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ABSTRACT

Catastrophic overfitting (CO) in single-step adversarial training (AT) results in
abrupt drops in the adversarial test accuracy (even down to 0%). For models
trained with multi-step AT, it has been observed that the loss function behaves
locally linearly with respect to the input, this is however lost in single-step AT.
To address CO in single-step AT, several methods have been proposed to enforce
local linearity of the loss via regularization. However, these regularization terms
considerably slow down training due to Double Backpropagation. Instead, in this
work, we introduce a regularization term, called ELLE, to mitigate CO effectively
and efficiently in classical AT evaluations, as well as some more difficult regimes,
e.g., large adversarial perturbations and long training schedules. Our regularization
term can be theoretically linked to curvature of the loss function and is compu-
tationally cheaper than previous methods by avoiding Double Backpropagation.
Our thorough experimental validation demonstrates that our work does not suffer
from CO, even in challenging settings where previous works suffer from it. We
also notice that adapting our regularization parameter during training (ELLE-A)
greatly improves the performance, specially in large ϵ setups. Our implementation
is available in https://github.com/LIONS-EPFL/ELLE.

1 INTRODUCTION

Adversarial Training (AT) (Madry et al., 2018) and TRADES (Zhang et al., 2019) have emerged as
prominent training methods for training robust architectures. However, these training mechanisms
involve solving an inner optimization problem per training step, often requiring an order of magni-
tude more time per iteration in comparison to standard training (Xu et al., 2023). To address the
computational overhead per iteration, the solution of the inner maximization problem in a single step
is commonly utilized. While this approach offers efficiency gains, it is also known to be unstable
(Tramèr et al., 2018; Shafahi et al., 2019; Wong et al., 2020; de Jorge et al., 2022).

Indeed, the single-step AT approach results in the so-called Catastrophic Overfitting (CO) as the
adversarial perturbation size ϵ increases (Wong et al., 2020; Andriushchenko and Flammarion, 2020).
CO is characterized by a sharp decline (even down to 0%) in multi-step test adversarial accuracy and
a corresponding spike (up to 100%) in single-step train adversarial accuracy.

An important property of adversarially robust models is local linearity of the loss with respect to the
input (Ross and Doshi-Velez, 2018; Simon-Gabriel et al., 2019; Moosavi-Dezfooli et al., 2019; Qin
et al., 2019; Andriushchenko and Flammarion, 2020; Singla et al., 2021; Srinivas et al., 2022; Li and
Spratling, 2023). Explicitly enforcing local linearity has been shown to allow reducing the number of
steps needed to solve the inner maximization problem, while avoiding CO and gradient obfuscation
(Qin et al., 2019; Andriushchenko and Flammarion, 2020). Nevertheless, all existing methods incur a
×3 runtime due to Double Backpropagation (Etmann, 2019) Given this time-consuming operation to
avoid CO, a natural question arises:

Can we efficiently overcome catastrophic overfitting when enforcing local linearity of the loss?
∗Partially done at Universidad Carlos III de Madrid, correspondance: elias.abadrocamora@epfl.ch
†Partially done at LIONS-EPFL
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(a) Runtime comparison

ϵ 8 16

Method AA Clean AA Clean

LLR 42.18± (0.20) 75.02± (0.09) 16.92± (0.20) 42.81± (9.62)
CURE 43.60± (0.17) 77.74± (0.11) 18.25± (0.45) 52.49± (0.04)
GradAlign 44.66± (0.21) 80.50± (0.07) 17.46± (1.71) 44.35± (15.32)

ELLE 42.78± (0.95) 80.13± (0.32) 18.28± (0.17) 59.73± (0.16)
ELLE-A 44.32± (0.04) 79.81± (0.10) 18.03± (0.15) 59.21± (1.23)

AT PGD-10 46.95± (0.11) 79.11± (0.08) 24.77± (0.26) 59.64± (0.46)

(b) CIFAR10

Figure 1: Comparison against single-step methods enforcing local linearity. We train with our
method ELLE and its adaptive regularization variant ELLE-A. The multi-step AT PGD-10 results
are included for comparison. We measure (a) the average total runtime and FGSM training as the fast
but 0% AA accuracy baseline. (b) The clean and AutoAttack accuracies. We mark the best method
and the runner-up in bold and underlined respectively. Our methods, ELLE and ELLE-A, attain the
best or comparable AA accuracy while employing less than 50% of the time of previous methods.

In this work, we answer this question affirmatively. In particular, we propose Efficient Local Linearity
Enforcement (ELLE) , a plug-in regularization term that encourages local linearity, which is able
to obtain state-of-the-art adversarial accuracy while avoiding CO. Our algorithm is based on a key
property of locally linear functions. Let xa,xb ∈ X ⊆ Rd with X a convex set, the function
h : Rd → R is locally linear in X if and only if:

h((1− α) · xa + α · xb) = (1− α) · h(xa) + α · h(xb) ∀α ∈ [0, 1], ∀xa,xb ∈ X . (1)

Our method is based on enforcing Eq. (1) for the loss function L, uniformly in the convex set
{x : ||x− xi||∞ ≤ ϵ} around training points xi.

Our main contribution is the proposition of a novel single-step AT training paradigm ELLE based on
the principle of the local linearity of the loss. Our regularization term does not require differentiating
gradients and avoids Double Backpropagation, representing a much more efficient alternative to the
existing methods, see Fig. 1a. Besides, we theoretically analyze the relationship between the local,
linear approximation error in ELLE and the curvature of the loss. This allows detecting the appearance
of CO when the local, linear approximation error suddenly increases and avoid CO when regularizing
this measure. We evaluate ELLE on popular benchmarks CIFAR10/100, SVHN and ImageNet. In
particular, for the PreActResNet18 architecture, ϵ = 12/255 when adding our regularization term,
N-FGSM increases its AutoAttack accuracy from 21.18% to 26.35%, see Table 2.

A side-benefit of our method is that ELLE can overcome CO for short and long training schedules
(see Sec. 4.1) and small and large ϵ, whereas other single-step AT methods suffer from CO for long
schedules and/or large ϵ. We denote this phenomenon as Delayed CO, see Sec. 4.1. Moreover, we
find that adapting our regularization parameter to the local linearity of the network during training
(ELLE-A) and combining with other methods as GAT (Sriramanan et al., 2020) or N-FGSM (de Jorge
et al., 2022) helps avoiding CO and improves their performance, specially for large ϵ, see Sec. 4.5.

Notation: We use the shorthand [n] := {1, 2, . . . , n} for a positive integer n. We use bold capital
(lowercase) letters, e.g., X (x) for representing matrices (vectors). The jth column of a matrix X is
given by x:j . The element in the ith row and jth column is given by xij , similarly, the ith element of
a vector x is given by xi. The ℓ∞, and ℓp norms of a vector x ∈ Rd for 1 ≤ p < ∞ are given by:

||x||∞ = maxi∈[d] |xi| and ||x||p =
(∑d

i=1 |xi|p
)1/p

respectively. Lastly, we denote the closed ball
centered at x, of radius ϵ in the ℓp norm as B[x, ϵ, p] = {z : ||x− z||p ≤ ϵ}.

2 BACKGROUND AND RELATED WORK

In Sec. 2.1 we summarize the challenges of making Robust Training computationally efficient and in
Sec. 2.2, we cover the efforts towards addressing them. We assume our dataset {(xi, yi)}Ni=1 sampled
from a unknown distribution D in the space [0, 1]d × [o], where o is the number of classes.
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2.1 COMPUTATIONALLY EFFICIENT ROBUST TRAINING

In order to make AT more computationally efficient, several approaches have been proposed. In Free
AT (Shafahi et al., 2019), the network parameters θ and adversarial perturbation δ are simultaneously
updated for several steps within the same batch. In Fast AT (Wong et al., 2020), a single step
FGSM attack (Goodfellow et al., 2015) is performed at a randomly sampled point x + η with
η ∼ Unif(−ϵ, ϵ). These methods alleviate the cost of solving the inner maximization problem and
considerably speed up training.

2.2 CATASTROPHIC OVERFITTING (CO)

The speed up in single-step AT emerges at a cost. As initially found by Wong et al. (2020) for
standard FGSM training, and later reported by Andriushchenko and Flammarion (2020) in Free
AT and Fast AT. Adversarial test accuracy dramatically drops (even to 0 sometimes) within a few
epochs. This phenomenon is known as Catastrophic Overfitting (CO). Several efforts have been
made towards understanding CO (Li et al., 2020; Andriushchenko and Flammarion, 2020; Kim et al.,
2021; Ortiz-Jimenez et al., 2023; He et al., 2023), with a sudden change in the local linearity of the
loss with respect to the input as the most common explanation. In the following, we summarize the
methods aiming at avoiding CO:

Regularization based. Andriushchenko and Flammarion (2020) propose GradAlign: penalizing
gradient missalignment to avoid CO. Qin et al. (2019) propose LLR: regularizing the worst case of
the first order Taylor approximation along any direction ||δ||∞ ≤ ϵ. However, the computation of
the gradient of the regularization terms in GradAlign and LLR with respect to the model parameters
θ involves Double Backpropagation (Etmann, 2019), which leads to a 3× per-epoch training time
in comparison to FGSM training. More recently, Sriramanan et al. (2020) propose GAT, a new
regularization term and attack based on penalizing the difference between logits at the training point
and a random sample. Sriramanan et al. (2021) introduce a regularization term penalizing the nuclear
norm of the logits within the batch. Nevertheless, GAT and NuAT still suffer from CO under a larger
ϵ (de Jorge et al., 2022).

Noise based. Tramèr et al. (2018) add random noise prior to the gradient computation in FGSM
training. Wong et al. (2020) revisit FGSM training and show that adding random uniform noise to the
input before the FGSM attack makes single step AT plausible (Fast AT). Nevertheless, it was later
shown that for larger adversarial perturbations (ϵ), Fast AT suffers from CO (Andriushchenko and
Flammarion, 2020). In the same direction, de Jorge et al. (2022) find doing data augmentation by
adding random noise ||η||∞ ≤ 2 · ϵ makes FGSM training feasible. We find N-FGSM suffers from
CO for large ϵ and/or long training schedules, see Figs. 3 and 4.

Other. Park and Lee (2021) perform adversarial attacks in the latent space. Tsiligkaridis and Roberts
(2022) propose using Frank-Wolfe optimization for AT and link the distortion of the loss landscape
with the ℓ2 norm of the adversarial perturbations. Li et al. (2022) tackle CO by constraining the
network weights to a subspace given by the principal components of AT trained weights. Zhang
et al. (2022b) reformulate the AT problem as a Bilevel Optimization problem and propose a single-
step approach to solve it. Golgooni et al. (2023) propose setting to zero the adversarial perturbation
coordinates that fall bellow a threshold, however de Jorge et al. (2022) show this leads to a performance
degradation for large ϵ.

3 METHOD

In this section, we firstly introduce our regularization term and training algorithm, ELLE(-A), which
efficiently enforces local linearity of the loss function to avoid CO. Sequentially, we elucidate the
benefits of our algorithm when compared to previous methods.

3.1 ALGORITHM DESCRIPTION

Motivated by Eq. (1), our regularization term is designed to enforce local linearity, which can be
described by the local, linear approximation error:
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Algorithm 1 ELLE (ELLE-A) adversarial training. Pseudo-code in teal is only run for ELLE-A. µ
and σ represent the mean and standard deviation respectively.

1: Inputs: # epochs T , # batches M , radius ϵ, regularization parameter λ and decay rate γ.
2: err_list = [], λmax = λ, λ = 0

3: for t = 1, . . . , T do
4: for i = 1, . . . ,M do
5: xi

FGSM = xi + ϵ · sign
(
∇xiL(fθ(x

i), yi)
)

▷ Standard FGSM attack
6: xi

a, x
i
b ∼ xi + Unif

(
[−ϵ, ϵ]d

)
▷ Random samples

7: α ∼ Unif ([0, 1])
8: xi

c = (1− α) · xi
a + α · xi

b ▷ Linear (convex) combination of xi
a and xi

b

9: Elin =
∣∣L(fθ(x

i
c), y

i)− (1− α) · L(fθ(x
i
a), y

i)− α · L(fθ(x
i
b), y

i)
∣∣2

10: if Elin > µ(err_list) + 2 · σ(err_list) then λ = λmax

11: else λ = γ · λ
12: err_list = err_list + [Elin]

13: ∇θ = ∇θL(fθ(x
i
FGSM), yi) + λ∇θElin ▷ Compute parameter gradients

14: θ = optimizer(θ,∇θ) ▷ Standard parameters update, (e.g. SGD)

Definition 1 (local, linear approximation error). Let h : Rd → Ro, the local, linear approximation
error of h at B[x, ϵ, p] for 1 ≤ p ≤ ∞ is given by:

ELin(h,x, p, ϵ) = E
xa,xb∼Unif(B[x,ϵ,p])

α∼Unif([0,1])

[||h((1− α) · xa+α · xb)−(1− α) · h(xa)−α · h(xb)||2] . (2)

Our goal is to minimize Eq. (2). Our algorithm, ELLE, and its adaptive regularization variant,
ELLE-A, are described in Algorithm 1. ELLE(-A) combine a single step FGSM attack with a
regularization term consisting on a single (xa,xb, α)-sample for Eq. (2) with h as the Cross-Entropy
loss, see line 9 in Algorithm 1. Furthermore, the geometric intuition behind our proposed local, linear
approximation error is presented below.

Adaptive local linerarity regularization (ELLE-A): In the initial 15 epochs in Fig. 2, the network
trained with ELLE reports a ×10 smaller Elin than the one trained with FGSM. Nevertheless, in these
early stages FGSM training has not suffered from CO yet. This suggests regularization is not needed
all the time across epochs. In order to use a less invasive regularization scheme, we propose to adapt
λ across steps. ELLE-A adapts the value of the regularization parameter λ in order to perform a
less invasive regularization, see teal color in Algorithm 1. Since CO appears when the loss suddenly
becomes non-locally-linear (see Fig. 2 and Andriushchenko and Flammarion (2020)), we propose
initializing λ = 0 and increasing to λ = λmax every time an unusual value of Elin is encountered, this
adaptive strategy is depicted in teal in Algorithm 1.

3.2 THEORETICAL UNDERSTANDING

The local, linear approximation error can be linked with second order directional derivatives when
evaluating smooth-enough functions. To this end, we define the second order directional derivative.

Definition 2 (Second order directional derivative D2
v(hi(x))). Let h ∈ C2(Rd) be a twice differen-

tiable mapping, the second order directional derivative of the ith output hi along direction v at input
x is given by:

D2
v(hi(x)) = v⊤∇2

xxhi(x)v. (3)

In the case of three times differentiable classifiers, we have the following connection of our regular-
ization term with the second order directional derivatives, with the proof deferred to Appx. C.

Proposition 1. Let h ∈ C3(Rd) be a three times differentiable mapping. Let ELin(h,x, p, ϵ) and
D2

v(hi(x)) be defined as in Definitions 1 and 2 and
[
D2

v(hi(x))
]o
i=1

∈ Ro be the vector containing
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the second order directional derivatives along direction v for every output coordinate of h. Then, the
following relationship follows:

ELin(h,x, p, ϵ) = E
xa,xb∼Unif(B[x,ϵ,p])

α∼Unif([0,1])

(∣∣∣∣∣∣[−α(1−α)
2 D2

xa−xb
(hi(xc)) +O(||xa − xb||3∞)

]o
i=1

∣∣∣∣∣∣
2

)
, (4)

where xc := (1− α) · xa + α · xb.

Remark 1. More accurate approximations of D2
xa−xb

and their corresponding local, linear ap-
proximation error definitions can be obtained by utilizing more than 3 points. Nevertheless, in our
experiments we observe that 3 points are enough to overcome CO. An analysis with more than 3
points is available in Appx. C.

Proposition 1 builds a connection between our regularization term / local, linear approximation error
and second order directional derivatives, i.e., curvature. Even though curvature is not defined for
popular classifiers living in C0 such as ReLU NNs, other popular architectures such as Transformers
or NNs with smooth activations living in C∞ indeed have curvature and our method will be implicitly
enforcing low-curvature for them. Moreover, for C∞ classifiers, it might not be computationally
feasible to compute D2

xa−xb
(hi(xc)) whereas our regularization term is efficiently computed. In

Sec. 3.3 we compare our method with other methods directly enforcing local linearity. We perform
a similar analysis with the LLR regularization term (Qin et al., 2019) in Appx. C, however LLR is
a much more expensive regularization term as shown in Fig. 1. We further analyze other possible
regularization terms in Appendices B.11 and B.14.

3.3 COMPARISON WITH EXPLICIT LOCAL-LINEARITY ENFORCING ALGORITHMS

Relating local linearity with robustness, Simon-Gabriel et al. (2019); Ross and Doshi-Velez (2018)
propose penalizing the gradient norm at the training sample, i.e., introducing the regularization term
||∇xL(fθ(x), y)||2. Similarly, Moosavi-Dezfooli et al. (2019) propose CURE: the regularization
term ||∇xL(fθ(x), y)−∇xL(fθ(x+ δFGSM), y)||2. Similarly to our analysis in Proposition 1,
Moosavi-Dezfooli et al. (2019) relate their regularization term to a Finite Differences approximation
of curvature. The regularization term in GradAlign is given by:

1− cos [∇xL(fθ(x), y), ∇xL(fθ(x+ η), y)] , η ∼ Unif[−ϵ, ϵ] , (5)

where cos [u,v] = u⊤v√
u⊤u·v⊤v

is the cosine similarity. Sriramanan et al. (2020) propose GAT: regu-

larizing ||fθ(x)− fθ(x+ η)||22 with η ∼ Bern([−ϵ, ϵ]d), where Bern is denoted as the Bernoulli
distribution. Sriramanan et al. (2021) introduce NuAT: regularizing ||fθ(x)− fθ(x+ η)||∗,
η ∼ Bern([−ϵ, ϵ]d). The GAT and NuAT regularization terms can be thought of enforcing the
network to be locally constant, a specific case of local linearity. Qin et al. (2019) propose LLR: solv-
ing γ(ϵ,x) = max

||δ||∞≤ϵ
|L(fθ(x+ δ), y)− L(fθ(x), y)− δ⊤∇xL(fθ(x), y)|, obtaining δLLR and

regularize λγ(ϵ,x)+µ ·δ⊤LLR∇xL(fθ(x), y). In Proposition 3, a similar result as in Proposition 1 is
proven for LLR. We argue all of these methods either involve differentiating input gradients (∇x(·))
with respect to the network parameters and therefore suffer from Double Backpropagation or donnot
avoid CO. Our method, ELLE and ELLE-A, do not suffer from this computational inefficiency and
can as well avoid CO, being therefore a more efficient alternative.

4 EXPERIMENTS

In this section, we conduct a thorough validation of the proposed method: ELLE(-A). We introduce
the experimental setup in Sec. 4.1. Firstly, we demonstrate the effectiveness of Elin in detecting
and controlling CO in Sec. 4.2. Next, we compare the performance of ELLE(-A) and related
methods enforcing local linearity in Sec. 4.3. In Sec. 4.4 we compare against single-step methods
in CIFAR10/100 and SVHN over multiple ϵ and training schedules. In Sec. 4.5 we analyze the
performance of other single-step methods when adding our regularization term. Lastly, in Sec. 4.6
we analyze the performance of our method in the ImageNet dataset.
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Figure 2: Effectiveness of our local-linearity metric for detecting and controlling CO. We train
with AT PGD-10, single step FGSM attacks and our method without (ELLE) and with (ELLE-A)
adapting λ at ϵ = 8/255 in CIFAR10. We track: (a) the clean and PGD-20 test accuracies, (b) the
GradAlign regularization term and (c) our regularization term. AT PGD-10 is able to produce locally
linear models, see (b), (c). Our regularization term accurately detects when CO appears and when
regularized, is able to avoid CO. ELLE-A is able to attain a higher robustness than ELLE.

4.1 EXPERIMENTAL SETUP

We train the architectures PreActResNet18 (PRN), ResNet50 (He et al., 2016) and WideResNet-28-10
(WRN) (Zagoruyko and Komodakis, 2016) in CIFAR10/100 (Krizhevsky, 2009), SVHN (Netzer
et al., 2011) and ImageNet (Deng et al., 2009). For CIFAR10 and SVHN, we train and test with ϵ
values up to 26/255 and 12/255 respectively, as suggested by Yang et al. (2020) for the minimum
Test-Train separation. For CIFAR100 and ImageNet we train up to ϵ = 26/255 and ϵ = 8/255
respectively. We use the SGD optimizer with momentum 0.9 and weight decay 5 · 10−4.

We are interested in which ϵ values and training schedules lead to CO. We coin the term Delayed CO.
Observation 1 (Delayed Catastrophic Overfitting). A training method suffers from Delayed CO if
one of the following phenomenons is observed:

• (Perturbation-wise) With the same scheduler, CO is avoided for a perturbation size ϵ1, but not
for a bigger one ϵ2 > ϵ1.

• (Duration-wise) With the same perturbation size ϵ, CO is avoided for an scheduler of L1 epochs,
but not for an scheduler of L2 > L1 epochs.

Our observation provides a name to the previously observed behavior in methods like FGSM AT,
Free AT, Fast AT, GAT or NuAT (Andriushchenko and Flammarion, 2020; Li et al., 2020; Kim et al.,
2021; de Jorge et al., 2022).To assess the appearance of Delayed CO, we distinguish between two
main training schedules:

• Short: From Andriushchenko and Flammarion (2020), with 30 and 15 epochs for CIFAR10/100
and SVHN respectively, batch size of 128 and a cyclic learning rate schedule with a maximum
learning rate of 0.2.

• Long: From Rice et al. (2020), with 200 epochs, batch size of 128, a constant learning rate of
0.1 for CIFAR10/100 and 0.01 for SVHN, decayed by a factor of 10 at epochs 100 and 150.

For ImageNet, we use the 15-epoch schedule in Wong et al. (2020). The λ selection for our method
and its variants is done with a simple grid-search and its deferred to Appx. B. We evaluate the
adversarial accuracy with PGD-20 and AutoAttack (AA) (Croce and Hein, 2020a) in the ℓ∞ norm.
To avoid unnecessary overhead, we remove the 1/255 factor in ϵ in our tables and figures. In our
tables, we highlight in red the experiments where CO appeared for at least one run and mark the
best method and the runner-up in bold and underlined respectively. ImageNet experiments were
conducted in a single machine with an NVIDIA A100 SXM4 80GB GPU. For the rest of experiments
we used a single machine with an NVIDIA A100 SXM4 40 GB GPU.

4.2 LOCAL, LINEAR APPROXIMATION ERROR DETECTS AND CONTROLS CO

We firstly analyze the effectiveness of using Definition 1 as a regularization term for controlling CO.
To do so, two questions should be answered: Does the local linear approximation error suddenly
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increase when CO appears? Does CO disappear when regularizing the local, linear approximation
error? In the following we answer both questions affirmatively.

We train a PRN on CIFAR10 with the Short schedule and FGSM attacks at ϵ = 8/255, a setup where
CO appears (Wong et al., 2020). We put AT PGD-10 results as a reference. Additionally, we train
with our method, ELLE, and its adaptive variant, ELLE-A with λ = 5, 000. We compare the value
of Eqs. (2) and (5) and the clean and PGD-20 test accuracies per epoch. As expected and originally
analyzed by Andriushchenko and Flammarion (2020), AT PGD-10 maintains a low local curvature of
the loss during training.

CO detection and avoidance with ELLE: In Fig. 2, we observe that for FGSM training, our local,
linear approximation error correlates with the gradient misalignment (Eq. (5)) spikes and the PGD-20
test accuracy drops. This verifies that the local, linear approximation error is a good CO detector.
Additionally, when training with ELLE and ELLE-A, both the gradient misalignment and the local,
linear approximation error remain close to zero, i.e., the network remains locally linear. Moreover,
PGD-20 test accuracy follows a stable growth across epochs.

4.3 COMPARISON AGAINST METHODS ENFORCING LOCAL LINEARITY

In this section we compare ELLE(-A) against GradAlign, CURE and LLR. To avoid the expensive
computation of γ in LLR, we regularize

(
L(fθ(x+ δ), y)− L(fθ(x), y)− δ⊤∇xL(fθ(x), y)

)2
and randomly sample δ ∼ Unif

(
[−ϵ, ϵ]d

)
, a similar approach as in GradAlign and our method

(Algorithm 1). We train PRN on CIFAR10 with the Short schedule at ϵ = 8/255 and measure the
clean accuracy, AA accuracy and total training time.

Faster local linearity regularization: In Fig. 1a we observe ELLE(-A) adds very little overhead to
FGSM training, i.e., in total 5.06 min with FGSM v.s. 6.29 min with ELLE(-A) and is considerably
faster than other methods enforcing local linearity such as GradAlign, with 15.89 min. In Appx. B.7
the runtime of the forward and backward passes is analyzed separately, showing the increased
backward time in LLR, CURE and GradAlign due to Double Backpropagation. In Fig. 1b, we can
firstly observe that our adaptive regularization variant (ELLE-A) greatly increases the performance
when compared to ELLE at ϵ = 8/255, e.g., 42.78% v.s. 44.32% AA accuracy. This performance
boost can also be observed in Fig. 2. ELLE and ELLE-A match the performance of other methods at
ϵ = 8/255, e.g. 44.66% and 44.32% for GradAlign and ELLE-A respectively and for ϵ = 16/255,
e.g. 18.25% and 18.28% for CURE and ELLE respectively.

4.4 COMPARISON AGAINST SINGLE-STEP METHODS

Next, we analyze the performance of ELLE in comparison to state-of-the-art single-step AT al-
gorithms. We train PRN networks with N-FGSM, GradAlign, SLAT (Park and Lee, 2021), Fast
BAT, LLR, ELLE-A and ELLE-A jointly with the data augmentation scheme in N-FGSM, i.e.,
N-FGSM+ELLE-A. The expensive but reliable AT PGD-10 (Madry et al., 2018) is plotted as a
reference in the short schedule. We use the Short schedule and the Long schedule. We use the
recommended hyperparameters for each method. We average the performance over 3 random seeds.

Short schedule benchmark: In Fig. 3 we can observe SLAT suffers from CO for ϵ ≥ 4/255 and
ϵ ≥ 10/255 for SVHN and CIFAR10 respectively. GradAlign attains sub-optimal performance for
ϵ > 16/255 in CIFAR10 and behaves erratically in CIFAR100. Only the methods involving our
regularization term are able to overcome CO for all ϵ and datasets. Note that N-FGSM suffers from
CO for ϵ > 18/255 in CIFAR100. Further, N-FGSM+ELLE consistently attains the best performance.
It should be possible to attain similar performance to ELLE(-A) with GradAlign, but, we could
not find a hyperparameter selection attaining matching ELLE-A for large ϵ. This tuning difficulty
was also reported by de Jorge et al. (2022). We report additional results showing the sensibility of
GradAlign to hyperparameter changes in Appx. B.8. Overall, our regularization term contributes to
closing the performance gap between single-step methods and the multi-step reference AT PGD-10.

Long schedule benchmark: In Figs. 4a and 4b N-FGSM is affected from CO for large ϵ, i.e.,
ϵ ≥ 8/255 and ϵ ≥ 18/255 for SVHN and CIFAR10 respectively. Fast-BAT is also affected by CO
for all ϵ in CIFAR10 except ϵ ∈ {1, 2, 10}/255. Contrarily, ELLE does not suffer from CO in any
setup. Additionally, when adding our regularization term to N-FGSM (N-FGSM+ELLE-A), CO is

7
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Table 1: ImageNet results: We report the PGD-50-10 and clean test accuracies. ELLE-A helps
avoiding CO and when combined with N-FGSM provides the best performance at ϵ = 8/255.

ϵ 2 8

Method PGD-50-10 Clean PGD-50-10 Clean

FGSM 42.61± (0.13) 63.66± (0.07) 5.23± (4.15) 48.85± (4.70)
N-FGSM 44.54± (0.30) 61.11± (0.17) 13.32± (1.21) 43.29± (1.41)
ELLE-A 41.49 ±(0.39) 62.05± (0.50) 12.40± (1.78) 42.40± (6.36)

N-FGSM+ELLE-A 42.20± (0.52) 58.95± (0.43) 14.58± (1.10) 38.04± (3.31)

avoided for all ϵ in both SVHN and CIFAR10. We identify ELLE-A attains a lower final PGD-20
accuracy than ELLE due to robust overfitting. To complete the analysis, we train a WRN architecture
in CIFAR10 with ϵ ∈ {8/255, 16/255, 26/255}, observing that in the Long schedule, N-FGSM
suffered from CO for ϵ = 26/255 while ELLE remained resistant, see Fig. 4c.

4.5 REGULARIZING OTHER SINGLE-STEP METHODS

In this section we study the performance of N-FGSM and GAT (Sriramanan et al., 2020) when
combined with ELLE-A. We train PRN and WRN architectures in the CIRFAR10 dataset at ϵ ∈
{16, 26}/255 and report the clean and AA accuracies. In Fig. 5 we observe the performance
of GAT and N-FGSM is matched or increased in every setup, specially in the cases where CO
appeared. Noticeably, the performance increased from 20.54% to 21.28% with WRN and N-FGSM
at ϵ = 16/255 and from 10.96% to 12.03% with PRN and N-FGSM at ϵ = 26/255. Interestingly,
there was one case where simply changing the architecture from PRN to WRN made CO appear,
i.e., N-FGSM at ϵ = 26/255. This suggests architecture might play a role in the appearance of CO.
Nevertheless, when adding ELLE-A, CO was avoided in every setup. This favours the addition of
ELLE-A regularization when the appearance of CO is unsure or performance in large ϵ is crucial.

4.6 IMAGENET RESULTS

We train ResNet50 with the training setup of Wong et al. (2020) with the only difference that as
de Jorge et al. (2022), we consider a maximum image resolution of 288 × 288. We compare the
PGD-50-10 adversarial accuracy when training with FGSM, N-FGSM and ELLE-A.

In Table 1 we observe that FGSM suffers from CO for ϵ = 8/255, while ELLE-A does not suffer from
CO for any ϵ. Moreover, our method improves the performance at ϵ = 8/255 when in combination
with N-FGSM, i.e., from 13.32% to 14.58% PGD-50-10 accuracy.

GradAlign N-FGSM SLAT Fast BAT ELLE ELLE-A N-FGSM+ELLE-A LLR AT PGD-10

2 4 6 8 10 12
ϵ

0.00

0.25

0.50

0.75

PG
D

-2
0

A
cc

.

(a) SVHN

2 4 6 8 10 12 14 16 18 20 22 24 26
ϵ

0.0

0.2

0.4

0.6

0.8

PG
D

-2
0

A
cc

.

(b) CIFAR10

2 4 6 8 10 12 14 16 18 20 22 24 26
ϵ

0.0

0.2

0.4

PG
D

-2
0

A
cc

.

(c) CIFAR100

Figure 3: Catastrophic Overfitting in the Short schedule: Comparison of our method against
single-step methods and AT PGD-10 on (a) SVHN, (b) CIFAR10 and (c) CIFAR100. ELLE-A and
N-FGSM+ELLE-A are the only single-step methods avoiding CO while attaining high performance
for all ϵ and datasets.
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(b) CIFAR10

Long
ϵ N-FGSM ELLE
8 41.86± (0.02) 39.41± (0.33)

16 13.75± (1.15) 18.82± (1.84)
26 0.00± (0.00) 14.25± (1.74)

(c) WRN in CIFAR10

Figure 4: Catastrophic Overfitting in the Long schedule: We report the PGD-20 adversarial
accuracy for the PRN architecture in (a) SVHN and (b) CIFAR10. In (c) we report the PGD-20
adversarial accuracy for the WRN architecture trained in CIFAR10 with the Long schedule. N-FGSM
suffers from CO in both SVHN and CIFAR10 datasets for ϵ > 6/255 and ϵ > 16/255 respectively.
ELLE remains resistant to CO in all setups.

5 CONCLUSION

We propose a cost-effective regularization term that can prevent catastrophic overfitting (CO) in
single-step adversarial training (AT) by enforcing local linearity. We establish a relationship between
our regularization term and second-order directional derivatives, demonstrating that the proposed
regularization implicitly smooths the loss landscape. Our regularization term can detect CO and
is more efficient in avoiding CO than GradAlign and other methods enforcing local linearity. We
conduct a thorough evaluation of our method with large adversarial perturbations, long training
schedules and in combination with other single-step methods. Our regularization term is a simple
plug-in useful when the appearance of CO is unsure and to improve the performance in large ϵ.

Limitations: The main limitation of our method is the need to run a forward pass on three extra
points per training sample, resulting in additional memory usage. Previous methods enforcing local
linearity only need one extra point per training sample but incurr in a ×3 runtime (Simon-Gabriel
et al., 2019; Ross and Doshi-Velez, 2018; Moosavi-Dezfooli et al., 2019; Qin et al., 2019). Our
method is considerably faster overall as we observe in Fig. 1. We leave the search of more memory
efficient methods for enforcing local linearity as future work.

Future directions: Our method is able to overcome CO and greatly improve the performance in large
ϵ scenarios, see Fig. 3. Large ϵ values have been sparsely utilized before and generalization is attained
(Andriushchenko and Flammarion, 2020; de Jorge et al., 2022). However, whether a classifier should
be robust for a certain image x and a (large) perturbation budget ϵ is unknown and requires human in-
tervention. Addepalli et al. (2022) find attacking images with low contrast with large ϵ can lead in a flip
in the oracle’s prediction. Yang et al. (2020) provide upper bounds up to which 100% adversarial accu-
racy is theoretically achievable, nevertheless, these bounds might not be realistic for a human oracle. In
Appx. B.1 we display large ϵ attacks and find no perturbation clearly changes the human oracle predic-
tion. We believe though that studying the ϵ upper bounds is needed for advancing the CO and AT fields.

ϵ 16 26

Method Model AA Clean AA Clean

GAT

PR
N

0.54± (0.53) 78.52± (0.25) 0.01± (0.00) 84.35± (0.34)
GAT+ELLE-A 13.83± (4.63) 65.71± (2.48) 6.56± (2.79) 58.37± (2.39)
N-FGSM 20.59± (0.21) 61.24± (0.26) 10.96± (0.26) 37.73± (0.32)
N-FGSM+ELLE-A 20.48± (0.57) 61.21± (0.14) 12.03± (1.02) 26.77± (3.25)

AT PGD-10 24.77± (0.26) 59.64± (0.46) 14.42± (0.00) 34.90± (0.61)

GAT

W
RN

0.95± (0.09) 84.09± (0.10) 0.00± (0.00) 89.04± (0.28)
GAT+ELLE-A 17.30± (1.20) 64.27± (3.56) 6.74± (2.08) 42.04± (10.52)
N-FGSM 20.54± (0.18) 63.83± (1.24) 3.31± (2.58) 27.96± (9.36)
N-FGSM+ELLE-A 21.28± (0.07) 64.25± (0.20) 12.22± (0.25) 33.50± (0.14)

AT PGD-10 26.77± (0.28) 64.97± (0.09) 14.61± (0.10) 36.30± (0.62)

(a) CIFAR10 Short schedule
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Figure 5: Combining N-FGSM and GAT with ELLE-A: (a) AutoAttack (AA) and Clean accuracy
for PRN and WRN trained with ϵ ∈ {16, 26}/255. (b) Evolution of PGD-20 test accuracy during
training of WRN. ELLE-A helps GAT and N-FGSM overcome CO and improve their performance.
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BROADER IMPACT

The robustness of neural networks to (worst-case) attacks is of crucial interest to the community.
Given that neural networks are increasingly deployed in real-world applications, avoiding attacks
is important. At the same time, obtaining robust classifiers at this point is very costly, since cheap
alternatives suffer from catastrophic overfitting (CO). Therefore, we do believe that ELLE can have
a positive impact in machine learning. Concretely, the improvement we show through avoiding
CO contributes to the development of more reliable and trustworthy Machine Learning systems.
Additionally, the efficiency of our method reduces the computational requirements for training robust
models, making them more accessible to a wider range of researchers and practitioners. We hope this
can help democratize the entrance barrier to the area and foster further advances in AT. However, we
encourage the community to analyze further the potential negative impacts from such methods on
robustness.
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CONTENTS OF THE APPENDIX

In Appx. A we briefly introduce the objectives of robust training and relevant works in the area.
We introduce additional experiments in Appx. B. Finally, in Appx. C we include our proofs and
additional theoretical connections.

A ROBUST TRAINING

In standard training, we minimize the Cross-Entropy loss L evaluated at our training samples, i.e.,
solving min

θ
E

(x,y)∼D
[L (fθ(x), y)], where θ are the parameters of our classifier f and D is the

distribution of our training data. In contrast, in AT (Madry et al., 2018), we minimize the worst case
of the loss under bounded adversarial perturbations:

min
θ

E
(x,y)∼D

[
max

||δ||p≤ϵ
L (fθ(x+ δ), y)

]
, (AT)

where 1 ≤ p ≤ ∞. AT has notably withstood the test of time, proving to be resistant to powerful
adversarial attacks (Croce and Hein, 2020b). Since its appearance, several other robust training
methods have been proposed such as TRADES (Zhang et al., 2019) or DyART (Xu et al., 2023).
Additionally, several concerns regarding AT (and other robust training methods) have been pointed
out, such as its excessive increase in the separation margin (Rade and Moosavi-Dezfooli, 2022) or its
computational inefficiency (Shafahi et al., 2019).

B ADDITIONAL EXPERIMENTAL VALIDATION

We visualize attacks towards our networks in Appx. B.1. The hyperparameter selection for our
methods for all experiments in the main paper is included in Appx. B.2. We study possible variations
of our methods in Appx. B.3. We include variations of the Long scheduler in Appendices B.5 and B.6.
Models from Fig. 3 are evaluated with AutoAttack in Appx. B.9. Various ablation studies are available
in Appendices B.8, B.10 and B.11.

B.1 VISUALIZATION OF LARGE-ϵ ATTACKS

Previous works sparsely consider training with large ϵ for CIFAR10 but donnot visualize such attacks
(Andriushchenko and Flammarion, 2020; de Jorge et al., 2022). Addepalli et al. (2022) analyze
adversarial attacks and defences under large ϵ and argue at ϵ ≥ 24/255 it is possible to swith the
oracle prediction for low contrast images. For ImageNet, Qin et al. (2019) consider ϵ = 16/255 and
visualize a single image arguing it is difficult to recognize the object after the attack. We visualize
PGD-50 and FGSM attacks in 9 randomly sampled images from the test sets of CIFAR10/100 and
ImageNet at ϵ = 26/255, ϵ = 26/255 and ϵ = 16/255 respectively.

In Fig. 6 we can observe the images after the adversarial attacks present visible perturbations, but
donnot clearly change the oracle prediction. As argued by Addepalli et al. (2022) and in Sec. 5, the
ability of the attacker to flip the oracle prediction might vary from image to image and needs to be
further studied in the future. Nevertheless, we have strong reasons to believe a high robustness can
still be attained for large ϵ, specially for the higher resolution ImageNet.

B.2 λ SELECTION

In this section, we study how to select the appropriate regularization parameter for ELLE(-A) under
different schedulers and datasets. We evaluate the PGD-20 adversarial accuracy in a 1024-image
validation sample extracted from the training set of each dataset.

ELLE: We test the value for the regularization term in our vanilla method (ELLE) in CIFAR10 and
SVHN. We train PRN in the Short schedule with a wide range of λ values for all ϵ values, i.e.:

λSVHN ∈ {2 · 102, 2 · 103, 104, 2 · 104, 2 · 105}
λCIFAR10 ∈ {102, 103, 5 · 103, 104, 105}
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ImageNet at ϵ = 16/255

Original

FGSM

PGD-50

CIFAR10 at ϵ = 26/255

Original

FGSM

PGD-50

CIFAR100 at ϵ = 26/255

Original

FGSM

PGD-50

Figure 6: Adversarial perturbations for CIFAR10/100 at ϵ = 26/255 and ImageNet at ϵ = 16/255
with FGSM and PGD-50 attacks. Original image displayed as a reference. Perturbations are visible
but donnot clearly affect the human prediction, specially for high resolution images in ImageNet.
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Figure 7: Grid search for λ in SVHN and CIFAR10 datasets with ELLE. ELLE suffers from CO for
λSVHN ∈ {200; 2, 000; 10, 000} and λCIFAR10 ∈ {100; 1, 000}.

Note that we choose values of λSVHN double of those of λCIFAR10, we follow the results of An-
driushchenko and Flammarion (2020), in which this proportionality is observed. In Figs. 7a and 7b,
we find that for smaller λ values, CO still appears, e.g., λSVHN ∈ {200; 2, 000; 10, 000} and
λCIFAR10 ∈ {100; 1, 000}. When λ is sufficiently large, CO is avoided but there is a performance
degradation, this is clearly observed for λSVHN = 200, 000 and λCIFAR10 = 100, 000, where CO is
not observed but PGD-20 accuracy is decreased for smaller ϵ. To avoid an expensive grid search, we
simply use λCIFAR100 = 5, 000 since it provides a good performance for all values of ϵ in CIFAR10.
In the Long schedule, to make sure CO is avoided and avoid an expensive grid search, we reutilize
the largest values with a good performance from the Short schedule, i.e., λSVHN = 20, 000 and
λCIFAR10 = 10, 000.

ELLE-A: In the case of adaptive λ, we tune the value of λmax in Algorithm 1. We take ad-
vantage of the results from Fig. 7 and interpolate between λ parameters close to the best per-
forming ones in ELLE. In particular we test λSVHN ∈ {5, 000; 10, 000; 15, 000; 20, 000} and
λCIFAR10 ∈ {1, 000; 2, 000; 3, 000; 4, 000; 5, 000}. We observe that for λSVHN > 5, 000, all
methods behave similarly except for ϵ ≥ 10/255, where larger λSVHN improved the performance.
Similarly, for λCIFAR10 ≥ 1, 000, the performance is almost the same for all ϵ, therefore, we
take the λCIFAR10 with the lowest average standard deviation across ϵ, i.e., λCIFAR10 = 4, 000
with an average standard deviation of 0.008. Similarly as for ELLE, for CIFAR100 we simply
use λCIFAR100 = λCIFAR10 = 4, 000 and for the Long schedule, we use λSVHN = 20, 000 and
λCIFAR10 = 10, 000. For ImageNet we choose λ = 10, 000.

Combination with other methods: Based on previous results for ELLE and ELLE-A, for the results
in Sec. 4.5 we use λ = 4, 000 for N-FGSM in both PRN and WRN. For GAT, a larger regularization
was required, we used λ = 10, 000 and λ = 50, 000 for PRN-18 and WRN respectively. For N-
FGSM+ELLE-A in the SVHN dataset we use λ = 5, 000 and for CIFAR100, λ = 4, 000. In the case
of N-FGSM+ELLE-A on ImageNet, we choose λ = 20, 000 for ϵ ∈ {2, 8}/255 and λ = 100, 000
for ϵ = 16/255. A higher performance could be attained by further fine tuning the regularization
parameter.

General guideline: Based on our experiments, we observe that values of λ in the range
[4, 000; 20, 000] tend to avoid CO and provide the best performance for all datasets.

B.3 ABLATION STUDIES

We test the effectiveness of using other local linearity metrics:

• Two triplets: ELLE(-A) estimates the expectation in Definition 1 with a single (xa,xb, α)
triplet sample, we test how approximating the expectation with two samples affects the
metric.

• α = 0.5: In Definition 1, α is sampled uniformly from the [0, 1] interval. We analyze the
effect of fixing α = 0.5.

• αmax: We test the effect of choosing
αmax = argmaxα∈[0,1]

∣∣L(fθ(xc), y
i)− (1− α) · L(fθ(xa), y

i)− α · L(fθ(xb), y
i)
∣∣2 ,
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Figure 8: Grid search for λ in SVHN and CIFAR10 datasets with ELLE-A. ELLE-A suffers from
CO for λSVHN = 5, 000 and λCIFAR10 = 1, 000. We select λSVHN = 20, 000 and λCIFAR10 = 4, 000
for the rest of our experiments.

i.e., the value that maximizes the local, linear approximation error for a given (xa,xb)-
sample. We obtain αmax with a PGD-10 procedure with a step-size of 0.1.

We analyze the value of these metrics when training with FGSM in CIFAR10 with ϵ = 8/255. This
way we can observe behavior of the metrics both before and after CO.

Local linearity metrics: In Fig. 18a we can observe all the proposed metrics behave similarly before
and after CO appears, only differing by a constant magnitude across all epochs. This immediately
discards the use of the two memory expensive triplets and the expensive to compute αmax. We argue
using α = 0.5 is a feasible approach and similar results would be obtained by appropriately changing
the regularization parameter λ.

B.4 ADDITIONAL ELLE-A RESULTS

In this section, we analyze in depth the mechanics of ELLE-A in terms of the λ evolution along time,
and the influence of its hyperparameter λmax.

Evolution of λ: In Algorithm 1, we increase λ to λmax when Elin > mean(err_list)+ 2 · std(err_list).
We track the value of Elin, Clin = mean(err_list) + 2 · std(err_list) and λ accross training steps for
WRN trained on CIFAR10 at ϵ =∈ {8, 16, 26}/255 with the Short schedule and with ELLE-A and
N-FGSM+ELLE-A. Also,

In Fig. 9 we observe λ is increased more frequently as ϵ increases. Additionally, when using N-FGSM
data augmentation, this frequency is reduced. This suggests our adaptive λ scheme correctly captures
when local linearity is suddenly increasing and accordingly corrects it.

B.5 ADDITIONAL LONG SCHEDULE RESULTS

Additional scheduler details: In addition to the schedulers used in Sec. 4, we use the Long-cos
scheduler of Xu et al. (2023), which is also 200 epochs long, but has a different scheduling and
a batch size of 256. We include a visual comparison of Short, Long and Long-cos schedules in
Fig. 10. Since the Long-cos is used in state-of-the-art AT methods such as DyArt, we are interested
in analyzing the appearance of CO in this scenario.

CO in the Long schedule: In Fig. 11, we can observe the training curves for GradAlign, N-FGSM,
ELLE, ELLE-A and N-FGSM+ELLE-A when trained with the Long schedule with ϵ = 18/255.
The evolution of the local linearity (Fig. 11b) and the PGD-20 test accuracy (Fig. 11a) denote that
N-FGSM clearly suffers from CO in this setup, while GradAlign and ELLE(-A) do not. Similarly as
in Fig. 2 for FGSM training, the network becomes highly non-linear and PGD-20 test accuracy drops
to zero for N-FGSM from the 29th epoch onwards. When combining N-FGSM with our regularization
term (N-FGSM+ELLE-A), CO is avoided.

CO in the Long-cos schedule: We train PRN with GradAlign, N-FGSM and ELLE on CIFAR10
with the Long-cos schedule and report the average PGD-20 accuracy over three runs. In Fig. 13, we
observe N-FGSM suffers from Robust Overfitting for ϵ ∈ [8/255, 16/255], which is consistent with
the observations of de Jorge et al. (2022) for long schedules. For ϵ > 16/255, N-FGSM exhibits
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(b) N-FGSM+ELLE-A at ϵ = 8/255
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(c) ELLE-A at ϵ = 16/255
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(d) N-FGSM+ELLE-A at ϵ = 16/255
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(e) ELLE-A at ϵ = 26/255
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(f) N-FGSM+ELLE-A at ϵ = 26/255

Figure 9: Evolution of ELLE-A and N-FGSM+ELLE-A during training for ϵ ∈ {8, 16, 26}/255.
The condition to increase λ to λmax, i.e., Elin > Clin, is met more frequently as ϵ increases. Introducing
N-FGSM data augmentation reduces the amount of times the condition is met, suggesting that data
augmentation helps enforcing local linearity but it is not enough.

0 10 20 30
Epoch

0.0

0.1

0.2

L
ea

rn
in

g
ra

te

CIFAR10
SVHN

(a) Short

0 100 200
Epoch

0.00

0.05

0.10

L
ea

rn
in

g
ra

te

CIFAR10
SVHN

(b) Long

0 100 200
Epoch

0.00

0.05

0.10

L
ea

rn
in

g
ra

te

CIFAR10

(c) Long-cos

Figure 10: Scheduler comparison: Learning rate per epoch for the three schedules considered in
this work. Note that in (a) the Short schedule for the SVHN dataset is only 15 epochs long.

CO, leading to low mean and high variance PGD-20 accuracy. In contrast, ELLE consistently avoids
catastrophic overfitting for all ϵ values. Our analysis of GradAlign reveals that this method shows
an erratic behavior, with catastrophic overfitting observed for some ϵ values, such as ϵ = 8/255,
ϵ = 16/255, and ϵ = 18/255. Additionally, GradAlign converges to a random classifier for
ϵ = 24/255 and ϵ = 26/255. Our findings provide valuable insights into the behavior of these
adversarial attack methods and highlight the importance of carefully analyzing the sensitivity to ϵ
values. Additionally, in Fig. 12, we observe the evolution of the test accuracies and local linearity
during training for ϵ = 18/255. Similarly to Fig. 11, GradAlign and ELLE remain resistant to CO
and are able to control local linearity. On the contrary, N-FGSM suffers from CO from the 150th

epoch, where the network becomes highly non-linear and PGD-20 accuracy drops to 0.
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Figure 11: Delayed CO (a)-(b): CO in Long training schedule, CIFAR10 and ϵ = 18/255. We track:
(a) the clean and PGD-20 test accuracies and (b) our regularization term. GradAlign and ELLE,
which explicitly enforce local linearity, do not suffer from CO. N-FGSM presents CO at the 30th

epoch, where the local linear approximation error spikes and the PGD-20 test accuracy drops to 0.
Efficient local linearity regularization (c): Average runtime per training step for various methods.
ELLE is capable of enforcing local linearity while adding little overhead to standard FGSM training.
On the contrary, GradAlign has a heavy overhead due to double backpropagation.
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Figure 12: Delayed CO (a)-(b): CO in Long-cos training schedule and ϵ = 18/255. We track (a)
the clean and PGD-20 test accuracies (a) GradAlign (Andriushchenko and Flammarion, 2020) and
ELLE, which explicitly enforce local linearity, do not suffer from CO. N-FGSM (de Jorge et al.,
2022) presents CO at the 150th epoch, where the local linear approximation error spikes and the
PGD-20 test accuracy drops to 0.
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Figure 13: Delayed CO in the Long-cos scheduler: We report the PGD-20 accuracy for ELLE,
N-FGSM and GradAign for ϵ ∈ {2/255, · · · 26/255}. GradAlign does not avoid CO with the default
regularization parameters with the Long-cos scheduler. N-FGSM suffers from CO for ϵ > 16/255.
ELLE remains resistant to CO.
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Figure 14: 1000-epoch long schedule: CIFAR10 PGD-20 test accuracy and local linear approx-
imation error evolution along 1000 epochs with the Long-cos schedule for ELLE and N-FGSM
for ϵ ∈ {18/255, 22/255, 26/255} ((a), (b), and (c) respectively). N-FGSM presents CO in all
scenarios, while ELLE only presents robust overfitting.

B.6 1000-EPOCH LONG SCHEDULES

To demonstrate our method is capable of avoiding CO for even longer schedules, we test the perfor-
mance of ELLE and N-FGSM for ϵ ∈ {18/255, 22/255, 26/255} when training the PreActResNet
architecture with the cosine schedule, a maximum learning rate of 0.02 and 1000 epochs in CIFAR10.

In Fig. 14, we can observe that N-FGSM presents a chaotic behavior, where PGD-20 test accuracy
is suddently lost and gained within a few epochs. On the contrary, ELLE follows an homogeneous
trend with no CO.

B.7 RUNTIME COMPARISON

In order to better understand the computational advantages of using ELLE, we compare the average
runtime per training step of AT PGD-10, FGSM, N-FGSM, LLR, CURE, GradAlign and ELLE(-A).
We report the runtime of the forward pass, of the backward pass and the total runtime per step. The
PRN and WRN architectures are trained for 5 epochs with a batch size of 128 for this experiment.
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Figure 15: Forward, backward and total runtime in average per training step for the PRN (a) and WRN
(b) architectures. FGSM, N-FGSM and ELLE(-A) attain similar total runtimes in both scenarios.
LLR, CURE and GradAlign have a considerably larger backward runtime than the rest. This is due to
double backpropagation. ELLE(-A) avoids double backpropagation and obtains similar backward
runtimes to FGSM.

Two main insights can be drawn from Fig. 15: i) ELLE adds very little overhead to FGSM training
and ii) LLR, CURE and GradAlign add an expensive overhead in the backward pass due to Double
Backpropagation. ELLE, while based on enforcing local linearity as LLR, CURE and GradAlign, is
considerably more efficient.

B.8 GRADALIGN ABLATION

In this section we perform additional studies in the effect of the λ regularization parameter in
GradAlign. We train PRN architectures with the Short schedule in CIFAR10 with ϵ = 26/255 and
λGradAlign ∈ {0.25, 0.5, 1, 2, 4, 8, 16} with three different random seeds. We report the performance
of ELLE as a baseline.

GradAlign is highly sensible to λGradAlign: In Fig. 16a we find only for λGradAlign = 1, CO is avoided
and the network does not converge to a constant classifier. Additionally, a suboptimal performance
is obtained in comparison to ELLE, i.e. 15.90% v.s. 17.80%. This shows the difficulty of choosing
λGradAlign.

GradAlign regularization term is unstable: In Figs. 16b to 16d we report the PGD-20 test accuracy,
the local, linear approximation error and the gradient missalignment (Eq. (5)) respectively for
λGradAlign = 8. Since λGradAlign is so large, we have that the network converges to a constant classifier
with 10% accuracy. Nevertheless, we find that the regularization term in GradAlign is inconsistent
with this fact. As the model is constant, it is also linear and we should have that the gradient
missalignment is close to 0. Nevertheless this metric converges to 1 during training. Alternatively,
the local, linear approximation error is consistent with the convergence to a constant classifier and
goes to 0.

In conclusion, together with the findings in Appx. B.7 and Sec. 4.2. We find that ELLE is a more
consistent, efficient and easier to tune method than GradAlign.
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Figure 16: GradAlign ablations: (a): PGD-20 accuracy for different λGradAlign values. Only
λGradAlign = 1 avoids CO and convergence to a constant classifier. (b)-(d): evolution of PGD-20
accuracy, local, linear approximzation error and gradient missalignment for 3 runs with λGradAlign = 8.
Gradient missalignment is an unstable metric for close-to-constant classifiers, spiking to 1 when the
local, linear approximation error is close to 0.

B.9 EVALUATION WITH STRONGER ATTACKS

In order to accurately asess the robustness of a model, robustness verification methods should be em-
ployed (Ehlers, 2017). However, state-of-the-art robustness verification methods are computationally
expensive and donnot scale well to large ϵ or large models (Zhang et al., 2022a). Alternatively, a
common practice is evaluating the resistance to strong adversarial attacks such as PGD-50-10 or the
attack ensemble AutoAttack (AA) (Croce and Hein, 2020a).

In this section we confirm our findings from Sec. 4.4, specifically from Fig. 3, by evaluating the AA
accuracy of those models. In Table 2 we observe that the methods involving our regularization term,
i.e., ELLE, ELLE-A and N-FGSM+ELLE-A are stable and donnot suffer from CO in any setup,
while GradAlign and N-FGSM suffer from CO, specially in CIFAR100. Remarkably, adding our
regularization term to N-FGSM, helps N-FGSM avaid CO and improves its performance by +5.17%
in SVHN, +1.07% in CIFAR10 and +3.20% in CIFAR100 for the largest ϵ.

B.10 REGULARIZING WITHOUT ATTACKS

In this ablation study, motivated by Moosavi-Dezfooli et al. (2019), we test the performance of
our methods when not performing adversarial attacks during training, only enforcing local lin-
earity. We evaluate the performance of PRN when trained with the Long schedule on SVHN
with standard training, ELLE and ELLE without attacks. We report the PGD-20 accuracy at
ϵ ∈ {2/255, 8/255, 12/255} over a single run with each method.

In Fig. 17 we observe standard training obtains 0% adversarial accuracy for ϵ > 2/255. Interestingly,
when simply plugging our regularizer ELLE, we can attain non-trivial robustness. Nevertheless,
performance is notably far from the ELLE baseline, e.g., 5.07% v.s. 32.17% at ϵ = 12/255. This
result is aligned with the findings of Moosavi-Dezfooli et al. (2019): enforcing local linearity
uniformly is not enough and the adversarial direction information, e.g., ∇xL(fθ(x, y)) needs to be
incorporated during training.
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Table 2: AutoAttack (AA) accuracy for PRN in SVHN, CIFAR10 and CIFAR100 for the models in
Fig. 3.

SVHN
ϵ ELLE ELLE-A GradAlign N-FGSM N-FGSM+ELLE-A AT PGD-10

2 88.05± (0.12) 87.66± (0.16) 86.39± (0.10) 88.12± (0.16) 88.24± (0.16) 88.44± (0.14)
4 73.69± (0.16) 72.13± (0.22) 71.50± (0.01) 74.27± (0.27) 74.75± (0.21) 76.71± (0.27)
6 57.70± (0.27) 56.19± (0.15) 56.34± (0.25) 59.91± (0.23) 60.05± (0.08) 64.47± (0.48)
8 41.77± (0.23) 42.55± (0.18) 27.92± (19.63) 46.45± (0.20) 46.70± (0.14) 53.00± (0.31)
10 30.55± (0.26) 30.96± (0.07) 30.21± (0.50) 33.28± (0.30) 35.33± (0.28) 42.60± (0.09)
12 22.20± (0.08) 19.97± (0.53) 21.20± (0.26) 21.18± (0.33) 26.35± (0.23) 32.98± (0.58)

CIFAR10
ϵ ELLE ELLE-A GradAlign N-FGSM N-FGSM+ELLE-A AT PGD-10

2 78.77± (0.16) 78.71± (0.04) 78.94± (0.12) 79.05± (0.08) 78.64± (0.24) 78.85± (0.16)
4 65.70± (0.12) 65.64± (0.17) 65.89± (0.25) 66.00± (0.06) 65.83± (0.06) 66.55± (0.22)
6 53.80± (0.18) 53.97± (0.12) 54.20± (0.05) 54.26± (0.18) 54.17± (0.30) 55.62± (0.37)
8 42.78± (0.95) 44.32± (0.04) 44.66± (0.21) 44.81± (0.18) 45.05± (0.26) 46.95± (0.11)
10 33.79± (0.41) 35.55± (0.03) 36.10± (0.22) 37.00± (0.20) 37.16± (0.16) 39.54± (0.35)
12 27.13± (1.30) 28.17± (0.12) 28.63± (0.34) 30.56± (0.12) 30.61± (0.34) 33.55± (0.50)
14 21.75± (0.49) 22.19± (0.46) 22.53± (0.82) 25.22± (0.41) 24.86± (0.15) 28.62± (0.45)
16 18.28± (0.17) 18.03± (0.15) 17.46± (1.71) 20.59± (0.21) 20.48± (0.57) 24.77± (0.26)
18 14.55± (0.26) 14.75± (0.44) 15.12± (0.40) 16.63± (0.44) 16.36± (0.27) 21.30± (0.12)
20 13.01± (0.09) 14.80± (0.21) 11.57± (1.57) 13.30± (0.33) 12.88± (0.62) 13.55± (7.11)
22 13.82± (0.17) 13.58± (0.07) 9.96± (0.04) 11.39± (0.48) 14.15± (0.31) 16.26± (0.73)
24 12.85± (0.28) 12.99± (0.30) 11.32± (1.33) 11.09± (0.82) 13.15± (0.27) 15.44± (0.00)
26 11.71± (0.41) 12.25± (0.34) 10.00± (0.00) 10.96± (0.26) 12.03± (1.02) 14.42± (0.00)

CIFAR100
ϵ ELLE ELLE-A GradAlign N-FGSM N-FGSM+ELLE-A AT PGD-10

2 47.82± (0.37) 48.01± (0.10) 48.40± (0.18) 48.53± (0.33) 47.99± (0.25) 47.83± (0.50)
4 34.79± (0.19) 35.68± (0.17) 35.85± (0.20) 36.07± (0.36) 35.90± (0.12) 35.87± (0.45)
6 26.43± (0.27) 27.44± (0.35) 27.61± (0.29) 27.67± (0.36) 27.54± (0.31) 27.84± (0.62)
8 20.01± (0.11) 21.04± (0.28) 13.67± (9.69) 21.45± (0.24) 21.26± (0.10) 22.05± (0.60)
10 15.88± (0.21) 16.39± (0.04) 0.00± (0.00) 17.20± (0.13) 17.24± (0.10) 17.72± (0.64)
12 13.01± (0.15) 13.29± (0.26) 13.23± (0.40) 14.06± (0.17) 13.96± (0.21) 14.70± (0.41)
14 10.67± (0.02) 10.88± (0.15) 11.11± (0.30) 11.78± (0.16) 11.55± (0.15) 12.62± (0.23)
16 8.94± (0.12) 8.93± (0.23) 3.72± (3.84) 9.98± (0.16) 9.78± (0.15) 10.86± (0.10)
18 7.63± (0.07) 7.33± (0.10) 1.00± (0.00) 8.30± (0.02) 8.51± (0.14) 9.49± (0.17)
20 6.44± (0.01) 6.21± (0.16) 1.00± (0.00) 4.52± (3.20) 6.99± (0.05) 8.39± (0.14)
22 5.27± (0.32) 5.26± (0.20) 2.41± (2.00) 3.69± (2.65) 7.54± (0.05) 7.50± (0.02)
24 4.37± (0.06) 4.39± (0.28) 0.93± (0.10) 1.55± (2.18) 5.10± (0.21) 6.68± (0.11)
26 3.64± (0.14) 2.87± (0.25) 1.00± (0.00) 1.17± (1.65) 4.37± (0.14) 6.09± (0.04)
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Figure 17: No attack ablation: We report the SVHN PGD-20 accuracy for ELLE, ELLE regulariza-
tion without attacks and standard training at (a) ϵ = 2/255, (b) ϵ = 8/255 and (c) ϵ = 12/255. The
legend is shared across plots. Simply enforcing local linearity with our regularization method is not
sufficient to attain the optimal adversarial accuracy.
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Figure 18: ELLE variants:. (a) Mean value of the modifications of our local linearity metric during
FGSM training at ϵ = 8/255. All of the variants differ by a constant factor, favoring the the use of
the cheapest approaches. (b) ELLE-2p variant results. This variant with 1 less point than ELLE in
the forward pass is also able to overcome CO. However, no guarantees of enforcing local linearity are
present.

B.11 ELLE-2P: REGULARIZING WITH LESS MEMORY

In this section we reuse xFGSM instead of the random sample xb in Algorithm 1. This allows using
less memory by only forwarding 3 points instead of 4 per point in the batch. Instead of randomly
sampling 2 points xa and xb in B[x, ϵ,∞], we sample xa ∼ x+Unif

(
[−ϵ, ϵ]d

)
and α ∼ Unif([0, 1])

and compute xc = (1− α) · xa + α · xFGSM. Finally, our new regularization term becomes:

Êlin = |L (fθ(xc), y)− (1− α) · L (fθ(xa), y)− α · L (fθ(xFGSM), y)| . (6)

We test the performance of this variant when training PRN architectures in CIFAR10 for ϵ up to
26/255 (as in Sec. 4.4). We notice lower values of λ were needed for this variant and test the
performance with λ ∈ {100; 1, 000; 5, 000}, we report the PGD-20 adversarial accuracy over 3
runs.

In Fig. 18b we observe ELLE-2p overcomes CO for λ ∈ {1, 000; 5, 000}. Nevertheless, the
formulation in Eq. (6) does not strictly enforce local linearity, i.e., there are other class of functions
that also satisfy Êlin = 0. We provide an example of a function with zero error which is non-linear in
the following.

Example 1 (Non locally linear function with Êlin = 0). We consider the following continuous
function f ∈ C0(R2):

f(x) =

{⟨w1,x⟩ if ⟨v,x⟩ ≥ 0

⟨w2,x⟩ if ⟨v,x⟩ < 0
, (7)

where w1 =

(
−1
−1

)
, w2 =

(
0

−3/2

)
and v =

(
2
−1

)
. We consider the set S = [0, 1] × [0, 1]

and the point x =

(
1/2
1/2

)
. Then, ∇xf(x) = w1 =

(
−1
−1

)
, therefore, we have xFGSM = x +

1/2 · sign (∇xf(x)) =

(
0
0

)
. knowing this, it is easy to check that Eq. (6) is zero. For both cases

⟨v,x⟩ ≥ 0 and ⟨v,x⟩ < 0 our function is linear and Eq. (6) is zero in both regions and then it is
zero in the whole set S.

B.12 ADDITIONAL LLR EXPERIMENTS

As proven in Propositions 1 and 3, both the LLR and ELLE regularization terms approximate second
order directional derivatives. Leaving aside the computational advantages of ELLE(-A) displayed
in Fig. 1 and Appx. B.7, we would like to analyze the difference in robustness between LLR and
ELLE(-A). We run LLR with λ ∈ {200, 500, 1, 000, 2, 000, 5, 000} and report the validation
PGD-20 accuracy.

In Fig. 19 we observe a similar behavior to ELLE in Fig. 7b. For small values of λ and big ϵ, CO
still appears. When increasing λ, CO is avoided but performance is degraded. We select the best
performing λ for each ϵ value for the LLR evaluation in Fig. 3.
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Figure 19: Validation PGD-20 accuracy with LLR in SVHN and CIFAR10/100 for different λ values.

Table 3: Combination of ELLE-A with single-step variants of TRADES and AdvMixUp in CIFAR10.
Both AdvMixUp and TRADES suffer from CO for ϵ > 2/255. CO is avoided when ELLE-A is
plugged in.

2 8 16 26
Method AA Clean AA Clean AA Clean AA Clean

AdvMixUp-single 76.06± (0.28) 91.35± (0.13) 0.00± (0.00) 88.61± (0.24) 0.00± (0.00) 86.19± (0.09) 0.00± (0.00) 84.81± (0.15)
AdvMixUp-single+ELLE-A 75.97± (0.27) 91.25± (0.20) 38.20± (0.48) 81.83± (0.34) 12.33± (0.51) 56.64± (6.81) 10.80± (0.44) 28.95± (0.79)
TRADES-single 63.76± (0.09) 88.50± (0.07) 0.01± (0.01) 90.57± (0.01) 0.00± (0.00) 91.34± (0.27) 0.00± (0.00) 90.92± (0.21)
TRADES-single+ELLE-A 62.84± (0.43) 86.21± (0.21) 17.55± (1.98) 73.09± (1.37) 3.16± (0.51) 62.62± (2.81) 1.55± (0.52) 48.26± (3.01)

B.13 COMBINING ELLE-A WITH ADDITIONAL METHODS

To further showcase the benefits of combining our regularization term, we analyze the performance
of single-step variants of AdvMixUp (Lee et al., 2020) and TRADES (Zhang et al., 2019) when
in combination with ELLE-A. We train PRN in CIFAR10 at ϵ ∈ {2, 8, 16, 26}/255. We use the
standard hyperparameters for AdvMixUp and TRADES, for ELLE-A we use the standard γ = 0.99
and λ = 5, 000 for AdvMixUp and λ = 10, 000 for TRADES.

In Table 3, we can observe both the single-step variants of AdvMixUp and TRADES suffer from
CO for ϵ > 2/255. Alternatively, CO is avoided when ELLE-A is plugged into the training. In
Fig. 20, the performance drop during training the single-step variants of AdvMixUp and TRADES is
displayed at ϵ = 8/255. When ELLE-A is plugged into the training, the PGD-20 accuracy steadily
increases during training.

B.14 ALTERNATIVE SOLUTIONS: APPROXIMATING GRADALIGN WITH FINITE DIFERENCES

A naive solution to Double Backpropagation is approximating the gradient terms in Eq. (5) with
Finite Differences approximations (LeVeque, 2007). Let ei be the ith vector of the canonical basis

AdvMixUp-single TRADES-single
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Figure 20: Training evolution with the single-step variants of TRADES and AdvMixUp in CIFAR10
at ϵ = 8/255. Only when in combination with ELLE-A, both methods can obtain a final non-zero
adversarial accuracy.
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and σ ∈ R+. We can approximate the gradient of the loss function L (fθ(·), y) ∈ C1(Rd) with the
classical finite differences approximation:

[∇xL (fθ(x), y)]i ≈
L (fθ(x+ σei), y)− L (fθ(x), y)

σ
.

Sadly, this approximation involves d + 1 function evaluations. In total, we would need 2(d + 1)
new evaluations, e.g., 6, 146 for SVHN/CIFAR10/100 or 497, 666 for ImageNet, just to estimate
the regularization term in a single image in a single iteration of the training process. Nesterov
and Spokoiny (2017) study gradient approximations via a single sample of a multivariate Gaussian
distribution in the convex optimization setup. This efficient approximation is given by:

g(x,u, σ) =
L (fθ(x+ σu), y)− L (fθ(x), y)

σ
u ≈ ∇xL (fθ(x+ σei)) , u ∼ N (0, Id) .

Plugging this approximation into Eq. (5) we get:

Eq. (5) ≈ 1− sign [(L (fθ(x+ σu), y)− L (fθ(x), y)) (L (fθ(x+ η + σv), y)− L (fθ(x+ η), y))] u⊤v
||u||||v|| ,

(8)
where u,v ∼ N (0, Id),η ∼ Unif([−ϵ, ϵ]d).

We notice this approximation is non-smooth due to the sign(·) operator. This results in the gradient
of this term w.r.t. θ being zero almost everywhere. Therefore is not straightforward to employ Eq. (8)
as a regularization term. Moreover, this approximation would need 4 extra function evaluations, 1
more than our proposed method.
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C PROOFS AND ADDITIONAL LOCAL LINEARITY METRICS

In this section we include our proof of Proposition 1. Additionaly, we elaborate on how different
local, linear approximation error definitions could be proposed with more points and how this reflects
on their approximation of the second order derivative. Lastly, a similar proof is included for relating
the local linearity definition in Qin et al. (2019) is available in Proposition 3.

Proof of Proposition 1. This relationship can be obtained by means of the Taylor series expansion of
hi around xc = (1− α) · xa + α · xb.

Firstly, we note that xa and xb can be expressed as:

xa = xc + α · (xa − xb), xb = xc − (1− α) · (xa − xb) .

Now, for i ∈ [o] , by means of the Taylor expansion of hi at xc we have:

hi(xa) = hi(xc) + α · (xa − xb)
⊤∇xhi(xc)

+
α2

2
· (xa − xb)

⊤∇2
xxhi(xc)(xa − xb)

+
α3

6
·

d∑
j=1

d∑
k=1

d∑
l=1

(xa − xb)j(xa − xb)k(xa − xb)l
∂3hi(xc)

∂xjxkxl

+O
(
||xa − xb||4∞

)
hi(xb) = hi(xc)− (1− α) · (xa − xb)

⊤∇xhi(xc)

+
(1− α)2

2
· (xa − xb)

⊤∇2
xxhi(xc)(xa − xb)

− (1− α)3

6
·

d∑
j=1

d∑
k=1

d∑
l=1

(xa − xb)j(xa − xb)k(xa − xb)l
∂3hi(xc)

∂xjxkxl

+O
(
||xa − xb||4∞

)
.

(9)

By operating the inner term in Definition 1, substituting Eq. (9) when applicable and noticing
(xa − xb)

⊤∇2
xxhi(xc)(xa − xb) = D2

(xa−xb)
hi(xc) we obtain:

hi(xc)

−(1− α) · hi(xa)

−α · hi(xb) =
−α(1− α)

2
D2

(xa−xb)
hi(xc)

α(1− α)(1− 2α)

6
·

d∑
j=1

d∑
k=1

d∑
l=1

(xa − xb)j(xa − xb)k(xa − xb)l
∂3hi(xc)

∂xjxkxl

+O
(
||xa − xb||4∞

)
=

−α(1− α)

2
D2

(xa−xb)
hi(xc) +O

(
||xa − xb||3∞

)
,

(10)
where in the last equality we used that (xa − xb)j ≤ ||xa − xb||∞ ∀j ∈ [d] and that because

hi ∈ C3(Rd) we have
∑d

j=1

∑d
k=1

∑d
l=1

∂3hi(xc)
∂xjxkxl

< ∞. Lastly, by substituting Eq. (10) into
Definition 1 the proof is concluded.

Different local, linear approximation error definitions arise easily when noticing Definition 1 is
simply a Finite Differences (FD) approximation (LeVeque, 2007) of the second derivative of g(α)i =
hi(xa +α · (xb −xa)). Therefore, as shown in Chapter 1.5 of (LeVeque, 2007) we can obtain a high
order approximation of the nth derivative provided any set of non-overlapping points x1, x2, · · · , xm

with m ≥ n+ 1. Here, we provide an example with 5 equispaced points.
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Definition 3 (5-point local, linear approximation error). Let h :∈ Rd → Ro, let the points:

xc =
3xa + xb

4
, xd =

xa + xb

2
, xe =

xa + 3xb

4

the 5-point local, linear approximation error of h at B[x, ϵ, p] for 1 ≤ p ≤ ∞ is given by:

ELin(h,x, p, ϵ) = E
xa,xb∼Unif(B[x,ϵ,p])

α∼Unif([0,1])

[∣∣∣∣∣∣∣∣− 1

12
h(xa) +

4

3
h(xc))−

5

2
h(xd) +

4

3
h(xe)−

1

12
h(xb)

∣∣∣∣∣∣∣∣
2

]
.

(11)

In the fashion of Proposition 1, we have the following relationsip.

Proposition 2. Let h ∈ C6(Rd) be a six times differentiable mapping, let ELin(h,x, p, ϵ) and
D2

v(hi(x)) be defined as in Definitions 1 and 2 and
[
D2

v(hi(x))
]o
i=1

∈ Ro be the vector containing
the second order directional derivatives along direction v for every output coordinate of h, the
following relationship follows:

ELin(h,x, p, ϵ) = E
xa,xb∼Unif(B[x,ϵ,p])

α∼Unif([0,1])

(∣∣∣∣∣∣∣∣[ 1

25
D2

xa−xb
(hi(xd)) +O(||xa − xb||6∞)

]o
i=1

∣∣∣∣∣∣∣∣
2

)
,

(12)
where xd := 1

2 · xa +
1
2 · xb.

Proof of Proposition 2. This relationship can be obtained by means of the Taylor series expansion of
hi around xd. In this proof, we will use the shorthand

∑d
j,··· ,m,··· ,p=1 =

∑d
j=1 · · ·

∑d
m=1 · · ·

∑d
p=1

Firstly, we notice that we can express any point as a linear combination of xd and xb − xa:

xa = xd +
2

5
· (xa − xb)

xb = xd −
2

5
· (xa − xb)

xc = xd +
1

5
· (xa − xb)

xe = xd −
1

5
· (xa − xb) .

Now, For i ∈ [o] , by means of the Taylor expansion of hi at xd we have:

hi(xa) = hi(xd) +
2

5
· (xa − xb)

⊤∇xhi(xd)

+
4

50
· (xa − xb)

⊤∇2
xxhi(xd)(xa − xb)

+
8

750
·

d∑
j,k,l=1

(xa − xb)j(xa − xb)k(xa − xb)l
∂3hi(xd)

∂xjxkxl

+
16

15000
·

d∑
j,k,l,m=1

(xa − xb)j(xa − xb)k(xa − xb)l(xa − xb)m
∂4hi(xd)

∂xjxkxlxm

+
32

375000
·

d∑
j,k,l,m,n=1

(xa − xb)j(xa − xb)k(xa − xb)l(xa − xb)m(xa − xb)n
∂5hi(xd)

∂xjxkxlxmxn

+
64

11250000
·

d∑
j,k,l,m,n,p=1

(xa − xb)j(xa − xb)k(xa − xb)l(xa − xb)m(xa − xb)n(xa − xb)p
∂6hi(xd)

∂xjxkxlxmxnxp

+O
(
||xa − xb||7∞

)
,

(13)
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hi(xb) = hi(xd)−
2

5
· (xa − xb)

⊤∇xhi(xd)

+
4

50
· (xa − xb)

⊤∇2
xxhi(xd)(xa − xb)

− 8

750
·

d∑
j,k,l=1

(xa − xb)j(xa − xb)k(xa − xb)l
∂3hi(xd)

∂xjxkxl

+
16

15000
·

d∑
j,k,l,m=1

(xa − xb)j(xa − xb)k(xa − xb)l(xa − xb)m
∂4hi(xd)

∂xjxkxlxm

− 32

375000
·

d∑
j,k,l,m,n=1

(xa − xb)j(xa − xb)k(xa − xb)l(xa − xb)m(xa − xb)n
∂5hi(xd)

∂xjxkxlxmxn

+
64

11250000
·

d∑
j,k,l,m,n,p=1

(xa − xb)j(xa − xb)k(xa − xb)l(xa − xb)m(xa − xb)n(xa − xb)p
∂6hi(xd)

∂xjxkxlxmxnxp

+O
(
||xa − xb||7∞

)
,

(14)

hi(xc) = hi(xd) +
1

5
· (xa − xb)

⊤∇xhi(xd)

+
1

50
· (xa − xb)

⊤∇2
xxhi(xd)(xa − xb)

+
1

750
·

d∑
j,k,l=1

(xa − xb)j(xa − xb)k(xa − xb)l
∂3hi(xd)

∂xjxkxl

+
1

15000
·

d∑
j,k,l,m=1

(xa − xb)j(xa − xb)k(xa − xb)l(xa − xb)m
∂4hi(xd)

∂xjxkxlxm

+
1

375000
·

d∑
j,k,l,m,n=1

(xa − xb)j(xa − xb)k(xa − xb)l(xa − xb)m(xa − xb)n
∂5hi(xd)

∂xjxkxlxmxn

+
1

11250000
·

d∑
j,k,l,m,n,p=1

(xa − xb)j(xa − xb)k(xa − xb)l(xa − xb)m(xa − xb)n(xa − xb)p
∂6hi(xd)

∂xjxkxlxmxnxp

+O
(
||xa − xb||7∞

)
,

(15)

hi(xe) = hi(xd)−
1

5
· (xa − xb)

⊤∇xhi(xd)

+
1

50
· (xa − xb)

⊤∇2
xxhi(xd)(xa − xb)

− 1

750
·

d∑
j,k,l=1

(xa − xb)j(xa − xb)k(xa − xb)l
∂3hi(xd)

∂xjxkxl

+
1

15000
·

d∑
j,k,l,m=1

(xa − xb)j(xa − xb)k(xa − xb)l(xa − xb)m
∂4hi(xd)

∂xjxkxlxm

− 1

375000
·

d∑
j,k,l,m,n=1

(xa − xb)j(xa − xb)k(xa − xb)l(xa − xb)m(xa − xb)n
∂5hi(xd)

∂xjxkxlxmxn

+
1

11250000
·

d∑
j,k,l,m,n,p=1

(xa − xb)j(xa − xb)k(xa − xb)l(xa − xb)m(xa − xb)n(xa − xb)p
∂6hi(xd)

∂xjxkxlxmxnxp

+O
(
||xa − xb||7∞

)
.

(16)
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By operating the inner term in Definition 3, substituting Eqs. (13) to (16) when applicable and
noticing (xa − xb)

⊤∇2
xxhi(xd)(xb − xa) = D2

(xb−xa)
hi(xd) we obtain:

− 1

12
h(xa) +

4

3
h(xc))−

5

2
h(xd) +

4

3
h(xe)−

1

12
h(xb)

=
1

25
D2

(xb−xa)
hi(xd)

− 8

11250000
·

d∑
j,k,l,m,n,p=1

(xa − xb)j(xa − xb)k(xa − xb)l(xa − xb)m(xa − xb)n(xa − xb)p
∂6hi(xd)

∂xjxkxlxmxnxp

+O
(
||xa − xb||7∞

)
=

1

25
D2

(xa−xb)
hi(xc) +O

(
||xa − xb||6∞

)
,

(17)
where in the last equality we used that (xa − xb)j ≤ ||xa − xb||∞ ∀j ∈ [d] and that because

hi ∈ C6(Rd) we have
∑d

j,k,l,m,n,p=1
∂6hi(xc)

∂xjxkxlxmxnxp
< ∞. Lastly, by substituting Eq. (10) into

Definition 1 the proof is concluded.

Notice that in the proofs of Propositions 1 and 2 we require as many degrees of differentiability as
the lowest order of accuracy of the FD formula, i.e, the highest order Taylor series term that cannot
be cancelled. Regardless of this requirement for the proof, both Definitions 1 and 3 can be applied to
any mapping h : Rd → Ro. Lastly, we prove a relationship between the regularization term in Qin
et al. (2019).
Proposition 3. Let h ∈ C3(Rd) be a tree times differentiable mapping, let g(xa,xb) = h(xa) −
h(xb)−(xa−xb)

⊤∇xh(xb) and D2
v(hi(x)) be defined as in Definition 2, the following relationship

follows:

g(xa,xb) =
1

2
D2

(xa−xb)
hi(xb) +O

(
||xa − xb||3∞

)
. (18)

Proof of Proposition 3. Similarly to the proof of Propositions 1 and 2, this relationship can be
obtained by means of the Taylor series expansion of h around xb. We have:

h(xa) = h(xb) + (xa − xb)
⊤∇xh(xb) +

1

2
(xa − xb)

⊤∇2
xxh(xb)(xa − xb)

+
1

6
·

d∑
j=1

d∑
k=1

d∑
l=1

(xa − xb)j(xa − xb)k(xa − xb)l
∂3h(xb)

∂xjxkxl

+O
(
||xa − xb||4∞

)
.

(19)

Plugging Eq. (19) into g we have:

g(xa,xb) =
1

2
(xa − xb)

⊤∇2
xxh(xb)(xa − xb) +O

(
||xa − xb||3∞

)
, (20)

and the proof is finalized.
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