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Abstract

To our knowledge, we provide the first analysis of causal estimation under hidden confounding
using only observational (X,Y") data and knowledge of symmetries in data generation via data
augmentation (DA) transformations. We show that such DA is equivalent to interventions
on the treatment X, mitigating bias from hidden confounding, and that framing DA as a
relaxation of instrumental variables (IVs)—sources of X randomization that are conditionally
independent of the outcome Y—can further improve causal estimation beyond simple DA.
Keywords: Causal Inference, Intervention, IV Regression, Invariance, Data Augmentation

1. Preliminaries
For treatment X € X C R™ outcome Y € )Y C R in the structural equation model (SEM) 9
X =r(Y,Z,C.Nx), Y = f(X)+eC)+ Ny, st [€=Y—f(X), Elg]=0] (1

where Z, C, Nx, Ny are exogenous, we want to estimate f € H = {h: X — Y} from Pg?y.l
When X 1l £, we estimate f via empirical risk minimization (ERM) given a convex loss ¢,

Rk (h) = EP[L(Y, h(X))], IRy = argming, e Rito (). (2)

For finite n samples D := {(x;,yi)}i—, data augmentation (DA) is used to reduce estimation
variance (Lyle et al., 2020) via multiple random augmentations (Gx;,y;) per sample in the risk
RPpg+erm(h) = EV (Y, R(GX))], G ~Pq. (3)

However, generally X U ¢ due to which the ERM minimizer is biased (Pearl, 2009). This bias
is known as the confounding bias and X, Y are said to be confounded. Confounding is removed
via an intervention do(X := X') that sets X to some i.i.d. X', now yielding the causal risk
RE(h) = Rerai () = Rggad * (), st XT~ PR ()
Where do(X) denotes such interventions. Minimizers of Eq. (4) identify f and are robust pre-
dictors to P shifts over supp(P%) (Christiansen et al., 2022). Define causal excess risk (CER)

CERon(h) = Rig(h) — RER(f),

to capture estimation error by removing irreducible noise from Eq. (4), so that CERgn(f) = 0.

In practice, interventions are often unavailable. A common workaround is to use auxiliary
variables. One approach is that of instrumental variable (IV) regression (Belsley, 1988), where
an instrument Z satisfies: (i) treatment relevance Z Y. X, (ii) exclusion Z 1L Y hdo(X)
(iii) un-confoundedness Z 1l £, and (iv) outcome relevance Y )L Z. Now, Eq. (1) gives

EV[Y | Z] =E™[f(X) | Z]. ()

which admits consistent estimation of f and can be solved by minimizing the following risk
R%(h) = E”ﬁ[e(y, Efm[h(X)\Z]”. (6)

1. Assume all SEMs under discussion entail unique observational distributions IPQ)?,y. Details in Appendix B.
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(a) M. (b) M; do(X). (¢) A post DA. (d) A;do(1 = GT).

Figure 1: Graphs of respective SEMs; (a) Z is an IV w.r.t. confounded (X,Y). (b) Graph
obtained via intervention on X in 91; IV regression simulates this intervention with
only observational data. (¢) Graph for DA. (d) Graph for soft intervention. Obser-
vational distributions of (GX,Y,G,C) in (¢) and (X,Y,G,C) in (d) are identical.

2. Causal Estimation with Data Augmentation
Problem setup. We discuss the following SEM 2l for exogenous C, Nx, Ny and X [f &,
X =7(Y,C,Nx), Y=fX)+eC)+Ny, st [¢=Y—f(X), E[(]=0] (7

Consider also a data augmentation with respect to which f is invariant (Chen et al., 2020).
The action of a group G is a mapping § : X x G — X compatible with the group operation.
We write gx = 0(x,g) as shorthand and say that f is G-invariant if f(gx) = f(x),
V (g,x) € G x X. We refer to such a map gx, henceforth assumed to be continuous in x, as
a valid outcome-invariant DA transformation parameterized by the vector g € G. Let G have
a (unique) normalized Haar measure and ]P’Q[ the corresponding distribution defined over it.

The task. Given samples for only (X,Y) ~ IPXY and a valid outcome invariant DA
parameterized by G ~ IP’G, we want to improve estimation of f compared to standard ERM.
Now, take a soft intervention on 2 where we replace the mechanism 7 of X with G7. Abus-
ing notation, we represent this SEM by 2f; do(7 := G'7), its graph depicted in Fig. 1(d).2 Com-
paring the DA mechanism in 2 (Fig. 1(¢)) and the intervention 2; do(7 := G7) (Fig. 1(d)):

Observation 1 (soft intervention with DA) P3.y . and IP’%?%E)(GT:;GT) are identical.

We can hence treat samples generated from 2 via DA as if they were instead generated

from 2A;do(7 := G7) by intervening on X. This allows us to rewrite the risk from Eq. (3) as
R ActERM () = R%g&(T:GT)(h), to emphasize that DA is equivalent to a (soft) intervention
and as such can mitigate confounding bias when estimating f, as shown in the next example.

Example 1 (a linear Gaussian DA example) For k,0 > 0, non-zero I','T € R**™
and 7, f, € € R™ such that £ 77 # k™1 so that the following SEM 2 is solvable in (X,Y)3

X=k-7'Y+T'C+0oNx, Y=f'"X+k €' C+oNy, GX =X+~-T'G,

where G,C, Nx, Ny are conformable, centered Gaussian vectors, k determines how much
(X,Y) are confounded and range(I‘T) - null(fT) to make GX a valid outcome invariant DA.

We evaluate an estimate h? using CER. For squared loss and covariance 2% in Example 1,

(8)

2. For any 2 with unique distribution, 2; do(7 := G7) also has a unique distribution (proof in Appendix H.3).
3. See Appendix B, Lemma 3 for details on solving for and sampling (X, Y") in such linear, simultaneous SEMs.

CERy (ﬁ”) - HFP
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Figure 2: Simulation experiment for the linear Gaussian SEM in Example 1. x and - control
the amount of confounding and strength of DA respectively. « is the IVL regular-
ization parameter. Each data-point averages nCER over 32 trials with a 95% CI.

Theorem 1 (causal estimation with DA+ERM) For SEM 2 in Example 1, we have
CERy (ﬁ% AG+ERM> < CERy (ﬁ%RM), equality iff EY[GX|G] LEYX|E] as.

Proof See Appendix H.4 for the proof. |
That is, DA improves causal estimation iif it targets spurious features of X. Domain knowl-

edge may therefore be needed to design such DA. Still, with outcome invariance, DA is never

worse than ERM; allowing regularization at worst, and mitigating confounding bias at best.
We once again point our attention to the graph of 2; do(7 := G7) from Fig. 1(d) to see:

Observation 2 (IV-like DA parameters) In SEM 2;do(r := GT), the DA parameters
G satisfy IV properties (i) through (ii1). We refer to such an IV relazation as IV-like (IVL).

This IV relaxation may render an ill-posed Eq. (5), so we suggest the regularization
REL () = RE(h)+aREk\ () as IVL regression, discussed separately in Appendix E. When
composed with DA in 2 now gives RJ Active, (h) = R?[\}C}JO(T::GT) (h). The next results follow.

Corollary 1 (worst-case DA with DA+IVL regression) For SEM 2 in Example 1,
1

I'gg'I'< ( + 1)1”2%1“}.
a

Proof The result follows from Observation 1, Observation 2 and Theorem 2. |

! , 2 _
hpa.4rve, € arg}rlnlngleagx Rpag+eruh), st Go = {g

Corollary 2 (causal estimation with DA+IVL regression) In Ezample 1, o,y < 00,
CERy (ﬁ% AGHVLQ) < CERy (B%AG+ERM), equality iff EX[GX|G] LEYX|€] as.

Proof The result follows directly from Theorem 3 and Observation 2. |
Using DA parameters as IVL therefore simulates a worst-case, or adversarial application of
DA within a set of transforms G,. Of course Corollary 1 can also be viewed as a predictor that
generalizes to treatment interventions encoded by G,. As is intuitive, such a worst-case inter-
vention improves causal estimation so long as the features of X intervened along include some
that are spurious (Corollary 2). DA and IVL regression may therefore be used in composition
if the application can benefit from regularization and/ or better prediction generalization
across DA-induced interventions, with a “bonus” of lower confounding bias if the DA also
augments any spurious features of X. The Appendix covers limitations and related work.
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Figure 3: Experiment results; common domain generalisation benchmarks compared against
the ERM, DA+ERM and DA+IV baselines, including DA+IVL.

3. Experiments

We empirically evaluate DA’s effectiveness in reducing hidden confounding bias in the finite-
sample regime. Since our focus is on generalizing across interventions rather than i.i.d.
generalization, we fix augmented data size to match the original throughout all experiments.

We compare against standard ERM, DA, IV regression, and re-purposed domain general-
1zation methods including DRO, IRM, ICP, RICE, V-REx, MM-REx, and causal regular-
ization approaches. For methods requiring additional variables, we replace these with DA
parameters G (see Appendix G for implementation details and detailed analysis).

For better interpretability of results, we evaluate using normalized CER (nCER):

nCERgyp(h) = CERgﬁCfgigéng%m 7oy € [0, 1], where hg represents null treatment effect. This has

the property that nCER = 0 for ground-truth causal solution but 1 under pure confounding.

Simulation experiment. Using the linear SEM from our theory with m = 32, n = 2048
samples across 32 experiments, we find: (1) ERM degrades with increasing confounding
K, (2) DA alone improves performance, (3) DA+IVL achieves best results while DA+IV is
unstable. The cross validation approaches of CC, CV and LCV are explained in Appendix E.

Optical device dataset. On 1000 samples across 12 datasets where hidden confounders
affect both webcam-captured images and photo-diode readings, DA+ERM improves over
ERM, with DA+IVL outperforming other baselines.

Colored MNIST. Where training labels spuriously correlate with color but correlation
flips at test, DA via perturbations to hue/brightness helps reduce confounding. DA+ERM
provides substantial gains over ERM, with DA+IVL achieving competitive performance

4. Conclusion

We conclude that re-purposing the widely used variance reduction tool of data augmentation
(DA) for reducing hidden confounding bias can be effective under outcome invariance. Cru-
cially, it offers a “no-regret” choice for practitioners; improving causal estimation when target-
ing spurious features, yet performing no worse than the ERM baseline otherwise. Such mitiga-
tion of hidden confounding has direct positive implications for the downstream tasks of robust
prediction across shifts in ]P% (Reddy et al., 2025), tighter bounds in partial identification (Kil-
bertus et al., 2020), and more informative sensitivity analyses De Bartolomeis et al. (2024).
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List of Symbols

The notation is largely borrowed from Peters et al. (2017), with overloading where necessary.

R™* n x x Euclidean space; dimension * conformal with & inferred from context.

Scalar.

8

Vector. When x ! is described as a vector, it means x is a flat 1 x % matrix.
Matrix.

Set.

Random vector.

SEM.

S =< N M ox

X”  Random vector X with its SEM 90t specified when unclear from context.
]P’? Distribution of X entailed by 20; superscript dropped if clear from context.
E™[X] Expectation of X under P%¥.
VM X] Variance of X under P¥.
E? Variance—covariance matrix of X under IP)D)?.
2%}/ Cross—covariance matrix of X and Y under IP’gigy.
) Intervention — X is explicitly set to x during data generation.
do(X) Shorthand for do(X := X') where X’ ~ P% is i.i.d. to X.
)

Intervention SEM.

N

Mx—x SEM with mechanisms of 991, but exogenous noise distribution P N|X=x"

My —y;do(X :=x) Counterfactual SEM — intervention SEM of My —_,,.
X 1Y Random vectors X,Y are independent, i.e. ]P’gj}' x = }P’?{.
x 1y x,y perpendicular, i.e. x'y = 0. For random vectors X 'Y = 0 a.s.
Population (infinite-sample) estimate based on P™.

Finite-sample estimate based on dataset D.

12
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Appendix A. Confounding Bias

Statistical vs. causal inference. The target estimand for the statistical risk in Eq. (2)
is the Bayes optimal predictor E™[Y | X = -]. Whereas the target estimand for the causal
risk in Eq. (4) is the average treatment effect (ATE) Xu and Gretton (2022) defined as

FRp(x) = B[y | X = x].

The ATE measures the causal influence of X on Y and is equal to f(x) for the SEM 9t in
Eq. (1). As such, statistical inference is concerned with predictions of outcome Y, whereas
causal inference is concerned with estimating f/iﬁTE = f.

Statistical vs. confounding bias. Both types of inference are subject to bias. Statistical
bias arises due to miss-specification of the hypothesis class H, whereas confounding bias
arises due to how the data are generated (making X )£ £). The former is therefore a property
of the estimator while the later is a property of the data itself. For an estimator hP with the

expected value h(-) == EX [ﬁp(-)}, these biases are defined as

Statistical bias == EM[YV | X = -] — A("),
Confounding bias == freg(-) — EM[Y | X = -],
=fO) -EMY[X =].

For our model in Eq. (1), confounding bias arises due to (i) the exclusion of the (unobserved)
common parent C' of X and Y, i.e. a confounder, in the ERM objective (hence fittingly
called the omitted-variable bias Clarke (2005)) and/or (ii) the model is cyclic so that the
noise Ny may itself correlate with X (called simultaneity bias Greene (2003); Fox (1979), or
reverse causality Pearl (2009) in the degenerate case). For simplicity we shall refer to as the
confounding bias Pearl (2009).*

Bias-variance decomposition of the causal risk. Because the treatment X and residual
¢ are not correlated under M; do(X) in Eq. (1), for any loss function ¢ that admits a ‘clean’
or ‘additive’ bias-variance decomposition Heskes (2025), the causal risk also admits a bias-
variance decomposition. Using squared loss, for example, we have for some hypothesis hP

= REL (fzp>

— EMdo() HY - i}D(X)H2] ,
= EMdo(X) Hf(X) +&— iALD(X)HT , (Structural eq. of Y.)
— E¥hdo(X) ||§H2} + E¥tdo(X) [Hf(X) — BD(X)“Q], (Cross term is 0 as & 1L Xim;do(X).)

4. Pearl (Pearl, 2009, p.78,184) similarly uses the term for any bias causing observational vs. interventional
deviation; this also aligns with econometrics Roberts and Whited (2013); Greene (2003), where both are
lumped together as sources of endogeneity (i.e., X JL &).

13
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A 2 .
= EMtdo(X) [Hg”z} +EM { Hf(X) - hD(X)H ] . (PR, IP’%?’dO(X) identical by construction.)

irreducible noise -
estimation error, CERgy (hD ) =

We can show by following standard procedure that

£ [corm(i7) ]| =8 [)L700 - h0o)?] + 63| 23| [0 - ieco] | |

] v
bias variance

Since for any population estimate A”(X) = h(X), the CER equals the average (squared)
bias in estimation

et (i) = 23 700) — 00| =2 [ 1700 - 5ol

For a rich enough hypothesis class, the ERM estimate coincides with the Bayes optimal
predictor E%IRM() = E™Y|X =] and the CER exactly equals the (average squared)
confounding bias as we define it above. For a general estimate iLD, however, the CER also
contains statistical bias. Nevertheless, our claims of “better causal estimation via reducing
confounding bias” rest on the fact that we are essentially manipulating the data via DA and/or
using treatment randomization sources in the form of IVLs. And recall that confounding
bias is a property of the data.

14
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Appendix B. Simultaneity as Cyclic Structures in Equilibrium

Since SEM 9 in Eq. (1) is potentially cyclic, a priori it may entail several or no distributions
at all. However, we make the assumption that for all (xg,yo) € X x Y the unique limits

x = lim x4 = lim 7(y;-1,2,¢c,nyx), y = lim y; = lim f(x¢—1) + €(c) + ny
t—o00 t—o00 t—o00 t—00

exist for any (z,c,nx,ny) ~ ]P’gznc Ny.Ny» meaning that the unique distribution entailed by
M is in this equilibrium state. Of course, if 9 is acyclic, these limits always exist.

Linear cyclic assignments

SEMs with cyclic structures have been well studied both in the linear case by Lauritzen and
Richardson (2002); Lacerda et al. (2008); Hyttinen et al. (2012), as well as the non-linear case
by Mooij et al. (2011); Bongers et al. (2021). Here we briefly provide a causal interpretation
to linear simultaneous equations as SEMs with cyclic assignments.

Consider a square matrix M € R?*? and the SEM

W =MW + N , (9)

where noise N is exogenous and M allows for a cyclic structure. We enforce (I — M) to be
invertible so that the above equation has a unique solution W for any given N. Re-writing
the structural form in Eq. (9) into a reduced form, the distribution of W is defined by

W=>O;—M)"'N. (10)

One way we can present a causal interpretation of the above solution is to view it as a
stationary point to the following sequence of random vectors Wy

Wy =MW;_1+ N,

which converges if M has a spectral norm strictly smaller than one so that M! — 0 as
t — oo. The structural form Eq. (9) essentially describes the iterative application of this
operation. And in the limit the distribution of lim;_,o. W will be the same as the reduced
form Eq. (10). Although equivalent, reduced form of a cyclic SEM (if one exists) obscures
the causal relations in the data generation process.

Furthermore, we restrict our models to not have any “self-cycles” (an edge from a vertex
to itself). So, e.g., the matrix M in Eq. (9) has all zero diagonal entries. This simplifies our
analysis by providing a simple, intuitive interpretation for our definition of DA in Sec. 2, and
also ensures that in the non-linear case the SEM entails a unique, well-defined distribution
under mild assumptions Bongers et al. (2021); Lacerda et al. (2008).

Similarly we can write the example SEM 91 from Example 2 in this (block matrix) form as

X [Opxm 1T ][X r’ T Nx
R R L ]
~ —

W M W N

For this simple case, (I(m+1) — M) is always invertible so long as f ' 7" # 1 from Lemma 3.
Or we can also restrict ‘fTTT‘ < 1 to ensure that the spectral norm of M is strictly
smaller than 1. We sample from this SEM by first sampling all of the exogenous variables
Z,C, Nx, Ny and then solving the above system for each sample of X,Y via the reduced
form in Lemma 3.
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A motivating example

Cyclic SEMs were first discussed in the econometrics literature Christ (1994) to model various
observational phenomena, and often solved via 2SLS based IV regression Fox (1979) since
it is computationally less costly compared to solving the entire system Belsley (1988). A
classic example from economics Ezekiel (1938); Muth (1961) is that of a supply and demand
model 9 where the relation of price P of a good with quantity @ of demand can be thought
of as a cyclic feed-back loop where producers adjust their price in response to demand of
the good and consumers change their demand in response to price of a good. In contrast,
a change in consumer tastes or preferences would be an exogenous change on the demand
curve and can therefore be used as an IV Z.

consumer demand: Q=17-P+~v-Z+ Ng,
producer price: P=f-Q+Np.

Where scalars f, 7 are such that |f - 7| < 1 so that the system converges to an equilibrium.
We say that the measurements made for P and @ are at the equilibrium state of the market®
with zero mean measurement noise Np, Ng respectively.

Estimation of causal effects — removing simultaneity bias. If we now want to
estimate the effect of demand on price f, standard regression will produce a biased estimate
fERM [+ Co\za?é\gp ) because of the simultaneity causing @@ and Np to be correlated (to
see this, substitute model of P into the model of Q). We can now use IV regression to get

an unbiased estimate of the effect of demand on price in the market as fﬁj} =f.

Robust prediction under treatment interventions — avoiding spurious correlations.
Similarly, if the producer wants to predict the effect on demand if price is changed (i.e.
intervened on), naive ERM will not be a good choice because it will also capture the spurious
correlation from @ — P. We therefore use three-stage-least-squares (3SLS) Zellner and Theil
(1962); Belsley (1988) (or similar methods) to estimate the ATE 735, ¢ = EMHd(P=)[Q| P = .]
where we use the first two stages to estimate f%, followed by ERM to regress from the
residuals Np == P — fg} - @ to @ in the third stage.

Other applications. Cyclic SEMs are commonly used in many disciplines to model
reciprocally causal phenomena. Application domains include political science Page and Jones
(1979); Breznau (2016), sociology Marini (1984), urban planning and design Xie and Levinson
(2010), organizational behavior and psychology Wong and Law (1999), etc.

Lastly, to establish clear relevance to the literature of spurious correlations, we present a
novel cyclic SEM interpretation of the popular colored-MNIST task in Appendix G 3 which we
argue presents a more intuitive perspective of colored-MNIST as a ATE EMido(X=)[y | X = ]
estimatoin task, which is not immediately obvious in the more familiar DAG perspective.

5. In fact, such feed-back models of supply, demand were initially developed to understand irregular fluctua-
tions of prices/quantities that are observed in some markets when not at equilibrium Ezekiel (1938).
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Table 1: Bias-variance analysis of canonical regularization methods compared to outcome
invariant transformations. We provide a first analysis of confounding bias in ATE
estimation for the later. |, T, —represent a decrease, increase and no-change in
the corresponding metric of interest respectively.

Type of regularization

Outcome invariant transform Canonical ({1, f2, or vanilla DA)
Statistical
. Lyle et al. (2020); Chen et al. (2020);
variance Chen et al. (2020) Hoerl and Kennard (2000); Tibshirani (1996)
Statistical - )
bi Lyle et al. (2020); Chen et al. (2020);
1as Chen et al. (2020) Hoerl and Kennard (2000); Tibshirani (1996)
Confounding 1— | (causal regularization)
bias Janzing (2019);
1as (ours) Kania and Wit (2023); Vankadara et al. (2022)

Appendix C. Related Work

Domain generalization (DG) methods aim to generalize to unseen test domains via
robust optimizatoin (RO) Ben-Tal et al. (2009) over a perturbation set P of possible test do-
mains p € P as

Rfo(h) = Izleag Ripa(h),

Since generalizing to arbitrary test domains is impossible, the choice of perturbation set
encodes one’s assumptions about which test domains might be encountered. Instead of
making such assumptions a priori, it is often assumed to have access to data from multiple
training domains which can inform one’s choice of perturbation set. This setting is explored in
group distributionally robust optimization (DRO) Sagawa et al. (2020). Variations have been
used to mitigate confounding bias and subsequently generalize to treatment interventions
when used with interventional data Peters et al. (2016); Dance and Bloem-Reddy (2024),
confounder information (i.e. entire graph) Krueger et al. (2021); Huang et al. (2023); Lu
et al. (2022) or some proxy thereof in the form of environments Arjovsky et al. (2019). We
however, do not assume access to any of these and instead synthesize interventions via DA.

Counterfactual DA strategies have been the primary lens for causal analysis of DA Ilse
et al. (2021); Yuan et al. (2024); Feder et al. (2023); Pitis et al. (2022); Armengol Urpi et al.
(2024); Mahajan et al. (2021); Aloui et al. (2023). These approaches aim for prediction
robustness under treatment interventions and often depend on strong assumptions, such as
access to the full SEM Yuan et al. (2024); Feder et al. (2023), auxiliary variables Ilse et al.
(2021); Feder et al. (2023); Mahajan et al. (2021); Aloui et al. (2023), or causal graphs Pitis
et al. (2022); Armengol Urpi et al. (2024). By contrast, we show that outcome-invariance
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Table 2: Comparison of our proposed ‘outcome invariant DA as a (soft) intervention’ frame-
work with prior works on causal analysis of DA. We argue that other frameworks
are less general, requiring access to auxiliary variables, the full graph or treatment
mechanisms, all of which are often far less accessible than prior knowledge about
symmetries of f. Importantly, our analysis is the first to discuss the effects of such
DA simulated interventions on treatment effect estimation.

Type of DA
Out i iant
teome invatian Counterfactual
(ours)
=
T = . .
) . intervention counterfactual
DA simulates
;‘e 3 2A; do(1 == GT) Ay —y;do(r = Gr)
. back-door (i.e., information about
" Auxiliary data ( 3
7 in addition to (X,Y) X Ilse et al. (2021); Feder et al. (2023);
g ) Mahajan et al. (2021); Aloui et al. (2023)
&
g Full graph X
= grap Pitis et al. (2022); Armengol Urpi et al. (2024)
=
wn
< Structural ~ symmetries treatment mechanism 7
mechanism of f only Yuan et al. (2024); Feder et al. (2023)
" robust prediction
'z across P% shifts
=
- | estimation of
= causal estimation o X

treatment effect (i.e., f)

of DA suffices for treatment intervention robustness without invoking counterfactuals.’
Furthermore, prior works have largely ignored causal effect estimation, often assuming
reverse-causal settings where the ATE becomes trivial Ilse et al. (2021); Feder et al. (2023);
Yuan et al. (2024). To our knowledge, ours is the first framework to study ATE estimation
under DA with minimal structural assumptions. See Tab. 2 for a detailed comparison.

Invariant prediction based methods aim to make predictions based on statistical rela-
tionships that remain stable across all domains in P. A common assumption, for instance,
is that Py x is invariant across P, with only the marginal Px allowed to vary. Invariance
is also closely linked to causal discovery — under the assumption that causal mechanisms
remain stable under interventions on inputs Rothenh&usler et al. (2021). This connection has
inspired approaches that enforce invariance conditions to uncover causal structures Peters
et al. (2016); Heinze-Deml et al. (2018). IV regression can also be viewed as one such method,

6. Representing an SEM with exogenous noise distribution conditioned on some variable Y =y by Ay—y,
the counterfactual SEM 2y —_y;do(X = x) is an intervention do(X := x) on this new SEM 2ly—,,. The
counterfactual distribution then represents questions like ‘After observing Y =y, what would have been
had X = x been true.’
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where the goal is to learn predictors whose residuals are invariant to the instruments Zhang
et al. (2023). More broadly, the principle of invariance, whether motivated by causality or not,
has proven useful for improving generalization across heterogeneous settings Rothenhausler
et al. (2021); Arjovsky et al. (2019); Dai et al. (2017).

Causal regularization methods are perhaps the best classification for this work. These
aim to design regularization strategies Oberst et al. (2021); Kania and Wit (2023) that reduce
confounding bias in order to perform well on the down-stream task on prediction robustness
across distribution shifts Reddy et al. (2025). Of these, the most comparable to our work are
perhaps those that repurpose canonical regularizers like £1, £5 for causal estimation Janzing
(2019); Kania and Wit (2023); Vankadara et al. (2022). To the best of our knowledge, we are
the first to extend this line of study to DA. Table 1 makes a detailed comparison, including
with statistical bias-variance analyses.

Outcome invariant DA as causal regularization. Here we show that outcome invaraint
DA can have a regularizing effect even in the population case as implied by the following
result.

Proposition 1 (DA induced regularization) For SEM 2 from Ezample 1, given de-
creasing DA strengths v1 > v9 > 0, we have

|

Proof See Appendix H.1 for the proof. |

a =
Z:X

B |V = |y < [Bbagemma|v=2|| . equatity iff E¥GX|G) LEYX|¢)
X

Note that this is fundamentally different from the regularization properties of outcome
invariant DA in the un-confounded, finite-sample case as described in Lyle et al. (2020);
Chen et al. (2020) in the sense that it reduces confounding bias (Theorem 1) by shrinking the
coeflicients of h% Ag+ERM that correspond to confounded features of X which are augmented
by the DA.
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Appendix D. IV Regression

Two-stage estimators. Minimizing risk of the form Eq. (6) is known as two-stage IV
regression. Another approach for two-stage IV regression is to minimize the risk Mastouri
et al. (2021); Rothenhé&usler et al. (2021)

R () = 5| [E21v 1 2] - 590000 21, ()

which can be shown to lower-bound (hence the subscript LB) the surrogate risk in Eq. (6)
Mastouri et al. (2021) under squared loss.

— RY(h)

—E||lY - E[h(X)| Z])IP],

~E :||(Y —E[Y|Z]) + (E[Y]|Z] - E[h(X)|Z])\|2}, (Adding and subtracting E[Y | Z].)
—E :HY _E[Y] Z]H?] + E[HE[Y\Z] —E[h(X)| Z]H?} (Expand squared norm.)
+2E[(Y ~E[Y|2)) E[Y|Z] - E[h(X)| 7)),
—E||lY - E[Y|Z]|*] +E[|E[Y|Z] - E[(X)| Z)IP ], (12)

—E[IE[Y|2] - E[h(X)| Z)I’ ]| + E[E[(v - E[Y|2)*| 2],
(Tower rule and scalar Y.)

=E :IIE[Y!Z] —E[h(X)IZ]IIQ] +E[V[Y|Z]] = R¥,, (h) + E[V[Y| Z]], (13)

where Eq. (13) follows from the definition of conditional variance and we get Eq. (12) by
setting the cross term to zero since

- E[(Y ~E[Y|Z)"(E[Y|Z] —E[h(X)IZD]

:E:E[(Y—E[Y|Z])T(E[Y|Z]— [h(X)| Z]) ’Z” (Tower rule.)
—E E[(Y E[Y|Z]) ‘Z} v|Z] - } (14)
—E[(®]Y|2] - E[Y|2)) (B]Y|Z] - E[h(X >|Z1>},

—E|0(E[Y|Z] - E[h(X)|Z])] =0,

where Eq. (14) follows from the “taking out what is known” rule, i.e.,
E[g(B)A|B] = g(B)E[A|B]. (15)
Generalized method of moments. Another popular approach to solve the IV estima-

tion problem is the generalized methods of moments (GMM) Hall (2003); Bennett et al.
(2019); Lewis and Syrgkanis (2018) or equivalently the conditional moment restriction
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(CMR) Mastouri et al. (2021) framework which tries to directly solve for the fact that in
Eq. (1) with scalar YV

Me|Z] =EMY — f(X)|Z] =0, (16)

which holds as a direct consequence of the unconfoundedness property of IV Z, however it is
a much weaker assumption on it’s own’. Equation Eq. (16) implies that for any ¢ : Z — R,
it holds that

EM[(Y ~ f(X)) -a(Z)] =0.

The GMM-IV estimate of f therefore tries to enforce this condition Hall (2003); Bennett
et al. (2019); Lewis and Syrgkanis (2018) by minimizing the risk

I

R (1) = SOER[(Y — (X)) - 0s(2)]? = [E™ (v — (X)) - a(2)]
=1

where q(-) € R* represents a vector form of the set of p arbitrary real-valued functions g;. A
more general form of the above GMM based IV risk is to weight the norm by some SPD W
Johnston (1971); Hall (2003); Bennett et al. (2019)

2

BR gy wB) = [EM0(Y = 1(X))-a(2)]| .
which gives the most statistically efficient estimator, minimizing the asymptotic variance,
for W = 221_1 Johnston (1971); Hall (2003); Bennett et al. (2019). We use the same for
our non-linear experiments, together with the identity function q(Z) = Z. This gives us the
final loss of the form

RE = [E"z v - meo)).

—1 -1
GMM-3 =,

And the empirical version of which can be written as follows

+
D — (o _n(xR 551 (o 1%

RIVGMM—Egl (h) (y h(X>) 2z (y h(X>)’ (17)

where for dataset samples (x; zi) € D, we construct the vector y = [yo, -~ ,un] ',

matrices X = [xJ, - ,x)]", Z = (2o - zn]T with pseudo-inverse ZT and define

h<X) = [h(x0), -, h(xn)] T

7. Therefore an invalid instrument that does not satisfy the unconfoundedness property, but still satisfies
Eq. (16) can also be used here.
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Appendix E. IV-like Regression

Faithfulness and outcome-relevance in IVs

Consider the SEM 9t from Sec. 1. The distribution IP’%K z.c 18 said to be faithful to the
graph of 9 if it only exhibits independences implied by the graph Peters et al. (2017); Koller
and Friedman (2009).% This standard assumption in IV settings renders outcome-relevance
implicit and therefore rarely mentioned. In this section we discuss the case where only the
first three IV properties are satisfied, i.e. outcome-relevance may not hold. Since such a Z
may not be a valid IV, therefore identifiability of f is not possible in general as the problem
in Eq. (5) can now be misspecified, having multiple, potentially infinitely many solutions
when Y 1l Z. Nevertheless, we shall refer to such a Z as IV-like (IVL) to emphasize that
while Z may not be an IV, it may still be “instrumental” for reducing confounding bias when
estimating f compared to the standard ERM baseline.

ERM regularized IV regression. Despite problem miss-specification for a IVL Z, the
target function f remains a minimizer for the IV risk in Eq. (6). Albeit, potentially not
unique — for example, a linear A with squared loss leads to an under-determined problem in
Eq. (6). We therefore propose a regularized version of the IV risk for such an IVL setting,

Ry, (h) = R (h) + aREgp (), (18)

where o > 0 is the regularization parameter. The ERM risk as a penalty allows our estimations
to have good predictive performance while the IV risk encourages solution search within a
subspace where we know f to be present. We refer to minimising Eq. (18) as IVL regression.
Note that the motivation behind IVL regression is not the identifiability of f, but rather
potentially better estimation of f by reducing confounding bias. We provide an example.

Example 2 (a linear Gaussian IVL example) For o >0, non-zero I', T € R**™ and
7', f,€e € R™ such that £T77 # 1 so that the following SEM 9 is solvable in (X,Y)

X=7"Y+TTZ+T'C+ 0Ny, Y =f"X +€e'C+oNy,
where Z,C, Nx, Ny are conformable, centered Gaussian random vectors and Z is IVL.

Theorem 2 (robust prediction with IVL regression) For SEM 9 in Example 2,

A Ao(DT (i 1
By, € argmin max R O=O ) o p, = {c‘ccT < ( + 1> rTzf’Zﬁr}.
« h €Pa «

Proof See Appendix H.5 for the proof. |

Theorem 3 (causal estimation with IVL regression) In Example 2, for a < oo,
CERgy (ﬁf;ﬁwa) < CERun (ﬁ%‘RM), equality iff E™[X|Z] LE™[X|€]  as.

Proof See Appendix H.6 for the proof. |

8. Also known as stability in some texts (Pearl, 2009, p. 48).
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Theorem 2 shows that IVL regression achieves optimal predictive performance across
treatment interventions within the perturbation set P, defined by «. Theorem 3 further
states that this strictly reduces confounding bias in estimation of f iff the perturbations
align with spurious features of X, as indicated by the equality condition (also necessary for
identifiability in linear IV settings Wooldridge (2010); Christiansen et al. (2022)).

Closed form solution in the linear case
The next result gives lets us compute a closed-form solution to the IVL, regression problem

in the linear Gaussian case. An empirical version of this is used for our linear experiments.

Proposition 2 (IVL, closed form solution) For SEM 9 in Example 2, fl%L is the
closed form linear OLS solution between

X' =aX +VE[X|Z], Y':=aY +E[Y | Z],
where
a=+a, b=+vV1+a-—+a.
Proof See Appendix H.2 for the proof. [ ]

For the empirical version of Proposition 2 we fit a closed-form OLS regressor between
X' =X+ (V1+a-a)ZZ'X, V' i=aY + (V1+a—a)ZZY.

Choice of regularization parameter

Selecting the IVL regularization parameter « in the finite sample setting is not very straight-
forward. We explore a the approaches that are described below which seem to work well in
practice, however some of these may not seem as well motivated since the task at hand is
OOD generalization and « is being set via cross-validation with-in the same distribution.

Crross validation (CV), or any variation thereof. We specifically use the following two
in our experiments; (i) vanilla CV with 20% samples held-out for validation (ii) level cross
validation (LCV) for when Z is discrete, where hold-out data corresponding to 20% of the
levels of Z for validation.

Confounder correction (CC), where in a linear setting we follow an approach similar to
Janzing (2019) by estimating the length of the true solution f from the observational data
D. We then chose « such that the length of ﬂg A+IVL, is closest to the estimated length of
the ground truth solution.
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Appendix F. Limitations

Necessity and practicality of prior knowledge. As discussed in Sec. 2, lower confound-
ing bias is not a ‘free lunch’ with outcome invariant DA and practitioners may need domain
knowledge to construct DA that targets spurious features. Nevertheless, under outcome
invariance our methods should at least not perform worse than ERM.

Furthermore, causal estimation from only observational data (X,Y) is generally not
possible without untestable assumptions such as the ones me make above. For example, the IV
(or IVL) properties of un-confoundedness and exclusion are untestable and have to be justified
by domain knowledge. When contextualized in the framework of IVLs (Observation 2), we
argue that our assumptions on DA are actually quite practical given that a symmetry-based
DA model has precedence in the DA and invariance literature (Chen et al., 2020; Lyle et al.,
2020; Shao et al., 2022; Fawzi and Frossard, 2015; Dubois et al., 2021; Petrache and Trivedi,
2023; Montasser et al., 2024; Romero and Lohit, 2022; Zhu et al., 2021; Wong et al., 2016).

un-testable DA assumptions un-testable IV/IVL assumptions

outcome-invariance + spurious targets <= un-confoundedness + exclusion

popular model for DA benign failure if violated

Therefore, the assumptions required by our methods can be quite practical in many settings
where valid IVs (or other auxiliary variables) are scarce, but plausible outcome-invariances
(i.e., data augmentations) are abundant.

Choice of « in the finite-sample case. Selecting the IVL regularization parameter in
the finite sample setting is not very straightforward. We have outlined several approaches in
Appendix E that seem to work well in practice, however some of these may not seem as well
motivated since the task at hand is OOD generalization and « is being set via cross-validation
with-in the same distribution. Nevertheless, this limitations is not unique to our IVL method
and is a general problem is most domain generalization methods Gulrajani and Lopez-Paz
(2021).
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Appendix G. Experiment Supplement

We began by presenting results in the infinite-sample setting to emphasize that mitigating
confounding bias is fundamentally not a sample size issue, i.e., not solvable through traditional
regularization alone. In this section, we turn to the finite-sample regime and empirically
evaluate the effectiveness of DA in reducing hidden confounding bias. Importantly, we do
not use DA for its conventional purpose of augmenting data to improve i.i.d. generalization.
Since our focus is on generalizing across interventions, we fix the number of samples in the
augmented dataset to match that of the original dataset throughout all experiments.

Finding baselines for evaluating our results is however a challenge — reducing the bias
due to hidden confounding in regression estimates having only access to the treatment X
and outcome Y is a non-trivial problem. Nevertheless, for the sake of completeness we make
an effort to re-purpose existing methods from domain-generalization, invariance learning and
causal inference literature to be used as baselines. These methods often require access to
additional variables (e.g. IVs, confounders, domains/environments, etc.), and to maintain
fairness we will replace these with DA parameters G. Such a comparison is conceptually
valid since by virtue of being DG methods, they are essentially solving a robust loss of a
similar form as in Corollary 1, giving us meaningful baselines for DA+IVL.

In addition to standard ERM, DA and IV regression, our baselines include DRO Sagawa
et al. (2020), invariant risk minimization (IRM) Arjovsky et al. (2019), invariant causal
prediction (ICP) Peters et al. (2016), regularization with invariance on causal essential
set (RICE) Wang et al. (2022), variance risk extrapolation (V-REx) and minimax risk
extrapolation (MM-REx) Krueger et al. (2021). We also compare against causal regularization
methods, including Kania and Wit Kania and Wit (2023) and the ¢1, ¢5 approaches by Janzing
Janzing (2019). We discretise G if the method accepts only discrete variables. For IVL
regression, we select the regularization parameter « in a variety of ways, including vanilla
cross validation (CV), level-based cross validation (LCV) and confounder correction (CC) as
described in Appendix E. Other implementation details are provided in Appendix G.

For the methods that use stochastic gradient descent (SGD), we use a learning rate of 0.01,
batch size of 256 for 16 epochs. For baselines that require a discrete domains/environments,
we uniformly discretise each dimension of G into 2 bins. Higher discretisation bins renders
most baselines ineffective since each domain/environment rarely has more than 1 sample.
To keep the comparison fair, however, we also discretize G for IVL, regression when using
LCV. For the colored MNIST experiment, all CV implementations including baselines use
5-folds for a random search over an exponentially distributed regularization parameter with
rate parameter of 1. Same is the case for simulation and optical device experiments, except
that DA+IVL methods use a log-uniform distributed regularization parameter over [10~4, 1].
Since RICE Wang et al. (2022) grows the dataset size by augmenting each sample T' times,
we provide it a 1/7" sub-sample of the original data for fair comparison.

G.1. Simulation experiment

For the finite sample results of the linear SEM 2l from Example 1, by taking m = 32, k = 31
(dimension of G), o = 0.1 and fixing 7' = 0, we sample a new f,e and T € R™*™ from a
standard normal distribution for each of the 32 experiments for every combination of k¥ and
v. Each time we construct a I' := V with k rows as orthonormal basis of null(f), such that
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the SVD of f is

o 01%(m-1) } [VT]
f=|u U .
[ o O(m—1)x1 O(m—1)x(m-1)] Vg

Although this construction of T relies on direct knowledge of f (which is unavailable in
practice), we include it here purely for illustrative purposes. We treat access to I' as our
prior structural knowledge about the invariance properties of f, noting that this information
alone is insufficient to recover f.

We then generate n = 2048 samples of (X,Y") for each experiment. For ERM we use a
closed form linear OLS solution, for DA+IV, we make use of linear 25LS. Finally, DA+IVL,,
was implemented using a closed form linear OLS solution between empirical versions (see
Proposition 2) of

X' =vaX+ (V1i+a-Va)E[X|Z], Y =vaY+ (V1+a-+a)E[Y|Z].

Our first experimental result in Fig. 2(a) compares the different estimation methods across
varying levels of confounding x € [0,1]. As expected, ERM performance degrades with
increasing confounding. Applying DA alone already brings us closer to the causal solution,
while DA+IVL achieves even better performance. DA+IV regression is unstable and generally
performs poorly as it is under-determined.

In the second experiment (Fig. 2(b)), we fix the confounding and DA strengths at
k = = 1, and sweep over the regularization parameter a € [1075,10°] for DA+IVL,. The
results show that optimal performance is achieved for intermediate values of «, confirming
that arbitrarily small values of «, while beneficial in the population setting (as suggested by
Theorem 3), are suboptimal in finite samples.” We also find that both CV and CC strategies
effectively select reasonable values of «.

Finally, we examine sensitivity to the DA strength v € [1072 10], fixing x = 1. As
expected, stronger DA results in stronger interventions on X, which improves causal effect
estimation. However, we also observe diminishing returns; when the variation induced by
DA is either too small or too large, DA+IVL, does not yield significant improvements over
the DA+ERM baseline.

For completeness, we also benchmark our approach against other baseline methods on
16 distinct simulation SEMs with 2048 samples each. Aggregated results are presented in
Fig. 3 (left most).

For the parameter sweep experiments of Fig. 2, we generate a treatment of dimension
m = 32, but for the OOD baseline comparison experiment in Fig. 3 we use m = 16.
Furthermore, for the OOD baseline comparison experiment in Fig. 3, we randomly pick each
basis of null(f) with a probability 2/3 to construct ' (i.e., we know only some, but not all
symmetries of f).

G.2. Optical device experiment

The dataset from Janzing and Scholkopf (2018) consists of 3 x 3 pixel images X displayed
on a laptop screen that cause voltage readings Y across a photo-diode. A hidden confounder

9. We conjecture that this is due to outcome invariance not holding exactly in practice.
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Figure 4: Simulation of the linear Gaussian SEM of Example 1 with the same setting as Fig. 2,
but 7', f sampled uniformly over a unit sphere, representing a cyclic structure.
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Figure 5: Same experiment as Fig. 2, but with I' constructed by randomly selecting each
basis of null (fT) with a probability of 2/3, so that we can simulate the effect of
knowing only some symmetries of f.

C' controls two LEDs; one affects the webcam capturing X, the other affects the photo-diode
measuring Y. The ground-truth predictor f is computed by first regressing Y on (¢(X), C),
where ¢(X) are polynomial features of X with degree d € {1,---,5} that best explains the
data. The component corresponding to C' is then removed to recover f. We add Gaussian
noise G ~ N(0,3/10) for DA and evaluate methods from ?? on n = 1000 samples across
12 datasets. Figure 3 (middle) shows that DA+ERM improves over ERM, and DA+IVL
performs even better, outperforming other baselines.

In this experiment we fit a linear function h(.) := h € R™ for a squared loss in all of our
risk metrics. For IVL, regression, we use the closed-form OLS solution from Appendix E.
We also use a closed-form solution for ERM, DA4+ERM and DA+IV (2SLS) baselines. The
rest of the baselines (other than ICP) use SGD.

Most of the datasets in the optical device dataset were best explained by polynomial
features of degree 2. We use the same ground-truth degree to fit each of the methods listed
in Fig. 3. This is important so as to avoid statistical bias from model miss-specification as
our analysis squarely focuses on confounding bias.
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G.3. Colored-MNIST experiment

We evaluate on Colored MNIST Arjovsky et al. (2019), where labels are spuriously correlated
with image color during training, but this correlation is flipped at test time. We use the same
neural architecture and parameters as Arjovsky et al. (2019) across all baselines, training
with the I'V-based objective described in the Appendix D. DA is implemented via small
perturbations to hue, brightness, contrast, saturation, and translation, each parameterized
by G ~ [(2,2). Although these do not directly manipulate color, the actual spurious
feature, they still help reduce confounding. Results in Fig. 3 (rightmost) show that ERM
underperforms, DA+ERM provides substantial gains, and DA+IVL,, performs competitively
with the best DG baselines, with DA+IVLSV achieving the best overall performance.

We use the same 3-layer neural network (NN) architecture for h across all methods
comprising of a fully-connected input layer of input dimension m, hidden layer of input/output
dimension 256 and output classification layer with a Sigmoid function. Each layer is separated
by an intermediary rectified linear unit activation function. For the IV risk, we use the
empirical version of the GMM based risk from Eq. (17).

COLORED-MNIST AS A cycLiC SEM — FROM INVARIANT PREDICTION TO ESTIMATING
CAUSAL EFFECTS

colored image true label

MNIST image

A

color Y ) noisy label

Figure 6: The data generation DAG for colored-MNIST as discussed by the original authors
Arjovsky et al. (2019). They aim to learn a predictor h : X — ) such that it is
invariant to changes in IPX|Y. We argue that this DAG view of colored-MNIST
does not make it obvious how the true labeling function f(x) is related to the ATE
EMdo(X:=x)[y | X = x], which we believe is because it is virtually equivalent to
the reduced form of our structural form presented in Fig. 7.

In this section we give a cyclic SEM perspective of the colored-MNIST experiment from
Arjovsky et al. (2019). The task is binary classification of colored images X from the MNIST
dataset into low digits (y = 0 for digits from 0 to 4) and high digits (y = 1 for digits from 5
to 9). The difficulty of the task arises from there being a higher spurious correlation between
the color C' of the images (¢ = 0 for blue and ¢ = 1 for green) and (noisy) labels Y as
compared to the correlation between the digits in the image and the label.

28



CAUSAL ESTIMATION WITH DATA AUGMENTATION

Consider the following cyclic SEM in Fig. 7.

nx ~ Py, ,ny ~B(0.25),n. ~ B(e) sample all exogenous variables

X = colour(C,nx) apply color C' to the image

Y=7F (X) generate ground-truth label with true labeling function
Y =xor (37, ny) flip the label with probability 0.25

C = xor(Y,n¢) generate color by flipping Y with probability e,

where we first randomly sample an un-colored MNIST image ny, and some Bernoulli
distributed label noise ny ~ B(0.25) and color noise n¢ ~ B(e) which is different for
each environment e € {0.1,0.2}. Then for some initial arbitrary values xq, 9o, yo and cg
respectively for the observed colored image X, the ground-truth label Y, the observed noisy
label Y and the image color C, we iteratively apply the following assignments from the SEM

x; = colour(¢,—1,nx) apply color C' to the image

U = f(x¢—1) generate ground-truth label with true labeling function
yr = xor(Ji—1,ny) flip the label with probability 0.25

¢t = xor(yi—1,nC) generate color by flipping Y with probability e,

until they converge while keeping all sampled exogenous variables nx,ny,nc fixed. It is
straightforward to show that this SEM will converge after a maximum of ¢t = 5 iterations'°
due to the invariance of f to the color of the image C'. Furthermore, this stationary-point will
be uniquely determined by our exogenous samples nx,ny,nc. And this is how we generate
one sample (x,y) for our colored-MNIST experiment. We repeat this process to generate a
sample (x,y) for each of n samples nx, ny,nc.

Note that the ground-truth labeling function f can only correctly predict the labels 75%
of the time. At test time we flip the correlation between the label Y and the image color
C by setting e = 0.9. Also, the above cyclic SEM for colored-MNIST produces the same
distribution for (X,Y) as Arjovsky et al. (2019).

The above cyclic SEM perspective of colored-MNIST is interesting because it makes it
clear that colored-MNIST is essentially a causal effect estimation task. Specifically, we can
estimate the true labeling function f by estimating the ATE E™sdo(X=X)[y"| X = x| since

EM =0y | X = x| = BT [xor (£(X), Ny) | X = x|,
= EM[xor(f(x), Ny)], (Ny 1L xPhdo(Xi=x)
= EM[f(x) + Ny — 2f(x)Ny], (Definition of xor.)
= f(x) + EM[Ny] - 2f (x)E™ [Ny ],
= (1= 2EM[ Ny ]) £(x) + B[Ny ),
= 0.5f(x) +0.25 . (Ny ~ B(0.25).)

10. Following the mechanisms co — X1 — §2 — Y3 — c4 — X5, we see that (Xa,y4,cs) = (X5,¥s5,¢5) (same
fOI“ g4 = :lj5)
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colored image colored image

e 6 true label
(—®

color noisy label color  noisy label flip Y?

(a) Graph for generating colored-  (b) Augmented graph — exogenous variables ex-
MNIST data. plicitly shown.

Figure 7: A cyclic SEM perspective of the colored-MNIST data — an MNIST image Nx
is assigned color C' to produce a colored-MNIST image X. This is then passed
through the ground-truth labeling function f to produce the true label Y. We flip
this with probability 0.25 to produce the observed label Y, which in turn is flipped
with probability e (at train time e € {0.1,0.2} and e = 0.9 at test time) to produce
the color C. These assignments are iteratively applied for any joint sample of
the exogenous variables Nx, Ny, N¢ starting at arbitrary values of endogenous
variables until convergence to the unique stationary point X,Y,C (and }7)

Because this is a binary classification task, we have
round(EmT;dO(X:x)[Y\X = x]) = f(x).

This is in contrast to the original DAG perspective of colored-MNIST shown in Fig. 6,
where the connection to the estimation of the causal mechanism f is not immediately obvious.
We argue that this is because the DAG in Fig. 6 is virtually equivalent to the reduced form
of our structural form presented in Fig. 7.
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Appendix H. Proofs

H.1. Proof of Proposition 1 — DA induced regularization

= || s

_ e :(GX)(GX;: E :(GX)YT] ; ,

_ IE:(GX)(GX)T:_lE:(GX)(fTX :g)T] ;

_ IE:(GX)(GX)T:_IE:(GX)(fTGX+€>T] i

- |E[@x)ex)] (E[(GX)(GX)T}f+E[(G;)£T])

—lf+E[(Gx)Gx)T] IE_(GX)fT} :
_ | El s
- -1 r ~ 2
= [e+E[ex)ex)T] E[(x +40)T]|
L i L z%
_ o _ 2
_le+E[(ex)cx)T] E xeT||
L i L z%

= ||f||22%[{ + HIE{(GX)(GX)T}lE[XgT] 2

A
2;X

(Structural eq. of Y.)

(Using G-invariance of f.)

2

5
(Linearity of expectation.)

(Represent G :=T"G.)

(G exogenous = G 1 €.)

+of TSR [(GX)(GX)T} E [XST} :

(19)

where the first term does not depend on . The last term also does not depend on ~ because

SfTSLE [ (x+4G) (x+ WC?)T} E [ x¢7),

—fTSLE [23‘( + 722%‘} E [XgT},
:fTsTSE[sTS +72STDS]71E[X§T},
~fTSTSS'E[L,, ++°D] 'S™E [X,ﬂ ,
~"STE[L,, +7°D]'sTTE[ x¢7 |,

—fTSTS™E [ng .

(From Lemma 2.)

(S,ST invertible.)

(Gemul(f') = f'STD=0.)

Finally, for the middle term in Eq. (19) we can follow a similar approach as Theorem 1 to

show that it is strictly decreasing in 72, with equality iff
E*GX|G] LE* X |¢]
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H.2. Proof of Proposition 2 — IVL regression closed form solution in the linear
case

The OLS solution for (X', Y”") minimizes the following ERM risk

:a2

[ ‘Y’ NS¢ 2]
2
“ aY +bE[Y |Z] - h' (aX + bE[X | Z])H } . (Substitute in definitions of X’,Y".)
T T 2
“ a(Y “h X) + b(E[Y\Z] ~h'E[X] Z]) H ] (Distribute the subtraction. )
2 2
E “‘Y - hTXH } + R [HE[Y|Z] ~h'E[X]| Z]H ] (Expand squared norm.)
T
+2abE[<Y—hTX) (E[Y!Z] —hTE[XyZD]. (20)
First we note that from the definitions of a, b we have
a® = /a, B +2ab=(Vita—+va)+2/a(Vita—va)=1.  (21)
evaluate the cross term in Eq. (20)

Now we

jE{(Y—hTX>T<E[Y|Z] —hTE[XlZ])}

=E

=E

=E

=E

i
E [ (Y - hTX) (E[Y 1Z] - h"E[X| Z]) ‘Z] } . (Law of iterated expectation.)

E [ (Y - hTX)T ‘ Z] (E[Y|Z] - hTIE[X|Z]>}
) (Taking out what is known; Eq. (15).)

(IE[Y\Z] “hE[X| Z])T(E[Y\Z] “n'E[X| Z})]

iHE[Y|Z] - hTE[X\Z]m.

Substituting this back in Eq. (20) we get

:>]E[HY’—hTX’

2
|
— o’ MY — hTXHQ] + (B2 + 2ab)E[HE[Y|Z] - hTIE[X\Z]HT,

= oF [HY - hTXHQ] L E [HE[Y|Z] - hTE[X\Z]HQ], (From Eq. (21).)

= aRPLy(h) + RY(h) —E[V[Y | Z]], (From Eq. (13).)
= R, (h) —E[V[Y|Z]].
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H.3. Proof of Proposition 3 — Existence of interventional distribution far a DA

Proposition 3 (unique stationary interventional distribution) In SEM 2 from Eq. (7),
given any (g,c,nx,ny) ~ PgC’NX’NW if for all (xg,y0) € X x Y the unique limits

x% = lim x? = lim 7'<ytm,1,c,nx),
t—o00 t—o0

Yoo tlggo yi = tlggof(xt_l) Fele) +ny

exist, then in A;do(7 := g7) the unique limits

XQl;do(T::gT) —

. ;do(T:=
lim x?" o(m=87) _ fim er ,c,nX) = gx*,

( Q(do(T =gT)
t—o00 t—o00

ydo(ri=g7) . |j le do(i=e7) _ 13 f( 2ydo(r: gT)) +e(c) + ny = y*

t—o00 t—o00

also exist.

Proof First we try to show that

A;do(T:=
Yi olr=en) — Y%- (22)

For the base case, we have by construction

A;do(T:= i .
yo T =y =y

Asdo(r:=gT)

For the step case, assuming that y, B

=y}, we have

A;do(T:= A;do(1:=
Yt+20(T &) = f(xt+10(T gT)) + €(c) +ny,

( ( Asdo(r=gr) c,nx)) +e(c) +ny,
f(r ( Asdo(r=g7) o nx)) + e(c) + ny, (Invariance of f to g.)
e ) e s
= (x%) + (e) +ny,
= le

Hence, we have shown that Eq. (22) holds for all even ¢. For odd ¢, we simply replace ¢t = 0
with £ = 1 in the base case

y?;dO(TZZgT) _ f<xgl;do(7':=g7')> + 6(0) Ty,
= f(x%) + ¢(c) + ny, (Definitions xgl;do(T::gT) =X = Xg.)

A
=Y

11. Note that here the step size for proof by induction would be At = 2 since y: precedes y¢42. Similar is
the case for x; as well.
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We have now finally shown that Eq. (22) holds for all ¢ > 0.
Next, it is now relatively straightforward to show that for any ¢ > 0, we have

) _ g (080 )
= 8T (y?_l, c, IlX), (Follows from Eq. (22).)
= gx}. (23)

Finally, by applying limit as ¢ — oo to both sides of Eq. (22) and Eq. (23), we get

le;do(T::gT) — lim y?l;do(ﬂ'::gr) — lim thl _ le’
t—o00 t—00
xdo(m=e7) — lim x?l;do(T::gT) = lim gx}' = g lim x' = gx*, (24)
t—00 t—r00 t—o00

where the limit can be moved past g in Eq. (24) because g is assumed continuous in its

domain.
[ |
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H.4. Proof of Theorem 1 — Causal estimation with DAJ+ERM

= _szm - HIE[(GX)(GX)T}IE[(GX)YT} -
X =%
_ E[(GX)(GX) } IE[ GX fTX+§) ] —f| (Structural eq. of Y.
=
= ||E {(GX E[ (GX) fT (GX)+ f) } —f|| , (Using G-invariance of f.)
=1
_ (f+IE[ T} 1E[GX§T]) K
=%
eamon s eIl
- E[(X+é) (X+G*) } E[(XJFé)gT} , (G =E[GX|G]=~ -TTG)
=
_ (IE [XXT} +E [GGTDAE [XgT] o (Using G 1L X, €.)
_ (sTs n STDS>_1E [XgT} , (Lemma 2.)
STS
_ S*l(Im+D)—1S*TE[X§T} g (S,ST invertible.)
=||sS™HI,, + D) 'S™TE [Xﬁ—r} , (Switch to ¢2 norm.)
e is a5 | < |5 o
= ss—ls—TE[XgT} , (Substitute in I, = SS~1.)
=|IS7'S™'E [X{T} org’ (Back to weighted norm.)
= |E [XXT}_IE (x| (Substitute in X% = E¥[XXT] =STS)
=3
—lt+E [XXT] 'E {XﬁT} | (Add and subtract £.)
=¥

— |E[xXT] I(E[XXT]H—E[ ¢T) -t " (Use I, = E[XXT] 'E[XXT].)
_E[xxT] E fTX +§ ] £ (Linearity of expectation.)

L d 2931
—E[xxT]" E[XYT} [ = HhERM - f”zm, (Structural eq. of Y.

- - X

where inequality Eq. (25) holds because D is non-negative diagonal. Also, inequality Eq. (25)
only holds with equality iff STTE [X fT] is in kernel of D. Or equivalently, iff E [X {T] is in
the kernel of STDS = 35, which from Lemma 1 holds iff EMGX|G] LEM[X|¢] as. W
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H.5. Proof of Theorem 2 — Robust prediction with IVL regression

Write X in terms of the exogenous variables C, Z, Nx, Ny using the reduced form from

Lemma 3 as

X=Z+C+N, (26)

where for readability we represent

~ ~ T ~

7 = MuxmI' Z, C::M[TT}C, NZZO’-M[NX],

€ Ny
with
-1
M — |:Mm><m Mm><1:| _ |:Im _TT:|
Mlxm 1\/Il><1 _fT 1 '

Now, we start by writing the ERM objective under the intervention do (I‘T(-) = C) as

Em;do(I‘T ():C)

= Rppm (h)

— EWdo(TT()=¢)
— EMdo(TT()=¢) :
— EMdo(T T ():=¢) :
— EMsdo(TT()=¢) :
— EWdo(TT():=¢) :

_ Ezm;do(rT(.):zg) [

c+(f-nT"(C+ N) v h’TCHQ] . (Define h'" == (f — h) M)

£+ (f - h)T(é + N) HQ] + Efm;do(I‘T(.)::C) “ h/TCHZ},

(Follows from exogeneity of ¢ under intervention, = cross term zeros-out.)

_ Efm;do(I‘T(-):zom)

— Em;do(I‘T(~)::0m) [
_ Eﬁﬁ;do(I‘T(~)::0m) [

_ EDJI;do(I‘T(-):ZOm) [

y —nTx|[F] 4 m2ae(rTe=) “

n7e|’ . (27)

T 2
Yy —n'x| |+ ‘ h’chH ,

Yy —n'x||'| + tr(CTh’h’TC>,

Yy —n'x|| |+ tr(h'chTh’). (28)

Now, note that the maximum of the trace term over ¢ € P, gives

= max tr(h’chTh’>,

CE€Pa
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+1) tr <h’T (I‘TIEW [ZZT}I‘> h'), (Linearity of trace and definition of P,.)

[t (h’TI‘TZZTI‘h’) } , (Linearity of expectation.)
_tr<ZTFh'h’TFTZ) } ) (Cyclic property of trace.)
[ 2

hWFTZH},

i 2
@—JnTNummrTZH},

(Substitute in definition of b’".)

- (f — h)TZH2]. (Definition of Z.)

We can now substitute this in while maximizing both sides of Eq. (28) over interventions

¢ €Pa

as

D'R;do(I‘T(-)::Om)

= faax Rgrm (h)
Mido(TT ()=0,,) [ Ty T
— EMudo(TT ():=0m) HY —h X’ ] —|—£n%x tr(h’ CCTh’>, (First term does not have ¢.)
€Pa
r 2 12
:Em®amwﬂM)HY—hTX’]+(1+&>Em[Wf—hfZH]v
(6]
| TP L L o T 51
=E Y-h'X| |+—E (f —h) ZH ) (Inverse step of Eq. (27).)
«
m| Tvl?] L 1 o T 2
—E*| |y —n"x|| | +-E G—MIMXZM},
(67
(From conditional exp. of Eq. (26).)
r 27 1 _of 2
—E?||ly —n"x +—Emlqﬂxpyqﬁmxmm}
«
(Linearity of expectation.)
r 27 1 o 2
—E™| ||y —n"x]|| | + - E™ Mywy4ﬂmxmw},(mmwa@qu@n)
I o I
= Bfhi(h) + ~ (RR (h) — E[V[Y | 2]]). (From Eq. (13).
1

a

(RR., (0) ~ E[V[Y| 2]]).
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H.6. Proof of Theorem 3 — Causal estimation with IVL regression

For h%La, we have from Proposition 2

. 2 2
[, ]
VL,
=%

_ HE[X’X’T}lE[X’Y’T} —f

=¥
Note that we have

= E[X’Y’T}

—E -X’(aY+bE[Y|Z])T},

_E _X’<aY+bE{fTX+€‘ZDT],
=E -X’<afTX+a£+bfTE[X|Z])T]’

—E[x'x' T+ aX’fT] :

_E _X’X’T]f +aE [X’gw,

_E 'X’X’T]f +a’E [X{T}, (Z 1L €, therefore B[ X"¢T]

_E _X’X’T]f +oF [XgT] :
We also see that
. [X’X’T]

—E|(aX +bE[X | Z])(aX +bE[X| Z])" |,

i T
—E|x’ (aY +UTE[X | Z]) ] , (Dy definition Z 1L £.)

[ T
=E X’(fTX' —I—af) ], (Substituting in X’ :=aX + bE[X | Z].)

=aE[X¢T))

(29)

=E [ (aX + bZ) (aX + bZ)T} , (Set Z := E[X | Z] for brevity.)

=B | XX |+ VB[ 227 | + abB|XZ7 | + B[ ZX7 |,

— B | XX | + (8 +2a0) 3, (Because E[ XZT| = %)

:aE[XXT} +3,,

where we substituted in Eq. (21) in Eq. (30).
Finally, we now have

2
L
p T 8
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1 2
- ]E[X’X’T] E[X’Y’T]—f

)
e

E.X

2

= E{X’X’T]_ <E{X’X’T]f—|—OzE[X§TD —f Eg{ﬁ, (Substituting in Eq. (29).)

_ f+aIE[X’X’TrlIE[X§T] ¢’

9
M
2X

_ aE[X’X’T}_lE[XgT} i

’
m
2:X

= a(aE[XXT} + Ez)ilE[XfT} 2 , (Substituting in Eq. (30).)

U4
EX

2
1 -1
= <STS + aSTDS> E {X{T} ) (Using Lemma 2.)

STS

1.\ ! ?
- Sl<Im+aD> S*TE[XE}

, (S is invertible.)

STs
1. \7! ’
= <Im + D) S™E {Xf—r} , (Switch to ¢2 norm.)
«
2
<|s T [XgT} : (31)
2
— [ss—ls Tk [XgT} ‘ , (Substituting T = SS~1.)
2
=|s7Is™'E [XﬁT} ‘ g’ (Back to weighted norm.)
3 2
= |E[xxT] E[xeT]| (Substituting Y = EM[XXT] = S7S))
>
. I
=|If+E [XXT} E [X{T} —f . (Adding and subtracting f.)
z)(

_ g :XXT: 71<E[XXT}f+IE[X§T:> o

’
m
EX

(Substituting I=E[XX | E[XXT].)
2

, (Linearity of expectation.)
=

_ E:XXT: E[X(fTXJrﬁ)T}—f

- 11
— e[ xxT IE[XYT}ff

2 . 2
- th‘RM - fH L (Substituting ¥ = £7X +¢&.)
=% 5%

where inequality Eq. (31) holds because D is non-negative diagonal. Additionally, inequality
Eq. (31) holds with equality iff S™TE [XfT} is in the kernel of D. Equivalently, iff E [X{T}
is in kernel of STDS = % -, which from Lemma 1 holds iff EMX|Z] LEM[X|¢] as. W
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H.7. Miscellaneous supporting lemmas

Lemma 1 (Gaussian conditional orthogonality lemma) Let X,Y,Z € R" be zero-
mean jointly Gaussian random vectors with covariance matrices Xy = E[XXT], ¥, =
E[ZZT], and cross-covariance Yyv,= E[Y ZT]. Define the conditional expectation

]! T ! 1
E]Y | Z] = E[ZZ } IE[ZY } Z =%y ,%,'Z.
Then the following are equivalent:

Proof Since X,Y, Z are jointly Gaussian, E[Y | Z] = MZ with M = EY’ZE;. The scalar
random variable

S=X"E[Y |Z]=X"MZ
is Gaussian with mean zero. Hence,
S=0 as. = Var(S) = 0.
Compute the variance:
Var(S) =E[$2] = E [(XTMZ)Q} ~E [ZTMTXXTMZ].
Using independence and zero-mean assumptions,
Var(S) = tr(MTE MS Z).
Since covariance matrices are positive semidefinite, Var(S) = 0 iff
sV/APMs/ =0 — =M, —o0.
Substituting M = EY,ZX; gives
Yx3¥y, =0,

completing the proof. [ ]
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Lemma 2 (SPD and PSD simultaneous denationalization via congruence) For any
n X n matrices A > 0, B = 0, there exists an invertible S € R™"™ and non-negative diagonal
D € R™" such that

A=S'S, B = S'DS.

Proof This is similar to Theorem 7.6.4 in (Horn and Johnson, 1985, p. 465) for two SPD
matrices. We proceed similarly; Since A is SPD, it admits a unique SPD square root A1/2.
Define

C:=A'2BA Y2
which is SPD. By the spectral theorem, there exists an orthogonal matrix U such that
C=U'DU,

where D is diagonal with non-negative entries (the eigenvalues of C). Set

S:=UA!2
Then
STS — AI/QUTUAI/Q — A1/21A1/2 — A,
and
S'DS = A/2U'DUAY2 = AY2CAY? = B.
Since A2 and U are invertible, S is invertible, completing the proof. |

Lemma 3 (solvability of simultaneous SEM) The SEM 9 in Example 2 is solvable
iff £ 7T #£ 1, in which case the following solution defines the reduced form of the SEM.

-0 71 (e [Ee=[3])

Similarly, SEM 2 in Example 1 solves for £T77 # r™1.

Proof We re-state the SEM 9 in the following block form
X [Omxm 77 ][X r’ T Nx
- o8 (e (3]
L, —-7'] [X r’ T Nx
[ TR e [ [N
solving for (X,Y") involves inverting the block matrix on the LHS. The result immediately

follows from Proposition 2.8.7 in (Bernstein, 2009, p. 108), via the Schur complement formula
for block matrix inversion. |
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Lemma 4 (DA and invariance) In SEM 2 of example from Example 1 iff v — oo, then

ol —-—
Wpu +mrM € argmin Rpag+rv(h),

Proof We have

(GX)(GX)T} 'E [(GX)YT:

~ o -
hpa,1erm = E

—5[ (% +10) (x +46) | E[(xX +26)¥T], (Represent & =176

_E (X + ’yé’) (X + 'yG')T} 'k :XYT} . (G 1LY by definition of DA.)

—E[XXT 4 XGT 490X +°GET] E[xyT],

) 4 ]
XX+ ’y2GGT} E {XYT}, (G independently sampled, = G 1L X.)

E
_ <2X + 72257,)711@ [XYT},
_ <sTs n STDS)_l (E [XYTD, (From Lemma 2.)

S~ (I, +9°D) '™ (| XY ]) (32)
Now,

VR34, 1v(h) = VhE[HhTE[GX\G] - YH2]7

[ 2

_E vhHhTE[GX|G] —YH ]

_E —E[GX|G](hT]E[GX]G] - Y)T],

=F (fyé) (fyhT@ — Y)T} . (First stage regression E[GX |G] = 7G.)

= 7226h. (G 1LY by definition of DA.)

Setting VhR%AGJrIV(h) = 'yQZ)éh = 0,,, we see that H%AGHV projects onto the kernel of
DIP

From Eq. (32), we can see that since D is a non-negative diagonal, therefore fl% Ag+ERM

only lies in the kernel of EG = STDS when v — co. Hence proved that only when v — oo,

-9 -
hpa,1ERM € argﬁnm Rpag+1v(h).
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