
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THE PROMISES AND PITFALLS OF LANGUAGE MODELS
FOR STRUCTURED NUMERICAL DATA

Anonymous authors

Paper under double-blind review

ABSTRACT

Autoregressive language models are increasingly capable of processing non-text
data, such as images or audio. Are language models also a natural choice for
numerical data, such as the 3D structure of molecules? In this work, we use
quantum chemistry simulations as a case study in the challenges of applying
language models to numerical data, building up a set of simple subproblems
that can shed light on key design decisions. We show that language models lag
behind domain-specific models on prediction tasks and provide evidence for and
against different hypotheses that explain their failure. Many commonly identified
pitfalls such as difficulty performing arithmetic operations and choice of discrete
vocabulary fall short of explaining the behavior. In contrast, we show that capturing
invariance properties exhibits a strong correlation with predictive performance.
Finally, we provide a comparison of language models trained from scratch on
numerical data with models pretrained on text. We show that text pretraining often
provides a surprisingly limited advantage on prediction tasks, and can even hurt
performance, despite prior work showing that text-pretraining can offer advantages.

1 INTRODUCTION

A popular goal in machine learning is building a generative model that operates on many data
modalities simultaneously. Multiple modalities are useful because each modality can unlock a new
source of information or control. For example, a web developer can provide a chat bot writing
code with a sketch of a website, or a biologist can provide a desired function or structure to a
model that generates protein sequences (Hayes et al., 2024). One modality that is particularly
exciting for scientific discovery is 3D structures, which are intrinsically geometric objects, but
which often co-occur with text descriptions or categorical features. Improving models of these
structures facilitates easier drug discovery and materials design. A sequence model that successfully
incorporates numerical data might be able to leverage the few-shot abilities of large language models
when making predictions about numerical structures or act as alternatives to traditional simulations.

When we consider current state-of-the-art models for predicting the properties of 3D structures,
however, language modeling approaches appear to lag far behind models that leverage domain-
specific knowledge. In other domains, such as images (Wang et al., 2024), time-series (Ansari
et al., 2024), and generative modeling of molecular structures (Flam-Shepherd and Aspuru-Guzik,
2023), autoregressive language models can compete with other state-of-the-art methods, but the same
pattern does not seem to hold true for many predictive tasks on structured numerical data. To find
some explanation, we need only look to similar trends observed on simple numerical tasks. Namely,
despite many fundamental advances in modeling, it is still challenging to learn algorithms for simple
numerical operations that generalize to new input sizes (Zhou et al., 2023). Several authors have
speculated on the fundamental challenges language models may face in learning algorithms over
numerical inputs, some of which might act as useful frameworks for considering language models on
3D structures and similar geometric objects.

In this paper, our goal is to explore the core challenges in applying language models to geometric
objects by appealing to frameworks from prior work and running extensive experiments to assess
their practical significance. To do so, we train thousands of language models to solve operations from
linear algebra and simple physical modeling tasks. We show that some facets of language modeling,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

such as causal masking, are not fundamental bottlenecks to current progress on numerical tasks,
while properties that affect a model’s invariance to a problem’s symmetries seems to have a strong
correlation with predictive performance. We also explore how tokenization and pretraining can affect
the predictions and invariances of models, and show that finetuning state-of-the-art language models
often leads to worse results than training new language models from scratch.

For reproducing our experiments, we release our code at https://anonymous.4open.
science/r/numerical-tokens-E44C/

2 RELATED WORK

Learning simple arithmetic operations with language models is longstanding problem. Although
addition and multiplication of integers or matrices are in the complexity class of algorithms that can
be learned exactly by a transformer-based language model (Merrill and Sabharwal, 2023), they can
still be difficult to learn in practice. Zhou et al. (2023) speculate that some numerical operations are
challenging to learn because they lack a simple program that can be expressed by a causal transformer.
For example, addition of two multi-digit integers can be challenging when digits are ordered from
most significant to least significant, because causal attention has trouble building representation
for a carry operation. McLeish et al. (2024) draw on similar observations to design an improved
language model with expanded generalization abilities on addition and multiplication, by reversing
number digits and providing special information about each digit’s location. While these studies
provide useful frameworks for reasoning about the challenges of language models, they do not study
high-dimensional objects, which have much more practical relevance. We show that in many cases
the same intuitions do not naturally extend to our settings and different challenges dominate.

Going beyond integer inputs, Charton (2021) shows that language models can learn basic operations
from linear algebra like matrix addition, matrix multiplication, and eigenvalue computations. While
we use some of Charton (2021)’s tasks in our study and draw inspiration from their numerical
string encodings, our analysis differs in fundamental ways because of our underlying motivation
to approximate calculations from quantum chemistry. To this end, we focus much more on the
invariance properties of learned models, and introduce simple building blocks of physical models
that are not studied by Charton (2021). In this way, our work is more closely related to the work of
Flam-Shepherd and Aspuru-Guzik (2023), which shows that language models with standard training
and simple tokenization methods can be used as strong generative models of 3D structures. However,
like Alampara et al. (2024), we also find that predictive tasks display different dynamics compared
to generative modeling and that language models are not competitive with best in class predictive
methods.

Because we apply language models to numerical data and closely study their interactions with choices
in tokenization, we also drawn on the work of Golkar et al. (2023), which introduces a continuous
alternative to discrete tokenization in language models (xVal) on mixed categorical and numerical
data. xVal models all numbers with a single token and uses a single weight and bias vector for
inputs and outputs, instead of an embedding matrix for many numerical tokens. xVal is thus akin to
transformers applied directly on continuous inputs or to graph neural network methods applied to
numerical prediction problems. We find that xVal does lead to improvements in many settings and
therefore provides valuable perspective on what facets of language modeling are most challenging
when learning on geometric data.

As we are also interested in how text pretraining can act as a useful inductive bias, our work also
intersects with work that applies text-pretrained models to zero-shot prediction on other modalities
(Hegselmann et al., 2023; Gruver et al., 2024b). Although text pretraining holds the potential to help
models learn general-purpose circuits over discrete sequences, we find that it is ultimately unhelpful
in our tasks.

3 PRELIMINARIES

Before studying the empirical performance of language modeling methods, it’s worth briefly con-
sidering the reasons why we might prefer discrete representations to continuous representations in
general. We lay out a few of the trade-offs intrinsic in each approach below:

2

https://anonymous.4open.science/r/numerical-tokens-E44C/
https://anonymous.4open.science/r/numerical-tokens-E44C/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Continuous sequences: Each number is a floating point value, typically at the same precision as
the weights of the neural network.

• Pros: (a) domain-specific properties (e.g. invariance/equivariance) have simple relationships
with the model parameters. (b) order information is preserved in the input and in loss functions.
(c) it is not necessary to learn an embedding matrix, or associated linear layers, which might be
very large.

• Cons: (a) information contained in the scale of the numbers can be destroyed by normalization
used to improve numerical stability. (b) modeling numbers of radically different scales can lead
to numerical instability in the input. Transforming with log and exp can stabilize the input but
have poor gradient behavior. (c) multimodality (mixed categorical and continuous variables) in
the output space can be hard to represent.

2 3 4

Language Model

,

FiLM

2.34

3 4 , 8

2 3 4

Language Model

8.59

,

Continuous Input Continuous Output

Network

2.34

Network

5.17

'2' '3' '4' ',' '5' '1' '7'

Figure 1: Discrete
inputs mirror contin-
uous inputs but have
different costs and
benefits.

Discrete sequences: Each number is converted to a string and then to a
sequence of tokens, i.e. [“1”, “.”, “5”, “6”], and corresponding integers.

• Pros: (a) distributions on sequences are densities over numbers with-
out strong distributional assumptions or complicated losses. (b) input
numbers do not need to be normalized. Numbers can in principle be
large or small without causing fundamental problems, though length
generalization is not guaranteed.

• Cons: (a) learning basic operations on numbers might require many
samples because of a large vocabulary and complicated algorithms for
operating on strings. (b) hallucination of non-number outputs.

As we can see, there are actually very reasonable explanations for supporting
either approach, and working towards a sequence model over numerical tokens
is not fundamentally misguided.

4 TARGET PROBLEMS AND BUILDING BLOCKS

Target problems As stated in the introduction, our goal is improving a practical application of
modeling numerical data with language models. Here we focus on modeling of molecular structure
for two primary reasons: 1) molecular structures tend to be intrinsically multi-modal because atom
positions are numerical and atom identities (e.g., N or C) are categorical. In other works, this modality
is often solved with complex diffusion/flow matching models (Campbell et al., 2024; Miller et al.,
2024), but autoregressive sequence models offer a simple alternative. 2) molecular structures for
crystals and organic molecules are often relatively small even for important problems, allowing us to
study direct methods of tokenizing individual numbers without compressing chunks of the input, as
in vector quantization. To this end, we use QM9 (Ramakrishnan et al., 2014) as a test bed.

In the Table 1, we show how a basic language model architecture (Touvron et al., 2023a) trained from
scratch on QM9 compares to popular and state-of-the-art methods for predicting the highest occupied
molecular orbital (HOMO). It is easy to see that language models are an order of magnitude worse
than competing models, and in the following sections we will try to articulate a few possible reasons
for this large gap.

Table 1: Comparison of popular and state-of-the-art approaches for predicting HOMO on QM9.

Method HOMO (↓)

LLaMA (from scratch) 212 meV

Non-equivariant GNN 71.4 meV

Equivariant GNN (Satorras et al., 2021) 51.9 meV

JMP-L (Shoghi et al., 2023) 8.8 meV

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Building blocks Our goal in this study is to develop a better mechanistic understanding of the
challenges of applying language models to numerical data, and therefore we also attempt to break
these goal problems down into their constituent parts and see where language models run into trouble.
Both of the datasets we use are derived from density functional theory (DFT), quantum mechanical
calculations to approximate the electron density for relatively small sets of atoms. We include a brief
primer on quantum chemistry in Appendix A. At their core, DFT calculations rely on a relatively
simple set of key operations. These include

• Looking up scalar constants (e.g. charge of an electron) or the value of a basis function (e.g.
spherical harmonic) at a point.

• Matrix addition and multiplication (e.g. to compute pairwise distances between coordinates).

• Iterative procedures in linear algebra and solving differential equations (e.g. calculating
eigenvalues or fixed point iteration on the Schrodinger equation).

This characterization is rough, but it gives a sense of what types of functions language models must
be able to learn if they were implementing pre-existing theories of physics in order match the outputs
of simulations. Of course, one of the strengths of neural networks is their ability to approximate
expensive procedures with a fixed computation budget (one forward pass during training), so we
do not necessarily expect language models to recapitulate existing tools from mathematics and
physics. We can, however, use existing methods for approximating physical observations as a way
of debugging current limitations of language models, if not to perfectly understand their internal
mechanisms. If language models struggle to learn matrix multiplication but not matrix addition, for
example, we can speculate that the scalar multiplication of many operands might be a roadblock, and
we can work on this limitation directly.

Theoretical limititions In the a single forward pass of a neural network, there are fundamental
limits on both (1) the number of serial operations and (2) the amount of memory for intermediate
results. When the number of steps that must be performed serially exceeds the depth of the network,
the network will not be able to learn the exact function. Therefore, one forward pass of a network
with depth 24 will not be able to learn an iterative method that might require 30 steps for convergence.
Notably, this limitation is not relevant for functions that can be parallelized, as with matrix multipli-
cation, which is in TC0 and therefore should be possible to learn with a single forward pass (Merrill
and Sabharwal, 2023). Like serial computation, memory can also be a bottleneck, as with computing
the matrix product ATA where A is n × m with n >> m. The number of computations will be
approximately O(n2) but the input size is approximately O(n). When n is greater than the depth
of the network, there can be challenges in storing all intermediate computations in the network’s
activations.

Practical challenges In practice, reasoning about what solutions tend to be learned by a particular
architecture is often more important than fundamental constraints. Even when a function can be
represented in the function class, the statistical nature of the problem and questions of approaching
the solution via approximations can play a larger role. Aside from not being able to represent the
exact algorithm, why would autoregressive language models be limited in solving these numerical
problems? We formulate 5 hypotheses and in the following sections provide evidence for and against
each of these hypotheses.

1. Mixing conditional and unconditional modeling (section 6): Here we study predictive tasks
p(y|x), but language models parameterize a joint likelihood p(x, y). Modeling the joint makes
language models flexible but also requires more capacity for p(x) beyond just p(y|x). When
p(x) is intrinsically challenging, learning it can detract from learning a simple p(y|x).

2. Causal masking (section 7): Features in autoregressive models are unidirectional, which makes
learning some numerical operations challenging. For example, when digits are passed from left
to right into a language model, it is challenging to express addition of two numbers using a carry
bit. Similarly, any scan-style operation will be order-dependent and more challenging to learn
if subsequences need to be reversed, and if a function cannot be implemented with an ordered
scan-style operation, it might be very challenging to learn at all.

3. Lack of symmetries (section 8): Structured numerical data often obey constraints that are easy
to express analytically (e.g. invariance to rotations). Incorporating these constraints can make

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

learning more sample-efficient or improve generalization (Frey et al., 2023), but language models
are typically unconstrained.

4. Poor tokenization (section 9): Tokenization can lead to strange artifacts in text-pretrained
language models (Brown et al., 2020; Wallace et al., 2019) and hinder their application to
numerical inputs (Gruver et al., 2024a). While language models trained on numerical data often
explore multiple tokenization schemes (Charton, 2021; Golkar et al., 2023; Flam-Shepherd and
Aspuru-Guzik, 2023), they are often presented as ablations rather than analyzed in their own
right.

5. Too little data or pretraining (section 10): Data for some numerical tasks can be relatively
limited or extremely noisy, making language models less likely to succeed compared to models
with more domain-specific assumptions. Other works show that text pretraining can serve as a
surrogate for domain-specific pretraining or inductive biases (Gruver et al., 2024b).

5 EXPERIMENTAL SETUP

To test our hypotheses, we train thousands of language models that vary in model architecture, model
size, tokenization method, loss function and pretraining method.

String-encoding and tokenization To turn numbers into tokens, we convert all numbers to a
fixed precision and then convert these numbers to variable length strings by ignoring any leading
zeros. These strings are then tokenized using a vocabulary of all numbers up to certain chunk length,
for example {“1”, “2”, ..., “998”, “999”} for a chunk length of 3. We greedily select the largest
subsequence from right to left. For negative numbers, each negative number is prepended with “-".
These strategies are similar to P10, P1000, and FP15 in Charton (2021), but, in our case, we choose to
drop the exponent term used by Charton in favor of variable length because our inputs do not contain
many different orders of magnitude. In addition to standard tokenization with an embedding matrix,
we also explore Abacus embeddings (McLeish et al., 2024) and xVal (Golkar et al., 2023), which are
tokenization methods specifically designed for processing numbers.

Models We present results for both language models trained from scratch and frontier language
models pre-trained on text. Pretrained models can reuse general computational circuits and features
developed on the pretraining text data, but may not be as well suited for numerical data in the given
format. When training models from scratch, we use the LLaMA-2 (Touvron et al., 2023b) architecture
with between 4 and 8 layers and hidden size 512, which translates to between 20 million and 50
million parameters. We train models with learning rate 0.0001 or 0.0005 and a cosine schedule. When
studying pretrained models, we use LLaMA3.1-8B (Dubey et al., 2024), and the default LLaMA-3
tokenization, which, on numerical inputs, is identical to our 3-digit chunking method. We fine-tune
the LLaMA3.1 models using LoRA with rank 8 and alpha 32 for one epoch. To make predictions
with the models, we draw 10 samples at temperature 1 and calculate the median at each dimension of
the output.

Datasets Our datasets are chosen to represent building blocks of common functions on numerical
data. They have varying degrees of difficulty, with some being computable exactly by transformers
while others can only be approximated. We explore two categories of tasks:

• Linear algebra: Following (Charton, 2021), we create n × n matrices with n ∈ [2, 10] and
evaluate (a) matrix addition (b) matrix multiplication, and (c) calculating real eigenvalues. We
train on matrices of mixed sizes, with a distribution of n weighted n, so that we train on more
large matrices. The input matrices have coefficients sampled uniformly from [−10, 10], and
resulting eigenvalues having a center distribution with standard deviation σ = 10

√
n/3.

These tasks have significant variation in difficulty. While matrix sum and product are computable
in theory by a language model, computing an eigenspectrum is not and is more intrinsically
serial than sum and product, making it more challenging for transformers. In addition to
testing on matrices drawn from the same distribution as the train data, we also include a special
generalization setting (marked with ‘+’) in which we train on n ∈ [2, 10] \ {8} and evaluate
on n = 8. While past research often tests generalization evaluating on problems strictly larger
than the training problems (Zhou et al., 2023), we opt for an interpolative setting because it is
less confounded by the inherent limitations of position embeddings and reflects other facets of
generalization on numerical data.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

• 3D structures: Using the data from QM9 (Ramakrishnan et al., 2014), we evaluate on the
highest occupied molecular orbital (HOMO) regression task. We also evaluate on a set of simpler
functions on QM9 coordinates including (a) calculating a distance matrix on coordinates, and
(b) calculating a simple potential energy over the atomic nuclei. For the potential energy task,
we test on either pre-computed distances or directly on coordinates, which disentangles the
challenge of computing distances internally within the neural network, a task which can involve
storing an intractable number of intermediate variables.
Alongside the linear algebra tasks, these problems encompass many of the fundamental opera-
tions of quantum chemistry. It might be difficult to approximate current computation methods
without being able to express reasonable approximations to these simpler problems.

For linear algebra tasks, we use 500,000 training examples, and for 3D structures we use 100,000
examples. We use 400 fixed test points for all evaluations.

Baseline methods Our first baseline is low-precision quantization of the floating point numbers
used in the correct computation within the synthetically generated tasks. We know that transformers
struggle with performing exact arithmetic, even for integers, therefore we should expect that arithmetic
will at best be performed approximately within the transformer. This quantization baseline evaluates
the impact of using a correct algorithm but with only limited precision. We use QPyTorch (Zhang
et al., 2019) and allocate an equal number of bits to the exponent and mantissa. Our two quantization
baselines use 16 and 20 total bits, and this sets a reasonable ceiling on model performance.

Our other baselines are equivariant graph neural networks (EGNNs) (Satorras et al., 2021), which
learn functions that are equivariant to permutations, rotations, and translations. EGGNs are therefore
particularly useful in understanding how symmetries affect performance on our tasks. Following the
original EGNN experiments on QM9, we use networks with 7 layers and hidden dimensions of size
128. Training details are included in Appendix B.

6 CONDITIONAL VS UNCONDITIONAL MODELING

In standard language modeling and in the supervised finetuning of language models, the joint distri-
bution of the data is modeled, enforced by minimizing the NLL − log p(x) =

∑
i − log p(xi|x<i).

For many of the problems we consider on structured numerical data, there is an explicit input-output
structure, and we are only interested in the conditional distribution p(y|x) for e.g. numerical outputs
computed from a point cloud. Posed as sequence modeling we could also state p(y|x) as p(x>i|x≤i).
While learning the joint distribution also implies learning the conditional distribution in the abstract,

Table 2: MAE (↓) values for
training with and without mask-
ing, both from scratch and fine-
tuning.

Type w/ w/o

Scratch 0.168 0.154

Finetune 0.456 0.508

high complexity and variance in p(x) can mean that signal in
y gets drowned out in the unnecessary task of modeling x. In
many cases, the entropy of the output H(y|x) is much lower than
H(x), and thus the model prioritizes x. For example, learning the
distribution of all rotations of a molecule might be much more
complicated than just learning to distinguish high and low energy
configurations. When learning jointly on p(x>i|x≤i) and p(x≤i),
the gradient signals of each term compete, leading to slower learn-
ing of p(x>i|x≤i) than in models that are explicitly conditional.
Even if p(x≤i) is modeled perfectly, the random variation in x≤i

introduces unecessary noise in the gradients, which slows down
learning as we show in Appendix C.

To test this effect, we train models, both from scratch and fine-tuning text pretrained models, on
the energy (from coordinates) task with loss masking to optimize only p(x>i|x≤i). The results are
displayed in Table 2. While masking helps fine-tuning which has relatively few gradient steps (1
epoch), masking does not help when training from scratch (100 epochs).

7 CAUSAL MASKING

In addition to whether or not the input x is featured in the loss or is masked out, the decoder-
only autoregressive structure of the language model has an impact on which operations are easy to

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Sum Sum+ Product Product+ Eigen Eigen+ Distances Energy
(D)

Energy
(C)

10
2

10
0

M
A

E

Decoder
Enc-Dec

16 Bit
20 Bit

Figure 2: Encoder-decoder architectures have theoretical advantages over decoder-only architectures
on our numerical tasks, but we find in practice the difference is minor. In our encoder-decoder models,
layers are split equally between the encoder and decoder. A task name with ‘+’ indicates a holdout of
unseen matrix shape–a harder test of generalization. We include quantized numerical operations as
baselines. 16 bit refers a quantized operation with a 8 bit mantissa and 8 bit exponent. 20 bit
has a 10 bit mantissa and 10 bit exponent. We do not provide results for a quantized eigenvalue solver
because PyTorch does not provide an easy mechanism constructing one.

express. For example, as identified by Zhou et al. (2023), the carry used in adding two numbers is a
useful intermediary for the task, but if the numbers are ordered most significant digit first then its
computation is nontrivial. In the structured numerical data context, an analogous challenge might
arise when outputting scalar values which depend on aggregating information from input set data.
For example, with an input X = {x1, x2, . . . , xn}, computing y =

∑
i,j K(xi, xj). As a quadratic

time operation that depends on all pairs of inputs, it might seem difficult for a causally constrained
model to perform this computation within linear space allotted to the model.

To test this hypothesis, in Figure 2 (left) we compare the performance of a decoder-only model
with loss masking to a encoder-decoder approach where only y is modeled autoregressively and
X can be attended to bidirectionally by the encoder. We find that, contrary from intuitions from
theory, encoder-decoder models do not perform significantly better than models with only causal
masking. To enable an apples-to-apples comparison in these experiments, we use the same number of
parameters in each architecture for each of three fixed parameter counts. In causal models, every layer
is causal, whereas in encoder-decoder models, half the layers are in a bidirectional encoder and half
the layers in a causal decoder. For tasks with a complex and high-dimensional output, it is possible
that having a limited number of decoder layers could have a negative impact on the coherence of the
output relative to a decoder-only architecture. This is one possible explanation for encoder-decoder
architecture’s significantly worse performance on calculating distances, where the output is a flattened
upper triangular.

As a small additional experiment, we also explore McLeish et al. (2024)’s approach to tokenizing num-
bers, which involves reversing the the digits in number allowing for simpler algorithms implementing

Table 3: Digit order has negligi-
ble effect on relative error. Ge-
ometric mean across tasks with
standard errors.

Method MAE

Base 0.237± 0.12

Reversed 0.309± 0.14

arithmetic operations Zhou et al. (2023). In addition to reversing
the digit, a special embedding is added to identify each digit
position within a number. Unlike the original paper, however, we
use a plain decoder-only transformer model without parameter-
sharing or skip connection to the input. In Table 3, we show
that this intervention has a negligible or slightly negative effect
overall. Although McLeish et al. (2024) designed their approach
with large multi-digit numbers in mind, its surprising that there is
no positive effect on learning operations that depend on addition
and multiplication as a subroutine. Together, these two results
(comparing architectures and input orderings) suggest that artifacts
of causal masking are likely not the largest bottleneck to language
model success on our tasks.

8 LACK OF HARD-CODED SYMMETRIES

Symmetries can be hard-coded into a model’s architecture, but this process is not common in language
modeling applications and can be challenging when operating on tokenized strings. In this section, we
explore how language models learn invariances or equivariances on our numerical tasks and quantify

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

10 6.0 10 3.0

10 6

10 2

P
er

m
ut

at
io

n
E

rr
or

Sum

100.0 103.0

10 1.5

101.5

Product

10 0.6 10 0.2

MAE

10 2.5

10 1.5

Eigen

10 4.5 10 1.510 6.0

10 3.0

Distances

10 2 100
10 6.6

10 5.4

Energy

10 4.5 10 1.5

MAE

10 6.0

10 3.0

R
ot

at
io

n
E

rr
or

Distances

10 1.0 100.0

MAE

10 5.4

10 4.2

Energy

0.2 0.6 1.0
0.0

0.8

1.6

P
er

m
ut

at
io

n
E

rr
or

Sum

0.2 0.6 1.0

1

3

Product

0.2 0.6 1.0
% of Total Epochs

0.12

0.16

Eigen

0.2 0.6 1.0
0.00

0.30

0.60
Distances

0.2 0.6 1.0
0.0020

0.0028

0.0036

Energy

0.2 0.6 1.0
0.0

0.8

1.6

R
ot

at
io

n
E

rr
or

Distances

0.2 0.6 1.0
1

3

Energy

% of Total EpochsS M L

Figure 3: (Top) Degree of invariance (permutation or rotation error) strongly correlates with ability
to fit the task (MAE) across several model sizes, tokenization methods, and training runs. Results are
displayed with both axes log-scaled. For rotation invariance, we only study tasks on 3D structures.
Surprisingly, when solving eigenvalues, predictive accuracy is inversely related to the permutation
invariance of the model, which could be a result of a spurious correlation between the row-orderings
and eigenspectra in the training dataset. Shading is a 95% confidence interval for the regression.
(Bottom) Considering patterns of invariance over training, we see steady decreases in error in most
cases, except on tasks where overfitting occurs. Larger models typically learn to be more invariant and
become invariant more quickly. For linear algebra tasks, no form of augmentation is applied to the
training data, while the tasks on 3D structures include both permutation and rotation augmentations.

how correlated learning symmetries is with predictive performance. In our linear algebra tasks, the
primary symmetry is permutation equivariance. Permuting the inputs of addition and multiplication
will lead to a permuted result, and the eigenvalues of a matrix are invariant to permutation. Our 3D
structure tasks are equivariant to permutations, rotations, and translations, because all the tasks depend
on only the relative positions of the atoms. We quantify invariance by calculating the predictions of
the model for 10 examples transformed with random permutations or rotations. The invariance error
is measured as the standard deviation per dimension normalized by the absolute value of the ground
truth values and averaged over all dimensions. Following standard practice, we train our 3D structure
models with rotation augmentations, and we also add permutation augmentations. For linear algebra
tasks, we do not apply augmentations.

In Figure 3 (top), we show the correlation between predictive performance (relative error) and
invariance to permutation or rotations. The points displayed are models that vary in size, architecture,
and training hyperparameters. Across almost all tasks, there is a strong correlation, indicating that
good models also tend to be invariant models. The notable exception is solving for eigenvalues,
which displays the opposite trend, likely due to a spurious correlation between the matrix ordering
and eigenvalue spectra in the training dataset. In many cases, the best models are able to approach
perfect invariance, with invariance errors on the order of 10−6. Yet, even when models are nearly
invariant, small changes in invariance appear to be correlated with improvements in performance. In
Figure 3 (bottom), we show how invariance evolves during training and its relationship with model
size. For most tasks, large models are able to quickly converge on invariant solutions, even when
augmentations are not used.

Table 4: GNNs outperform
LMs on the energy predic-
tion task and benefit from
equivariance.

Method MAE (↓)

LM 0.209

GNN 0.079

EGNN 0.041

To further explore the impact of equivariance, we compare decoder-
only language models trained on digit tokens against GNNs with and
without rotation equivariance in Table 4. GNN indicates permutation
equivariance, while EGNN indicates permutation, translation, and
rotation equivariance. The evaluation tasks are energy (from coor-
dinates) and HOMO, both of which have permutation and rotation
symmetry. In the results, invariance/equivariance again has a strong
connection with predictive performance. Combined with the results
above, we can conclude that invariance has a clear connection with
performance on our numerical tasks. Surprisingly, language models
can achieve high levels of invariance, but these high levels do not
appear to saturate predictive performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Sum Product Eigen Distances Energy (D) Energy (C)

10
2

10
1

10
0

10
1

M
A

E

Digits 3-Digit Chunks Continuous

S M L

10
2

10
1

10
0

P
er

m
ut

at
io

n
E

rr
or

S M L

10
2

10
1

R
ot

at
io

n
E

rr
or

Figure 4: (left) We train causal transformers with different tokenization schemes and witness a
significant advantage from learning a continuous prediction head. By contrast, differences between
discrete tokenization schemes (digits vs. chunks) are inconsistent with multi-digit schemes performing
better on some tasks and worse on others. (right) Using a continuous prediction head leads to higher
invariance at smaller model sizes. For discrete methods, larger models are required to learn invariance.
Numbers are the geometric mean over tasks, and shading denotes a 95% confidence interval.

9 TOKENIZATION

Beside architecture and training loss, tokenization is the other key design decision in constructing
language models. When training on text, most language models employ tokenizers that compress
commonly occurring sequences of bytes (e.g. byte-pair encoding). However, naively applying
these same tokenization methods to numbers can lead to problems, because small changes to the
value of the number can lead to large and hard to model changes in the tokenization of the number
string (Gruver et al., 2024a). Character-level or n-gram tokens, therefore, are popular choices when
modeling numbers, but while many papers employ these methods (Flam-Shepherd and Aspuru-Guzik,
2023; Zholus et al., 2024), there is little understanding of how tokenization affects the model’s ability
to learn basic numerical operations.

To test the effects of tokenization, we explore the empirical differences between tokenizing individual
digits and tokenizing in 3-digit chunks. When using chunks, we always tokenize from right to left
to maintain a consistent token meaning for strings of different lengths. In principle the primary
trade-off between these approaches is between vocabulary size and sequence length, as chunked
sequences are shorter but might require a larger training dataset to cover the space of 10k tokens,
for chunk size k, some of which might occur rarely. In addition to these two discrete approaches to
processes numbers, we also run experiments with xVal (Golkar et al., 2023), which replaces discrete
vocabularies and their associated embedding with a single linear projection that turns scalar inputs to
vectors the same dimension as token embeddings and which projects final output layers. Instead of
the cross-entropy loss, xVal uses an L2 loss on its continuous prediction. xVal is a useful counterpoint
to purely discrete approaches because it sidesteps several key challenges of tokens, for example
learning large vocabularies, long sequences, and potential challenges in learning symmetries.

In Figure 4, we show the effect of tokenization on predictive performance and symmetry learning.
Overall we see that adopting a continuous approach leads to lower errors and more invariant predictors.
By contrast, the difference between character-level (digit) and n-gram (3-digit chunk) schemes is
inconsistent in terms of errors and nearly equivalent in terms of invariance. The latter result is
surprising given our relatively large datasets, which provide reasonable coverage of the tokens in the

2 3 4

Language Model

,

FiLM

2.34

3 4 , 8

2 3 4

Language Model

8.59

,

Continuous Input Continuous Output

Network

2.34

Network

5.17

'2' '3' '4' ',' '5' '1' '7'

Figure 5: We include ablations on xVal to explore
the effect of working with discrete versus continu-
ous inputs and the corresponding loss functions.

vocabulary. The relationship between invari-
ance and model size in xVal hints that maybe
using any discrete representation incurs signif-
icant overhead to learn the appropriate structure,
as xVal appears to acquire much higher levels
of invariance for all model sizes.

In an attempt to understand the dominance of the
continuous approach, we perform two additional
ablations on the input and output of xVal by
replacing them with their discrete counterpart,
as shown in Figure 5. Continuous Input
ablates the benefit of passing numbers directly
into the model, without needing to parse inputs

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Product Eigen Energy
(D)

Energy
(C)

10
2

10
1

10
0

10
1

M
A

E

Digits
Continuous

Cont. Input
Cont. Output

Sum Product Eigen Distances Energy
(D)

Energy
(C)

10
2

10
1

10
0

10
1

M
A

E

From Scratch LLaMA3.1-8B

Figure 6: (left) To understand the performance of xVal, we perform an ablation the output and input
with discrete tokens to understand if continuous inputs or continuous outputs (continuous loss) is the
origin of improved performance. Both ablations hurt performance, but continuous inputs appear to be
more helpful than continuous outputs. (right) We compare our small language models trained from
scratch with large text-pretrained model finetuned with LoRA. Text-pretrained models perform worse
on every tasks except matrix products, which might benefit from the pretrained model’s additional
capacity and ability to model high-dimensional outputs.

from a sequence of tokens, while Continuous Output ablates the benefit of using a continuous
loss function, while still using discrete inputs. Figure 6 (left) shows the the result on the hardest
numerical tasks, where the is worth investigating. The results indicate that neither design choice
explains the strong performance of xVal in isolation, though continuous variants still outperform
discrete approaches on 3D structure tasks.

10 INSUFFICIENT PRE-TRAINING

As we’ve seen so far, language models typically require large model sizes in order to capture
invariances and make good predictions. For sufficiently large datasets, this allows language models
to perform on-par with hand-crafted methods, but in other cases these extra parameters lead to poor
generalization or slower convergence for fixed compute. The typical solution for this problem is
extensive unsupervised pretraining, which can unlock the benefits of language modeling, while
matching performance on narrow tasks. Prior work shows that text pretraining can serve this role in
some cases. For example, Delétang et al. (2023) and Goldblum et al. (2023) show that text-pretrained
models are general-purpose compression engines that can match domain-specific compression on
non-text modalities.

To explore pre-trained models, we compare our small from-scratch models with LLaMA3.1-8B, a
model two orders of magnitude larger. We fine-tune the LLaMA3.1 models for one epoch, which
is 1-2 orders of magnitude fewer gradient steps than we take with the smaller models. As with
models trained from scratch, we make predictions by drawing 10 samples and taking the median
per dimension. Figure 6 (right) shows the resulting errors, for which pretrained models have worse
performance in all but matrix multiplication. We posit two possible explanations for this discrepancy:
(a) matrix product requires the most capacity to learn effectively (as was already evidenced in
Figure 3) (b) matrix product has very high-dimensional outputs consisting of matrices containing
large numbers, and text-pretraining is primarily helpful in modeling patterns in long sequences. If
this were true, however, we might also expect some benefit on matrix addition and distance matrices.

11 DISCUSSION

In this work, we explored several explanations of the subpar performance of language models on
3D property prediction tasks. Through interventions like modifications of the architecture and loss
function, we see that some of the explanations are not supported by the data, while others, such as the
importance of invariances, hold up to scrutiny. We also showed that text pretraining is surprisingly
unhelpful for learning good subroutines on our numerical tasks, despite its promise in other settings.

Our experiments suggest that language models converge to increasingly accurate and nearly invariant
solutions when given sufficient model capacity and yet still have a large gap when compared to a
method like xVal. One possibility for future work is to close this gap by extensively pretraining on
synthetic data, which could be created by running cheap traditional methods (e.g. Hartree-Fock) or
by distilling from a successful neural network potential evaluated on perturbed training data.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

12 REPRODUCIBILITY

We include code to train, evaluate, and sample from language models in our code release. We include
implementations for the exact architectures used in our experiments. The training and evaluation
details for experiments we ran on each task were described by previous papers and again in our
appendix.

REFERENCES

Nawaf Alampara, Santiago Miret, and Kevin Maik Jablonka. Mattext: Do language models need
more than text & scale for materials modeling? arXiv preprint arXiv:2406.17295, 2024.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
arXiv preprint arXiv:2402.04997, 2024.

François Charton. Linear algebra with transformers. arXiv preprint arXiv:2112.01898, 2021.

Grégoire Delétang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christo-
pher Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent Orseau, et al.
Language modeling is compression. arXiv preprint arXiv:2309.10668, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Daniel Flam-Shepherd and Alán Aspuru-Guzik. Language models can generate molecules, materials,
and protein binding sites directly in three dimensions as xyz, cif, and pdb files. arXiv preprint
arXiv:2305.05708, 2023.

Nathan C Frey, Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael Gomez-Bombarelli, Con-
nor W Coley, and Vijay Gadepally. Neural scaling of deep chemical models. Nature Machine
Intelligence, 5(11):1297–1305, 2023.

Micah Goldblum, Marc Finzi, Keefer Rowan, and Andrew Gordon Wilson. The no free lunch
theorem, kolmogorov complexity, and the role of inductive biases in machine learning. arXiv
preprint arXiv:2304.05366, 2023.

Siavash Golkar, Mariel Pettee, Michael Eickenberg, Alberto Bietti, Miles Cranmer, Geraud Krawezik,
Francois Lanusse, Michael McCabe, Ruben Ohana, Liam Parker, et al. xval: A continuous number
encoding for large language models. arXiv preprint arXiv:2310.02989, 2023.

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. Large language models are zero-shot
time series forecasters. Advances in Neural Information Processing Systems, 36, 2024a.

Nate Gruver, Anuroop Sriram, Andrea Madotto, Andrew Gordon Wilson, C Lawrence Zitnick, and
Zachary Ulissi. Fine-tuned language models generate stable inorganic materials as text. arXiv
preprint arXiv:2402.04379, 2024b.

Tomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert
Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million years of
evolution with a language model. bioRxiv, pages 2024–07, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David
Sontag. Tabllm: Few-shot classification of tabular data with large language models. In International
Conference on Artificial Intelligence and Statistics, pages 5549–5581. PMLR, 2023.

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, et al. Transformers can do
arithmetic with the right embeddings. arXiv preprint arXiv:2405.17399, 2024.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023.

Benjamin Kurt Miller, Ricky TQ Chen, Anuroop Sriram, and Brandon M Wood. Flowmm: Generating
materials with riemannian flow matching. arXiv preprint arXiv:2406.04713, 2024.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks.
In International conference on machine learning, pages 9323–9332. PMLR, 2021.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Nima Shoghi, Adeesh Kolluru, John R Kitchin, Zachary W Ulissi, C Lawrence Zitnick, and Bran-
don M Wood. From molecules to materials: Pre-training large generalizable models for atomic
property prediction. arXiv preprint arXiv:2310.16802, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M. Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony S.
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel M. Kloumann, A. V. Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril,
Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian, Xia Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey
Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models. ArXiv,
abs/2307.09288, 2023b.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. Universal adversarial
triggers for attacking and analyzing nlp. arXiv preprint arXiv:1908.07125, 2019.

Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
Zhang, Yueze Wang, Zhen Li, Qiying Yu, Yingli Zhao, Yulong Ao, Xuebin Min, Tao Li, Boya Wu,
Bo Zhao, Bowen Zhang, Liangdong Wang, Guang Liu, Zheqi He, Xi Yang, Jingjing Liu, Yonghua
Lin, Tiejun Huang, and Zhongyuan Wang. Emu3: Next-token prediction is all you need, 2024.
URL https://arxiv.org/abs/2409.18869.

Tianyi Zhang, Zhiqiu Lin, Guandao Yang, and Christopher De Sa. Qpytorch: A low-precision
arithmetic simulation framework, 2019.

Artem Zholus, Maksim Kuznetsov, Roman Schutski, Rim Shayakhmetov, Daniil Polykovskiy, Sarath
Chandar, and Alex Zhavoronkov. Bindgpt: A scalable framework for 3d molecular design via
language modeling and reinforcement learning. arXiv preprint arXiv:2406.03686, 2024.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization.
arXiv preprint arXiv:2310.16028, 2023.

12

https://arxiv.org/abs/2409.18869

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Appendix

Table of Contents
A Density Functional Theory Primer 13

B GNN Training Details 13

C Learning Speedup from Loss Masking 13

D Hyperparameter Settings 14
D.1 From-scratch models . 14
D.2 Fine-tuned models . 15

E MAE Numbers with Standard Errors 15

A DENSITY FUNCTIONAL THEORY PRIMER

A core task in quantum chemistry is calculating the energy of a configuration of many atoms. Low
energy configurations are stable and practically useful, for example in novel materials or the binding
interface of therapeutic drugs. Atomic nuclei can be modeled as point charges

Enuc =
∑
i<j

qiqj/Dij

where D is the distance matrix between nuclei and q is the charge of each nucleus. To model electrons,
however, more complex methods are needed, for example, Hartree-Fock, which iteratively solves1

F (C)C = Cϵ

where F is the Fock matrix, C are the orbital coefficients and ϵ is a diagonal matrix of molecular
energies. At each step, C and ϵ are obtained by solving a generalized eigenvalue problem using
F constructed from the last approximation of C, and, upon convergence, the electron energy is
calculated as

Eelec = Tr(ϵ) + Tr(C†HC)

where H is the system’s Hamiltonian (constructed using the position and charge of the atomic nuclei).

B GNN TRAINING DETAILS

We use a batch size of 96 and a learning rate of 0.001 for 200 epochs on the HOMO prediction task
and for 50 epochs on the synthetic energy prediction task from coordinates only. We use a learning
rate of 0.0005 for 100 epochs on the energy prediction task from distances. In all tasks, we use
weight decay of 10−16 and a cosine decay on the learning rate. We do not use any normalization on
the target function, and we add in an additional tanh activation function for stability.

C LEARNING SPEEDUP FROM LOSS MASKING

When learning p(y|x), the training convergence can be substantially slowed down when including
the p(x) loss contribution.

Consider the loss for a single data point with a random label:

L = −y⊤ log σ(fθ(x))

1We show the Roothaan equations using an orthonormalised basis set

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

where f(x) is the mapping to the log softmax of the logits of the model, σ is the softmax function,
and y is the one-hot random label vector (among the V classes).

The gradient is

∇θL = y⊤[I − 1σ⊤]J

where J is the Jacobian of the network outputs with respect to θ. E[y] = 1/V giving an expectation
of

E[∇θL] = (1/V)1⊤[I − 1σ⊤]J.

The gradient is 0 when the model predicts a uniform distribution σ = 1/V , and we will consider
perturbations around this point.

From E[yy⊤] = I/V covariance is given by

E[∇L∇L⊤] = (1/V)J⊤[I − 1σ⊤]⊤[I − 1σ⊤]J.

Letting σ = 1/V ,the gradient norm is

E[∥∇L∥2] = (1/V)Tr
(
PJJ⊤),

for P = [I − 11⊤/V].

The convergence of SGD on convex problems can be written in terms of the expectation of the norm
of the gradient. Over T timesteps with learning rate η and batch size B, the convergence can written
(see e.g. Shalev-Shwartz and Ben-David (2014)) as

1

T

T∑
t=1

E[∥∇L(θt)∥2] ≤ 2
L(θ0)− L(θ∗)

ηT
+ (ησ2/B), (1)

where σ2 = supθ E[∥∇L(θ, y)− E[∇L(θ, y)]∥2] with expectations taken over the distribution of y.
The convergence of SGD is limited by this noisy ball term (ησ2/B), and for a fixed learning rate
cannot improve upon that limit as T → ∞.

If E[∥∇L(θ∗, y) − E[∇L(θ∗, y)]∥2] = E[∥∇L(θ∗, y)∥2] = (1/V)Tr
(
PJJ⊤), then σ2 ≥

(1/V)Tr
(
PJJ⊤), therefore increasing the size of he noisy ball and loss value that SGD converges

to.

For the p(y,X) vs p(y|X) scenario, p(y,X) contains the additional random content of X even if y
is a deterministic function of X . This random content when mixed in to the negative log likelihood
objective increases the size of the noisy ball, slowing down convergence.

D HYPERPARAMETER SETTINGS

D.1 FROM-SCRATCH MODELS

Hyperparameter Values

Model Size {10M, 20M, 50M}

Model Dimension/Layers {128/2, 512/4, 512/8 }

Learning Rate {5e-4, 1e-4, 5e-5}

Tokenizer {“1 Digit”, “3 Digits”, “Continuous”}

Table 5: Hyperparameter values for from-scratch language model training runs.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Hyperparameter Values

Learning Rate {5e-4, 1e-4, 5e-5}

LoRA Rank {8, 16, 32}

Batch Size {8, 16}

Table 6: Hyperparameter values for fine-tuning language model training runs.

D.2 FINE-TUNED MODELS

E MAE NUMBERS WITH STANDARD ERRORS

Table 7 shows a full table of MAE values for each task and tokenization method, including standard
errors calculated over 200 different examples from each task.

Task Tokenization MAE Standard Error

Distances 1 Digit 0.007583 0.001822

Distances 3 Digits 0.007587 0.001873

Distances Continuous 0.002345 0.000049

Eigen 1 Digit 0.843819 0.051417

Eigen 3 Digits 0.949008 0.056988

Eigen Continuous 0.731731 0.044416

Energy (C) 1 Digit 0.305043 0.016945

Energy (C) 3 Digits 0.541269 0.029265

Energy (C) Continuous 0.167922 0.009055

Energy (D) 1 Digit 0.029822 0.005926

Energy (D) 3 Digits 0.039592 0.006085

Energy (D) Continuous 0.006789 0.001359

Product 1 Digit 1.824334 0.131004

Product 3 Digits 0.636723 0.055891

Product Continuous 0.186717 0.006272

Sum 1 Digit 0.003840 0.000149

Sum 3 Digits 0.024948 0.006033

Sum Continuous 0.005297 0.000159

Table 7: MAE values for different tasks and tokenization methods. Standard errors are calculated
from 200 data points from each task.

15

	Introduction
	Related Work
	Preliminaries
	Target Problems and Building Blocks
	Experimental Setup
	Conditional vs Unconditional Modeling
	Causal Masking
	Lack of Hard-Coded Symmetries
	Tokenization
	Insufficient Pre-training
	Discussion
	Reproducibility
	Appendix
	 Appendix
	Density Functional Theory Primer
	GNN Training Details
	Learning Speedup from Loss Masking
	Hyperparameter Settings
	From-scratch models
	Fine-tuned models

	MAE Numbers with Standard Errors

