ±0.41 60.68 ±0.59 65.01 ±3.55 75.73 ±0.72 77.28 ±1.04 79.17 ±1.29
✓ 58.57 ±0.60 67.79 ±0.93 58.79 ±0.47 59.36 ±0.21 39.76 ±2.75 71.83 ±0.80 68.02 ±1.37 58.67 ±4.59

Supervised ✓ 67.58 ±1.08 77.01 ±0.41 64.55 ±0.23 61.59 ±0.81 56.98 ±3.59 77.13 ±2.77 75.63 ±0.56 77.01 ±0.70
✓ 63.81 ±0.17 75.58 ±0.09 63.32 ±0.11 59.83 ±0.06 50.79 ±0.64 79.01 ±0.59 70.93 ±0.60 75.60 ±0.45

Supervised-Infomax ✓ 67.25 ±2.10 77.74 ±0.26 65.54 ±0.55 60.98 ±0.73 69.96 ±1.45 81.43 ±1.14 77.58 ±0.85 81.02 ±0.62
✓ 66.04 ±0.35 76.91 ±0.07 63.90 ±0.06 59.47 ±0.98 61.85 ±2.08 80.16 ±0.66 74.30 ±0.24 82.10 ±0.32

Supervised-EdgePred ✓ 65.62 ±1.74 78.62 ±0.51 66.19 ±0.31 63.69 ±0.66 73.08 ±1.57 78.47 ±2.01 77.44 ±0.58 77.90 ±3.02
✓ 69.25 ±0.56 79.66 ±0.12 65.34 ±0.14 61.56 ±0.14 65.00 ±1.11 82.78 ±0.45 73.29 ±0.20 71.23 ±1.13

Supervised-AttrMasking ✓ 66.09 ±1.06 77.61 ±0.46 65.31 ±0.22 63.12 ±0.73 75.55 ±5.44 82.38 ±1.42 77.26 ±0.90 80.46 ±0.99
✓ 65.18 ±0.23 78.56 ±0.10 64.73 ±0.14 62.49 ±0.23 69.19 ±0.66 79.10 ±0.44 77.34 ±0.13 79.54 ±0.34

Supervised-ContextPred ✓ 69.31 ±1.40 78.37 ±0.39 65.53 ±0.22 62.92 ±0.44 72.78 ±2.25 82.89 ±1.24 79.45 ±0.87 84.44 ±0.79
✓ 68.35 ±0.37 77.93 ±0.06 65.50 ±0.13 61.71 ±0.15 69.59 ±0.22 84.35 ±0.50 73.25 ±0.34 78.96 ±3.42

Table 2: Test ROC-AUC (%) performance on molecular prediction benchmarks with different
pre-trained GNN models and different tuning methods.

4.2 MAIN RESULTS

Dataset PPI
Pre-trained model FT GP Species split

– ✓ 65.86 ±1.89

Infomax ✓ 63.28 ±0.38
✓ 62.89 ±0.96

EdgePred ✓ 65.06 ±1.02
✓ 51.22 ±1.33

AttrMasking ✓ 64.80 ±1.78
✓ 69.62 ±0.21

ContextPred ✓ 66.01 ±1.38
✓ 67.06 ±0.61

Supervised ✓ 69.17 ±2.36
✓ 76.44 ±0.13

Supervised-Infomax ✓ 71.29 ±1.79
✓ 77.02 ±0.42

Supervised-EdgePred ✓ 71.54 ±0.85
✓ 76.98 ±0.20

Supervised-AttrMasking ✓ 73.93 ±1.17
✓ 78.91 ±0.25

Supervised-ContextPred ✓ 72.10 ±1.94
✓ 77.42 ±0.07

GraphCL ✓ 67.88 ±0.85
✓ 68.22 ±0.11

SimGRACE ✓ 70.67 ±0.31
✓ 67.96 ±0.31

Table 3: Test ROC-AUC (%) performance on
protein function prediction benchmarks with dif-
ferent pre-trained GNN models and different tun-
ing methods.

Dataset IMDB-B IMDB-MPre-trained model FT GP
– ✓ 71.80 ±4.02 49.07 ±4.02

GCC (E2E) ✓ 72.60 ±4.72 49.07 ±3.59
✓ 73.40 ±3.80 49.17 ±3.12

GCC (MoCo) ✓ 71.70 ±4.98 48.07 ±2.91
✓ 72.50 ±3.20 49.33 ±3.93

Table 4: Test Acc (%) performance on graph
classification benchmarks with GCC and differ-
ent tuning methods.

Pre-trained model FT GP Total params

Hu et al. ✓ ∼ 2M
✓ ∼ 2K

GraphCL ✓ ∼ 2M
✓ ∼ 2K

SimGRACE ✓ ∼ 2M
✓ ∼ 2K

GCC ✓ ∼ 190K
✓ ∼ 200

Table 5: The number of tunable parameters of
pre-trained GNN models with different tuning
methods.

We compare the performance of various pre-trained GNN models with ordinary fine-tuning (FT) and
our proposed Graph Prompt (GP). Table 2,3 and 4 summarize the experimental results. GP here
means using GPF to adapt the pre-trained GNN models to downstream tasks. For a pre-trained GNN
model and all its variants, the best experimental results on a certain downstream task are bolded in
the table. Meanwhile, the best results for the other tuning method are underlined (e.g., if the overall
best result of this downstream task comes from GP, then the best result of FT would be underlined
for comparison). Due to the space limitation, more experimental results on molecular prediction
benchmarks can be found in Appendix. Our systematic study suggests the following observations.

Observation (1): With a small amount of tunable parameters (about 0.1% of that for fine-
tuning), GPF can achieve comparable performances with fine-tuning in most cases. According
to Table 5, we can find that under the same pre-trained model, the amount of tunable parameters of
GPF is just about 0.1% compared to that for fine-tuning. GPF achieves the optimal results on 2/3
of the pre-trained GNN models in biology datasets (Table 3), and achieve the optimal results on all
datasets with the pre-trained model GCC (Table 4). As for the chemistry datasets, GPF achieves the
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Figure 2: Training and test curves of different tuning methods.

optimal performance on 1/4 of the downstream tasks. Under all the settings where GPF is inferior to
fine-tuning, the optimal results on GPF are on average 2.08% lower than that of fine-tuning, which
are comparable to the sub-optimal fine-tuning results.

Observation (2): GPF can achieve significant improvement compared to fine-tuning in some
particular situations. In biology datasets, for the pre-trained models in Hu et al. (2020a) using
supervised pre-training strategy, GPF outperforms fine-tuning about 5% on average. It is worth
mentioning that this phenomenon rarely occurs in the NLP field, where prompt tuning matches, but
cannot exceed fine-tuning. The overall results indicate that our proposed GPF outperforms fine-tuning
in almost half of all experiments (6/13).

Observation (3): Compared with fine-tuning, GPF is more stable when adapting the pre-trained
GNN models on downstream tasks. For 75% (65/87) of the pre-trained models and downstream
tasks, GPF has smaller std values compared to fine-tuning. This result can be explained by the fact
that GPF using a small number of task-specific parameters, which makes the adaptation more stable
compared to full fine-tuning of the pre-trained model.

4.3 ADDITIONAL EXPERIMENTS

Training process analysis. We analyze the training process for different tuning methods on biology
datasets (PPI) with two pre-trained GNN models pre-trained by two different strategies in Hu et al.
(2020a): AttrMasking and Supervised AttrMasking. Figure 2 presents the training and test results
during the adaptation stage. The test set is divided into Test Hard and Test Easy, which is based on
whether the graph appears in the supervised pre-training process (more details can be found in Hu
et al. (2020a)). From Figure 2 (a), we can find that the AUC scores of the training set are continually
increasing during the adaptation stage for both GPF and fine-tuning. However, things are totally
different on the test set. As for the fine-tuning method, the AUC scores on the test set fluctuate and
decrease continuously after a brief improvement. When applying GPF to adapt pre-trained models,
the AUC scores on the test set continue to grow and stay at a high value. These results indicate that
fully fine-tuning a pre-trained GNN model on a downstream task may lose the generalization ability
of the model, while employing GPF can alleviate this problem significantly.

Comparison with other tuning methods. Pre-trained GNN model is mostly tuned through fully
updating the model with classification head parameters. We apply some other tuning methods, which
are adopted extensively in other areas. The full experimental results can be found in Appendix A.7.
The results indicate that GPF outperforms other tuning methods in most cases.

5 CONCLUSION

In this paper, we propose Graph Prompt, a prompt-based tuning method for adapting pre-trained
GNN models on downstream tasks. GP introduces task-specific learnable graph-level transformations
during the adaptation stage while keeping the pre-trained GNN models frozen. We also design a
concrete implementation of GP, called GP-Feature, and demonstrate the effectiveness of GPF both
theoretically and empirically. With only a small amount of tunable parameters, GPF achieves a
satisfactory performance compared to fine-tuning. Our paper proves the feasibility of employing
prompt tuning on pre-trained GNN models, and we hope our work will inspire future research on the
design of graph prompts.
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A APPENDIX

A.1 PROOF OF PROPOSITION 3

Proof. We set ∆X = X′ −X, then we have:
H′ = (A+ (1 + ϵ∗) · I) ·X′ ·Θ∗

= (A+ (1 + ϵ∗) · I) · (X+∆X) ·Θ∗

= (A+ (1 + ϵ∗) · I) ·X ·Θ∗ + (A+ (1 + ϵ∗) · I) ·∆X ·Θ∗

= H+ (A+ (1 + ϵ∗) · I) ·∆X ·Θ∗

As for GPF p = [α1, · · · , αF ] ∈ R1×F , we can do the similar split:
Hp = (A+ (1 + ϵ∗) · I) · (X+ [1]N · p) ·Θ∗

= (A+ (1 + ϵ∗) · I) ·X ·Θ∗ + (A+ (1 + ϵ∗) · I) · [1]N · p ·Θ∗

= H+ (A+ (1 + ϵ∗) · I) · [1]N · p ·Θ∗

= H+ [di + 1 + ϵ∗]N · p ·Θ∗

where [1]N ∈ RN×1 denotes a column vector with N 1s, [di + 1 + ϵ∗]N ∈ RN×1 denotes a column
vector with the value of i-th line is di + 1 + ϵ∗ and di represents the degree number of vi. To obtain
the same graph representation hG , we have:

hG,ft = hG,p

→ Sum(H′) = Sum(Hp)

where Sum(M) =
∑

i mi denotes the operation that calculates the sum vector for each row in the
matrix. We can further simplify the above equation as:

hG,ft = hG,p

→ Sum(H′) = Sum(Hp)

→ Sum(H+ (A+ (1 + ϵ∗) · I) ·∆X ·Θ∗) = Sum(H+ [di + 1 + ϵ∗]N · p ·Θ∗)

→ Sum((A+ (1 + ϵ∗) · I) ·∆X ·Θ∗) = Sum([di + 1 + ϵ∗]N · p ·Θ∗)

where the results of ((A + (1 + ϵ∗) · I) · ∆X) ∈ RN×F ,and the frozen linear transformation
Θ∗ ∈ RF×F ′

. We first calculate ∆hG,p = Sum([di + 1 + ϵ∗]N · p ·Θ∗) ∈ RF ′
. We can obtain that:

∆hi
G,p =

F∑
j=1

N∑
k=1

(dk + 1 + ϵ∗) · αj · θ∗j,i

=

F∑
j=1

(D +N +N · ϵ∗) · αj · θ∗j,i

where hi
G,p denotes the value of the i-th dimension in hG,p, D =

∑N
k=1 dk denotes the total

degree of all nodes in the whole graph, αj , j ∈ [1, F ] denotes the j-th learnable parameter in
GPF p, and θ∗j,i, j ∈ [1, F ], i ∈ [1, F ′] denotes the frozen parameter in Θ∗. As for ∆hG,ft =

Sum((A+ (1 + ϵ∗) · I) ·∆X ·Θ∗), we assume (A+ (1 + ϵ∗) · I) ·∆X = B ∈ RN×F . Then we
have:

∆hi
G,ft =

F∑
j=1

(

N∑
k=1

βk,j) · θ∗j,i

where βk,j , k ∈ [1, N ], j ∈ [1, F ] denotes the learnable parameter in B. According to above analysis,
to obtain a same graph representation hG,p with a certain hG,ft∗ , we have:

hi
G,p = hi

G,ft∗ , for every i ∈ [1, F ′]

→∆hi
G,p = ∆hi

G,ft∗

→ αj =

∑N
k=1 β

∗
k,j

D +N +N · ϵ∗
, j ∈ [1, F ]

Therefore, for an arbitrary feature transformation gft∗ , there exists a GPF p∗ that satisfies above
conditions and can obtain the same graph representation for pre-trained GNN model f∗.
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A.2 PROOF OF PROPOSITION 4

Proof. The proof of Proposition 4 is similar to that of Proposition 3. We set ∆A = A′ −A. It is
worth mentioning that A,A′ ∈ {0, 1}N×N and ∆A ∈ {−1, 0, 1}N×N , which means they are of the
same size, the values of A,A′ can only be 0 or 1, and the values of ∆A can be −1, 0 or 1. We have:

H′ = (A′ + (1 + ϵ∗) · I) ·X ·Θ∗

= ((A+∆A) + (1 + ϵ∗) · I) ·X ·Θ∗

= H+∆A ·X ·Θ∗

From the proof of Proposition 3, we obtain:

Hp = H+ [di + 1 + ϵ∗]N · p ·Θ∗

where p = [α1, · · · , αF ] ∈ R1×F denotes our learnable GPF, [di + 1 + ϵ∗]N ∈ RN×1 denotes a
column vector with the value of i-th line is di + 1 + ϵ∗ and di represents the degree number of vi.
With ∆hG,p = Sum([di + 1 + ϵ∗]N · p ·Θ∗) ∈ RF ′

, we can obtain:

∆hi
G,p =

F∑
j=1

N∑
k=1

(dk + 1 + ϵ∗) · αj · θ∗j,i

=

F∑
j=1

(D +N +N · ϵ∗) · αj · θ∗j,i

where hi
G,p denotes the value of the i-th dimension in hG,p, D =

∑N
k=1 dk denotes the total degree

of all nodes in the whole graph, αj , j ∈ [1, F ] denotes the j-th learnable parameter in GPF p, and
θ∗j,i, j ∈ [1, F ], i ∈ [1, F ′] denotes the frozen parameter in Θ∗. As for ∆hG,lt = Sum(∆A ·X ·Θ∗),
we have:

∆hi
G,lt =

F∑
j=1

∑
(k,l)∈N×N

(∆ak,l · xl,j) · θ∗j,i

where ∆ak,l, k ∈ [1, N ], l ∈ [1, N ] denotes the element of ∆A, and xl,j , l ∈ [1, N ], j ∈ [1, F ]
denotes the element of X. To obtain a same graph representation hG,p with a certain hG,lt∗ , we have:

hi
G,p = hi

G,lt∗ , for every i ∈ [1, F ′]

→ ∆hi
G,p = ∆hi

G,lt∗

→ αj =

∑
(k,l)∈N×N ∆a∗k,l · xl,j

D +N +N · ϵ∗
, j ∈ [1, F ]

Therefore, for an arbitrary link transformation glt∗ , there exists a GPF p∗ that satisfies above condi-
tions and can obtain the same graph representation for pre-trained GNN model f∗.

A.3 PROOF OF PROPOSITION 5

Proof. Unlike feature transformations and linear transformations, isolated component transformations
will change the number of nodes in the graph, which means the scale of modified A′ and X′ is
uncertain. We first express the isolated component transformation in more details. The adjacency
matrix A and feature matrix X can be divided into several isolated components, which can be
expressed as:

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
...

0 0 · · · Am

 X =


X1

X2

...
Xm


Removing an isolated component Ck = {Ak,Xk}, k ∈ [1,m] means removing both Ak in the
adjacency matrix and corresponding Xk in the feature matrix. Adding a new isolated component
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Cm+l = {Am+l,Xm+l}, l ≥ 1 means adding Am+l to the adjacency matrix A, and adding Xm+l

to the corresponding position of X. Then we have:

hG,ist =
∑
k

Sum((Ak + (1 + ϵ∗) · I) ·Xk ·Θ∗)

To align with the proofs of Proposition 3 and Proposition 4, we set ∆hG,ist = hG,ist − Sum((A+
(1 + ϵ∗) · I) ·X ·Θ∗), and it can be expressed as:

∆hG,ist =
∑
k

Ik · Sum((Ak + (1 + ϵ∗) · I) ·Xk ·Θ∗)

where Ik is an indicator that satisfies:

Ik =


0 if Ck has no change
1 if Ck is an additional component

−1 if Ck is a removed component

From the proof of Proposition 3, we have following conclusions:

Hp = H+ [di + 1 + ϵ∗]N · p ·Θ∗

where p = [α1, · · · , αF ] ∈ R1×F denotes our learnable GPF, [di + 1 + ϵ∗]N ∈ RN×1 denotes a
column vector with the value of i-th line is di + 1 + ϵ∗ and di represents the degree number of vi.
With ∆hG,p = Sum([di + 1 + ϵ∗]N · p ·Θ∗) ∈ RF ′

, we can obtain:

∆hi
G,p =

F∑
j=1

N∑
k=1

(dk + 1 + ϵ∗) · αj · θ∗j,i

=

F∑
j=1

(D +N +N · ϵ∗) · αj · θ∗j,i

where hi
G,p denotes the value of the i-th dimension in hG,p, D =

∑N
k=1 dk denotes the total degree

of all nodes in the whole graph, αj , j ∈ [1, F ] denotes the j-th learnable parameter in GPF p, and
θ∗j,i, j ∈ [1, F ], i ∈ [1, F ′] denotes the frozen parameter in Θ∗. To obtain a same graph representation
hG,p with a certain hG,ist∗ , we have:

hi
G,p = hi

G,ist∗ , for every i ∈ [1, F ′]

→∆hi
G,p = ∆hi

G,ist∗

→ αj =

∑
k Ik · Sum((Ak + (1 + ϵ∗) · I) ·Xj

k)

D +N +N · ϵ∗
, j ∈ [1, F ]

where Xj denotes the j-th column of the matrix X. Therefore, for an arbitrary isolated component
transformation gict∗ , there exists a GPF p∗ that satisfies above conditions and can obtain the same
graph representation for pre-trained GNN model f∗.

A.4 PROOF OF PROPOSITION 6

Proof. Without loss of generality, we consider g = {g1, g2} with two transformations described in
Proposition 2. Now we prove there exists a GPF p∗ that satisfies:

f∗(A,X+ p∗) = f∗(g2(g1(A,X)))

We assume g1(A,X) = (A′,X′). According to Proposition 3, 4, 5, there exists a GPF p∗1 that
satisfies:

f∗(A,X+ p∗1) = f∗(g1(A,X))

and a p∗2 that satisfies:

f∗(A,X+ p∗2) = f∗(g2(A
′,X′))

Therefore, there is a p∗ = p∗1 + p∗2 that satisfies:

f∗(A,X+ p∗) = f∗(g2(g1(A,X)))
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A.5 MORE DETAILS ABOUT THE EXPERIMENTS

Implementation details. We conduct graph classification tasks for various datasets and pre-trained
models. To obtain the graph classification result, we first input the downstream graph to the pre-trained
GNN model and get fixed-dimensional graph representations. Then, we use a linear transformation
layer to transform the graph representations to classification results. When applying fine-tuning
to adapt the pre-trained model to downstream tasks, we update all parameters of the pre-trained
model and the final linear transformation layer. As for our proposed GPF, we freeze the parameters
of the pre-trained model during adaption, but update the parameters of GPF and the final linear
transformation layer. We strictly follow the training steps and the hyper-parameter settings presented
in the papers of these pre-trained models (Hu et al., 2020a; You et al., 2020; Xia et al., 2022a; Qiu
et al., 2020). For each pre-trained model and a specific downstream dataset, we conduct 5 rounds of
experiments with different random seeds, and present the average result.

Hyper-parameter setting. This part presents the hyper-parameters involved during the adaptation
stage of pre-trained GNN models on downstream tasks. Table 6 summarizes the hyper-parameter
settings for fine-tuning, and Table 7 summarizes the hyper-parameter settings for GPF.

Downstream dataset Model Learning rate Weight decay Batch size Training epoch

Biology
Hu et al. 0.001 0 32 50
GraphCL 0.0001 0 32 50
SimGrace 0.001 0 32 10

Chemistry
Hu et al. 0.001 0 32 100
GraphCL 0.001 0 32 100
SimGrace 0.001 0 32 100

IMDB-B GCC 0.005 Linear 128 100
IMDB-M GCC 0.005 Linear 128 100

Table 6: The hyper-parameter settings for fine-tuning.

Downstream dataset Model Prompt dimension Learning rate Weight decay Batch size Training epoch

Biology
Hu et al. 300 0.001 0 32 50
GraphCL 300 0.0001 0 32 50
SimGrace 300 0.0001 0 32 20

Chemistry
Hu et al. 300 0.001 0 32 100
GraphCL 300 0.001 0 32 100
SimGrace 300 0.001 0 32 100

IMDB-B GCC 64 0.005 Linear 128 100
IMDB-M GCC 64 0.005 Linear 128 100

Table 7: The hyper-parameter settings for GPF.

Details of pre-training datasets. The datasets published by Hu et al. (2020a) include two datasets
named Biology and Chemistry for the biology domain and chemistry domain respectively. Biology
contains 395K unlabeled protein ego-networks derived from PPI networks of 50 species for node-
level self-supervised pre-training, and 88K labeled protein ego-networks to jointly predict 5000
coarse-grained biological functions for graph-level multi-task supervised pre-training. In Chemistry,
2 million unlabeled molecules are sampled from the ZINC15 database (Sterling & Irwin, 2015)
for node-level self-supervised pre-training. A preprocessed ChEMBL dataset (Mayr et al., 2018;
Gaulton et al., 2012) is utilized for graph-level multi-task supervised pre-training, which contains
456K molecules with 1310 kinds of biochemical assays. For datasets used to pre-train GCC, the
self-supervised pre-training is performed on six graph datasets. Table 8 presents the detailed statistics
of them.

Dataset Academia DBLP(SNALP) DBLP(NetRep) IMDB Facebook LiveJournal
|V | 137,969 317,080 540,486 896,305 3,097,165 4,843,953
|E| 739,984 2,099,732 30,491,158 7,564,894 47,334,788 85,691,368

Table 8: Statistics of datasets for pre-training
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Details of downstream datasets. Detailed statistics of downstream datasets used for the models
pre-trained on Biology and Chemistry are summarized in Table 9. For the downstream tasks of
pre-trained GCC, we use IMDB-BINARY and IMDB-MULTI (Yanardag & Vishwanathan, 2015).
Each dataset is a set of graphs where each graph is associated with a label. To evaluate GCC on this
task, we use raw input graphs as the input of GCC.

Dataset PPI BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE
# Proteins / Molecules 88K 2039 7831 8575 1427 1478 93087 41127 1513

# Binary prediction tasks 40 1 12 617 27 2 17 1 1

Table 9: Statistics of datasets for downstream tasks.

A.6 ADDITIONAL RESULTS OF MAIN EXPERIMENTS.

Dataset BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE
Pre-trained model FT GP Out-of-distribution prediction (scaffold split)

GraphCL ✓ 69.49 ±0.35 73.35 ±0.70 62.54 ±0.26 60.63 ±1.26 75.17 ±2.14 69.78 ±1.44 78.26 ±0.73 75.51 ±2.01
✓ 63.71 ±0.39 65.53 ±0.48 58.48 ±0.48 55.34 ±0.56 64.47 ±0.56 70.10 ±0.68 70.32 ±0.53 71.53 ±0.64

Table 10: Test ROC-AUC (%) performance on molecular prediction benchmarks with GraphCL and
different tuning methods.

Table 10 presents the results of GraphCL on molecular prediction benchmarks with different tuning
methods.

A.7 RESULTS OF COMPARISON WITH OTHER TUNING METHODS.

We compare GPF with other tuning methods described as follows:

• PARTIAL-k: We finetune the last k layers of the model with the classfication head and
freeze other parts, which is utilized in Zhang et al. (2016); He et al. (2021); Jia et al. (2022).

• MLP-k: We utilize a multilayer perceptron (MLP) with k layers as the classification head,
instead of a single linear layer.

We conduct the experiments on the biology datasets (PPI) with pre-trained GNN models in Hu et al.
(2020a), and Table 11 summaries the results. The experimental results indicate that GPF outperforms
other tuning methods in most cases (6/9).

Pre-trained model FT MLP-3 Partial-1 Partial-3 GP (ours)
Infomax 63.28 ±0.38 67.51 ±0.73 68.95 ±0.71 64.69 ±0.46 62.89 ±0.96

EdgePred 65.06 ±1.02 65.71 ±0.41 70.54 ±1.56 66.53 ±0.28 51.22 ±1.33
AttrMasking 64.80 ±1.78 65.21 ±0.75 65.69 ±0.24 63.19 ±0.48 69.62 ±0.21
ContextPred 66.01 ±1.38 69.68 ±0.84 67.27 ±0.54 66.98 ±1.43 67.06 ±0.61
Supervised 69.17 ±2.36 74.02 ±0.37 71.93 ±0.99 71.11 ±2.22 76.44 ±0.13

Supervised-Infomax 71.29 ±1.79 74.68 ±0.56 74.36 ±0.92 73.28 ±0.18 77.02 ±0.42
Supervised-EdgePred 71.54 ±0.85 74.60 ±0.88 73.24 ±0.68 73.35 ±0.77 76.98 ±0.20

Supervised-AttrMasking 73.93 ±1.17 77.99 ±0.42 75.91 ±0.10 74.02 ±0.37 78.91 ±0.25
Supervised-ContextPred 72.10 ±1.94 76.01 ±0.68 76.62 ±0.92 74.86 ±0.79 77.42 ±0.07

Table 11: Test ROC-AUC (%) performance on protein function prediction benchmarks with different
tuning methods.

A.8 DETAILS OF PRE-TRAINED GNN MODELS.

In our experiments, we employ four different pre-trained GNN models, adopting GIN (Xu et al.,
2019) as the backbone and average pooling for the READOUT function. These models are elaborated
as follows:

• Hu et al. (2020a) Hu et al. (2020a) propose a new strategy and self-supervised methods
for pre-training GNNs. It includes ContextPred (Context Prediction), Attribute Masking
(AttrMasking) and Supervised Graph-Level Property Prediction (Supervised). They also use
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Deep Graph Infomax (Infomax) (Velickovic et al., 2019) and Edge Prediction (EdgePred)
(Hamilton et al., 2017) as pre-training baselines. Following their experiment settings, we
also test different combinations of these methods.

• GraphCL You et al. (2020) propose a graph contrastive learning framework for learning
unsupervised representations of graph data. They design four types of graph augmentations
to incorporate various priors.

• SimGRACE Xia et al. (2022a) propose a simple framework for graph contrastive learning
(SimGRACE), which doesn’t require data augmentations. They take the original graph as
input and GNN model with its perturbed version as two encoders to obtain two correlated
views for contrast.

• GCC To capture the universal network topological properties across multiple networks, Qiu
et al. (2020) propose a self-supervised graph neural network pre-training framework, which
is named Graph Contrastive Coding (GCC).
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