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Abstract
Recently, nonconvex and nonsmooth models such as those using �0 ‘norm’ have 
drawn much attention in the area of image restoration. This work investigates 
the local and global minimizers of the �0 gradient regularized model with 
box constraints. There are four major ingredients. Firstly, we show that the 
set of local minimizers can be represented by solutions to some quadratic 
problems, which are independent of the fidelity parameter α. Based on this, 
every point satisfying the first-order necessary condition is a local minimizer. 
Secondly, any two local minimizers have different energy values under certain 
assumptions, implying the uniqueness of the global minimizer. Thirdly, there 
exists a uniform lower bound for nonzero gradients of the restored images. 
Finally, we show that the global minimizer set is piecewise constant in terms 
of α, and when A is of full column rank and α is large enough, the distance 
between the true image and the restored images is bounded by the noise level. 
The numerical examples perfectly demonstrate our theoretical analysis.

Keywords: image restoration, �0 gradient regularization, box constraints, 
local minimizer, global minimizer
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1.  Introduction

Image restoration is a typical inverse problem in image processing, including image deblur-
ring, denoising, zooming, padding, etc. Without loss of generality, a real image can be regarded 
as a matrix u ∈ Rn×n. The observed image f ∈ Rm×m often contains various degradation such 
as noise and blur:

f = Au + η,� (1)

where A is a linear operator, and η ∈ Rm×m denotes the noise. Image restoration is often 
viewed as a linear inverse problem to recover u from f.

In this paper, we consider the following image restoration model by minimizing an energy 
function with box constraints:

min
u∈Rn×n

α

2
‖Au − f‖2

F +
∑

1�i,j�n

ϕ(‖(∇u)[i, j]‖2)

s.t. b · 1n×n � u � b̄ · 1n×n,
�

(2)

where α > 0; ‖ · ‖F represents the Frobenius norm; ϕ(x) = 0 if x  =  0, otherwise ϕ(x) = 1; 
∇u = (∇xu,∇yu) with ∇x,∇y being the forward difference operators with specific bound-
ary conditions; b, b̄ are bound parameters; 1n×n  is all one matrix in Rn×n. For digital images, 
since the pixel values lie in a certain range such as [0, 1], box constraints can help to obtain a 
better restoration [3, 6, 7, 11]. When b = −∞ and b̄ = +∞, this model becomes an uncon-
strained problem.

The first term ‖Au − f‖2 in the energy function is the fidelity term, and the second one 
is the regularization term. The regularization term here is a composition of �0 ‘norm’ and �2 
norm to count the number of nonzero entries in ∇u, called �0 gradient regularization. Usually, 
in image restoration models, the regularization terms are adopted to suppress the noise and 
preserve key features of the image. Many of the models utilized TV regularization [28], which 
are convex and thus have well-developed optimization methods to find their solutions. But 
now, a class of non-convex function based regularization terms, especially the �0 ‘norm’ based 
ones, show their better performance on numerical experiments [5, 8, 10, 23, 24].

Model (2) is a general form of some existing models. With Markov random fields theory, 
Geman in 1984 and Besga in 1986 used it as a prior in MAP energy to restore labeled images, 
known as Potts prior model [4, 12, 31]. Later, it was applied successfully to reconstruct piece-
wise constant images and 3D tomographic images [17, 26]. And recently, with some efficient 
algorithms adopted, researchers showed its advantages in image denoising [25, 33] and image 
debluring [9, 26, 32, 34]. Except for counting nonzero gradients in (2), �0 ‘norm’ is used fre-
quently when sparsity is desired, covering very comprehensive fields such as signal process-
ing, dictionary building, compressive sensing, machine learning, classification, morphologic 
component analysis, subset selection, and so on [1, 2, 11, 15, 19, 29, 37].

Since (2) is nonconvex and nonsmooth, most algorithms can only converge to one of its 
local minimizers. Thus it is worthy to study the local minimizers of (2), as well as the global 
minimizers. However, there are scarce results on this. Research on other nonconvex nons-
mooth models are still developing [7, 20, 35], and all of their regularization terms are continu-
ous. For �0 ‘norm’ related models, most existing analyses focus on the sparse signal recovery 
problem, which is formulated as the minimization of least squares regularized with �0 ‘norm’ 
[14, 21, 22, 36]. In [14], the author shows that when minimizing �0-type problems under 
constraints, every admissible point is a local minimizer. Specifically, [21] give a thorough 
investigation on the local and global minimizers of the regularized signal recovery model, 
including equivalence, uniqueness and so on. Later, in [22, 36], the authors discussed the 
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relationships between the optimal solutions of the regularized signal recovery model and its 
different equivalent problems. Inspired by these enlightening findings and the importance of 
the �0 gradient regularization, we try to extend their results to model (2), and besides, develop 
some new ideas. In the process, the gradient operator and box constraints in model (2) bring 
considerable difficulties.

For the simplicity of description, we now rearrange the image data to be a array in RN  with 
N equal to the total number of pixels, i.e. N  =  n2. Correspondingly, the observed image f is 
denoted by f ∈ RM with M  =  m2, and A is transformed to be a matrix A ∈ RM×N. Thus, we 
can represent model (2) by

(P)

{
min
u∈RN

F(u) = α
2 ‖Au − f‖2 +R(∇u)

s.t. b · 1N � u � b̄ · 1N ,
� (3)

where

R(∇u) =
N∑

i=1

ϕ(‖(∇u)[i]‖2),

(∇u) = (∇xu,∇yu) is the discrete gradient (see the next section for details), 1N  is all one vec-
tor in RN . Moreover, we denote the feasible region of (P) as

X := {u ∈ RN : b · 1N � u � b̄ · 1N}.� (4)

In this paper, we study the local and global minimizers of (P). The main contributions of 
this paper are summarized below.

	 •	�We present an equivalent form of the local minimizer set of (P), by solving a set of 
quadratic problems which are independent of α. Based on this, we show that every point 
satisfying the first-order necessary condition of (P) is a local minimizer.

	 •	�We study the strict local minimizers of (P). Especially, we show that when A has full 
column rank and f is not in a zero measure set in RM , all (strict) local minimizers have 
different energy values. This also indicates the uniqueness of the global minimizer.

	 •	�We establish a uniform lower bound for nonzero gradients of the solutions to (P), implying 
that the �0 gradient regularization can generate neat edges.

	 •	�Without introducing new equivalent problems, we show that the global minimizer set of 
(P) with parameter α as the independent variable is piecewise constant in terms of α, and 
correspondingly, the optimal value is piecewise linear. Moreover, we find that when A 
has full column rank and α is large enough, the distance between the true image and the 
solutions of (P) with parameter α is bounded by the noise level.

The assumption that A has full column rank is a necessary condition for (P) to be well-posed, 
and holds generally for problems in image processing. In addition, most of our conclusions 
can be extended to more general models(see section 6). These theoretical results may con-
tribute to a better understanding of this model, and can help to analyze the performance of 
existing algorithms to solve it.

The rest paper is organized as follows. In the next section, we give some basic nota-
tions. In section 3, we focus on the local minimizers of (P), especially on the strict local 
minimizers. In section 4, we show two important properties of the global minimizers: the 
lower bound for the nonzero gradients and the piecewise-constant dependency on α. In 
section 5, there are some numerical verifications of our main results. The paper is con-
cluded in section 6.
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2.  Notations

Here we give some basic notations.
Without loss of generality, we represent an n × n gray image u by an N × 1 vector u, where 

N  =  n2, expanding in column. The ith entry of u reads as u[i], and the corresponding mapping 
is

u[i] :=
{

u[i mod n, �i/n�], 1 � i mod n � n − 1,
u[n, �i/n�], i mod n = 0.

Then the discrete gradient operator is a mapping ∇ : RN → RN × RN . For u ∈ RN , ∇u is 
given by

(∇u)[i] := ((∇xu)[i], (∇yu)[i]),

where

(∇xu)[i] :=
{

u[i + n]− u[i], 1 � �i/n� � n − 1
0, �i/n� = n,

(∇yu)[i] :=
{

u[i + 1]− u[i], 1 � i mod n � n − 1
0, i mod n = 0.

This definition is based on Neumann boundary condition, and our research in this paper also 
works on other boundary conditions.

Let K be any positive integer. The kth vector in the canonical basis of RK  is denoted by ek, 
i.e. ek[l] = δkl , where δkl is the Kronecker delta. We use 1K  to represent the all one vector in 
RK .

Given u ∈ RK  and r  >  0, the open ball at u of radius r with respect to the �p norm for 
1 � p � ∞ reads as

Bp(u, r) := {v ∈ RK : ‖v − u‖p < r}.

To simplify the notation, the �2 norm in RK  is denoted by ‖ · ‖ := ‖ · ‖2.
We define two totally and strictly ordered index sets as:

IK := ({1, · · · , K},<), I0
K := ({0, 1, · · · , K},<),

where the symbol  <  stands for the natural order of positive integers. That is, I3 = {1, 2, 3}, but 
not {2, 1, 1, 3} or others. Accordingly, any subset ω ⊆ IK is also totally and strictly ordered. 
We define ω[k] as the kth element in ω, and then, ω[1] is the minimum index in ω. The comple-
ment of ω ⊆ IK is denoted by ωc = IK\ω ⊆ IK .

A partition of the set IN is a grouping of all of its elements into subsets, in such a way 
that every element is included in one and only one of the subsets. The subsets in a partition 
are called blocks. To sort all of the blocks, we define the  <  relation between any two subsets 
τ̄ , τ̃ ⊆ IN  as:

τ̄ < τ̃ ⇐⇒ τ̄ [1] < τ̃ [1].

For example, if τ̄ = {2, 5} and τ̃ = {3, 4, 7}, then we have τ̄ < τ̃  as 2  <  3. If {τ1, · · · , τl} 
is a partition of IK satisfying τk < τk+1, ∀ k ∈ Il−1, then we say ({τ1, · · · , τl},<) is a strictly 
ordered partition.

Definition 2.1.  For any u ∈ RN , the support of ∇u is defined as

σ(∇u) := {i ∈ IN : (∇u)[i] �= 0}.

X Feng et alInverse Problems 34 (2018) 095007
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If u = c · 1N for some c ∈ R, we have σ(∇u) = ∅. More importantly, 
R(∇u) = �σ(∇u), ∀ u ∈ RN .

In this work, we shall frequently refer to the following quadratic problem with a given 
ω ⊆ IN:

(Qω)



minu∈RN ‖Au − f‖2

s.t. b · 1N � u � b̄ · 1N ,
(∇u)[i] = 0, ∀ i ∈ ωc.

� (5)

Obviously, problem (Qω) is convex and proper, and always admits a solution. Specially, we 
denote

Cω := {u ∈ RN : (∇u)[i] = 0, ∀ i ∈ ωc}.� (6)

Then, the feasible domain of (Qω) is X ∩ Cω.
Finally, we recall some definitions about subdifferential [27].

Definition 2.2.  Let ψ : RN → R ∪ {+∞} be a proper lower semicontinuous function.

	 (a)	�The domain of ψ is defined by domψ := {u ∈ RN : ψ(u) < +∞}.
	(b)	�For each u ∈ domψ, the Fréchet subdifferential of ψ at u, written ∂̂ψ(u), is the set of 

vectors u∗ ∈ RN  which satisfy

lim inf
v→u
v�=u

1
‖v − u‖

[ψ(v)− ψ(u)− 〈u∗, v − u〉] � 0.

Table 1.  The main notations.

(P) The image restoration model defined in (3)

(Qω) The constrained quadratic problem defined in (5)

(Qω) The bounded-variable least square problem defined in (16)

(Pα) Problem ( P) with parameter α
F(u) α

2 ‖Au − f‖2 +R(∇u)
ID(u) The indicator function of subset D ⊂ RN

X {u ∈ RN : b · 1N � u � b̄ · 1N}
Cω {u ∈ RN : (∇u)[i] = 0, ∀ i ∈ ωc}
IK ({1, · · · , K},<)

I0
K ({0, 1, · · · , K},<)

σ(∇u) {i ∈ IN : (∇u)[i] �= 0}
Sω The block partition of IN with respect to ω
uω The block image of u with respect to ω
Eω The extension matrix defined in (13)
Aω AEω

J (α) The optimal value of (Pα)

Ug(α) The global minimizer set of (Pα)

U l The local minimizer set of (Pα)

U l
k U l ∩ {u ∈ RN : R(∇u) = k}

Ck argminu∈U l
k
‖Au − f‖2

ck minu∈U l
k
‖Au − f‖2

Jk(α)
ck
2 α+ k

φ(k, j) The intersection of Jk(α) and Jj(α)

X Feng et alInverse Problems 34 (2018) 095007
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		 If u /∈ domψ, then ∂̂ψ(u) = ∅.
	 (c)	�The subdifferential of ψ at u ∈ domψ, written ∂ψ(u), is defined as follows:

∂ψ(u) := {u∗ ∈ RN : ∃ un → u,ψ(un) → ψ(u), ∂̂ψ(un) � u∗
n → u∗}.

		 If u /∈ domψ, then ∂ψ(u) = ∅.

The following results, although elementary, is central to this paper.

Proposition 2.3 ([27]).  Let ψ : RN → R be a proper function.

	(a)	�( Fermat’s rule, p422 ) If ψ has a local minimum at u, then

0 ∈ ∂ψ(u).

	(b)	�( p304 ) If ψ = ψ0 + ψ1 with ψ0 finite at u and ψ1 smooth on a neighborhood of u, then 
∂ψ(u) = ∂ψ0(u) +∇ψ1(u) where ∇ψ1 is the derivative of ψ1.

Proposition 2.4 ([27], p 203, p 310).  Let D be a closed and nonempty subset. We denote 
by ID its indicator function, i.e.

ID(u) =
{

0, if u ∈ D,
+∞, otherwise.

If D is convex, then

∂ID(u) = ∂̂ID(u) = {u∗ ∈ RN : 〈u∗, v − u〉 � 0, ∀ v ∈ D}.

The main notations are listed in table 1.

3. The local minimizer

3.1.  Representing the local minimizers of (P) by solutions of (Qω)

In this subsection, we will discuss the set of local minimizers of (P), and find its relationship 
with (Qω). The discontinuity of R(∇u) plays an important role here.

Lemma 3.1.  The function R(∇u) is lower semicontinuous. Specially, if ū ∈ RN , then there 
exists an open ball at ū, denoted by B∞(ū, rū), such that ∀ u ∈ B∞(ū, rū), one of the following 
two cases holds:

(a) σ(∇u) = σ(∇ū) ⇐⇒ R(∇u) = R(∇ū) ⇐⇒ u ∈ B∞(ū, rū) ∩ Cσ(∇ū),
�

(7)

(b) σ(∇u) � σ(∇ū) ⇐⇒ R(∇u) � R(∇ū) + 1,� (8)

where Cσ(∇ū) is defined in (6).

Proof.  Denote ω̄ := σ(∇ū). If ū = ū[1] · 1N , then ω̄ = ∅. The lemma is obvious for this 
case.

If ω̄ �= ∅, we denote r̄ := min{‖(∇ū)[i]‖, i ∈ ω̄}. Let rū =
√

2
4 r̄, and take an arbitrary 

u ∈ B∞(ū, rū). Then for any i ∈ ω̄,

X Feng et alInverse Problems 34 (2018) 095007
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‖(∇u)[i]− (∇ū)[i]‖2 = ‖(∇(u − ū))[i]‖2

= {(u − ū)[i + 1]− (u − ū)[i]}2 + {(u − ū)[i + n]− (u − ū)[i]}2

< (2rū)
2 + (2rū)

2

= r̄2.

As ‖∇ū[i]‖ � r̄, it follows that ‖(∇u)[i]‖ � ‖(∇ū[i])‖ − ‖(∇u)[i]− (∇ū)[i]‖ > r̄ − r̄ = 0. 
Thus,

(∇u)[i] �= 0, ∀ i ∈ ω̄,

which indicates that ω̄ ⊆ σ(∇u). Finally, the fact that ω̄ = σ(∇ū) implies σ(∇ū) ⊆ σ(∇u), 
followed by

σ(∇ū) = σ(∇u), or σ(∇ū) � σ(∇u).

Recall that R(∇u) = �σ(∇u). Meanwhile, if u ∈ Cσ(∇ū), by (6), one has R(∇u) � R(∇ū). 
Then (7) and (8) follows immediately.� □ 

The lemma above helps to discuss the fidelity term and regularization term separately when 
we are checking if û is a local minimizer.

Proposition 3.2.  Given ω ⊆ IN, suppose that ū solves (Qω) in (5). Then ū is a local mini-
mizer of (P), and σ(∇ū) ⊆ ω.

Proof.  As ū solves problem (Qω), the second constraint (∇u)[i] = 0, ∀ i ∈ ωc in (Qω) 
entails σ(∇ū) ⊆ ω. According to lemma 3.1, one has the intersection between the neigh-
borhood B∞(ū, rū) of ū and the feasible region X of (P) can be divided into two subsets: 
X ∩ B∞(ū, rū) = B1 ∪ B2, where

B1 = X ∩ B∞(ū, rū) ∩ {u ∈ RN : σ(∇u) = σ(∇ū)},

B2 = X ∩ B∞(ū, rū) ∩ {u ∈ RN : σ(∇u) � σ(∇ū)}.
�

(9)

Take an arbitrary u ∈ B1. Since σ(∇u) = σ(∇ū) ⊆ ω, it follows that (∇u)[i] = 0, ∀ i ∈ ωc. 
Thus, with u ∈ X, u is a feasible point of (Qω). As ̄u solves (Qω), we have ‖Aū − f‖2 � ‖Au − f‖2. 
Moreover, applying (7) gives R(∇u) = R(∇ū). Hence, ∀ u ∈ B1,

F(ū) =
α

2
‖Aū − f‖2 +R(∇ū) �

α

2
‖Au − f‖2 +R(∇u) = F(u).

Take an arbitrary u ∈ B2. We have R(∇u) � R(∇ū) + 1 according to (8). Because 
H(u) := ‖Au − f‖2 is continuous, there must exist a neighborhood O(ū) of ū such that 
∀ u ∈ O(ū), ‖Au − f‖2 � ‖Aū − f‖2 − 2

α . Hence, ∀ u ∈ B2 ∩ O(ū), we have F(ū) � F(u) 
as well.

Consequently, ∀ u ∈ X ∩ B∞(ū, rū) ∩ O(ū), we have F(ū) � F(u), which means ū is a 
local minimizer of (P).� □ 

For any given ω ⊆ IN, we have such a problem (Qω), and any solution ū of (Qω) is a local 
minimizer of (P). In this way, we can obtain some local minimizers of (P). Besides, from 
proposition 3.2, ū satisfies σ(∇ū) ⊆ ω. However, it is not necessary that σ(∇ū) = ω. See 
example 3.3.

X Feng et alInverse Problems 34 (2018) 095007
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Example 3.3.  Figure 1 shows an image u ∈ R5×5. Then N  =  25. Let 
ω = {7, 9, 12, 14, 17, 19, 22, 24}. The pixels in ωc are colored in pink. For any u ∈ RN , em-
ploying the second constraint (∇u)[i] = 0, ∀ i ∈ ωc in (Qω) yields u = u[1] · 1N , and then 
σ(∇u) = ∅. Thus, it is quite clear that for any solution ū of (Qω), we have σ(∇ū) = ∅. It fol-
lows that σ(∇ū) �= ω.

Proposition 3.4.  If ū is a local minimizer of (P), then ū solves (Qω̄) with ω̄ := σ(∇ū).

Proof.  Since ū is a local minimizer of (P), ū is also a local minimizer of the following 
problem:

min
u∈RN

F(u) subject to b · 1N � u � b̄ · 1N ; (∇u)[i] = 0, ∀ i ∈ ω̄c.� (10)

The feasible domain of (10) is X ∩ Cω̄. Thus, there exists a neighborhood O(ū) of ū such that 
∀ u ∈ O(ū) ∩ X ∩ Cω̄, F(u) � F(ū).

According to lemma 3.1, ∀ u ∈ Cω̄ ∩ B∞(ū, rū),R(∇u) = R(∇ū). Thus,

∀ u ∈ O(ū) ∩ X ∩ Cω̄ ∩ B∞(ū, rū), ‖Au − f‖2 � ‖Aū − f‖2.

It follows that ū is a local minimizer of (Qω̄), whose feasible domain is also X ∩ Cω̄. Since 
(Qω̄) is a convex optimization problem, we have ū solves (Qω̄).� □ 

Combining propositions 3.2 and 3.4, we can see that solving problem (Qω) for all ω ⊆ IN 
is equivalent to finding all of the local minimizers of (P). Specially, we have the following 
theorem.

Theorem 3.5.  Denote the local minimizer set of (P) as U l . Then

U l =
⋃

ω⊆IN

{u ∈ RN : u solves (Qω) }.

Clearly, there are at most 2N different problems (Qω), which are irrelevant to α. Thus, U l  
is independent of α as well. In other words, for any given α � 0, the local minimizer set of 
(P) is the same.

Note that any local minimizer of (P) satisfies the first-order necessary condition. Conversely, 
based on theorem 3.5, we can show the following result.

7 12 17 22

9 14 19 24

Figure 1.  A counter example of σ(∇ū) = ω.
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Theorem 3.6.  Every point satisfying the first-order necessary condition of (P) is a local 
minimizer.

Proof.  By introducing an indicator function, the constrained problem (P) is equivalent to

min
u∈RN

ψ(u) :=
α

2
‖Au − f‖2 +R(∇u) + IX(u),

where X is the feasible domain of (P) defined in (4). Let ū be a point satisfying the first-order 
necessary condition of (P), i.e. 0 ∈ ∂ψ(ū). Denote ω̄ = σ(∇ū). Our idea is to show that ū is 
also a solution to (Qω̄), and thus a local minimizer of (P).

We define:

ψ1(u) := IX∩Cω̄
(u), ψ2(u) := R(∇u) + IX(u),

where Cω̄ is defined in (6) so that X ∩ Cω̄ is the feasible domain of (Qω̄). Next we will prove 
the result in three steps.

	 •	�step 1: show that ∂ψ1(ū) = ∂ψ2(ū)
		 Since Cω̄ and X are both convex, we have ∀ u ∈ Cω̄ ∩ X ,

∂ψ1(u) = ∂̂ψ1(u) = {u∗ ∈ RN : lim inf
v�=u,v→u

v∈X∩Cω̄

− 1
‖v − u‖

〈u∗, v − u〉 � 0}.

		 Take u ∈ X ∩ Cω̄ ∩ B∞(ū, rū). Then σ(∇u) = ω̄, and by definition,

∂̂ψ2(u) = {u∗ ∈ RN : lim inf
v�=u
v→u

1
‖v − u‖

[ψ2(v)− ψ2(u)− 〈u∗, v − u〉] � 0 }

= {u∗ ∈ RN : lim inf
v�=u,v→u

v∈X∩B∞(u,ru)

1
‖v − u‖

[R(∇v)−R(∇u)− 〈u∗, v − u〉] � 0 }

[ lemma 3.1 ] = {u∗ ∈ RN : lim inf
v�=u,v→u

v∈X∩B∞(u,ru)
R(∇v)=R(∇u)

− 1
‖v − u‖

〈u∗, v − u〉 � 0 }

[ (7) ] = {u∗ ∈ RN : lim inf
v�=u,v→u

v∈X∩Cω̄∩B∞(u,ru)

− 1
‖v − u‖

〈u∗, v − u〉 � 0 }

= ∂ψ1(u).

		 Therefore,

∂ψ2(ū) = {u∗ ∈ RN : ∃ un → ū,ψ2(un) → ψ2(ū), ∂̂ψ2(un) � u∗n → u∗}

= {u∗ ∈ RN : ∃ un ∈ X ∩ B∞(ū, rū) → ū,R(∇un) → R(∇ū), ∂̂ψ2(un) � u∗
n → u∗}

= {u∗ ∈ RN : ∃ un ∈ X ∩ B∞(ū, rū) → ū,R(∇un) = R(∇ū), ∂̂ψ2(un) � u∗
n → u∗}

[ (7) ] = {u∗ ∈ RN : ∃ un ∈ X ∩ Cω̄ ∩ B∞(ū, rū) → ū, ∂̂ψ1(un) � u∗
n → u∗}

= ∂ψ1(ū).

The last equality is due to the definition of subdifferential of ψ1.
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	 •	�step 2: show that ū is a solution of (Qω̄)
		 Since 0 ∈ ∂ψ(ū), by proposition 2.3, we have

0 ∈ αAT(Aū − f ) + ∂ψ2(ū).

Thus, 0 ∈ αAT(Aū − f ) + ∂ψ1(ū). This implies ū is a stationary point of the following 
problem:

min
u∈RN

α

2
‖Au − f‖2 + IX∩Cω̄

(u),

which is equivalent to (Qω̄). Following the fact that (Qω̄) is a convex problem, one has ū is a 
solution of (Qω̄).

	 •	�step 3: conclusion
		 Finally, by theorem 3.5, ū is a local minimizer of (P).� 

3.2.  Solution to problem (Qω)

To further study the local minimizers of (P), even the global minimizers, we reformulate (Qω) 
to be a bounded-variable least square problem in this subsection, which shows good properties 
[16]. To deal with the second constraint (∇u)[i] = 0, ∀ i ∈ ωc in (Qω), which means u ∈ Cω 
defined in (6), we need to introduce some notations in this subsection.

3.2.1.  Block partition, block image and extension matrix.  For each index i ∈ IN, we define its 
forward one-neighborhood as:

Bi :=





{i, i + 1, i + n}, if 1 � i mod n � n − 1 and 1 � �i/n� � n − 1,
{i, i + 1}, if 1 � i mod n � n − 1 and �i/n� = n,
{i, i + n}, if i mod n = 0 and 1 � �i/n� � n − 1,
{i}, if i = N.

Then,

(∇u)[i] = 0, i ∈ IN ⇐⇒ u[ j] = u[i], ∀ j ∈ Bi.
u ∈ Cω ⇐⇒ u[ j] = u[i], ∀ j ∈ Bi, i ∈ ωc.

The first concept is block partition.
Let i0 ∈ ωc. If there exists r1 ∈ ωc such that Bi0 ∩ Br1 �= ∅, then u[i0] = u[ j], 

∀ j ∈ Bi0 ∪ Br1; next, if there exists r2 ∈ ωc such that (Bi0 ∪ Br1 ) ∩ Br2 �= ∅, then 
u[i0] = u[ j], ∀ j ∈ Bi0 ∪ Br1 ∪ Br2; and so on. Hence, there are as many as possible indices 
j ∈ IN satisfying u[i0] = u[ j] when u ∈ Cω . Thus, we define a partition of IN as follows.

Definition 3.7.  Given ω ⊆ IN, Sω = ({τ1, · · · , τnω},<) is a strictly ordered partition of IN 
satisfying:

	 (a)	�for any i ∈ ωc, there exists k ∈ Inω such that Bi ⊆ τk; 
	(b)	�for any k ∈ Inω, if �τk > 1, then any two elements in τk are connected by ωc: ∀ s, t ∈ τk, 

there exist r1, · · · , rl ∈ ωc such that s ∈ Br1, t ∈ Brl and Brj ∩ Brj+1 �= ∅, ∀ j ∈ Il−1.

Then we say Sω is the block partition of IN with respect to ω .

Example 3.8.  This is an example for block partition figure  2(a) shows an im-
age u ∈ R5×5. Then N  =  25. Let ωc = {1, 4, 8, 13, 22, 25}, and (∇u)[i] = 0, ∀ i ∈ ωc.  
The pixels in ωc are colored in brown, and pixels in Bi, i ∈ ωc are colored in pink. As 
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B4 ∩ B8 = {9},B8 ∩ B13 = {13}, we have u[4]  =  u[5]  =  u[8]  =  u[9]  =  u[13]  =  u[14]  =  
 u[18]. Thus, Sω = ({{1, 2, 6}, {3}, {4, 5, 8, 9, 13, 14, 18}, {7}, {10}, {11}, {12}, {15}, {16}, 
{17}, {19}, {20}, {21}, {22, 23}, {24}, {25}},<).

For any given ω ⊆ IN, the block partition Sω is unique. The number of blocks in Sω is 
called the block cardinality of Sω, denoted by nω. Note that nω is not equal to �ω and different 
ω  may correspond to the same block partition.

The second concept is block image.
The following fact can be verified directly from the definition of Sω:

u ∈ Cω ⇐⇒ u[ j] = u[τk[1]], ∀ j ∈ τk, k ∈ Inω .� (11)

The right term of (11) means all pixels in the same block of Sω share the same value. Therefore, 
for any τk ∈ Sω, we can use u[τk[1]] to represent all u[ j], j ∈ τk. And then the image in RN  is 
projected into a lower dimensional space.

Definition 3.9.  Given ω ⊆ IN, Sω = ({τ1, · · · , τnω},<) is the block partition with respect 
to ω . The projection operator Pω: RN → Rnω is given by: u �−→ uω := Pω(u), where

uω[k] = u[τk[1]], ∀ k ∈ Inω .� (12)

Then uω is referred to as the block image of u with respect to ω .

For convenience, we use uω to substitute for Pω(u) in the whole paper. For any given 
ω ⊆ IN, the block image uω is unique due to the strict orderedness of the blocks in Sω. 
Figure 2(b) gives the block image uω of the image u showed in figure 2(a).

The third concept is extension matrix.
Given a block image in Rnω, we need to recover its original image in RN . That is, for the 

recovered image, all pixels in the same block of Sω should get the value of this block. Thus, 
according to the definition of Sω, we define the extension matrix Eω ∈ RN×nω as

(Eω)[ j, k] :=
{

1, j ∈ τk,
0, otherwise.� (13)

From (13), (Eω)[ j, k] = 1 is equivalent to that the index j belongs to the block τk. Notice 
that every index belongs to only one of the blocks in a partition, and the intersection between 
any two different blocks in a partition is empty. Then, we obtain that each row in Eω has one 
and only one non-zero entry; each column has at least one non-zero entry. Besides, The ith 
column of Eω is denoted as (eω)i. The columns of Eω are orthogonal to each other and Eω has 
full column rank.

1

4

8 13

25

22

(a) (b)

Figure 2.  An example of block image. (a) An image u. (b) The block image uω.
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Lemma 3.10.  Given ω ⊆ IN, Eω in (13) satisfies ET
ωEω = diag(�τ1, · · · , �τnω ) and 

‖Eω‖2 �
√

N.

Proof.  Since ∀ k, l ∈ Inω,

(ET
ωEω)[k, l] = (eω)T

k (eω)l =

{
�τk, if k = l;
0, otherwise,

the result follows immediately.� □ 

3.2.2.  Bounded-variable least square problem.  The relationship between previous notations 
is summarized below.

Lemma 3.11.  Given ω ⊆ IN and u ∈ RN , the following statements are equivalent:

	(a)	�u ∈ Cω

	(b)	�u = Eωuω;
	 (c)	�u ∈ {Eωv ∈ RN : v ∈ Rnω}.

Proof. 

(a) ⇔ (b). By (11), we have

(∇u)[i] = 0, ∀ i ∈ ωc ⇐⇒ u[ j] = u[τk[1]]
(12)
= uω[k], ∀ j ∈ τk, k ∈ Inω

⇐⇒ u = Eωuω .

(b) ⇒ (c). This is obvious.

(c) ⇔ (b). Since u ∈ {Eωv ∈ RN : v ∈ Rnω}, there exists v̄ ∈ Rnω such that u = Eω v̄. 
Then

u[ j] = v̄[k] = u[τk[1]] = uω[k], ∀ j ∈ τk, k ∈ Inω .

Thus v̄ = uω and u = Eωuω.� □ 

For any matrix A ∈ RM×N, the ith column in A is denoted by ai. Then, we denote

Aω := AEω = (aτ1[1] + · · ·+ aτ1[�τ1], · · · , aτnω [1] + · · ·+ aτnω [�τnω ]) ∈ RM×nω .
�

(14)

Each column of Aω is a linear combination of the columns of A. If A has full column rank, 
then Aω is of full column rank. The ith column of Aω is denoted as (aω)i. We set AT

ω := (Aω)
T. 

If Aω is invertible, similarly, A−1
ω := (Aω)

−1. So is Eω. From lemma 3.7, given u ∈ RN , if 
u ∈ Cω, then

Au = AEωuω = Aωuω .� (15)

Using lemmas 3.7 and (14), we can eliminate the second constraint from (Qω). Then (Qω) 
can be reformulated by a bounded-variable least square problem [13] as follows:

(Qω)

{
minv∈Rnω ‖Aωv − f‖2

s.t. b · 1nω � v � b̄ · 1nω .

This is a convex optimization problem and always admits a solution. Combining with proposi-
tion 3.4, we get the following lemma.
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Lemma 3.12.  If ū ∈ RN  is a local minimizer of (P), then ūω̄ solves (Qω̄) with ω̄ := σ(∇ū).

We conclude this subsection as follows:

ū solves (Qω) =⇒ ūω = Pω(ū) solves (Qω) ,
ū = Ewv̄ solves (Qω) ⇐= v̄ solves (Qω) .� (16)

3.3. The strict local minimizer

In this subsection, we study the strict local minimizer of (P). Especially, we will show that any 
two strict local minimizers correspond to different function values under certain conditions.

Proposition 3.13.  Given ω ⊆ IN. If (Qω) has a unique solution ū, then ū is a strict local 
minimizer of (P).

Proof.  The proof is similar to the one of proposition 3.2. Similarly, we denote 
X ∩ B∞(ū, rū) = B1 ∪ B2, with B1, B2 defined as (9).

Take any u ∈ B1. Then u satisfies R(∇u) = R(∇ū), and is a feasible point of (Qω). Since 
ū is the unique solution of (Qω), it follows that ‖Aū − f‖2 < ‖Au − f‖2. Thus, F(ū) < F(u).

For any u ∈ B2, R(∇u) � R(∇ū) + 1. Meanwhile, there exists a neighborhood Õ(ū) 
of ū such that ∀ u ∈ Õ(ū), ‖Au − f‖2 < ‖Aū − f‖2 − 2

α . Thus, ∀ u ∈ B2 ∩ Õ(ū), we have 
F(ū) < F(u).

Therefore, for any u ∈ X ∩ B∞(ū, rū) ∩ Õ(ū), we have F(ū) < F(u). Equivalently, ū is a 
strict local minimizer of (P).� □ 

If Aω has full column rank, (Qω) is a strictly convex problem and has a unique solution. 
Then, from (16), we can see that the solution of (Qω) is unique. However, the reverse direc-
tion is not always true. If b �= −∞ or b̄ �= +∞, it is possible that when Aω is column rank 
deficient, (Qω) has a unique solution lying in the boundary of its feasible region.

Proposition 3.14.  Suppose that b = −∞ and b̄ = +∞. Let ū ∈ RN  be a local minimizer 
of (P). Denote ω̄ := σ(∇ū), then the following statements are equivalent:

	(a)	�Aω̄ has full column rank; 
	(b)	�the solution of (Qω̄) is unique; 
	 (c)	�u is a strict local minimizer of (P).

Proof. 
(a) ⇔ (b) is obvious.

(b) ⇒ (c) is due to proposition 3.13.

(c) ⇒ (a). Since ū is a local minimizer of (P), according to lemma 3.12, we have ūω̄ ∈ Rnω̄ 
solves (Qω̄). Since b = −∞ and b̄ = +∞, (Qω̄) reads as

min
v∈Rnω̄

‖Aω̄v − f‖2.� (17)

Assume that statement (a) fails, i.e. kerAω̄ �= ∅. Let O(ū) be an arbitrary neighborhood 
of ū. Take ṽ ∈ kerAω̄ whose norm is small enough such that ũ = Eω̄(ūω̄ + ṽ) ∈ O(ū) . Then 
ūω̄ + ṽ is a solution of (Qω̄), and ũ solves (Qω̄) with ‖Aũ − f‖2 = ‖Aū − f‖2. Meanwhile, 
from lemma 3.7, we have (∇ũ)[i] = 0, ∀ i ∈ ω̄c. Hence R(∇ũ) � �ω̄ = R(∇ū) and then 
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F(ũ) � F(ū). This contradicts to the fact that ū is a strict local minimizer of (P).� □ 

Corollary 3.15.  If A has full column rank, any local minimizer of (P) is a strict local mini-
mizer.

Proof.  For any local minimizer ū of (P), it is a solution of (Qω̄) with ω̄ := σ(∇ū). Since A 
has full column rank, Aω̄ has full column rank and ū is the unique solution of (Qω̄). Hence, ū 
is a strict local minimizer by proposition 3.13.� □ 

Theorem 3.16.  Suppose that A has full column rank. Then, there exists a subset Z ⊂ RM, 
whose Lebesgue measure is zero, such that if f ∈ RM\Z , any two local minimizers of (P) have 
different energy values.

Proof.  Let ū, ũ be two local minimizers of (P). The main idea is to find the necessary condi-
tion for f when F(ū) = F(ũ). The proof is divided into three steps.

	 •	�step 1: find the expressions of F(ū) and F(ũ)
		 Take ū as an example. Denote ω̄ := σ(∇ū), then ū is a solution of (Qω̄) and ūω̄ is a solu-
tion of (Qω̄).

Firstly, we give some notations to simplify the presentation. We define the active indices of 
ūω̄ as A(ūω̄) = ν ⊆ Inω̄ such that

{
∀ i ∈ ν, ūω̄[i] = b or b̄,
∀ i ∈ νc, b < ūω̄[i] < b̄.

Let {
ūa
ω̄ := (ūω̄[ν[1]], · · · , ūω̄[ν[�ν]]) ∈ R�ν ,

ūi
ω̄ := (ūω̄[νc[1]], · · · , ūω̄[ν

c[�νc]]) ∈ R�νc
.

We call ūa
ω̄ , ūi

ω̄ the active part and inactive part of ūω̄ respectively. If ν = ∅, then ūa
ω̄ does not 

exist and ūi
ω̄ = ūω̄. Furthermore, we define two extension submatrices induced by A(ūω̄) as

{
Ea
ω̄ := ((eω̄)ν[1], · · · , (eω̄)ν[�ν]) ∈ RM×�ν ,

Ei
ω̄ := ((eω̄)νc[1], · · · , (eω̄)νc[�νc])RM×�νc

.

Then we have

ū = Eω̄ ūω̄ = Ea
ω̄ ūa

ω̄ + Ei
ω̄ ūi

ω̄ .

Also, we denote Aa
ω̄ := AEa

ω̄ and Ai
ω̄ := AEi

ω̄ as two transformation submatrices induced by 
A(ūω̄). Then

Aū = Aω̄ ūω̄ = Aa
ω̄ ūa

ω̄ + Ai
ω̄ ūi

ω̄ .� (18)

For clarity, we define the M × M  matrix Π(Ai
ω̄) as the orthogonal projection [18] onto the 

subspace spanned by the columns of Ai
ω̄. As Ai

ω̄ has full column rank, we have

Π(Ai
ω̄) = Ai

ω̄[(A
i
ω̄)

TAi
ω̄]

−1(Ai
ω̄)

T .� (19)

If ūa
ω̄ is given, then ūi

ω̄ solves the following problem
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min
v∈R�νc

‖Ai
ω̄v − ( f − Aa

ω̄ ūa
ω̄)‖2,

s.t. b · 1�νc < v < b̄ · 1�νc .
�

(20)
Since ūi

ω̄ is an interior point of the feasible region of the problem above and Ai
ω̄ has full col-

umn rank, we have

ūi
ω̄ = [(Ai

ω̄)
TAi

ω̄]
−1(Ai

ω̄)
T( f − Aa

ω̄ ūa
ω̄) = Π(Ai

ω̄)( f − Aa
ω̄ ūa

ω̄).� (21)

Denote the identity matrix in RM  as I. By (18) and (19), we have

‖Aū − f‖2 = ‖Ai
ω̄ ūi

ω̄ + Aa
ω̄ ūa

ω̄ − f‖2

= ‖Π(Ai
ω̄)( f − Aa

ω̄ ūa
ω̄) + Aa

ω̄ ūa
ω̄ − f‖2

= ‖(Π(Ai
ω̄)− I) f − (Π(Ai

ω̄)− I)Aa
ω̄ ūa

ω̄‖2

= f TW(ȳ) f + f TS(ȳ) + T(ȳ),

�

(22)

where




W(ȳ) := I −Π(Ai
ω̄) ∈ RM×M ,

S(ȳ) := 2(Π(Ai
ω̄)− I)Aa

ω̄ ūa
ω̄ ∈ RM×1,

T(ȳ) := (Aa
ω̄ ūa

ω̄)
T(I −Π(Ai

ω̄))A
a
ω̄ ūa

ω̄ ∈ R,
� (23)

with ȳ := (ω̄,A(ūω̄), ūa
ω̄). Notice that the definitions of W(ȳ), S(ȳ), T(ȳ) depend on not only 

ūa
ω̄, but also Aa

ω̄ and Ai
ω̄, which are induced by index sets ω̄  and A(ūω̄). Assume that A(ūω̄) = ∅. 

Then Ai
ω̄ = Aω̄ , W(ȳ) = I −Π(Aω̄), and ūa

ω̄ , S(ȳ), T(ȳ) do not exist. Without loss of general-
ity, we denote S(ȳ) = 0, T(ȳ) = 0 in such a case.

Therefore, we denote

Y := {y = (ω, ν, v) : ω ⊆ IN , ν ⊆ Inω̄ , v ∈ R�ν , v[i] = b or b̄, ∀ i ∈ I�ν}.
�

(24)

Clearly, ȳ ∈ Y , and for any y ∈ Y , we can define W(y), S(y), T(y) as (23). The elements in Y 
are finite.

Finally, we have

F(ū) =
α

2
[ f TW(ȳ) f + f TS(ȳ) + T(ȳ) ] + �ω̄,

F(ũ) =
α

2
[ f TW(ỹ) f + f TS(ỹ) + T(ỹ) ] + �ω̃,

	with ω̃ := σ(∇ũ), ȳ, ỹ := (ω̃,A(ũω̃), ũa
ω̃) ∈ Y .

	 •	�step 2: find the necessary condition for F(ū) = F(ũ) to construct Z
		 It follows from F(ū) = F(ũ) that

f T(W(ȳ)− W(ỹ)) f + f T(S(ȳ)− S(ỹ)) + T(ȳ)− T(ỹ)− 2
α
(�ω̄ − �ω̃) = 0.

�

(25)

Moreover, by reduction, we can show that when ū �= ũ, W(ȳ) = W(ỹ) implies S(ȳ) �= S(ỹ).
Assume that W(ȳ) = W(ỹ) and S(ȳ) = S(ỹ).
Similarly, for ũ, the two extension submatrices induced by A(ũω̃) are Ea

ω̃ , Ei
ω̃, and 

Aa
ω̃ = AEa

ω̃ , Ai
ω̃ = AEi

ω̃. Then, one has

ū = Ea
ω̄ ūa

ω̄ + Ei
ω̄ ūi

ω̄ , ũ = Ea
ω̃ ũa

ω̃ + Ei
ω̃ ũi

ω̃ .

From
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0 = W(ȳ)− W(ỹ) = [I −Π(Ai
ω̄)]− [I −Π(Ai

ω̃)] = Π(Ai
ω̃)−Π(Ai

ω̄),� (26)

we can see that the subspace spanned by the columns of Ai
ω̃ equals to the subspace spanned by 

the columns of Ai
ω̄. Since Ai

ω̃ and Ai
ω̄ have full column rank, there exists an invertible matrix 

P such that

Ai
ω̄ = Ai

ω̃P ⇐⇒ AEi
ω̄ = AEi

ω̃P ⇐⇒ Ei
ω̄ = Ei

ω̃P.� (27)

The last step is due to that A has full column rank. Denote v = Aa
ω̄ ūa

ω̄ − Aa
ω̃ ũa

ω̃. Then, there 
exists x1 such that v = Aa

ω̄x1.
Furthermore, we have

0 = S(ȳ)− S(ỹ) = 2(Π(Ai
ω̄)− I)Aa

ω̄ ūa
ω̄ − 2(Π(Ai

ω̃)− I)Aa
ω̃ ũa

ω̃ = 2(Π(Ai
ω̄)− I)v,

which indicates that v = Π(Ai
ω̄)v. That is, v belongs to the subspace spanned by the columns 

of Ai
ω̄. Thus, there exists x2 such that v = Ai

ω̄x2, and then we have Aa
ω̄x1 − Ai

ω̄x2 = 0. Since Aω̄ 
has full column rank, we have x1 = x2 = 0. It follows that

Aa
ω̄ ūa

ω̄ = Aa
ω̃ ũa

ω̃ ⇐⇒ AEa
ω̄ ūa

ω̄ = AEa
ω̃ ũa

ω̃ ⇐⇒ Ea
ω̄ ūa

ω̄ = Ea
ω̃ ũa

ω̃ .� (28)

Note that ūi
ω̄ = [(Ai

ω̄)
TAi

ω̄]
−1(Ai

ω̄)
T( f − Aa

ω̄ ūa
ω̄) and ũi

ω̃ = [(Ai
ω̃)

TAi
ω̃]

−1(Ai
ω̃)

T( f − Aa
ω̃ ũa

ω̃). 
Then

Ei
ω̄ ūi

ω̄ = Ei
ω̄[(A

i
ω̄)

TAi
ω̄]

−1(Ai
ω̄)

T( f − Aa
ω̄ ūa

ω̄)

[ (27) ] = Ei
ω̃P[(Ai

ω̃P)TAi
ω̃P]−1(Ai

ω̃P)T( f − Aa
ω̄ ūa

ω̄)

[ (28) ] = Ei
ω̃[(A

i
ω̃)

TAi
ω̃]

−1(Ai
ω̃)

T( f − Aa
ω̃ ũa

ω̃)

= Ei
ω̃ ũi

ω̃ .

Combining the equality above with (28) gives

ū = Ea
ω̄ ūa

ω̄ + Ei
ω̄ ūi

ω̄ = Ea
ω̃ ũa

ω̃ + Ei
ω̃ ũi

ω̃ = ũ,

which contradicts to the fact that ū �= ũ. Therefore, if W(ȳ) = W(ỹ), then S(ȳ) �= S(ỹ).
Finally, we define

Ỹ := {y1 ∈ Y : ∀y2 ∈ Y , if W(y1) = W(y2), then S(y1) �= S(y2)} ⊆ Y ,

and

Z :=
⋃

y1,y2∈Ỹ

{ f ∈ RM : f T(W(y1)− W(y2)) f + f T(S(y1)− S(y2))

+T(y1)− T(y2)−
2
α
(�ω1 − �ω2) = 0},

� (29)

with y1 = (ω1, ν1, v1), y2 = (ω2, ν2, v2). Therefore, (25) means

f ∈ Z.

	 •	�step 3: find the Lebesgue measure of Z
Take two arbitrary y1 �= y2 ∈ Ỹ . Denote W := W(y1)− W(y2) ∈ RM×M , S := S(y1)−  

S(y2) ∈ RM×1, T := T(y1)− T(y2)− 2
α (�ω1 − �ω2) ∈ R. We now discuss the solution set of

f TWf + f TS + T = 0.

If W �= 0, then the solution set is a quadric, which is a generalization of conic sections [30]. 
If W = 0 and S �= 0, then the solution set is an M  −  1 dimensional hyperplane in RM . In both 
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cases, the solution set is closed and has zero Lebesgue measure in RM . Due to the finiteness of 
Ỹ , Z is a finite union of such closed solution sets in RM  whose dimensions are not larger than 
M  −  1. Thus, Z has zero measure in RM .

Conclusively, if f ∈ RM\Z , F(ū) = F(ũ) implies ū = ũ.� □ 

Theorem 3.16 tells that when A has full column rank, different (strict) local minimizers of 
(P) correspond to different energy values. This property fails for f in a negligible subset of RM . 
In other words, it holds for almost all f. Besides, the assumption of full column rank of A is 
reasonable. In practical application of image processing, A ∈ RM×M is usually a sparse matrix 
transformed from a blur kernel, and A is invertible under general conditions.

The following corollary is obvious.

Corollary 3.17.  Suppose that A has full column rank. Then, there exists a subset Z ⊂ RM, 
whose Lebesgue measure is zero, such that if f ∈ RM\Z , then (P) has a unique solution.

4. The global minimizer

In this section, we focus on global minimizers of (P), and present their two important proper-
ties: the uniform lower bound for the �2 norms of nonzero discrete gradients, and the piece-
wise-constant dependency on α. Since a global minimizer is also a local minimizer of (P), 
previous analysis on local minimizers serves the study of the global minimizers.

4.1. The uniform lower bound for the �2 norm of nonzero discrete gradients

Theorem 4.1.  Suppose that ū solves (P). Then, for any i ∈ σ(∇ū), we have

‖(∇ū)[i]‖ � θ, where θ := min{
√

5 − 1
2
√
αN‖A‖2

,

√
2|b − b̄|

2
}.� (30)

Proof.  Let ̄ω := σ(∇ū). The block partition of IN with respect to ̄ω  is Sω̄ = ({τ1, · · · , τnω̄},<). 
By lemma 3.12, ūω̄ is a solution of (Qω̄). We define the active indices of ūω̄ as A(ūω̄) ⊆ Inω̄ 
such that

{
∀ i ∈ A(ūω̄), ūω̄[i] = b or b̄,
∀ i ∈ (A(ūω̄))

c, b < ūω̄[i] < b̄.

Take an arbitrary i ∈ ω̄. We suppose that

i ∈ τk, i + 1 ∈ τs, i + n ∈ τt,� (31)

with k, s, t ∈ Inω̄. Thus ū[i] = ūω̄[k], ū[i + 1] = ūω̄[s], ū[i + n] = ūω̄[t]. Let

ūω̄[s] = ūω̄[k] + ∆s, ūω̄[t] = ūω̄[k] + ∆t,

where ∆s,∆t ∈ R. Then ‖(∇ū)[i]‖2 = (∆s)
2 + (∆t)

2 �= 0. Our goal is to find the lower bound 
for the �2 norm of (∆s,∆t)

T .
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There are four cases involved: (a) k �= s, k �= t, s �= t ; (b) k = s �= t ; (c) k = t �= s; (d) 
k �= s = t . It suffices to prove the theorem when k �= s, k �= t, s �= t , since the proofs in the 
other three situations are similar to the one in the following Case 3. To show the theorem 
when k �= s, k �= t, s �= t , we divide our proof into four parts, mainly according to the relation 
between {k, s, t} and the active indices A(ūω̄) of ūω̄.

	 •	Case 1    {k, s, t} ∩ A(ūω̄) = ∅.
		 We decompose ūω̄ as: ūω̄ = ṽ + ∆̃, where ṽ, ∆̃ ∈ Rnω̄,

ṽ[ j] :=
{

ūω̄[k], j = s, t,
ūω̄[ j], otherwise;

and ∆̃[ j] :=




∆s, j = s,
∆t, j = t,
0, otherwise.

		 As ūω̄ solves (Qω̄), ∆̃ is a solution to the following problem

min
∆∈Rnω̄

‖Aω̄(ṽ +∆)− f‖2

s.t. b · 1nω̄ � ṽ +∆ � b̄ · 1nω̄ ,
∆[ j] = 0, j ∈ Inω̄\{s, t}.

Under the assumption that s, t /∈ A(ūω̄), the above problem is equivalent to

min
(∆1,∆2)T∈R2

‖Ast(∆1,∆2)
T − ( f − Aω̄ ṽ)‖2

s.t. b < ṽ[s] + ∆1 < b̄,
b < ṽ[t] + ∆2 < b̄,

�

(32)

where Ast := ((aω̄)s, (aω̄)t) ∈ RM×2. Since (∆s,∆t)
T  lies in the interior of the feasible region 

of (32), we obtain that

AT
stAst(∆s,∆t)

T = AT
st f̃ , f̃ := f − Aω̄ ṽ ∈ RM .� (33)

On the other hand, let ũ := Eω̄ ṽ. Then ũ is a feasible point of (P), and

α

2
‖Aū − f‖2 +R(∇ū) = F(ū) � F(ũ) =

α

2
‖Aũ − f‖2 +R(∇ũ).� (34)

Meanwhile, since ũ = Eω̄ ṽ, applying lemma 3.7 gives (∇ũ)[ j] = 0, ∀ j ∈ ω̄c . Furthermore, 
from (31), we have ũ[i] = ṽ[k], ũ[i + 1] = ṽ[s], ũ[i + n] = ṽ[k]. The fact that ṽ[k] = ṽ[s] = ṽ[t] 
implies ũ[i] = ũ[i + 1] = ũ[i + n]. Thus, (∇ũ)[i] = 0. Note that i ∈ ω̄. Then 
R(∇ũ) � �ω̄ − 1 = R(∇ū)− 1. Substituting it into (34) yields

2
α

� ‖Aũ − f‖2 − ‖Aū − f‖2

[ (15) ] = ‖Aω̄ ṽ − f‖2 − ‖Aω̄ ūω̄ − f‖2

[ (ūω̄ = ṽ + ∆̃) ] = 2(∆s,∆t)AT
st f̃ − ‖Ast(∆s,∆t)

T‖2

� 2(∆s,∆t)AT
st f̃

[ (33) ] = 2‖Ast(∆s,∆t)
T‖2

� 2‖Ast‖2
2‖(∆s,∆t)

T‖2.

�

(35)

Recall that Aω̄ = AEω̄ and Ast is a submatrix of Aω̄. From lemma 3.10, we have

X Feng et alInverse Problems 34 (2018) 095007



19

‖Ast‖2 � ‖Aω̄‖2 = ‖AEω̄‖2 � ‖A‖2‖Eω̄‖2 �
√

N‖A‖2.� (36)

Combining (35) and (36) leads to

2
α

� 2N‖A‖2
2‖(∆s,∆t)

T‖2.

Finally, we get ‖(∆s,∆t)
T‖ � θ̃ , where

θ̃ :=
1√

αN‖A‖2
.� (37)

	 •	Case 2    � {k, s, t} ∩ A(ūω̄) = 1.
		 There are three subcases included.

Case (2.1).  Suppose that t ∈ A(ūω̄), k, s /∈ A(ūω̄). We decompose ūω̄ as: ūω̄ = v̌ + ∆̌, 
where v̌, ∆̌ ∈ Rnω̄,

v̌[ j] :=
{

ūω̄[t], j = k, s,
ūω̄[ j], otherwise;

and ∆̌[ j] :=




−∆t, j = k,
∆s −∆t, j = s,
0, otherwise.

Then ∆̌ is a solution of the following problem

min
∆∈Rnω̄

‖Aω̄(v̌ +∆)− f‖2

s.t. b · 1nω̄ � v̌ +∆ � b̄ · 1nω̄ ,
∆[ j] = 0, j ∈ Inω̄\{k, s}.

� (38)

Denote Aks as ((aω̄)k, (aω̄)s) ∈ RM×2, then ‖Aks‖2 �
√

N‖A‖2. Since k, s /∈ A(ūω̄), 
(−∆t,∆s −∆t)

T  is a solution of the following unconstrained problem:

min
(∆1,∆2)T∈R2

‖Aks(∆1,∆2)
T − ( f − Aω̄ v̌)‖2.

Therefore,

AT
ksAks(−∆t,∆s −∆t)

T = AT
ksf̌ , f̌ := f − Aω̄ v̌ ∈ RM .� (39)

Meanwhile, ǔ = Eω̄ v̌) is a feasible point of (P), and F(ū) � F(ǔ). Together with 
v̌[k] = v̌[s] = v̌[t], we have R(∇ū) � R(∇ǔ) + 1. Then, proceeding as (35) yields

2
α

� 2(−∆t,∆s −∆t)AT
ksf̌

(39)
� 2‖Aks‖2

2‖(−∆t,∆s −∆t)
T‖2 � 2N‖A‖2

2‖(−∆t,∆s −∆t)
T‖2.

Thus

‖(−∆t,∆s −∆t)
T‖ �

1√
αN‖A‖2

= θ̃.� (40)

Thanks to (−∆t,∆s −∆t)
T = H(∆s,∆t)

T , where H := [0,−1; 1,−1], we have

‖(−∆t,∆s −∆t)
T‖ � ‖H‖2‖(∆s,∆t)

T‖ =
2√

5 − 1
‖(∆s,∆t)

T‖.� (41)

Combining (40) and (41) yields ‖(∆s,∆t)
T‖ � θ̌ , where θ̌ :=

√
5−1
2 θ̃ . Clearly, θ̌ < θ̃ .
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Case (2.2).  Suppose that s ∈ A(ūω̄), k, t /∈ A(ūω̄). The proof is similar to the proof in Case 
(2.1).
Case (2.3).  Suppose that k ∈ A(ūω̄), s, t /∈ A(ūω̄). The proof is similar to the proof in Case 1.

	 •	Case 3    � {k, s, t} ∩ A(ūω̄) = 2.
Since there are two indices in {k, s, t} belonging to A(ūω̄), we need to consider if the values 

of ūω̄ in the two indices are equal. Thus, there are six subcases here.

Case (3.1).  Suppose that k, t ∈ A(ūω̄), s /∈ A(ūω̄), and ūω̄[k] = ūω̄[t]. Now, we have ∆t = 0. 
Thus, we decompose ūω̄ as ūω̄ = v̂ + ∆̂, where v̂, ∆̂ ∈ Rnω̄,

v̂[ j] :=
{

ūω̄[k], j = s,
ūω̄[ j], otherwise;

and ∆̂[ j] :=
{
∆s, j = s,
0, otherwise.

Then ∆̂ is a solution of the following problem

min
∆∈Rnω̄

‖Aω̄(v̂ +∆)− f‖2

s.t. b · 1nω̄ � v̂ +∆ � b̄ · 1nω̄ ,
∆[ j] = 0, j ∈ Inω̄\{s}.

Denote As as ((aω̄)s) ∈ RM×1, then ‖As‖2 �
√

N‖A‖2 . It follows that

∆s ∈ arg min
∆1∈R

‖As∆1 − ( f − Aω̄ v̂)‖2.

Thus,

AT
s As∆s = AT

s f̂ , f̂ := f − Aω̄ v̂ ∈ RM .� (42)

Similarly, û = Eω̄ v̂ is a feasible point of (P), and F(ū) � F(û). The fact that 
v̂[k] = v̂[s] = v̂[t] implies R(∇ū) � R(∇û) + 1, and then

2
α

� 2∆sAT
s f̂

(42)
� 2‖As‖2

2|∆s|2 � 2N‖A‖2
2|∆s|2.

Hence,

|∆s| �
1√

αN‖A‖2
= θ̃,

which indicates ‖(∆s,∆t)
T‖ � θ̃ .

	Case (3.2).  Suppose that k, s ∈ A(ūω̄), t /∈ A(ūω̄), and ūω̄[k] = ūω̄[s]. Then we have ∆s = 0. 
The proof is similar to the proof in Case (3.1).
	Case (3.3).  Suppose that s, t ∈ A(ūω̄), k /∈ A(ūω̄), and ̄uω̄[s] = ūω̄[t]. Then we have ∆s = ∆t . 
The proof is also similar to the proof in Case (3.1), and we have ‖(∆s,∆t)

T‖ � 2θ̃ .
	Case (3.4).  Suppose that k, t ∈ A(ūω̄), s /∈ A(ūω̄), and ūω̄[k] �= ūω̄[t]. Then we have 
|∆t| = |b − b̄|. Thus, ‖(∆s,∆t)

T‖ � θ̈ , where

θ̈ := |b − b̄|.� (43)

	Case (3.5).  Suppose that k, s ∈ A(ūω̄), t /∈ A(ūω̄), and ūω̄[k] �= ūω̄[s]. Then we have 
|∆s| = |b − b̄|. Thus, ‖(∆s,∆t)

T‖ � θ̈ .
	Case (3.6).  Suppose that s, t ∈ A(ūω̄), k /∈ A(ūω̄), and ūω̄[s] �= ūω̄[t]. Since s, t ∈ A(ūω̄) and 
ūω̄[s] �= ūω̄[t], we have
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‖(∆s,∆t)
T‖2 = (ūω̄[k]− ūω̄[s])2 + (ūω̄[k]− ūω̄[t])2

= (ūω̄[k]− b)2 + (ūω̄[k]− b̄)2

�
(b − b̄)2

2
,

Therefore ‖(∆s,∆t)
T‖ � θ̇, where

θ̇ :=

√
2|b − b̄|

2
.

Clearly, θ̇ < θ̈ .

	 •	Case 4    � {k, s, t} ∩ A(ūω̄) = 3.
In this case, we have |∆s| = |b − b̄| or |∆t| = |b − b̄|. Otherwise, we would have 

|∆s| = |∆t| = 0, which means ‖(∆s,∆t)
T‖ = 0. Thus, ‖(∆s,∆t)

T‖ � θ̈ , where θ̈ is defined 
in (43).

In summary of all cases above, we have ‖(∇u)[i]‖ � θ, where θ = min{θ̌, θ̇} is independ-
ent of f. This completes the proof.� □ 

By theorem 4.1, the following corollary is immediate.

Corollary 4.2.  The lower bound θ in theorem 4.1 is a decreasing function of α.

In the above theorem, we have proved that for any f ∈ RM, the solutions of (P) have a uni-
form lower bound for the �2 norm of nonzero discrete gradients. This conclusion suggests that 
our regularization applied to (P) yields restorations with neat edges. However, this property 
can not be extended to local minimizers of (P). Here we provide an example. Suppose that A 
has full column rank. From theorem 3.5, we know uf = (ATA)−1Af  is a local minimizer of (P). 
If the uniform lower bound ϑ > 0 for local minimizers exists, it is less than ‖(∇uf )[i]‖, i ∈ IN 
satisfying (∇uf )[i] �= 0. Let f → 0, then ϑ → 0, which leads to a contradiction.

4.2.  Piecewise-constant dependency on the parameter α

In actual application, given an observed image f, we shall adjust the parameter α in (P) fre-
quently to obtain a perfect restoration. The solution of (P) is greatly influenced by α, and the 
goal in this subsection is to find the relationship between them.

Let α ∈ [0,+∞). For better presentation, we define (Pα) as follows:

(Pα)

{
minu∈RN Fα(u) := α

2 ‖Au − f‖2 +R(∇u)
s.t. b · 1N � u � b̄ · 1N .

� (44)

It is worth to stress that there is no restriction on A in this subsection. Based on (Pα), we 
denote

J (α) := the optimal value of (Pα),� (45)

Ug(α) := {u ∈ RN : u solves (Pα)},� (46)

U l := {u ∈ RN : u is a local minimizer of (Pα)}.� (47)
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Clearly, J (α) = Fα(u), ∀ u ∈ Ug(α). Note that U l  is independent of α according to theorem 
3.5. That is, whatever α is, the local minimizer set of (Pα) is the same. Since a global mini-
mizer of (Pα) is a local minimizer, we have Ug(α) ⊆ U l.

Next we need to find the elements of Ug(α) from U l . Checking whether a local mini-
mizer is a global minimizer requires us to compare its energy value with the optimal value. 
The energy function Fα(u) of (Pα) consists of two terms: the fidelity term ‖Au − f‖2 and 
the regularization term R(∇u). Since ∀ u ∈ RN , (∇u)[N] = 0,R(∇u) has only N values: 
0, · · · , N − 1. Hence, we can partition U l  into at most N subsets according to the regulariza-
tion term values of its elements:

U l
k := U l ∩ {u ∈ RN : R(∇u) = k}, ∀ k ∈ I0

N−1.

It is possible that there exists 0 < k0 � N − 1 such that U l
k0
= ∅. Besides, U l

0 = {u ∈ RN : u 
solves (Q∅)} �= ∅ according to propositions 3.2 and 3.4.

It follows from Ug(α) ⊆ U l that

J (α) = min
u∈U l

Fα(u)

= min
k∈I0

N−1

min
u∈U l

k

α

2
‖Au − f‖2 + k

= min
k∈I0

N−1

α

2
(min

u∈U l
k

‖Au − f‖2) + k.

�

(48)

We highlight the local minimizers which have the minimal fidelity term value in each U l
k, and 

define the following sequences:

		 for k ∈ I0
N−1 satisfying U l

k �= ∅,

Ck := argmin
u∈U l

k

‖Au − f‖2, ck := min
u∈U l

k

‖Au − f‖2;

		 for k  =  −1, or k ∈ I0
N−1 satisfying U l

k �= ∅,

Ck := ∅, ck := +∞.

We can see that C0 = U l
0 �= ∅, and c0 < +∞. Each Ck is formed by all of the local minimizers 

whose fidelity term values are ck and regularization term values are k. For any k ∈ I0
N−1, we 

have Ck ⊆ U l
k, and ∀ u ∈ Ck,Fα(u) = α

2 ck + k. Thus, for any k ∈ I0
N−1, we define

Jk(α) :=
ck

2
α+ k = Fα(u), ∀ u ∈ Ck.� (49)

Each Jk(α),α ∈ [0,+∞) is a linear function, with ck
2  as its slope. Thus, combining (48) and 

(49) gives

J (α) = min
k∈I0

N−1

Jk(α), Ug(α) ⊆
⋃

k∈I0
N−1

Ck.
� (50)

Remark 4.3.  It can be checked by theorem 3.16 that if A has full column rank and f ∈ RM\Z  
with Z defined in (29), then �Ck = 1.

Now, we have determined the optimal value and optimal solutions from the local minimiz-
ers of (Pα). And then we need to solve the above optimization problem to obtain Ug(α). For 
better understanding, we present an example at first.
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Example 4.4.  We set N  =  6 and c0 = 2, c1 = 1.6, c2 = 1.2, c3 = 0.5, c4 = 0.25, c5 = 0. 
Then Jk(α) for k ∈ I0

5 can be obtained by (49). We show the plots of Jk(α), k ∈ I0
5 in figure 3. 

Comparing all these lines, it is straightforward to see that J (α) is a piecewise linear function:

J (α) =



J0(α), α ∈ [0, 4),
J3(α), α ∈ [4, 8),
J5(α), α ∈ [8,+∞).

From figure 3, we can see that J (α) has several turning points: A(0, 0), B(4, 4), C(8, 5). In 
terms of the abscissa values of these turning points, the positive axis [0,+∞) is partitioned 
into some subintervals. In each subinterval, J (α) coincides with one of {Jk(α)}, e.g. Jk0(α); 
along the starting point of this subinterval towards the right, once Jk0(α) intersects with anoth-
er line, the intersection is a turning point of J (α). Notice that there are three lines intersecting 
at α = 8, and the line with minimal slope coincides with J (α) when α � 8.

According to example 4.4, J (α),α ∈ [0,+∞) is a piecewise linear function, and the key 
point is to find the turning points of J (α).

Let k0 ∈ IN−1. If there exists k1 satisfying 0 � k1 < k0 and ck1 � ck0, then we have

Jk1(α) =
α

2
ck1 + k1 <

α

2
ck0 + k0 = Jk0(α),

which implies Jk0(α) could never equal to J (α). Hence, the optimal value J (α) is the mini-
mum among Jk(α) whose indices are in

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

α
 

 
J

0
(α) = (2/2)*α + 0

J
1
(α) = (1.6/2)*α + 1

J
2
(α) = (1.2/2)*α + 2

J
3
(α) = (0.5/2)*α + 3

J
4
(α) = (0.25/2)*α + 4

J
5
(α) = 5

B(4,4)

C(8,5)

A(0,0)

Figure 3.  Plots of Jk, k ∈ K  in example 4.4. The segments marked as bold is the plot 
of J (α).
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K := ({k ∈ I0
N−1 : ck < cj, ∀ − 1 � j < k},<).

Definitely, 0 ∈ K. The largest index in K is denoted by K, i.e. K := max{k : k ∈ K}. Then {ck}k∈K  
is strictly decreasing and cK = min{ck, k ∈ I0

N−1}. Consequently, we have ∀α ∈ [0,+∞),

J (α) = min
k∈K

Jk(α), K(α) := argmin
k∈K

Jk(α), Ug(α) =
⋃

k∈K(α)

Ck.
� (51)

Note that the turning points are always generated from intersections of some lines in 
{Jk(α), k ∈ K}. For any k, j ∈ K, k �= j,

Jk(α) = Jj(α) ⇐⇒ α = φ(k, j), where φ(k, j) :=
2( j − k)
ck − cj

.

Let k ∈ K. Given α � 0, J (α) = Jk(α) if and only if Jk(α) � Jj(α), ∀ j ∈ K, j �= k , which 
is equivalent to α2 ck + k � α

2 cj + j, ∀ j ∈ K, j �= k. Since {ck}k∈K  is strictly decreasing, we 
have if j  >  k, then cj < ck and

Jk(α) � (<)Jj(α), ∀ j ∈ K, j > k ⇐⇒ α � (<) min
j∈K,j>k

φ(k, j);� (52)

if j  <  k, then cj > ck and

Jk(α) � (<)Jj(α), ∀ j ∈ K, j < k ⇐⇒ α � (>) max
j∈K,j<k

φ(k, j).� (53)

Based on above, we give the following definition.

Definition 4.5.  The parameters {αt}, {kt} are defined iteratively, initialized with 
α0 = 0,Λ0 = {0}, k0 = 0:

∀ t = 1, 2, · · ·



αt := minj∈K,j>kt−1 φ(kt−1, j),
Λt := { j : j ∈ K, j > kt−1,φ(kt−1, j) = αt},
kt := max{ j : j ∈ Λt}.

� (54)

Owing to the finiteness of K, the iteration above ends in finite steps. The number of elements 
in {αt} is denoted by T.

Without loss of generality, we denote k−1:  =  −1 and αT+1 := +∞. The index t 
refers to the index of the turning point. For t ∈ I0

T , αt is the abscissa of a turning point; 
Λt  includes all of the indices of Jk(α) which intersect with J (α) at this turning point; 
among {Jk(α), k ∈ Λt},Jkt(α) has the minimal slope and coincides with J (α) from this 
turning point to the next one. Furthermore, {( αt,Jkt(αt) ), t ∈ I0

T} are all of the turn-
ing points of J (α) (see theorem 4.6). For example 4.4, we can verify that, T  =  2 and 
(α0,Jk0(α0)) = (0, 0), (α1,Jk1(α1)) = (4, 4), (α2,Jk2(α2)) = (8, 5).

Theorem 4.6.  For the problem (Pα), its optimal value J (α) and global minimizer set 
Ug(α) satisfy: ∀ t ∈ I0

T ,

J (α) = Jkt(α), ∀α ∈ [αt,αt+1), Ug(α) =

{Ckt , α ∈ (αt,αt+1),⋃
k∈Λt

Ck, α = αt.

�

(55)

Proof.  The proof is divided into three steps.

	 •	�step 1: show that {kt}t∈IT  strictly increases, and kT = K
		 This is obvious from the definition of {kt}.
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	 •	�step 2: show that {αt}t∈IT  strictly increases, and satisfies ∀ t ∈ IT ,αt = φ(kt−1, kt), and

max
j∈K,j<kt

φ(kt, j) = αt = min
j∈K,j>kt−1

φ(kt−1, j)

Let t ∈ IT . According to the definition of αt, we have

αt = φ(kt−1, kt) =
2(kt − kt−1)

ckt−1 − ckt

<
2(kt+1 − kt−1)

ckt−1 − ckt+1

.� (56)

Here we give an inequality which can be easily verified: if a, b, c, d > 0 and a < c, b < d, b
a < d

c, 
then

d − b
c − a

>
b
a

.� (57)

Since {kt} is strictly increasing and {ck} is strictly decreasing, we have kt − kt−1 < kt+1 − kt−1 
and ckt−1 − ckt < ckt−1 − ckt+1. Thus, from (56), we obtain

αt+1 = φ(kt, kt+1) =
2(kt+1 − kt)

ckt − ckt+1

= 2
(kt+1 − kt−1)− (kt − kt−1)

(ckt−1 − ckt+1)− (ckt−1 − ckt)
>

2(kt − kt−1)

ckt−1 − ckt

= αt,

which indicates that {αt} is strictly increasing.
Assume that there exists j ∈ { j ∈ K : kt−1 < j < kt}, then

αt =
2(kt − kt−1)

ckt−1 − ckt

�
2( j − kt−1)

ckt−1 − cj
.

Also, we introduce an inequality like (57): for a, b, c, d > 0 with a > c, b > d, b
a � d

c, then

d − b
c − a

�
b
a

.� (58)

Hence, for any j ∈ { j ∈ K : kt−1 < j < kt},

φ(kt, j) =
2( j − kt)

ckt − cj
= 2

( j − kt−1)− (kt − kt−1)

(ckt−1 − cj)− (ckt−1 − ckt)
�

2(kt − kt−1)

ckt−1 − ckt

= αt.

As αt = φ(kt, kt−1), we have αt = max{φ(kt, j) : j ∈ K, kt−1 � j < kt}.
Similarly,

αt−s = max{φ(kt−s, j) : j ∈ K, k(t−s−1) � j < k(t−s)}, s = 1, · · · , t − 1.

Since {αt} is strictly increasing, we have αt > αt−s, s = 1, · · · , t − 1. Thus

αt = max
j∈K,j<kt

φ(kt, j).

	 •	�step 3: prove (55)
		 Take any t ∈ I0

T . From step 4, ∀α ∈ (αt,αt+1),

α < αt+1 = min
j∈K,j>kt

φ(kt, j)
(52)
=⇒ Jkt(α) < Jj(α), ∀ j ∈ K, j > kt;

α > αt = max
j∈K,j<kt

φ(kt, j)
(53)
=⇒ Jkt(α) < Jj(α), ∀ j ∈ K, j < kt.

Thus, Jkt(α) < Jj(α), ∀ j ∈ K, j �= kt. Then, we have

∀ t ∈ I0
T , J (α) = Jkt(α), Ug(α) = Ckt , ∀α ∈ (αt,αt+1).� (59)
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By (51), we have

J (0) = min
k∈K

Jk(0) = min
k∈K

k = J0(0) = 0.� (60)

Take any t ∈ IT . Similarly, we have

αt = min
j∈K,j>kt−1

φ(kt−1, j)
(52)
=⇒ Jkt−1(αt) � Jj(αt), ∀ j ∈ K, j > kt−1;

αt = max
j∈K,j<kt

φ(kt, j)
(53)
=⇒ Jkt(αt) � Jj(αt), ∀ j ∈ K, j < kt.

Since αt = φ(kt−1, kt), we have Jkt−1(αt) = Jkt(αt) � Jj(αt), ∀ j ∈ K. Moreover, it follows 
from the definition of Λt  that ∀ k ∈ Λt,Jk(αt) = Jkt(αt) < Jj(αt), ∀ j ∈ K, j /∈ Λt . Therefore, 
we have

∀ t ∈ I0
T , J (αt) = Jkt(αt), Ug(αt) =

⋃
k∈Λt

Ck.� (61)

Finally, combining (59) and (61) yields (55).� 

From the proof, we can see that {kt} is increasing and {ck} is decreasing. Thus, the ele-
ments in Ug(α) has decreasing fidelity term values and growing regularization term values 
when α → +∞. As J (α) is a piecewise linear function with slopes equal or greater than 0 in 
each subinterval, the following statement is obvious.

Corollary 4.7.  J (α),α ∈ [0,+∞) is piecewise linear, continuous and increasing, and 
Ug(α),α ∈ [0,+∞) is piecewise constant.

Recalling (1), the true image u  is not always a solution of (Pα). However, we can estimate 
the distance between u  and the solutions of (Pα).

Proposition 4.8.  Let α > αT . For (Pα), its global minimizer set Ug(α) satisfies

Ug(α) = arg min
b·1N�u�b̄·1N

‖Au − f‖2.� (62)

Furthermore, if there exists δ > 0 such that ATA − δI is positive semi-definite, then for any 
u ∈ X, where X is the feasible region of (Pα), we have

δ

2
‖u − ū‖2 � ‖Au − f‖2, ∀ ū ∈ Ug(α).� (63)

Especially, when u = u, where u  is the true image, the right term in the inequality above is 
the noise level.

Proof.  From theorem 4.6, we can see that Ug(α) = CK , ∀α > αT . Since

cK = min{ck : k ∈ I0
N−1}

= min
k∈I0

N−1

min
u∈U l

k

‖Au − f‖2

= min
u∈U l

‖Au − f‖2

[ theorem 3.5 ] = min{‖Au − f‖2 : u solves (Qω) , ω ⊆ IN}.

It follows from the definition of (Qω) in (5) that
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cK = min
b·1N�u�b̄·1N

‖Au − f‖2.

Then,

Ug(α) = CK = arg min
b·1N�u�b̄·1N

‖Au − f‖2, ∀α > αT .� (64)

Denote IX(u) as the indicator function of X, which is the feasible region of (Pα). Then, 
we have

Ug(α) = arg min
u∈RN

G(u) := ‖Au − f‖2 + IX(u).� (65)

According to proposition 2.3, ∀ ū ∈ Ug(α), 0 ∈ ∂G(ū) = 2AT(Aū − f ) + ∂IX(ū), followed by

−2AT(Aū − f ) ∈ ∂IX(ū).

Since X is closed and convex, by proposition 2.4, we have

〈2AT(Aū − f ), v − ū〉 � 0, ∀ v ∈ X.� (66)

Denote H(u) := ‖Au − f‖2. Note that H(u) is strongly convex since ATA − δI is positive 
semi-definite. Then for any u ∈ X,

H(u) � H(ū) + 〈AT(Aū − f ), u − ū〉+ δ

2
‖u − ū‖2

[ (66) ] � H(ū) +
δ

2
‖u − ū‖2

�
δ

2
‖u − ū‖2.

Thus, δ2‖u − ū‖2 � ‖Au − f‖2.� □ 

According to proposition 4.8, when A has full column rank and α is large, u  is sufficiently 
close to the solutions of (Pα) as long as the noise level ‖Au − f‖2 is small enough.

5.  Experiments

In this section, we present some experiments to demonstrate our main theoretical analyses, 
including:

		� (a) � referring to theorem 3.5, the set of local minimizers is equivalent to the set of solu-
tions of (Qω), which is independent of α; 

		� (b) � referring to theorem 3.16, if A has full column rank, then any two local minimizers of 
(P) practically have different energy values; 

		� (c) � referring to theorem 4.6, for problem (Pα) in (44), its optimal value J (α) is piece-
wise linear, and its global minimizer set Ug(α) is piecewise constant; moreover, if α 
is large enough, the distance between the true image u  and the solutions of (Pα) is 
bounded by the noise level ‖Au − f‖2;
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		� (d) � referring to theorem 4.1, there exists a uniform lower bound for the �2 norm of nonzero 
entries in ∇ū, where ū is an arbitrary solution of (P): the lower bound is independent 
of the observed image f, and it is decreasing when the parameter α is increasing.

Now, we provide the configurations of our experiments. All of the digits are accurate to six-
teen decimal places, and for better readability, they are showed in two decimal places. Since 
it is an NP-hard problem to find the global minimizers of (P), we use images in small size. 
In part(a), we use a 6 × 4 test image; in part(b)(c)(d), we use 3 × 3 images. We adopt a 3 × 3 
Gaussian blurring kernel (fspecial(‘gaussian’)), and preprocess it to be a matrix A. Clearly, A 
has full column rank, and ATA  −  0.21I is positive semi-definite.

When α and f are given, all local minimizers of (P) are acquired by solving all of the prob-
lems in {(Qω) : ω ⊆ IN}. There are 2N problems in it. These bounded-variable least square 
problems (Qω) are transformed into (Qω) and then solved by a combinational search. Due 
to the fact that different ω  may have the same block partition and other factors, some (Qω) 
have the same solution. Thus, the number of local minimizers of (P) is usually less than 2N. 
Moreover, the global minimizers of (P) are acquired by a search among all local minimizers.

		 (a) � In this part, we give an example with 6 × 4 image. We denote α = 100, b = −∞,
b̄ = +∞ and

u =




1 1 0 0
1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1
0 0 1 1




, f = Au + η =




1.00 0.89 0.11 0.01
1.02 0.90 0.11 0.01
0.87 0.85 0.20 0.11
0.12 0.22 0.81 0.88
0.00 0.09 0.89 1.01
−0.01 0.14 0.91 1.02




,

�

(67)

where η ∈ R3×3 is a random noise with ‖η‖2 = 0.0038.

After calculation, we obtain 1651 657 local minimizers, which are independent of 
α. Among all of the local minimizers, according to the objective function value, we 
show the global minimizer ū, the best non-global minimizer ũ, the worst non-global 
minimizer û as follows:

ū =



1.00 1.00 0.01 0.01
1.00 1.00 0.01 0.01
1.00 1.05 0.01 0.01
0.01 0.01 1.00 1.00
0.01 0.01 1.00 1.00
0.01 0.01 1.00 1.00




,

ũ =


1.01 1.01 0.01 0.01
1.01 1.00 0.01 0.01
0.96 1.07 0.01 0.01
0.01 0.01 1.00 1.00
0.01 0.01 1.00 1.00
0.01 0.01 1.00 1.00




,

û =


0.507 0.507 0.507 0.507
0.507 0.507 0.507 0.507
0.505 0.505 0.505 0.505
0.505 0.505 0.505 0.505
0.505 0.507 0.507 0.505
0.507 0.507 0.507 0.507




.

We can see that ū, ũ are close to u, whereas û is totally different. Moreover, we com-
pare all the local minimizers with ū. See figure 4. Their regularization term values 
concentrate on 7, 8, . . . , 21, while R(∇ū) = 9. Roughly speaking, the energy values 
of local minimizers decrease, when their regularization term values increase. Besides, 
only a small subset of the local minimizers is around the global minimizer ū, but there 
are still 9408 local minimizers nearby ū within 0.1 error.
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		 (b)	� In this part, we denote α = 888, b = 0, b̄ = 1 and

u =




1 0.5 1
0.5 0 0.5
1 0.5 1


 , f = Au + η =




0.82 0.60 1.04
0.41 0.20 0.58
0.75 0.53 0.91


 ,� (68)

where η ∈ R3×3 is a random noise with ‖η‖2 = 0.055. The noise here is much larger 
than previous example.
Then, we compute the local minimizers of (P), and there are only 140 local mini-
mizers. We sort these local minimizers in terms of their energy values, and their 
energy values are shown in table 1. One can see that different local minimizers have 
different values.
Furthermore, we test other 1000 sets of random f . In all tests, different local mini-
mizers have different energy values.

		 (c)	� In this part, we also denote f  as in (68). The parameter α is a variable here. Recall 
that the local minimizers of (Pα),α ∈ [0,+∞) is independent of α. Then the local 
minimizer set of (Pα),α ∈ [0,+∞) is the same as the one of (P888), that is, the 140 
local minimizers shown in part (a).
We partition these local minimizers into 9 subsets in terms of their regularization 
term values. In each subset, we find the ones having the minimal fidelity term value, 
and obtain {Ck}I0

8
, and

Figure 4.  The distribution of all local minimizers in part(a). The global minimizer ū 
is centered at the origin. Each other point represents a local minimizer u. The distance 
between the point and the origin equals ‖u − ū‖; the color of this point illustrates its 
energy value F(u). The whole space is divided into 24 sections, two of which are 
labelled as 0, 6. Points in the same section have the same regularization term value. 
That is, if the point is in section labeled 0, then R(∇u) = 0. The regularization term 
value increases along the counterclockwise direction.
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Table 2.  The values of all local minimizers of (P) when α = 888 and f is defined in (68). Each table cell contains the index of a local minimizer, 
followed by its energy value.

NO. value NO. value NO. value NO. value NO. value NO. value NO. value NO. value NO. value NO. value

1 15.45 15 56.65 29 82.17 43 122.47 57 156.48 71 175.87 85 190.48 99 199.40 113 219.88 127 237.00
2 25.71 16 64.01 30 82.75 44 125.17 58 158.47 72 176.35 86 190.75 100 201.26 114 224.77 128 237.08
3 34.10 17 64.41 31 88.07 45 127.54 59 159.38 73 177.30 87 191.08 101 203.24 115 225.49 129 237.95
4 38.57 18 64.65 32 91.80 46 129.32 60 159.51 74 177.34 88 191.46 102 203.72 116 226.39 130 238.09
5 39.57 19 68.45 33 92.80 47 130.46 61 159.83 75 177.42 89 192.87 103 209.40 117 227.73 131 238.12
6 41.25 20 68.69 34 93.36 48 134.63 62 162.19 76 177.48 90 192.98 104 209.42 118 229.78 132 238.37
7 41.34 21 69.03 35 93.84 49 137.74 63 163.17 77 178.00 91 193.38 105 211.40 119 230.88 133 238.42
8 42.39 22 69.33 36 94.75 50 137.83 64 167.87 78 179.64 92 194.97 106 212.57 120 231.87 134 238.63
9 42.50 23 69.37 37 99.12 51 138.35 65 169.91 79 188.39 93 196.77 107 213.09 121 232.02 135 239.22
10 45.06 24 71.64 38 100.81 52 138.82 66 171.96 80 189.47 94 196.85 108 213.39 122 232.14 136 239.47
11 46.20 25 72.63 39 116.53 53 148.47 67 172.91 81 189.51 95 197.41 109 213.42 123 233.01 137 239.97
12 46.23 26 76.20 40 120.23 54 150.56 68 173.46 82 189.97 96 197.67 110 214.36 124 234.06 138 240.59
13 51.56 27 76.31 41 120.97 55 153.40 69 173.66 83 190.05 97 198.17 111 214.50 125 234.99 139 241.58
14 55.87 28 80.84 42 121.64 56 155.67 70 174.29 84 190.20 98 198.75 112 215.12 126 236.11 140 241.78
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{ck}I0
8
= {0.54, 0.52, 0.39, 0.22, 0.15, 0.08, 0.07, 0.04, 0.02}.

		 Each Jk(α), k ∈ I0
8 is defined as (49), and their plots are shown in figure 5. Minimizing all 

of Jk(α), k ∈ I0
8 as (51), we have

J (α) =





J0(α) = 0.54α, α ∈ [0, 18.81),
J3(α) = 0.22α+ 3, α ∈ [18.81, 26.81),
J4(α) = 0.15α+ 4, α ∈ [26.81, 32.53),
J5(α) = 0.08α+ 5, α ∈ [32.53, 88.96),
J8(α) = 0.02α+ 8, α ∈ [88.96,+∞),

� (69)

		 and

Ug(α) =





{
[

0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
]T}, α ∈ [0, 18.81),

{
[

0.65 0.65 0.79 0.65 0 0.79 0.79 0.79 0.79
]T}, α ∈ (18.81, 26.81),

{
[

0.91 0.32 0.81 0.64 0 0.81 0.81 0.81 0.81
]T}, α ∈ (26.81, 32.53),

{
[

0.91 0.34 0.74 0.59 0 0.74 1 0.74 0.74
]T}, α ∈ (32.53, 88.96),

{
[

0.91 0.33 0.84 0.61 0 0.50 1 0.56 1
]T}, α ∈ (88.96,+∞),

�
(70)

		 with Ug(α) equal to the union of its left limit and right limit on each breakpoint.
		 On the other hand, by (54), one has T  =  4, and

{kt}I0
4
= {0, 3, 4, 5, 8}, {αt}I0

4
= {0, 18.81, 26.81, 32.53, 88.96},
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Figure 5.  Plots of Jk(α), k ∈ I0
8 defined in (49). The segments marked as bold is the 

plot of J (α).

X Feng et alInverse Problems 34 (2018) 095007



32

which coincide (69) and (70). Furthermore, we set α = 10, 20, 30, 40, 90 respec-
tively, and compute the corresponding global minimizers, in line with the expression 
of Ug(α) in (50). Thus, we can see that J (α) is piecewise linear, and Ug(α) is 
piecewise constant.
When α = 888 > 88.96, we verify that the distance between u in (68) and Ug(888) 
is bounded by the noise level:

0.5 × 0.21 × ‖u − Ug(888)‖2 = 0.008 < 0.055 = ‖η‖2.

		 (d)	�  In this part, we need to verify the uniform lower bound of the �2 norm of nonzero 
gradients of the solutions to (P), defined in (30). Since this bound is related to param
eter α, we rename it as θ(α):

θ(α) := min{
√

5 − 1
2
√
αN‖A‖2

,

√
2|b − b̄|

2
}.

To the end, we generate 1000 sets of f  from [0, 1]3×3 randomly, and choose several 
α: 10, 25, 50, 75, 100, 250, 500.
Given any f k, k = 1, · · · , 1000 and any chosen α, we compute the solution of (P), 
and then figure out the minimal nonzero gradients of the solution, denoted by γk(α):

γk(α) := min{‖(∇ū)[i]‖ : i ∈ σ(∇ū), ū solves (P)}.

In figure 6(a), we show the plots of γk(α), k = 1, · · · , 5. We find that each γk(α) 
is different, and they are roughly decreasing when α is increasing. Owing to that 
the solution set of (Pα) for each fk is piecewise constant in terms of α, each γk(α) 
is actually piecewise constant too. The line in blue represents the theoretical lower 
bound θ(α). One can see that θ(α) is less than all of the γk(α), k = 1, · · · , 5.

For each α, we compute the minimal nonzero gradients among all of the 1000 γk(α):

θ∗(α) := min{γk(α), k = 1, · · · 1000},
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Figure 6.  Test for the lower bound.
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		 and show it in figure 6(b). We can see that it is greater than the theoretical lower bound 
θ(α). This fact verifies the reliability of our theoretical lower bound.

6.  Conclusions and discussion

The �0 gradient regularized model has showed its superiority in image restoration. In this paper, 
we studied the local and global minimizers of this model with box constraints. Compared to 
previous analyses [21, 22, 36] for sparse signal recovery model, the difficulty caused by the 
gradient operator in model (3) is resolved by the introduction of the block image, which is 
defined in section 3.2. Besides, the bounded-variable least square problems also contribute 
greatly to the whole discussion. The numerical examples were provided to demonstrate our 
theoretical analyses. Our results give a comprehensive understanding of this image restoration 
model, and are conductive to the design of new efficient algorithms to solve it.

Furthermore, the results in this paper can be extended in several ways.

	 •	�The box constraints in model (3) can be replaced by the more general box constraints: 
b � u � b̄, where b, b̄ ∈ RN.

	 •	�The regularization term R(∇u) is isotropic in model (3). It can be replaced by anisotropic 
ones, and the proofs need some modifications.

	 •	�When the �2 norm in the fidelity term is replaced by any other continuous functions, most 
results, such as theorems 3.5 and 4.6, still hold.
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