Under review as a conference paper at ICLR 2025

THE PROMISES AND PITFALLS OF LANGUAGE MODELS
FOR STRUCTURED NUMERICAL DATA

Anonymous authors

Paper under double-blind review

ABSTRACT

Autoregressive language models are increasingly capable of processing non-text
data, such as images or audio. Are language models also a natural choice for
numerical data, such as the 3D structure of molecules? In this work, we use
quantum chemistry simulations as a case study in the challenges of applying
language models to numerical data, building up a set of simple subproblems
that can shed light on key design decisions. We show that language models lag
behind domain-specific models on prediction tasks and provide evidence for and
against different hypotheses that explain their failure. Many commonly identified
pitfalls such as difficulty performing arithmetic operations and choice of discrete
vocabulary fall short of explaining the behavior. In contrast, we show that capturing
invariance properties exhibits a strong correlation with predictive performance.
Finally, we provide a comparison of language models trained from scratch on
numerical data with models pretrained on text. We show that text pretraining often
provides a surprisingly limited advantage on prediction tasks, and can even hurt
performance, despite prior work showing that text-pretraining can offer advantages.

1 INTRODUCTION

A popular goal in machine learning is building a generative model that operates on many data
modalities simultaneously. Multiple modalities are useful because each modality can unlock a new
source of information or control. For example, a web developer can provide a chat bot writing
code with a sketch of a website, or a biologist can provide a desired function or structure to a
model that generates protein sequences (Hayes et al., 2024). One modality that is particularly
exciting for scientific discovery is 3D structures, which are intrinsically geometric objects, but
which often co-occur with text descriptions or categorical features. Improving models of these
structures facilitates easier drug discovery and materials design. A sequence model that successfully
incorporates numerical data might be able to leverage the few-shot abilities of large language models
when making predictions about numerical structures or act as alternatives to traditional simulations.

When we consider current state-of-the-art models for predicting the properties of 3D structures,
however, language modeling approaches appear to lag far behind models that leverage domain-
specific knowledge. In other domains, such as images (Wang et al., 2024), time-series (Ansari
et al., 2024), and generative modeling of molecular structures (Flam-Shepherd and Aspuru-Guzik,
2023), autoregressive language models can compete with other state-of-the-art methods, but the same
pattern does not seem to hold true for many predictive tasks on structured numerical data. To find
some explanation, we need only look to similar trends observed on simple numerical tasks. Namely,
despite many fundamental advances in modeling, it is still challenging to learn algorithms for simple
numerical operations that generalize to new input sizes (Zhou et al., 2023). Several authors have
speculated on the fundamental challenges language models may face in learning algorithms over
numerical inputs, some of which might act as useful frameworks for considering language models on
3D structures and similar geometric objects.

In this paper, our goal is to explore the core challenges in applying language models to geometric
objects by appealing to frameworks from prior work and running extensive experiments to assess
their practical significance. To do so, we train thousands of language models to solve operations from
linear algebra and simple physical modeling tasks. We show that some facets of language modeling,

Under review as a conference paper at ICLR 2025

such as causal masking, are not fundamental bottlenecks to current progress on numerical tasks,
while properties that affect a model’s invariance to a problem’s symmetries seems to have a strong
correlation with predictive performance. We also explore how tokenization and pretraining can affect
the predictions and invariances of models, and show that finetuning state-of-the-art language models
often leads to worse results than training new language models from scratch.

For reproducing our experiments, we release our code at https://anonymous.4open.
science/r/numerical-tokens-E44C/

2 RELATED WORK

Learning simple arithmetic operations with language models is longstanding problem. Although
addition and multiplication of integers or matrices are in the complexity class of algorithms that can
be learned exactly by a transformer-based language model (Merrill and Sabharwal, 2023), they can
still be difficult to learn in practice. Zhou et al. (2023) speculate that some numerical operations are
challenging to learn because they lack a simple program that can be expressed by a causal transformer.
For example, addition of two multi-digit integers can be challenging when digits are ordered from
most significant to least significant, because causal attention has trouble building representation
for a carry operation. McLeish et al. (2024) draw on similar observations to design an improved
language model with expanded generalization abilities on addition and multiplication, by reversing
number digits and providing special information about each digit’s location. While these studies
provide useful frameworks for reasoning about the challenges of language models, they do not study
high-dimensional objects, which have much more practical relevance. We show that in many cases
the same intuitions do not naturally extend to our settings and different challenges dominate.

Going beyond integer inputs, Charton (2021) shows that language models can learn basic operations
from linear algebra like matrix addition, matrix multiplication, and eigenvalue computations. While
we use some of Charton (2021)’s tasks in our study and draw inspiration from their numerical
string encodings, our analysis differs in fundamental ways because of our underlying motivation
to approximate calculations from quantum chemistry. To this end, we focus much more on the
invariance properties of learned models, and introduce simple building blocks of physical models
that are not studied by Charton (2021). In this way, our work is more closely related to the work of
Flam-Shepherd and Aspuru-Guzik (2023), which shows that language models with standard training
and simple tokenization methods can be used as strong generative models of 3D structures. However,
like Alampara et al. (2024), we also find that predictive tasks display different dynamics compared
to generative modeling and that language models are not competitive with best in class predictive
methods.

Because we apply language models to numerical data and closely study their interactions with choices
in tokenization, we also drawn on the work of Golkar et al. (2023), which introduces a continuous
alternative to discrete tokenization in language models (xVal) on mixed categorical and numerical
data. xVal models all numbers with a single token and uses a single weight and bias vector for
inputs and outputs, instead of an embedding matrix for many numerical tokens. xVal is thus akin to
transformers applied directly on continuous inputs or to graph neural network methods applied to
numerical prediction problems. We find that xVal does lead to improvements in many settings and
therefore provides valuable perspective on what facets of language modeling are most challenging
when learning on geometric data.

As we are also interested in how text pretraining can act as a useful inductive bias, our work also
intersects with work that applies text-pretrained models to zero-shot prediction on other modalities
(Hegselmann et al., 2023; Gruver et al., 2024b). Although text pretraining holds the potential to help
models learn general-purpose circuits over discrete sequences, we find that it is ultimately unhelpful
in our tasks.

3 PRELIMINARIES

Before studying the empirical performance of language modeling methods, it’s worth briefly con-
sidering the reasons why we might prefer discrete representations to continuous representations in
general. We lay out a few of the trade-offs intrinsic in each approach below:

https://anonymous.4open.science/r/numerical-tokens-E44C/
https://anonymous.4open.science/r/numerical-tokens-E44C/

Under review as a conference paper at ICLR 2025

Continuous sequences: FEach number is a floating point value, typically at the same precision as
the weights of the neural network.

* Pros: (a) domain-specific properties (e.g. invariance/equivariance) have simple relationships
with the model parameters. (b) order information is preserved in the input and in loss functions.
(c) it is not necessary to learn an embedding matrix, or associated linear layers, which might be
very large.

* Cons: (a) information contained in the scale of the numbers can be destroyed by normalization
used to improve numerical stability. (b) modeling numbers of radically different scales can lead
to numerical instability in the input. Transforming with log and exp can stabilize the input but
have poor gradient behavior. (c) multimodality (mixed categorical and continuous variables) in
the output space can be hard to represent.

Discrete sequences: Each number is converted to a string and then to a
A . . I2l |3| I4l |5| l1l l7l
sequence of tokens, i.e. [“17, “.”, “5” “6”], and corresponding integers.

* Pros: (a) distributions on sequences are densities over numbers with- Network
out strong distributional assumptions or complicated losses. (b) input
numbers do not need to be normalized. Numbers can in principle be
large or small without causing fundamental problems, though length

eneralization is not guaranteed.
& & Network

* Cons: (a) learning basic operations on numbers might require many
samples because of a large vocabulary and complicated algorithms for

)) o Figure 1: Discrete
operating on strings. (b) hallucination of non-number outputs.

inputs mirror contin-

As we can see, there are actually very reasonable explanations for supporting UOUS inputs but have
either approach, and working towards a sequence model over numerical tokens different costs and
is not fundamentally misguided. benefits.

4 TARGET PROBLEMS AND BUILDING BLOCKS

Target problems As stated in the introduction, our goal is improving a practical application of
modeling numerical data with language models. Here we focus on modeling of molecular structure
for two primary reasons: 1) molecular structures tend to be intrinsically multi-modal because atom
positions are numerical and atom identities (e.g., N or C) are categorical. In other works, this modality
is often solved with complex diffusion/flow matching models (Campbell et al., 2024; Miller et al.,
2024), but autoregressive sequence models offer a simple alternative. 2) molecular structures for
crystals and organic molecules are often relatively small even for important problems, allowing us to
study direct methods of tokenizing individual numbers without compressing chunks of the input, as
in vector quantization. To this end, we use QM9 (Ramakrishnan et al., 2014) as a test bed.

In the Table 1, we show how a basic language model architecture (Touvron et al., 2023a) trained from
scratch on QM9 compares to popular and state-of-the-art methods for predicting the highest occupied
molecular orbital (HOMO). It is easy to see that language models are an order of magnitude worse
than competing models, and in the following sections we will try to articulate a few possible reasons
for this large gap.

Table 1: Comparison of popular and state-of-the-art approaches for predicting HOMO on QMO.

Method HOMO ()
LLaMA (from scratch) 212 meV
Non-equivariant GNN 71.4 meV
Equivariant GNN (Satorras et al., 2021) 51.9 meV
JMP-L (Shoghi et al., 2023) 8.8 meV

Under review as a conference paper at ICLR 2025

Building blocks Our goal in this study is to develop a better mechanistic understanding of the
challenges of applying language models to numerical data, and therefore we also attempt to break
these goal problems down into their constituent parts and see where language models run into trouble.
Both of the datasets we use are derived from density functional theory (DFT), quantum mechanical
calculations to approximate the electron density for relatively small sets of atoms. We include a brief
primer on quantum chemistry in Appendix A. At their core, DFT calculations rely on a relatively
simple set of key operations. These include

* Looking up scalar constants (e.g. charge of an electron) or the value of a basis function (e.g.
spherical harmonic) at a point.

* Matrix addition and multiplication (e.g. to compute pairwise distances between coordinates).

* Iterative procedures in linear algebra and solving differential equations (e.g. calculating
eigenvalues or fixed point iteration on the Schrodinger equation).

This characterization is rough, but it gives a sense of what types of functions language models must
be able to learn if they were implementing pre-existing theories of physics in order match the outputs
of simulations. Of course, one of the strengths of neural networks is their ability to approximate
expensive procedures with a fixed computation budget (one forward pass during training), so we
do not necessarily expect language models to recapitulate existing tools from mathematics and
physics. We can, however, use existing methods for approximating physical observations as a way
of debugging current limitations of language models, if not to perfectly understand their internal
mechanisms. If language models struggle to learn matrix multiplication but not matrix addition, for
example, we can speculate that the scalar multiplication of many operands might be a roadblock, and
we can work on this limitation directly.

Theoretical limititions In the a single forward pass of a neural network, there are fundamental
limits on both (1) the number of serial operations and (2) the amount of memory for intermediate
results. When the number of steps that must be performed serially exceeds the depth of the network,
the network will not be able to learn the exact function. Therefore, one forward pass of a network
with depth 24 will not be able to learn an iterative method that might require 30 steps for convergence.
Notably, this limitation is not relevant for functions that can be parallelized, as with matrix multipli-
cation, which is in TC? and therefore should be possible to learn with a single forward pass (Merrill
and Sabharwal, 2023). Like serial computation, memory can also be a bottleneck, as with computing
the matrix product AT A where A is n x m with n >> m. The number of computations will be
approximately O(n?) but the input size is approximately O(n). When n is greater than the depth
of the network, there can be challenges in storing all intermediate computations in the network’s
activations.

Practical challenges In practice, reasoning about what solutions tend to be learned by a particular
architecture is often more important than fundamental constraints. Even when a function can be
represented in the function class, the statistical nature of the problem and questions of approaching
the solution via approximations can play a larger role. Aside from not being able to represent the
exact algorithm, why would autoregressive language models be limited in solving these numerical
problems? We formulate 5 hypotheses and in the following sections provide evidence for and against
each of these hypotheses.

1. Mixing conditional and unconditional modeling (section 6): Here we study predictive tasks
p(y|x), but language models parameterize a joint likelihood p(x, y). Modeling the joint makes
language models flexible but also requires more capacity for p(x) beyond just p(y|x). When
p(x) is intrinsically challenging, learning it can detract from learning a simple p(y|x).

2. Causal masking (section 7): Features in autoregressive models are unidirectional, which makes
learning some numerical operations challenging. For example, when digits are passed from left
to right into a language model, it is challenging to express addition of two numbers using a carry
bit. Similarly, any scan-style operation will be order-dependent and more challenging to learn
if subsequences need to be reversed, and if a function cannot be implemented with an ordered
scan-style operation, it might be very challenging to learn at all.

3. Lack of symmetries (section 8): Structured numerical data often obey constraints that are easy
to express analytically (e.g. invariance to rotations). Incorporating these constraints can make

Under review as a conference paper at ICLR 2025

learning more sample-efficient or improve generalization (Frey et al., 2023), but language models
are typically unconstrained.

4. Poor tokenization (section 9): Tokenization can lead to strange artifacts in text-pretrained
language models (Brown et al., 2020; Wallace et al., 2019) and hinder their application to
numerical inputs (Gruver et al., 2024a). While language models trained on numerical data often
explore multiple tokenization schemes (Charton, 2021; Golkar et al., 2023; Flam-Shepherd and
Aspuru-Guzik, 2023), they are often presented as ablations rather than analyzed in their own
right.

5. Too little data or pretraining (section 10): Data for some numerical tasks can be relatively
limited or extremely noisy, making language models less likely to succeed compared to models
with more domain-specific assumptions. Other works show that text pretraining can serve as a
surrogate for domain-specific pretraining or inductive biases (Gruver et al., 2024b).

5 EXPERIMENTAL SETUP

To test our hypotheses, we train thousands of language models that vary in model architecture, model
size, tokenization method, loss function and pretraining method.

String-encoding and tokenization To turn numbers into tokens, we convert all numbers to a
fixed precision and then convert these numbers to variable length strings by ignoring any leading
zeros. These strings are then tokenized using a vocabulary of all numbers up to certain chunk length,
for example {“17, “2” ..., “998”, “999”} for a chunk length of 3. We greedily select the largest
subsequence from right to left. For negative numbers, each negative number is prepended with “*-".
These strategies are similar to P10, P1000, and FP15 in Charton (2021), but, in our case, we choose to
drop the exponent term used by Charton in favor of variable length because our inputs do not contain
many different orders of magnitude. In addition to standard tokenization with an embedding matrix,
we also explore Abacus embeddings (McLeish et al., 2024) and xVal (Golkar et al., 2023), which are
tokenization methods specifically designed for processing numbers.

Models We present results for both language models trained from scratch and frontier language
models pre-trained on text. Pretrained models can reuse general computational circuits and features
developed on the pretraining text data, but may not be as well suited for numerical data in the given
format. When training models from scratch, we use the LLaMA-2 (Touvron et al., 2023b) architecture
with between 4 and 8 layers and hidden size 512, which translates to between 20 million and 50
million parameters. We train models with learning rate 0.0001 or 0.0005 and a cosine schedule. When
studying pretrained models, we use LLaMA3.1-8B (Dubey et al., 2024), and the default LLaMA-3
tokenization, which, on numerical inputs, is identical to our 3-digit chunking method. We fine-tune
the LLaMA3.1 models using LoRA with rank 8 and alpha 32 for one epoch. To make predictions
with the models, we draw 10 samples at temperature 1 and calculate the median at each dimension of
the output.

Datasets Our datasets are chosen to represent building blocks of common functions on numerical
data. They have varying degrees of difficulty, with some being computable exactly by transformers
while others can only be approximated. We explore two categories of tasks:

* Linear algebra: Following (Charton, 2021), we create n X n matrices with n. € [2,10] and
evaluate (a) matrix addition (b) matrix multiplication, and (c) calculating real eigenvalues. We
train on matrices of mixed sizes, with a distribution of n weighted n, so that we train on more
large matrices. The input matrices have coefficients sampled uniformly from [—10, 10], and
resulting eigenvalues having a center distribution with standard deviation o = 10/n/3.
These tasks have significant variation in difficulty. While matrix sum and product are computable
in theory by a language model, computing an eigenspectrum is not and is more intrinsically
serial than sum and product, making it more challenging for transformers. In addition to
testing on matrices drawn from the same distribution as the train data, we also include a special
generalization setting (marked with ‘+’) in which we train on n € [2,10] \ {8} and evaluate
on n = 8. While past research often tests generalization evaluating on problems strictly larger
than the training problems (Zhou et al., 2023), we opt for an interpolative setting because it is
less confounded by the inherent limitations of position embeddings and reflects other facets of
generalization on numerical data.

Under review as a conference paper at ICLR 2025

* 3D structures: Using the data from QM9 (Ramakrishnan et al., 2014), we evaluate on the
highest occupied molecular orbital (HOMO) regression task. We also evaluate on a set of simpler
functions on QM9 coordinates including (a) calculating a distance matrix on coordinates, and
(b) calculating a simple potential energy over the atomic nuclei. For the potential energy task,
we test on either pre-computed distances or directly on coordinates, which disentangles the
challenge of computing distances internally within the neural network, a task which can involve
storing an intractable number of intermediate variables.

Alongside the linear algebra tasks, these problems encompass many of the fundamental opera-
tions of quantum chemistry. It might be difficult to approximate current computation methods
without being able to express reasonable approximations to these simpler problems.

For linear algebra tasks, we use 500,000 training examples, and for 3D structures we use 100,000
examples. We use 400 fixed test points for all evaluations.

Baseline methods Our first baseline is low-precision quantization of the floating point numbers
used in the correct computation within the synthetically generated tasks. We know that transformers
struggle with performing exact arithmetic, even for integers, therefore we should expect that arithmetic
will at best be performed approximately within the transformer. This quantization baseline evaluates
the impact of using a correct algorithm but with only limited precision. We use QPyTorch (Zhang
et al., 2019) and allocate an equal number of bits to the exponent and mantissa. Our two quantization
baselines use 16 and 20 total bits, and this sets a reasonable ceiling on model performance.

Our other baselines are equivariant graph neural networks (EGNNs) (Satorras et al., 2021), which
learn functions that are equivariant to permutations, rotations, and translations. EGGNs are therefore
particularly useful in understanding how symmetries affect performance on our tasks. Following the
original EGNN experiments on QM9, we use networks with 7 layers and hidden dimensions of size
128. Training details are included in Appendix B.

6 CONDITIONAL VS UNCONDITIONAL MODELING

In standard language modeling and in the supervised finetuning of language models, the joint distri-
bution of the data is modeled, enforced by minimizing the NLL —log p(z) = >, —log p(x;|z ;).
For many of the problems we consider on structured numerical data, there is an explicit input-output
structure, and we are only interested in the conditional distribution p(y|z) for e.g. numerical outputs
computed from a point cloud. Posed as sequence modeling we could also state p(y|x) as p(;|z<;).
While learning the joint distribution also implies learning the conditional distribution in the abstract,
high complexity and variance in p(z) can mean that signal in

y gets drowned out in the unnecessary task of modeling . In Table 2: MAE ({) values for
many cases, the entropy of the output H (y|x) is much lower than training with and without mask-
H (x), and thus the model prioritizes x. For example, learning the ing, both from scratch and fine-
distribution of all rotations of a molecule might be much more tuning.

complicated than just learning to distinguish high and low energy

configurations. When learning jointly on p(z~;|x<;) and p(z<;), Type w/ w/o
the gradient signals of each term compete, leading to slower learn-

ing of p(x~;|z<;) than in models that are explicitly conditional. Scratch 0.168 0.154
Even if p(z<;) is modeled perfectly, the random variation in z<; Finetune 0.456 0.508

introduces unecessary noise in the gradients, which slows down
learning as we show in Appendix C.

To test this effect, we train models, both from scratch and fine-tuning text pretrained models, on
the energy (from coordinates) task with loss masking to optimize only p(zs;|z<;). The results are
displayed in Table 2. While masking helps fine-tuning which has relatively few gradient steps (1
epoch), masking does not help when training from scratch (100 epochs).

7 CAUSAL MASKING

In addition to whether or not the input x is featured in the loss or is masked out, the decoder-
only autoregressive structure of the language model has an impact on which operations are easy to

Under review as a conference paper at ICLR 2025

10°

M Decoder 16 Bit
m Enc-Dec 20 Bit

L N
i in |

Sum Sum+ Product Product+ Eigen Eigen+ Distances Energy Energy
D) (©)

MAE

Figure 2: Encoder-decoder architectures have theoretical advantages over decoder-only architectures
on our numerical tasks, but we find in practice the difference is minor. In our encoder-decoder models,
layers are split equally between the encoder and decoder. A task name with ‘+” indicates a holdout of
unseen matrix shape—a harder test of generalization. We include quantized numerical operations as
baselines. 16 bit refers a quantized operation with a 8 bit mantissa and 8 bit exponent. 20 bit
has a 10 bit mantissa and 10 bit exponent. We do not provide results for a quantized eigenvalue solver
because PyTorch does not provide an easy mechanism constructing one.

express. For example, as identified by Zhou et al. (2023), the carry used in adding two numbers is a
useful intermediary for the task, but if the numbers are ordered most significant digit first then its
computation is nontrivial. In the structured numerical data context, an analogous challenge might
arise when outputting scalar values which depend on aggregating information from input set data.
For example, with an input X' = {x1,z2,...,2,}, computing y = >, . K(z;, ;). As a quadratic
time operation that depends on all pairs of inputs, it might seem difficult for a causally constrained
model to perform this computation within linear space allotted to the model.

To test this hypothesis, in Figure 2 (left) we compare the performance of a decoder-only model
with loss masking to a encoder-decoder approach where only y is modeled autoregressively and
X can be attended to bidirectionally by the encoder. We find that, contrary from intuitions from
theory, encoder-decoder models do not perform significantly better than models with only causal
masking. To enable an apples-to-apples comparison in these experiments, we use the same number of
parameters in each architecture for each of three fixed parameter counts. In causal models, every layer
is causal, whereas in encoder-decoder models, half the layers are in a bidirectional encoder and half
the layers in a causal decoder. For tasks with a complex and high-dimensional output, it is possible
that having a limited number of decoder layers could have a negative impact on the coherence of the
output relative to a decoder-only architecture. This is one possible explanation for encoder-decoder
architecture’s significantly worse performance on calculating distances, where the output is a flattened
upper triangular.

As a small additional experiment, we also explore McLeish et al. (2024)’s approach to tokenizing num-
bers, which involves reversing the the digits in number allowing for simpler algorithms implementing
arithmetic operations Zhou et al. (2023). In addition to reversing

the digit, a special embedding is added to identify each digit Taple 3: Digit order has negligi-
position within a number. Unlike the original paper, however, we ple effect on relative error. Ge-
use a plain decoder-only transformer model without parameter- ometric mean across tasks with
sharing or skip connection to the input. In Table 3, we show
that this intervention has a negligible or slightly negative effect
overall. Although McLeish et al. (2024) designed their approach

standard errors.

. o LT . . Method MAE
with large multi-digit numbers in mind, its surprising that there is
no positive effect on learning operations that depend on addition Base 0.237 +0.12
and multiplication as a subroutine. Together, these two results Reversed 0.309 + 0.14

(comparing architectures and input orderings) suggest that artifacts
of causal masking are likely not the largest bottleneck to language
model success on our tasks.

8 LACK OF HARD-CODED SYMMETRIES

Symmetries can be hard-coded into a model’s architecture, but this process is not common in language
modeling applications and can be challenging when operating on tokenized strings. In this section, we
explore how language models learn invariances or equivariances on our numerical tasks and quantify

Under review as a conference paper at ICLR 2025

Product Eigen Distances Energy Distances Energy
c 1015
2 10715 c
5! \%\10 20 10724 / S5 1000 10742
S E T =
Euw ou
= 10715 &
& 1072 10766 &« 10760 10754
1076,0 10730 100.0 1030 1070,6 10702 10 4.5 10~ 15 10745 10715 10~ 1.0 1000
MAE MAE MAE
Sum Product Eigen Distances Energy Distances Energy
5 168 !i.-.\ H 0.60 N 0.0036 N _ 18 o (]
= 3 L ‘\ | ®~e-o e .
SE o8 s PN 030 0.0028 T2os 3 /d\e-0"?
E] '\0-._._. . No—a ./ \ \= R g \ . /./,
o) ®-0-0-a o, S~ H
T g0 0.12 o 000 #38me=e00020 e 0.0 1 o=d
02 06 10 02 06 1.0 02 06 10 02 06 10 02 06 10 02 06 10 02 06 1.0
-e- S -e- M L % of Total Epochs % of Total Epochs

Figure 3: (Top) Degree of invariance (permutation or rotation error) strongly correlates with ability
to fit the task (MAE) across several model sizes, tokenization methods, and training runs. Results are
displayed with both axes log-scaled. For rotation invariance, we only study tasks on 3D structures.
Surprisingly, when solving eigenvalues, predictive accuracy is inversely related to the permutation
invariance of the model, which could be a result of a spurious correlation between the row-orderings
and eigenspectra in the training dataset. Shading is a 95% confidence interval for the regression.
(Bottom) Considering patterns of invariance over training, we see steady decreases in error in most
cases, except on tasks where overfitting occurs. Larger models typically learn to be more invariant and
become invariant more quickly. For linear algebra tasks, no form of augmentation is applied to the
training data, while the tasks on 3D structures include both permutation and rotation augmentations.

how correlated learning symmetries is with predictive performance. In our linear algebra tasks, the
primary symmetry is permutation equivariance. Permuting the inputs of addition and multiplication
will lead to a permuted result, and the eigenvalues of a matrix are invariant to permutation. Our 3D
structure tasks are equivariant to permutations, rotations, and translations, because all the tasks depend
on only the relative positions of the atoms. We quantify invariance by calculating the predictions of
the model for 10 examples transformed with random permutations or rotations. The invariance error
is measured as the standard deviation per dimension normalized by the absolute value of the ground
truth values and averaged over all dimensions. Following standard practice, we train our 3D structure
models with rotation augmentations, and we also add permutation augmentations. For linear algebra
tasks, we do not apply augmentations.

In Figure 3 (top), we show the correlation between predictive performance (relative error) and
invariance to permutation or rotations. The points displayed are models that vary in size, architecture,
and training hyperparameters. Across almost all tasks, there is a strong correlation, indicating that
good models also tend to be invariant models. The notable exception is solving for eigenvalues,
which displays the opposite trend, likely due to a spurious correlation between the matrix ordering
and eigenvalue spectra in the training dataset. In many cases, the best models are able to approach
perfect invariance, with invariance errors on the order of 106, Yet, even when models are nearly
invariant, small changes in invariance appear to be correlated with improvements in performance. In
Figure 3 (bottom), we show how invariance evolves during training and its relationship with model
size. For most tasks, large models are able to quickly converge on invariant solutions, even when
augmentations are not used.

To further explore the impact of equivariance, we compare decoder-
only language models trained on digit tokens against GNNs with and
without rotation equivariance in Table 4. GNN indicates permutation
equivariance, while EGNN indicates permutation, translation, and
rotation equivariance. The evaluation tasks are energy (from coor-
dinates) and HOMO, both of which have permutation and rotation
symmetry. In the results, invariance/equivariance again has a strong Method MAE ({)
connection with predictive performance. Combined with the results

Table 4: GNNs outperform
LMs on the energy predic-
tion task and benefit from
equivariance.

above, we can conclude that invariance has a clear connection with LM 0.209
performance on our numerical tasks. Surprisingly, language models GNN 0.079
can achieve high levels of invariance, but these high levels do not EGNN 0.041

appear to saturate predictive performance.

Under review as a conference paper at ICLR 2025

10 M Digits ™ 3-Digit Chunks m Continuous

< -1
= 10
107 I I
_-- [[. . ||

um Product Eigen Distances Energy (D) Energy (C) S M L S M L

Permutation Error
)
Rotation Error

Figure 4: (left) We train causal transformers with different tokenization schemes and witness a
significant advantage from learning a continuous prediction head. By contrast, differences between
discrete tokenization schemes (digits vs. chunks) are inconsistent with multi-digit schemes performing
better on some tasks and worse on others. (right) Using a continuous prediction head leads to higher
invariance at smaller model sizes. For discrete methods, larger models are required to learn invariance.
Numbers are the geometric mean over tasks, and shading denotes a 95% confidence interval.

9 TOKENIZATION

Beside architecture and training loss, tokenization is the other key design decision in constructing
language models. When training on text, most language models employ tokenizers that compress
commonly occurring sequences of bytes (e.g. byte-pair encoding). However, naively applying
these same tokenization methods to numbers can lead to problems, because small changes to the
value of the number can lead to large and hard to model changes in the tokenization of the number
string (Gruver et al., 2024a). Character-level or n-gram tokens, therefore, are popular choices when
modeling numbers, but while many papers employ these methods (Flam-Shepherd and Aspuru-Guzik,
2023; Zholus et al., 2024), there is little understanding of how tokenization affects the model’s ability
to learn basic numerical operations.

To test the effects of tokenization, we explore the empirical differences between tokenizing individual
digits and tokenizing in 3-digit chunks. When using chunks, we always tokenize from right to left
to maintain a consistent token meaning for strings of different lengths. In principle the primary
trade-off between these approaches is between vocabulary size and sequence length, as chunked
sequences are shorter but might require a larger training dataset to cover the space of 10* tokens,
for chunk size k, some of which might occur rarely. In addition to these two discrete approaches to
processes numbers, we also run experiments with xVal (Golkar et al., 2023), which replaces discrete
vocabularies and their associated embedding with a single linear projection that turns scalar inputs to
vectors the same dimension as token embeddings and which projects final output layers. Instead of
the cross-entropy loss, xVal uses an L2 loss on its continuous prediction. xVal is a useful counterpoint
to purely discrete approaches because it sidesteps several key challenges of tokens, for example
learning large vocabularies, long sequences, and potential challenges in learning symmetries.

In Figure 4, we show the effect of tokenization on predictive performance and symmetry learning.
Overall we see that adopting a continuous approach leads to lower errors and more invariant predictors.
By contrast, the difference between character-level (digit) and n-gram (3-digit chunk) schemes is
inconsistent in terms of errors and nearly equivalent in terms of invariance. The latter result is
surprising given our relatively large datasets, which provide reasonable coverage of the tokens in the
vocabulary. The relationship between invari-

ance and model size in xVal hints that maybe Continuous Input Continuous Output

using any discrete representation incurs signif-
icant overhead to learn the appropriate structure, ; ; % ; ; % %

as xVal appears to acquire much higher levels
Language Model } Language Model

of invariance for all model sizes.

In an attempt to understand the dominance of the
continuous approach, we perform two additional
ablations on the input and output of xVal by D X] X] @
replacing them with their discrete counterpart,

as shown in Figure 5. Continuous Input Figure 5: We include ablations on xVal to explore
ablates the benefit of passing numbers directly the effect of working with discrete versus continu-
into the model, without needing to parse inputs ous inputs and the corresponding loss functions.

Under review as a conference paper at ICLR 2025

1 m Digits | Cont. Input 1 From Scratch ™ | LaMA3.1-8B
m Continuous ™ Cont. Output

2 10 2
= =
. -2
107 [— II 10 . l

Product Eigen Ener)gy Energy Sum Product Eigen Distances Energy Energy

Figure 6: (left) To understand the performance of xVal, we perform an ablation the output and input
with discrete tokens to understand if continuous inputs or continuous outputs (continuous loss) is the
origin of improved performance. Both ablations hurt performance, but continuous inputs appear to be
more helpful than continuous outputs. (right) We compare our small language models trained from
scratch with large text-pretrained model finetuned with LoRA. Text-pretrained models perform worse
on every tasks except matrix products, which might benefit from the pretrained model’s additional
capacity and ability to model high-dimensional outputs.

Al
S

from a sequence of tokens, while Cont inuous Output ablates the benefit of using a continuous
loss function, while still using discrete inputs. Figure 6 (left) shows the the result on the hardest
numerical tasks, where the is worth investigating. The results indicate that neither design choice
explains the strong performance of xVal in isolation, though continuous variants still outperform
discrete approaches on 3D structure tasks.

10 INSUFFICIENT PRE-TRAINING

As we’ve seen so far, language models typically require large model sizes in order to capture
invariances and make good predictions. For sufficiently large datasets, this allows language models
to perform on-par with hand-crafted methods, but in other cases these extra parameters lead to poor
generalization or slower convergence for fixed compute. The typical solution for this problem is
extensive unsupervised pretraining, which can unlock the benefits of language modeling, while
matching performance on narrow tasks. Prior work shows that text pretraining can serve this role in
some cases. For example, Delétang et al. (2023) and Goldblum et al. (2023) show that text-pretrained
models are general-purpose compression engines that can match domain-specific compression on
non-text modalities.

To explore pre-trained models, we compare our small from-scratch models with LLaMA3.1-8B, a
model two orders of magnitude larger. We fine-tune the LLaMA3.1 models for one epoch, which
is 1-2 orders of magnitude fewer gradient steps than we take with the smaller models. As with
models trained from scratch, we make predictions by drawing 10 samples and taking the median
per dimension. Figure 6 (right) shows the resulting errors, for which pretrained models have worse
performance in all but matrix multiplication. We posit two possible explanations for this discrepancy:
(a) matrix product requires the most capacity to learn effectively (as was already evidenced in
Figure 3) (b) matrix product has very high-dimensional outputs consisting of matrices containing
large numbers, and text-pretraining is primarily helpful in modeling patterns in long sequences. If
this were true, however, we might also expect some benefit on matrix addition and distance matrices.

11 DISCUSSION

In this work, we explored several explanations of the subpar performance of language models on
3D property prediction tasks. Through interventions like modifications of the architecture and loss
function, we see that some of the explanations are not supported by the data, while others, such as the
importance of invariances, hold up to scrutiny. We also showed that text pretraining is surprisingly
unhelpful for learning good subroutines on our numerical tasks, despite its promise in other settings.

Our experiments suggest that language models converge to increasingly accurate and nearly invariant
solutions when given sufficient model capacity and yet still have a large gap when compared to a
method like xVal. One possibility for future work is to close this gap by extensively pretraining on
synthetic data, which could be created by running cheap traditional methods (e.g. Hartree-Fock) or
by distilling from a successful neural network potential evaluated on perturbed training data.

10

Under review as a conference paper at ICLR 2025

12 REPRODUCIBILITY

We include code to train, evaluate, and sample from language models in our code release. We include
implementations for the exact architectures used in our experiments. The training and evaluation
details for experiments we ran on each task were described by previous papers and again in our
appendix.

REFERENCES

Nawaf Alampara, Santiago Miret, and Kevin Maik Jablonka. Mattext: Do language models need
more than text & scale for materials modeling? arXiv preprint arXiv:2406.17295, 2024.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
arXiv preprint arXiv:2402.04997, 2024.

Francois Charton. Linear algebra with transformers. arXiv preprint arXiv:2112.01898, 2021.

Grégoire Delétang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christo-
pher Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent Orseau, et al.
Language modeling is compression. arXiv preprint arXiv:2309.10668, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Daniel Flam-Shepherd and Aldn Aspuru-Guzik. Language models can generate molecules, materials,
and protein binding sites directly in three dimensions as xyz, cif, and pdb files. arXiv preprint
arXiv:2305.05708, 2023.

Nathan C Frey, Ryan Soklaski, Simon Axelrod, Siddharth Samsi, Rafael Gomez-Bombarelli, Con-
nor W Coley, and Vijay Gadepally. Neural scaling of deep chemical models. Nature Machine
Intelligence, 5(11):1297-1305, 2023.

Micah Goldblum, Marc Finzi, Keefer Rowan, and Andrew Gordon Wilson. The no free lunch
theorem, kolmogorov complexity, and the role of inductive biases in machine learning. arXiv
preprint arXiv:2304.05366, 2023.

Siavash Golkar, Mariel Pettee, Michael Eickenberg, Alberto Bietti, Miles Cranmer, Geraud Krawezik,
Francois Lanusse, Michael McCabe, Ruben Ohana, Liam Parker, et al. xval: A continuous number
encoding for large language models. arXiv preprint arXiv:2310.02989, 2023.

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. Large language models are zero-shot
time series forecasters. Advances in Neural Information Processing Systems, 36, 2024a.

Nate Gruver, Anuroop Sriram, Andrea Madotto, Andrew Gordon Wilson, C Lawrence Zitnick, and
Zachary Ulissi. Fine-tuned language models generate stable inorganic materials as text. arXiv
preprint arXiv:2402.04379, 2024b.

Tomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert

Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million years of
evolution with a language model. bioRxiv, pages 2024-07, 2024.

11

Under review as a conference paper at ICLR 2025

Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David
Sontag. Tabllm: Few-shot classification of tabular data with large language models. In International
Conference on Artificial Intelligence and Statistics, pages 5549-5581. PMLR, 2023.

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, et al. Transformers can do
arithmetic with the right embeddings. arXiv preprint arXiv:2405.17399, 2024.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics, 11:531-545, 2023.

Benjamin Kurt Miller, Ricky TQ Chen, Anuroop Sriram, and Brandon M Wood. Flowmm: Generating
materials with riemannian flow matching. arXiv preprint arXiv:2406.04713, 2024.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1-7, 2014.

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks.
In International conference on machine learning, pages 9323-9332. PMLR, 2021.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Nima Shoghi, Adeesh Kolluru, John R Kitchin, Zachary W Ulissi, C Lawrence Zitnick, and Bran-
don M Wood. From molecules to materials: Pre-training large generalizable models for atomic
property prediction. arXiv preprint arXiv:2310.16802, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M. Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony S.
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel M. Kloumann, A. V. Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril,
Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian, Xia Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey
Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models. ArXiv,
abs/2307.09288, 2023b.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. Universal adversarial
triggers for attacking and analyzing nlp. arXiv preprint arXiv:1908.07125, 2019.

Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
Zhang, Yueze Wang, Zhen Li, Qiying Yu, Yingli Zhao, Yulong Ao, Xuebin Min, Tao Li, Boya Wu,
Bo Zhao, Bowen Zhang, Liangdong Wang, Guang Liu, Zheqi He, Xi Yang, Jingjing Liu, Yonghua
Lin, Tiejun Huang, and Zhongyuan Wang. Emu3: Next-token prediction is all you need, 2024.
URL https://arxiv.org/abs/2409.188609.

Tianyi Zhang, Zhiqgiu Lin, Guandao Yang, and Christopher De Sa. Qpytorch: A low-precision
arithmetic simulation framework, 2019.

Artem Zholus, Maksim Kuznetsov, Roman Schutski, Rim Shayakhmetov, Daniil Polykovskiy, Sarath
Chandar, and Alex Zhavoronkov. Bindgpt: A scalable framework for 3d molecular design via
language modeling and reinforcement learning. arXiv preprint arXiv:2406.03686, 2024.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization.
arXiv preprint arXiv:2310.16028, 2023.

12

https://arxiv.org/abs/2409.18869

Under review as a conference paper at ICLR 2025

Appendix

Table of Contents

A Density Functional Theory Primer 13
B GNN Training Details 13
C Learning Speedup from Loss Masking 13
D Hyperparameter Settings 14

D.1 From-scratchmodels 14

D.2 Fine-tunedmodels 15
E MAE Numbers with Standard Errors 15

A DENSITY FUNCTIONAL THEORY PRIMER

A core task in quantum chemistry is calculating the energy of a configuration of many atoms. Low
energy configurations are stable and practically useful, for example in novel materials or the binding
interface of therapeutic drugs. Atomic nuclei can be modeled as point charges

Eue = Z 445/ Di;
i<j
where D is the distance matrix between nuclei and q is the charge of each nucleus. To model electrons,
however, more complex methods are needed, for example, Hartree-Fock, which iteratively solves'

F(C)C = Ce

where F' is the Fock matrix, C' are the orbital coefficients and ¢ is a diagonal matrix of molecular
energies. At each step, C' and e are obtained by solving a generalized eigenvalue problem using
F constructed from the last approximation of C, and, upon convergence, the electron energy is
calculated as

FEeee = Tr(e) + Tr(CTHC)

where H is the system’s Hamiltonian (constructed using the position and charge of the atomic nuclei).

B GNN TRAINING DETAILS

We use a batch size of 96 and a learning rate of 0.001 for 200 epochs on the HOMO prediction task
and for 50 epochs on the synthetic energy prediction task from coordinates only. We use a learning
rate of 0.0005 for 100 epochs on the energy prediction task from distances. In all tasks, we use
weight decay of 1076 and a cosine decay on the learning rate. We do not use any normalization on
the target function, and we add in an additional tanh activation function for stability.

C LEARNING SPEEDUP FROM LOSS MASKING

When learning p(y|z), the training convergence can be substantially slowed down when including
the p(x) loss contribution.
Consider the loss for a single data point with a random label:

L=~y loga(fs())

'We show the Roothaan equations using an orthonormalised basis set

13

Under review as a conference paper at ICLR 2025

where f(z) is the mapping to the log softmax of the logits of the model, o is the softmax function,
and y is the one-hot random label vector (among the V' classes).

The gradient is
VoL=y'"[I —1c"]J
where J is the Jacobian of the network outputs with respect to 6. E[y] = 1/V giving an expectation
of
E[VoL] = (1/V)LT[I — 10 "]J.

The gradient is 0 when the model predicts a uniform distribution ¢ = 1/V, and we will consider
perturbations around this point.

From E[yy "] = I/V covariance is given by

EVLVL' = (1/V)J'[I -1c"]"[[—1c"]J.

Letting o = 1/V the gradient norm is
E[|VL|?) = (1/V)Tx(PTJIT).

for P =[I—117/V].

The convergence of SGD on convex problems can be written in terms of the expectation of the norm
of the gradient. Over 7' timesteps with learning rate 7 and batch size B, the convergence can written
(see e.g. Shalev-Shwartz and Ben-David (2014)) as

T

7 2 EIVLO)I) <27 4 o), m

where 02 = sup, E[||VL(0,y) — E[VL(0,y)]||?] with expectations taken over the distribution of y.

The convergence of SGD is limited by this noisy ball term (no?/B), and for a fixed learning rate
cannot improve upon that limit as 7" — oo.

If B[|[VL(0.,y) — E[VLO.yII?] = E[IVLO.,9)|°] = 1/V)Tx(PJJT), then o >
(1/ V)Tr(PJ J T), therefore increasing the size of he noisy ball and loss value that SGD converges
to.

For the p(y, X) vs p(y|X) scenario, p(y, X) contains the additional random content of X even if y
is a deterministic function of X. This random content when mixed in to the negative log likelihood
objective increases the size of the noisy ball, slowing down convergence.

D HYPERPARAMETER SETTINGS

D.1 FROM-SCRATCH MODELS

Hyperparameter Values
Model Size {10M, 20M, 50M}
Model Dimension/Layers {128/2, 512/4,512/8 }
Learning Rate {5e-4, 1e-4, 5e-5}
Tokenizer {“1 Digit”, “3 Digits”, “Continuous”}

Table 5: Hyperparameter values for from-scratch language model training runs.

14

Under review as a conference paper at ICLR 2025

Hyperparameter Values

Learning Rate {5e-4, 1le-4, 5e-5}
LoRA Rank {8, 16, 32}
Batch Size {8, 16}

Table 6: Hyperparameter values for fine-tuning language model training runs.

D.2 FINE-TUNED MODELS
E MAE NUMBERS WITH STANDARD ERRORS

Table 7 shows a full table of MAE values for each task and tokenization method, including standard
errors calculated over 200 different examples from each task.

Task Tokenization MAE Standard Error

Distances 1 Digit 0.007583 0.001822
Distances 3 Digits 0.007587 0.001873
Distances Continuous 0.002345 0.000049

Eigen 1 Digit 0.843819 0.051417

Eigen 3 Digits 0.949008 0.056988

Eigen Continuous 0.731731 0.044416
Energy (C) 1 Digit 0.305043 0.016945
Energy (C) 3 Digits 0.541269 0.029265
Energy (C) Continuous 0.167922 0.009055
Energy (D) 1 Digit 0.029822 0.005926
Energy (D) 3 Digits 0.039592 0.006085
Energy (D) Continuous 0.006789 0.001359

Product 1 Digit 1.824334 0.131004
Product 3 Digits 0.636723 0.055891
Product Continuous 0.186717 0.006272
Sum 1 Digit 0.003840 0.000149
Sum 3 Digits 0.024948 0.006033
Sum Continuous 0.005297 0.000159

Table 7: MAE values for different tasks and tokenization methods. Standard errors are calculated
from 200 data points from each task.

15

	Introduction
	Related Work
	Preliminaries
	Target Problems and Building Blocks
	Experimental Setup
	Conditional vs Unconditional Modeling
	Causal Masking
	Lack of Hard-Coded Symmetries
	Tokenization
	Insufficient Pre-training
	Discussion
	Reproducibility
	Appendix
	 Appendix
	Density Functional Theory Primer
	GNN Training Details
	Learning Speedup from Loss Masking
	Hyperparameter Settings
	From-scratch models
	Fine-tuned models

	MAE Numbers with Standard Errors

