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Abstract

Text-to-SQL parsing allows non-expert users001
to obtain information from databases using nat-002
ural language. There are several important yet003
under-explored objectives in this field: interac-004
tivity, compositionality, and efficiency. In this005
paper, we present EHR-SeqSQL, a sequential006
text-to-SQL dataset, specifically designed for007
Electronic Health Record (EHR) databases. We008
demonstrate the benefits of multi-turn setting009
over single-turn setting with respect to composi-010
tionality, and provide a new data split and an ad-011
ditional test set to evaluate compositional gen-012
eralization. Furthermore, we introduce unique013
special tokens in SQL queries to enhance exe-014
cution efficiency. By addressing all these objec-015
tives above, our research aims to bridge the gap016
between industry needs and academic research017
in the text-to-SQL domain.018

1 Introduction019

Text-to-SQL provides a practical opportunity for020

non-experts to explore databases, even without021

prior knowledge of the database operations. Elec-022

tronic Health Records (EHRs) are large-scale rela-023

tional databases (RDBs) storing vast and compre-024

hensive patient data (Johnson et al., 2016; Pollard025

et al., 2018). Medical experts often ask questions026

that require highly complex reasoning across mul-027

tiple tables and access to a vast number of records028

within a single query (Lee et al., 2022). Handling029

such complexity in large-scale databases remains030

a significant challenge in the current text-to-SQL031

research (Li et al., 2023).032

Several efforts have been made to construct text-033

to-SQL datasets for EHRs. MIMIC-SQL (Wang034

et al., 2020) is the first text-to-SQL dataset that tar-035

gets a subset of MIMIC-III (Johnson et al., 2016),036

one of the widely-used open-source EHR databases,037

consisting of 26 tables. DrugEHRQA (Bardhan038

et al., 2022) provides the first question answering039

dataset that incorporates both structured tables and040

Figure 1: EHRSQL vs. EHR-SeqSQL EHR-SeqSQL
is a dataset that adapts the single-turn setting of
EHRSQL into a multi-turn setting. The SQL queries in
EHR-SeqSQL include the special tokens to refer to the
previous context, which can be executed in the database
with simple post-processing.

unstructured notes from EHRs. EHRSQL (Lee 041

et al., 2022) is a dataset curated based on a survey 042

from various medical experts, reflecting the diverse 043

information needs of the actual medical field. 044

Still, there are important yet under-explored ob- 045

jectives for the practical application of text-to-SQL 046
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models. First, the text-to-SQL system should047

incorporate interactivity. Most of the existing048

text-to-SQL research assumes a single-turn sce-049

nario, whereas the process of exploring information050

in real-world situations is often continuous (Iyyer051

et al., 2017; Yu et al., 2019a,b). For better user052

usability, it is desirable for information retrieval053

solutions to be interactive as well. Second, the054

text-to-SQL system should learn composition-055

ality. Realistically, datasets cannot capture all the056

varied needs of users. Therefore, it is crucial that057

the model can handle a wider range of queries es-058

pecially when these unseen queries comprise com-059

ponents (i.e. sub-queries) that the model has explic-060

itly seen during training. This is the compositional061

generalization ability, which is quite challenging062

even for the highly proficient language models (Qiu063

et al., 2022). Lastly, the text-to-SQL system064

should embrace efficiency. Real-world databases065

are often significantly larger than academic ones066

(Hazoom et al., 2021). Efficient query execution is067

crucial, given the magnitude of the databases in ac-068

tual hospitals (e.g. the original MIMIC-III dataset069

includes the medical history of 46k patients). This070

becomes even more significant when we consider071

a real-time interaction scenario between a text-to-072

SQL model and a user (Li et al., 2023).073

In this work, we introduce EHR-SeqSQL which074

addresses all three objectives. Our contribution is075

as follows:076

• Construction of a sequential text-to-SQL077

dataset for exploring EHR data: As illus-078

trated in Figure 1, EHR-SeqSQL is designed for079

multi-step interactions, built by decomposing080

the diverse and complex queries of EHRSQL081

and setting each question as the interaction goal.082

To the best of our knowledge, EHR-SeqSQL is083

the first multi-turn text-to-SQL dataset target-084

ing structured medical records. We make our085

dataset public to encourage future research.086

• Validating the effectiveness of EHR-SeqSQL087

in the compositional generalization: We de-088

signed two experiments to evaluate the com-089

positional generalization ability. Through our090

experiments, it was found that decomposing091

questions enables the model to better general-092

ize to unseen interaction goals during training.093

Furthermore, it demonstrated the potential for094

generalization on longer sequences not encoun-095

tered during training.096

• Proposing special tokens for SQL: We intro- 097

duce a highly effective way to enhance query 098

execution efficiency in multi-step interactions 099

with the use of the novel special tokens for SQL. 100

We observed that these tokens significantly in- 101

crease time efficiency during query execution 102

as well as improve the performance of text-to- 103

SQL models. Moreover, the efficiency grows 104

significantly as the database size increases. 105

2 Related Work 106

2.1 Multi-turn Text-to-SQL 107

There are only a few datasets that are specifically 108

designed for context-dependent text-to-SQL tasks. 109

ATIS (Hemphill et al., 1990) was the first to in- 110

clude a series of user questions aimed at interacting 111

with a flight database. Recently, Yu et al. (2019a,b) 112

proposed cross-domain context-dependent text-to- 113

SQL datasets, based on the questions from Spi- 114

der (Yu et al., 2018) serving as interaction goals. 115

While their motivation aligns closely with ours, 116

their questions and the grounding databases are 117

predominantly simplistic. In real-world scenarios, 118

however, users typically have much more complex 119

requirements, and databases often contain a sig- 120

nificantly larger number of rows (Lee et al., 2022; 121

Li et al., 2023). EHR-SeqSQL is designed upon 122

this objective, based on the questions collected 123

from an actual survey and grounding the real-world 124

database, MIMIC-III (Johnson et al., 2016). To the 125

best of our knowledge, this is the first multi-turn 126

text-to-SQL dataset in the healthcare domain. 127

2.2 Compositional Generalization 128

Compositional generalization, a major challenge 129

in semantic parsing, enables a model to manage di- 130

verse and unfamiliar user queries using components 131

recognized from training. It is typically achieved by 132

creating different training and test splits of interest. 133

Lake and Baroni (2018) discovered that sequence- 134

to-sequence models struggle to learn compositional 135

structures, as demonstrated through their primi- 136

tive and length splits. More recently, template 137

splits (Finegan-Dollak et al., 2018) and TMCD 138

splits (Shaw et al., 2020) were proposed to eval- 139

uate compositional generalization on text-to-SQL 140

datasets. In this work, we further extend the con- 141

cept of compositional generalization into an in- 142

teractive multi-turn setting within the text-to-SQL 143

domain. 144
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Figure 2: Overview of the dataset construction process. We transform a single text-SQL pair from EHRSQL
into multi-turn text-SQL pairs for EHR-SeqSQL. We first decompose the original SQL query into subqueries in
Stage 1 and 2, then apply the BPE algorithm to merge frequent subquery patterns in Stage 3. We then generate
natural language questions (NLQ) for each subquery based on manually created NLQ templates. Lastly, NLQs are
paraphrased using ChatGPT to create the final dataset.

2.3 SQL Efficiency145

In domains that utilize large and complex databases146

such as EHRs, the efficiency of SQL becomes147

increasingly critical. The majority of existing148

research focuses on improving SQL efficiency149

through post-hoc query optimization (Zhou et al.,150

2021; Li et al., 2023) or efficient database index-151

ing (Zhou, 2022). In contrast to these approaches,152

we propose special tokens for SQL that specifically153

target SQL efficiency in a multi-turn setting. Our154

approach not only improves execution efficiency155

but also enhances performance, which is further156

discussed in Section 5.3.157

3 Data Construction158

We aim to convert text-SQL pairs of EHRSQL to159

multi-turn text-SQL pairs that embrace interactivity160

and query execution efficiency. Note that EHRSQL161

contains text-SQL samples for two different EHR162

sources, namely MIMIC-III (Johnson et al., 2016)163

and eICU (Pollard et al., 2018). We use the MIMIC-164

III version of EHRSQL, given its complex schema165

and wider adoption by the NLP community.166

Our data construction process consists of two 167

parts: SQL decomposition and natural language 168

question (NLQ) generation. In SQL decomposition, 169

we first break down each SQL query of EHRSQL 170

into a sequence of subqueries to create more gran- 171

ular meanings of queries. Next, we create a cor- 172

responding NLQ for each subquery. Compared to 173

NLQ decomposition, SQL decomposition enables 174

systematic breakdown of a question without any 175

loss of information, due to the strict, rule-based na- 176

ture of SQL syntax. The overall process is shown 177

in Figure 2 and we elaborate each step in the fol- 178

lowing sections. 179

3.1 SQL Decomposition 180

Stage 1. Decomposing Nested Query As SQL 181

queries in EHRSQL follow a nested structure, we 182

decompose the EHRSQL queries using their nested 183

structure. In this way, subqueries can contain more 184

granular meanings of the original query, which in 185

turn allows us to create multiple turns of interac- 186

tion. The inner query is asked first, and then a 187

question corresponding to the outer query is asked 188

while referring to the result of the inner query. This 189
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ATIS SParC CoSQL EHR-SeqSQL
# of Interactions 1,658 4,298 3,007 9,195

# of Turns 11,653 12,726 15,598 31,669
Avg. # of Turns 7.0 3.0 5.2 3.5

Avg. # of Tables / DB 27 5.1 5.1 26
Domain Airline Cross Cross Medical

Compositional Split ✗ ✗ ✗ ✓

SQL Execution Efficiency ✗ ✗ ✗ ✓

Table 1: Comparison of EHR-SeqSQL with other multi-turn text-to-SQL datasets.

decomposition approach guarantees the executabil-190

ity of queries at each turn and allows anaphoric191

expressions in the subsequent turns.192

Meanwhile, we devised two special tokens for193

SQL to leverage the previous turn’s subqueries194

and results: prev_query and prev_result.195

These tokens are accompanied by a specific turn196

index (e.g. prev_query1, prev_result2).197

Specifically, prev_query token refers to the gen-198

erated query of the specified turn, whereas the199

prev_result token refers to the execution re-200

sult of the specified turn. Two tokens are substi-201

tuted with either the referred query or its execution202

result before execution. The effectiveness of these203

tokens is later discussed in Section 5.3.204

Stage 2. Decomposing SQL Clauses After205

Stage 1, multi-turn questions are obtained, where206

each can be asked with reference to the answer207

to previous questions. Still, these questions of-208

ten convey multiple conditions that users might209

ask in separate questions. For example, the ques-210

tion “What was the last hospitalized admission time211

that patient 17694 was admitted via transfer from212

emergency room?” contains the specific conditions213

about the admission time, the patient, and the ad-214

mission route. Therefore, we further decompose215

queries on the clause-level: WHERE, ORDER BY,216

and HAVING clauses and aggregation functions217

(e.g. MAX, MIN, SUM) in the SELECT clause.218

In cases where multiple clauses appear together, we219

parse in the order of SQL execution. Exceptions220

were made only when the original semantics of the221

query became ambiguous after being decomposed.222

Please see further details in Appendix A.1.223

Stage 3. Merging Subqueries by Frequency224

We noted that frequently appearing consecutive225

subqueries are most likely decomposed due to the226

specific database schema characteristics or SQL227

structures rather than each being queries users228

would naturally ask. In Stage 3, we employ a recur- 229

sive application of the Byte Pair Encoding (BPE) 230

algorithm to merge frequent consecutive subquery 231

pairs. This recursive approach allows for the amal- 232

gamation of not only two but up to three or more 233

subqueries, thereby simplifying complex patterns 234

and enhancing query interpretability. Further de- 235

tails are given in Appendix A.2. 236

3.2 NLQ Generation 237

Stage 1. Rule-based SQL-to-NLQ Generation 238

While previous SQL-to-NLQ studies (Gan et al., 239

2022; Wu et al., 2021) decomposed SQL at the 240

clause level for sub-questions and concatenated 241

clauses later, such simple concatenation has a risk 242

of unnaturalness. Thus we create NLQ templates 243

for each corresponding SQL subqueries for the 244

quality of NLQ. To efficiently annotate NLQs 245

for each corresponding SQL subqueries, we first 246

normalize subqueries by replacing specific table 247

names, column names, and condition values to ab- 248

stract terms such as table and col (see Figure 2). 249

We then manually create NLQ templates for each 250

normalized subqueries. These templates include 251

slots for table names, column names, condition val- 252

ues, SQL functions (e.g. GROUP BY, AVG), and 253

time expressions. Then the actual question is gen- 254

erated from the NLQ templates by the slot-filling 255

process. More details are in Appendix A.3. 256

Stage 2. Paraphrase Generation We further 257

paraphrase the NLQ templates to enhance linguis- 258

tic variability within the dataset, using ChatGPT 259

for its superior performance in understanding and 260

generating text (Guo et al., 2023). We ensured that 261

all the slot values and turn indices were preserved 262

after paraphrasing. Additionally, we employed the 263

self-consistency method and a duplicate question 264

detection model to ensure the quality of the para- 265

phrases, following Lee et al. (2022). On average, 266

we obtained 10.39 paraphrases for each NLQ tem- 267
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plate. Finally, we randomly assign the paraphrased268

template to each question and fill the slots with the269

original condition values.270

Quality Check In the process of decomposing271

SQL queries, we strictly adhered to traditional SQL272

syntax to ensure the intactness. However, generat-273

ing NLQs based on templates necessitate meticu-274

lous quality checks. On the turn level, we examined275

the consistency of NLQ templates of each question.276

Our primary concerns were 1) Completeness: We277

make sure that all information in the SQL is also278

explicitly stated in the NLQ, and 2) Naturalness:279

We ensured the question templates were as natural280

as possible after the masked information is realized.281

On the interaction level, we evaluated whether the282

interaction accurately represents the original intent283

of the EHRSQL question. We also carefully an-284

alyzed how turns are connected naturally within285

an interaction through coreference. We performed286

the turn-level check for every question template287

and both turn-level and interaction-level quality288

checks for 1,000 sampled interactions from the fi-289

nal data. When unnatural template or interaction290

flow is found, we created additional templates or291

edited the template to be clear until all the sam-292

pled instances conformed to our quality standards293

in both turn and interaction level.294

3.3 Data Statistics295

Table 1 presents the statistics of EHR-SeqSQL296

compared to other multi-turn text-to-SQL datasets.297

EHR-SeqSQL has the largest number of interac-298

tions and turns compared to all existing multi-turn299

text-to-SQL datasets. Notably, this is the first work300

to introduce special tokens within SQL queries to301

improve execution efficiency. Furthermore, we also302

provide a new split and additional test set to evalu-303

ate the compositional generalization, as detailed in304

Section 5.305

Questions in our dataset are categorized into four306

types: independent, referential, filtering, and modi-307

fying. A question can belong to multiple categories308

as they are not mutually exclusive. Independent309

questions lack prior context. Referential questions310

refer to previous questions or answers while filter-311

ing questions narrow the previous question’s scope312

by adding conditions. Modifying questions are par-313

ticularly challenging as they only mention the al-314

tered condition and omit all the same conditions.315

Table 6 shows the distribution of the questions.316

4 Experimental Setup 317

4.1 Task 318

The objective of the model is to generate a SQL 319

query given the interaction history and current ques- 320

tion. We experiment with two versions of interac- 321

tion history: one that includes only the previous 322

questions, denoted as QQ, and another that includes 323

both the previous questions and their corresponding 324

SQL queries, denoted as QS. For the QS setting, 325

the model is trained with the interaction history 326

using the ground-truth queries, while during the 327

inference phase, the model’s own predictions are 328

used in order to simulate a real-world application. 329

4.2 Baselines 330

4.2.1 Fine-tuning Models 331

We employ both a fine-tuning approach and an in- 332

context learning approach for our baselines. For 333

the fine-tuning approach, we use the T5 models 334

(Raffel et al., 2020), the general-purpose sequence- 335

to-sequence models as our baseline models. We did 336

not use the state-of-the-art models for SParC (Yu 337

et al., 2019b) or CoSQL (Yu et al., 2019a) due to 338

their SQL grammar being confined to Spider which 339

is not compatible with our dataset. 340

4.2.2 In-context Learning Models 341

We use ChatGPT for our in-context learning mod- 342

els. Instead of a zero-shot approach, we employ 343

few-shot prompting. We retrieve similar exem- 344

plars for each test instance using the BM25 algo- 345

rithm to use as prompt. For every experiment with 346

in-context learning setting, we use 20-shot. For 347

EHRSQL, which is single-turn, computing the sim- 348

ilarity for each question is sufficient. However, 349

for EHR-SeqSQL, which is multi-turn and context- 350

dependent, it’s necessary to consider both the cur- 351

rent question and the interaction history. Therefore, 352

we use 10 retrieved examples related to the cur- 353

rent question and another 10 related to the entire 354

interaction history. More details such as prompt 355

and few-shot retrieval in our in-context learning 356

baseline are in Appendix E. 357

4.3 Evaluation 358

The two commonly used metrics in text-to-SQL 359

are Exact Match Accuracy (EM) and Execution 360

Accuracy (EX). However, the EM metric can some- 361

times be overly strict because it doesn’t take into 362

account predictions that have different SQL syntax 363
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but yield the same execution result as the ground-364

truth query. Thus we use the EX score to measure365

the model performance based on query execution366

results. Before execution, the special tokens are367

replaced with the generated queries or their execu-368

tion result through post-processing, thus any errors369

from the referenced turn will be propagated.370

Additionally, for the multi-turn setting, we adopt371

Interaction Match (IM) and Question Match (QM)372

following Yu et al. (2019b) while computing EX.373

IM measures the accuracy of the entire interaction374

while QM measures the accuracy of each turn. We375

utilize appropriate metrics regarding the purpose376

of each experiment.377

5 Experiments378

We now empirically demonstrate the benefits of379

EHR-SeqSQL in terms of two types of composi-380

tional generalization (§ 5.1, § 5.2), as well as the381

effectiveness of the special tokens (§ 5.3).382

5.1 Generalization to Unseen Interaction383

Goals384

Compositional Split We first aim to evaluate385

whether training models in a multi-turn setting can386

lead to the acquisition of compositional generaliza-387

tion abilities. To explore this aspect, we split our388

dataset in a compositional manner, namely compo-389

sitional split. This split differs from the random390

split in EHRSQL where the distributions of SQL391

structures in the training and test sets are nearly392

identical. In contrast, compositional split includes393

unseen SQL structures in the test set, though these394

structures can be decomposed into smaller parts395

that are all present in the training data.396

More concretely, we first define the terms com-397

positions and components and use the concepts to398

automatically split the dataset. Compositions repre-399

sent SQL templates in EHRSQL, where condition400

values, SQL functions (i.e. SUM, AVG, etc), time401

expressions (i.e. subqueries constraining last year,402

in 2023, etc) are masked. Components refer to the403

decomposed SQL template clauses derived from404

Stage 2, as explained in Section 3.1. Each com-405

position, which corresponds to an interaction goal,406

contains a set of components that exist as individual407

SQL subqueries in the dataset. Table 11 provides408

concrete examples of components and composi-409

tions. We employ a greedy algorithm to split the410

dataset, similar to Shaw et al. (2020). Table 7 pro-411

vides the statistics of the random and compositional412

splits. More details are given in Appendix B. 413

Metric We only measure IM to compare the per- 414

formance of a model trained on EHRSQL and a 415

model trained on EHR-SeqSQL. Given that an in- 416

teraction in EHR-SeqSQL corresponds to a ques- 417

tion in EHRSQL, correctly predicting every ques- 418

tion within an interaction is equal to correctly pre- 419

dicting a single question in EHRSQL. 420

Result The experimental results are shown in 421

Table 2. In a random split, all models exhibit 422

strong performance with both EHRSQL and EHR- 423

SeqSQL. However, in the compositional split, mod- 424

els typically show superior generalization ability 425

when trained with EHR-SeqSQL. T5 models, in 426

particular, show a significant performance increase, 427

ranging from 7.63%p (from 67.8 to 75.43), to 428

30.34%p (from 52.15 to 82.49). T5-base finetuned 429

in QQ setting has the best generalization ability. 430

It suggests that a task-specific fine-tuning enables 431

effective extraction of necessary information only 432

from NLQs without being distracted by other con- 433

textual factors. On the other hand, ChatGPT suffers 434

a performance drop in the QQ setting, which is sus- 435

pected to be due to the absence of predicted SQL 436

queries within the prompt, which leads ChatGPT to 437

have less information on target representation. Still, 438

a multi-turn setting leads to a performance increase 439

of 7.63% in the QS setting. It’s worth noting that 440

ChatGPT has better compositional generalization 441

ability in a single-turn setting than fine-tuned mod- 442

els. Overall, our experiments show that training 443

with EHR-SeqSQL allows the models to generalize 444

well even with unseen questions. 445

5.2 Generalization to Longer Interactions 446

Longer Interaction Generation In this section, 447

we aim to explore whether the models trained with 448

EHR-SeqSQL can comprehend longer interactions, 449

by achieving another type of compositional gen- 450

eralization ability. To test this, we created a new 451

test set (TestL) composed of multiple related in- 452

teractions that simulate follow-up questions. This 453

mirrors real-world situations where multiple related 454

questions naturally arise as a user often seeks to 455

familiarize themselves with the knowledge they are 456

curious about (Yu et al., 2019b). For each test set 457

of random split and compositional split, we cre- 458

ated 100 longer interaction instances by connecting 459

related interactions, denoting them as TestLR and 460

TestLC . The statistics for TestL can be found in 461

Table 7. These interactions are, on average, five 462
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Model
Random Compositional

EHRSQL
EHR-SeqSQL

EHRSQL
EHR-SeqSQL

QQ QS QQ QS
T5-Base 94.25±0.54 94.69±0.01 95.38±1.48 52.15±0.85 82.49±1.80 75.38±1.94

T5-3B 90.68±9.47 93.07±3.71 92.38±4.9 54.90±3.51 71.39±1.05 70.07±1.85

ChatGPT 91.22 80.74 91.37 67.80 60.50 75.43

Table 2: Model performances in two different splits. For the fine-tuning models, we trained each model with three
different random seeds. We report the average score and the standard deviation.

Model
TestLR TestLC

QM↑ IFF↑ QM↑ IFF↑

T5-Base
QQ 54.13 5.70

(15.17) 50.58 5.08
(16.64)

QS 71.33 4.51
(8.03) 61.58 3.72

(8.31)

ChatGPT
QQ 92.94 11.24

(15.17) 73.66 5.98
(16.64)

QS 94.57 12.21
(15.17) 79.67 6.81

(16.64)

Table 3: Model performances on longer interactions.
For the IFF score, the perfect score for each setting is
denoted in parentheses.

times longer than those in the training data. No-463

tably, TestLR poses a challenge with regard to gen-464

eralization for longer sequences, while TestLC ad-465

ditionally provides a challenge in generalization466

for unseen questions, resulting in a more challeng-467

ing but more practical scenario. Details about the468

longer interaction generation process can be found469

in Appendix C.1.470

Metric In this experiment, as can be seen in Ta-471

ble 3, we investigate whether a model trained on472

an average of approximately three turns can gen-473

eralize to interactions of more than an average of474

14 turns. Therefore, IM metric is deemed exces-475

sively strict. Instead, we report QM to measure476

the ratio of correctly answered turns. We further477

measure the Index of the First Failure (IFF), to cap-478

ture where the model first generates an incorrect479

response. The methodology for calculating the IFF480

score is detailed in Appendix C.2.481

Result The experiment results are presented in482

Table 3. Similarly with the findings in Section 5.1,483

scores from TestLR outperform that from TestLC .484

This is likely because the model should generalize485

to the unseen interaction goals as well as longer486

interactions in TestLC . Interestingly, IFF scores487

from all models are higher than the average length488

of interactions in the training data. This suggests 489

that the models can learn interaction-level composi- 490

tionality and generalize to longer turns after being 491

trained with EHR-SeqSQL. However, for the QS 492

setting, T5-base model had a disadvantage in taking 493

long interactions due to its input length constraint, 494

which led to the lowest IFF score. On the other 495

hand, ChatGPT outperformed the fine-tuned T5 496

models in both QM and IFF scores, highlighting its 497

adaptability to longer interactions. Especially, in 498

the random split, ChatGPT achieved an IFF score 499

of 12.21 in the QS setting, quite close to the ideal 500

score of 15.17. 501

5.3 Effects of Special Tokens for SQL 502

In this section, we evaluate the effect of two spe- 503

cial tokens–prev_query and prev_result. 504

These two tokens allow models to easily reference 505

either the previous query or its execution result 506

and thereby alleviate the decoding burden. Ad- 507

ditionally, prev_result can further reduce the 508

execution overhead by preventing duplicated sub- 509

queries to be executed multiple times. We assess 510

the utility of these tokens from two aspects: model 511

performance and query execution efficiency. 512

5.3.1 Effects on Model Performance 513

Details First, we evaluate the impact of the spe- 514

cial tokens on model performance. We compare a 515

model trained with queries with the original EHR- 516

SeqSQL, which include the special tokens, to an- 517

other trained with its standard SQL query version. 518

We ensure that all other training factors, such as 519

model architecture, learning rate, or optimizer, re- 520

main consistent between the two models. To pre- 521

vent the test set from being too simple, which could 522

potentially undermine the impact of the special to- 523

kens, we use a compositional split. We report both 524

QM and IM to assess the performance of the mod- 525

els at both the question and the interaction level. 526
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Model SQL SQL†

QM↑ IM↑ QM↑ IM↑

T5-Base
QQ 75.37 52.49 89.97 82.49
QS 82.10 64.35 86.46 75.38

ChatGPT
QQ 72.07 45.14 75.15 60.50
QS 88.22 72.55 88.23 75.43

Table 4: Comparison of model performance trained
with the original SQL queries and queries with our spe-
cial tokens (SQL†).

Patient Range SQL SQL†

avg.↓ med.↓ avg.↓ med.↓

1k Full 0.22 0.01 0.18 0.01
ST 0.20 0.09 0.09 0.01

10k Full 9.01 0.05 7.96 0.03
ST 3.25 1.17 1.15 0.15

46k Full 164.69 0.19 139.44 0.08
ST 31.57 4.60 6.00 0.52

Table 5: Execution time of SQL queries measured in
databases of different sizes. We report the statistics
for the entire queries (Full) and for the queries that
contain the special token, prev_result (ST). Units
are deciseconds (10−1).

Result As shown in Table 4, the incorporation527

of special tokens consistently enhances the perfor-528

mance across all settings, regardless of the model529

variant or the type of interaction history. In the QQ530

setting, where the absence of prior query history531

makes the contextual questions more challenging,532

the special tokens contribute to a substantial per-533

formance increase. This is because those tokens534

simplify referencing previous questions. Specifi-535

cally, at the question level, the use of these special536

tokens leads to a performance increase of 14.6%p537

(from 75.37 to 89.97), and 30%p (from 52.49 to538

82.49) at the interaction level. In the QS setting,539

on the other hand, the reference is more straight-540

forward because the previous SQL information is541

given. Still, special tokens enhance model perfor-542

mance by reducing the complexity of the target543

representation. ChatGPT demonstrates a robust544

performance even without the special tokens in the545

QS setting. We speculate this is because ChatGPT546

is trained on diverse data, which likely includes the547

standard SQL. Therefore, it might be familiar with548

standard text-to-SQL tasks, which is also consistent549

with the recent finding (Liu et al., 2023).550

5.3.2 Effects on Execution time551

Details We further evaluate the impact of our552

special tokens with respect to query execution ef-553

ficiency. Specifically, we compare the execution 554

time of the queries from EHR-SeqSQL and that of 555

their standard SQL version. The original database 556

consists of the medical records of 1,000 patients 557

and has a size of 95MB. We additionally con- 558

structed two larger databases following Lee et al. 559

(2022), one with the medical records of 10,000 560

patients and another with all 46,520 patients that 561

MIMIC provides. The size of these databases is 562

921MB and 5.06GB respectively. The results are 563

reported on the queries from the test set in a ran- 564

dom split, which covers all types of SQL queries 565

in EHR-SeqSQL1. 566

Result The result is shown in Table 5. We ob- 567

served an 18% decrease in average execution time, 568

in the original database. On a single query basis, 569

the execution time is reduced at most to 99.89%, 570

where the original SQL query has five nested 571

queries inside. The effectiveness of the special to- 572

ken tends to increase with the size of the database. 573

In the largest database, the special token yielded an 574

average time reduction of 81.0%. Given that real- 575

world databases typically contain huge amounts 576

of data, we anticipate that the special token will 577

yield a significant practical impact in multi-turn 578

text-to-SQL environments. 579

6 Conclusion 580

We present EHR-SeqSQL, the first sequential text- 581

to-SQL dataset designed for Electronic Health 582

Record databases, aimed at improving interactiv- 583

ity, compositionality, and efficiency in text-to-SQL 584

parsing. In terms of compositionality, our exper- 585

iments show that the decomposition of questions 586

significantly enhances the model’s ability to gener- 587

alize to unseen interaction goals. Furthermore, it 588

exhibited the potential for generalizing longer inter- 589

actions that were not encountered during training. 590

Additionally, we propose novel SQL-like tokens 591

that enhance execution efficiency by reusing query 592

execution results from the previous turn, as well 593

as improve the performance of sequential text-to- 594

SQL tasks by reducing the decoding burden on the 595

model. As a step forward to interactive settings in 596

text-to-SQL, we believe our dataset will serve as 597

a valuable testbed for assessing contextual and in- 598

teractive text-to-SQL tasks in EHRs and bridge the 599

gap between industry needs and academic research. 600

1We excluded the execution time that is nearly zero.
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Limitations601

Firstly, EHR-SeqSQL is generated through SQL602

query decomposition from EHRSQL, which may603

not fully represent real-world use cases. For ex-604

ample, real-world questions are often ambiguous605

and may contain unanswerable questions given the606

database. Although handling ambiguous and unan-607

swerable questions is not within the scope of this608

work, it is an important topic that we would like609

to explore in the future. Secondly, our dataset as-610

sumes users possess a certain level of understand-611

ing of the database schema. For example, when612

asking about a patient’s records, users must first613

identify the specific hospitalization ID for that pa-614

tient. This assumption could limit the applicability615

of our dataset in scenarios where users lack this616

level of comprehension or knowledge. We note,617

however, that in domain-specific settings, users are618

typically aware of the database’s structure to cer-619

tain extent.620

Ethics Statement621

Our main concerns are patient privacy and ensuring622

that the proposed dataset as well as the construction623

process are both compliant with the privacy regu-624

lations. The MIMIC-III database, which requires625

credentialed access via PhysioNet, is a database626

that contains de-identified medical records of in-627

tensive care patients. Lee et al. (2022) further de-628

identified MIMIC-III for EHRSQL by shifting time629

and values across the database. We use the database630

constructed from EHRSQL, which carefully pre-631

vents the re-identification of medical records from632

the questions. We utilized the ChatGPT api to para-633

phrase our manually generated question templates.634

Each question template corresponds to the decom-635

posed queries from EHRSQL and would unlikely636

contain the sensitive medical information.637
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A Data Construction Details 760

Category Example # of questions

Independent Q1. What is the specific item id of the hemoglobin lab test? 14,005
(44.22%)

Dependent

Referential
Q1. Display the hospitalization ids of patient 76173.
Q2. How many times each drug was prescribed within A1 since 2101?

11,560
(36.50%)

Filtering
Q1. What are the calcium, total lab test values tested during A1?
Q2. Retrieve the last tested case in A2.

5,947
(18.78%)

Modifying
Q1. During A1, what was the last measured value of A2?
Q2. What about the first measured case?

507
(1.16%)

Table 6: Category of the questions within EHR-SeqSQL.

A.1 Details in Stage 2 in Section 3.1 761

In stage 2, we decompose the subqueries based on the SQL clauses. Decomposed clauses are parsed 762

according to the logical order of execution of an SQL statement - WHERE, ORDER BY, HAVING, 763

and SELECT. However, there are certain cases that are excluded from this decomposition. First, 764

if a WHERE clause contains any aliases of table or column names without specifying the original 765

name, it is not decomposed for clarity. For example, see SELECT DISTINCT T1.C1 FROM ( 766

PREV_QUERY5 ) AS T1 WHERE T1.valuenum = 73.0. If decomposed, the meaning of 767

T1 would be ambiguous since we do not know the meaning of T1, which is not a column name in 768

MIMIC-III. Thus we ensured the conditions or clauses with table aliases are always used with the 769

subquery where the alias is defined. Second, we do not decompose the clauses for optional data 770

cleansing SQL clauses. For example, see SELECT microbiology events.org_name FROM 771

microbiologyevents WHERE microbiologyevents.spec_type_desc = ‘foot 772

culture’ AND microbiologyevents.org_name IS NOT NULL. In this SQL query, the 773

bolded subquery is intended to ensure all the selected rows have contents, excluding any NULL values. It 774

is an optional condition and a SQL writing style choice which is not included in the original question, so 775

we choose not to decompose such clauses. Also, the ten shortest question templates from EHRSQL are 776

maintained without further splitting or modifications, which are not likely to be asked through multiple 777

sentences. These include questions asking about the drug intake method, the cost of a lab test, or the 778

number of current patients. We do not decompose GROUP BY but combine it either with SELECT or 779

HAVING, since they are not explicitly expressed in the natural language questions (Guo et al., 2019; Wu 780

et al., 2021). 781

A.2 Details in Stage 3 in Section 3.1 782

The BPE algorithm was applied to merge the subqueries from both Stage 1 and Stage 2. Specifically, 783

we first derived SQL templates by masking condition values in the SQL queries obtained in Stage 2. 784

Each template was treated as a token in the BPE algorithm, and the syntactically mergeable pairs among 785

the most frequent token bigrams were repeatedly merged. A syntactically mergeable pair refers to a 786

pair of queries that were originally a single SQL query but were separated due to our decomposition 787

strategy. Since BPE algorithm calculates frequency without considering the relationship of token bigrams, 788

we added this constraint to make every resultant SQL query to be executable. Then, we sampled half 789

of each randomly to maximize the complexity of each subquery and the diversity of each interaction. 790

Considering the total number of turns in each stage, we merged bigrams that appear more than 100 times 791

in the subqueries from Stage 1 and bigrams that appear more than 150 times in the subqueries from Stage 792

2. The final SQL queries for EHR-SeqSQL are acquired throughout three stages. 793
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Split Random Compositional
Train Test TestL Train Test TestL

# of Question Temp 167 166 166 121 46 46
# of Interactions 8,546 649 100 6,375 2,820 100

# of Turns 29,438 2,231 1,417 22,134 9,535 1,564
Avg. # of Turns 3.44 3.44 14.17 3.47 3.38 15.64
Max # of Turns 9 9 25 8 8 27

Table 7: Statistics for two different splits.

A.3 List of NLQ templates794

In Section 3.2, we mentioned the process for rule-based SQL-to-NLQ generation. Detailed steps of this795

process can be found in Table 8. We used specific SQL templates paired with NLQ templates for this796

process, as presented in Table 9. Each placeholder in the NLQ template is determined by the DB schema797

and the values present in the actual SQL query. A few examples showcasing the pairing of DB schema798

and NL expressions are available in Table 10. The placeholders related to value, operation, and time are799

used in the same way as described by Lee et al. (2022).800

A.4 Prompt for paraphrasing801

Figure 3 shows the prompt for paraphrasing the questions at an interaction level. For each NLQ template,802

key expressions (such as condition values, reference indices, etc.) that must be strictly preserved were803

indicated in order to maintain consistency. During the data construction process, we utilized the ChatGPT804

API to paraphrase template questions. Prior to paraphrasing, all specific values within each template805

are replaced with representative, generic values for their respective slots. Once paraphrased, these806

generic values are then realized back to their original form. This process naturally prevents any sensitive807

information from being sent to the ChatGPT server.808

B Details on the Compositional Split809

The concept of compositions and components is based on the SQL query since it is the common factor810

across an EHRSQL instance and its corresponding EHR-SeqSQL instance. Table 11 provides three811

examples of composition and components. There are EHRSQL questions which is an interaction goal of812

the corresponding interaction in EHR-SeqSQL, and their templates where the same anonymizing logic in813

deriving composition is applied.814

We use a greedy algorithm to automatically split our data into training and test sets. Starting with all815

compositions assigned to the training set, we iteratively allocate a composition that has the maximum816

number of unique components to the test set while constraining all the components in the composition to817

exist in the training set, until no composition can be further assigned to the test set. You can find that the818

components in the last row are all present in the components of the first two rows. Thus, according to819

Figure 3: Prompt for paraphrasing.
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interaction
goal

What were the top four frequent drugs that patients were prescribed
within the same month after having been prescribed with nateglinide last year?

idx SQL Query SQL Template NLQ Template Generated NLQ
1 SELECT

admissions.subject_id,
prescriptions.startdate,
FROM prescriptions
JOIN admissions ON
prescriptions.hadm_id
= admissions.hadm_id
WHERE
prescriptions.drug
= ’nateglinide’
[time_filter_global1]

SELECT table.column,
table.column FROM
table JOIN table
ON table.column =
table.column WHERE
table.column =
[val_placeholder]
[time_filter_global1]

List all [SE-
LECT.col:admission.subject_id]
and their [SE-
LECT.col:prescriptions.startdate]
associated with
[val_placeholder:nateglinide]
[time_filter_global1:last year].

List all patient ids and their pre-
scription time associated with
nateglinide last year.

2 SELECT
admissions.subject_id,
prescriptions.drug,
prescriptions.startdate,
FROM prescriptions
JOIN admissions ON
prescriptions.hadm_id
= admissions.hadm_id
WHERE
[time_filter_global1]

SELECT table.column,
table.column,
table.column FROM
table JOIN table
ON table.column =
table.column WHERE
[time_filter_global1]

List all [SE-
LECT.col:admission.subject_id]
and their [SE-
LECT.col:prescriptions.drug]
and [SE-
LECT.col:prescriptions.startdate]
[time_filter_global1:last year].

List all patient ids and their drugs
and prescription time last year.

3 SELECT T2.drug,
DENSE_RANK() OVER
( ORDER BY COUNT(*)
DESC ) AS C1 FROM (
[PREV_QUERY1] ) AS T1
JOIN ( [PREV_QUERY2] )
AS T2 ON T1.subject_id
= T2.subject_id
WHERE T1.startdate
<T2.startdate
[time_filter_within]
GROUP BY T2.drug

SELECT table.column,
DENSE_RANK() OVER (
ORDER BY COUNT(*) DESC
) AS column FROM (
[PREV1] ) AS table
JOIN ( [PREV2] ) AS
table ON table.column
= table.column
WHERE table.column
<table.column
[time_filter_within]
GROUP BY table.column

List the frequency rankings of
[PREV:2] that patients received
[time_filter_within:within the
same month] after the [PREV:1].

List the frequency rankings of A2
that patients received within the
same month after A1.

4 SELECT T3.drug FROM (
[PREV_QUERY3] ) AS
T3 WHERE T3.C1 <=
[n_rank]

SELECT table.column
FROM ( [PREV3]
) AS table WHERE
table.column <=
[n_rank]

List the top [n_rank:four] [SE-
LECT.col:prescriptions.drug] in
[PREV:3].

List the top four drugs in A3.

Table 8: SQL-to-NLQ Generation Process.
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SQL template NLQ template
SELECT ( [PREV0] ) - ( [PREV1] ) What is the difference between the [PREV0] and [PREV1]?

SELECT ( [PREV0] ) [comparison] ( [PREV1] ) Is [PREV0] [comparison] than [PREV1]?

SELECT [agg_function](table.column) FROM ( [PREV] ) AS table What is the [SELECT.col] of [PREV]?

SELECT COUNT( DISTINCT table.column ) FROM ( [PREV] ) AS table Count the number of patients in [PREV].

SELECT COUNT( DISTINCT table.column ) FROM table #cond_parsed Count the number of [PREV-1].

SELECT COUNT( DISTINCT table.column ) FROM table WHERE [time_filter_global1] Count the number of [PREV-1].

SELECT COUNT(*) FROM table WHERE table.column = ( [PREV] ) Count the number of [SELECT.col] associated with [PREV].

SELECT COUNT(*) FROM table WHERE table.column = [val_placeholder] Count the number of [val_placeholder].

SELECT COUNT(*) FROM table WHERE table.column IN ( [PREV] ) Count the number of [SELECT.col] associated with [PREV].

SELECT COUNT(*)>0 FROM table WHERE table.column = [val_placeholder] Has [val_placeholder] been admitted to the hospital?

SELECT COUNT(*)>0 FROM table WHERE table.column IN ( [PREV] ) Are there any [SELECT.col] in [PREV]?

SELECT SUM(table.column) FROM table WHERE table.column IN ( [PREV] ) What is the [SELECT.col] associated with [PREV]?

SELECT SUM(table.column) FROM table WHERE table.column IN ( [PREV] ) What is the total amount of [PREV-1]?

SELECT table.column FROM ( [PREV] ) AS table WHERE table.column [n_times] Which [SELECT.col] is [n_times] in [PREV]?

SELECT table.column FROM ( [PREV] ) AS table WHERE table.column <= [n_rank] List top [n_rank] [SELECT.col] in [PREV].

SELECT table.column FROM table List all [SELECT.col] from [FROM.table].

SELECT table.column FROM table WHERE [age_group] List all [SELECT.col] associated with patients aged [age_group].

SELECT table.column FROM table WHERE table.column = ( [PREV] ) What is the [SELECT.col] of [PREV]?

SELECT table.column FROM table WHERE table.column = [val_placeholder] List all [SELECT.col] of [val_placeholder].

SELECT table.column FROM table WHERE table.column IN ( [PREV] ) List all [SELECT.col] associated with [PREV].

SELECT table.column, table.column FROM table List all [SELECT.col.0] and [SELECT.col.1].

[PREV] [time_filter_exact1] What was the [time_filter_exact2] measured case from [PREV-1]?

[PREV] [time_filter_global1_dec1] Retrieve only the cases [time.verb] [time_filter_global1_dec1] from [PREV].

[PREV] [time_filter_global1_dec2] Retrieve only the cases [time.verb] [time_filter_global1_dec2] from [PREV].

[PREV] [time_filter_global1] Retrieve only the cases [time.verb] [time_filter_global1] from [PREV].

[PREV] AND [age_group] Retrieve only the cases associated with patients aged [age_group] from [PREV_QEURY].

[PREV] AND table.column = ( [PREV] ) Retrieve only the cases associated with [PREV] from [PREV].

[PREV] AND table.column IN ( [PREV] ) Retrieve only the cases associated with [PREV] from [PREV].

[PREV] AND table.column IS NULL What is the current one in [PREV]?

[PREV] WHERE [age_group] Retrieve only the cases associated with patients aged [age_group] from [PREV].

[PREV] WHERE [time_filter_global1] Retrieve only the cases [time.verb] [time_filter_global1] from [PREV].

[PREV] WHERE table.column = ( [PREV] ) Retrieve only the cases associated with [PREV] from [PREV].

[PREV] WHERE table.column IN ( [PREV] ) Retrieve only the cases associated with [PREV] from [PREV_QEURY].

Table 9: SQL & NLQ template.

DB schema NL expression
admissions.admittime admission time
admissions.dob date of birth
admissions.dod date of death
admissions.subject_id patient
chartevents.charttime chart time
chartevents.itemid vital sign item id
chartevents.valuenum value of vital sign
cost.hadm_id hospital stay
diagnoses_icd.charttime time of diagnosis
diagnoses_icd.icd9_code diagnosis
diagnoses_icd.icd9_code diagnosis ICD-9 code
inputevents_cv.amount volume of intake
inputevents_cv.itemid input event item id
labevents.itemid lab test
labevents.itemid lab test item id
labevents.valuenum value of lab test
microbiologyevents.org_name organism name
microbiologyevents.spec_type_desc microbiology test
outputevents.itemid output event item id
prescriptions.drug drug
prescriptions.startdate prescription time
procedures_icd.charttime time of procedure
procedures_icd.hadm_id hospital stay
procedures_icd.icd9_code procedure ICD-9 code
procedures.icd9_code procedure

Table 10: Examples of DB schema & NL expression pairs.
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Interaction Goal Template Composition Set of Components
Is the value of
glucose of patient
71192 last measured
on the first hospital
visit less than the
second to last value
measured on the
first hospital visit?

Is the value of
{lab_name} of
patient {patient_id}
[time_filter_exact2]
measured
[time_filter_global2]
[compari-
son] than the
[time_filter_exact1]
value measured
[time_filter_global1]?

SELECT ( SELECT
labevents.valuenum FROM labevents
WHERE labevents.hadm_id IN
( SELECT admissions.hadm_id
FROM admissions WHERE
admissions.subject_id
= {patient_id}
[time_filter_global1] )
AND labevents.itemid IN (
SELECT d_labitems.itemid
FROM d_labitems WHERE
d_labitems.label = {lab_name}
) [time_filter_exact1] ) < (
SELECT labevents.valuenum FROM
labevents WHERE labevents.hadm_id
in ( SELECT admissions.hadm_id
FROM admissions WHERE
admissions.subject_id
= {patient_id}
[time_filter_global2] ) AND
labevents.itemid IN ( SELECT
d_labitems.itemid FROM d_labitems
WHERE d_labitems.label =
{lab_name} ) [time_filter_exact2]
)

1. SELECT admissions.hadm_id FROM
admissions

2. [PREV_QUERY] WHERE
admissions.subject_id = {patient_id}

3. [PREV_QUERY] AND [time_filter_global1]

4. SELECT d_labitems.itemid FROM
d_labitems

5. [PREV_QUERY] WHERE d_labitems.label =
{lab_name}

6. SELECT labevents.valuenum FROM
labevents

7. [PREV_QUERY] WHERE labevents.hadm_id
IN ( [PREV_RESULT] )

8. [PREV_QUERY] AND labevents.itemid IN (
[PREV_RESULT] )

9. [PREV_QUERY] [time_filter_exact1]

10. [PREV_QUERY] [time_filter_exact2]

11. SELECT ( [PREV_RESULT] ) [comparison]
( [PREV_RESULT] )

What was the maxi-
mum arterial bp [di-
astolic] of patient
18866 yesterday?

What was the
[agg_function]
{vital_name} of
patient patient_id
[time_filter_global1]?

SELECT [agg_function](chartevents.valuenum)
FROM chartevents WHERE
chartevents.icustay_id IN (
SELECT icustays.icustay_id FROM
icustays WHERE icustays.hadm_id
IN ( SELECT admissions.hadm_id
FROM admissions WHERE
admissions.subject_id
= patient_id ) ) AND
chartevents.itemid IN ( SELECT
d_items.itemid FROM d_items WHERE
d_items.label = {vital_name} AND
d_items.linksto = ’chartevents’ )
[time_filter_global1]

1. SELECT admissions.hadm_id FROM
admissions

2. [PREV_QUERY] WHERE
admissions.subject_id = {patient_id}

3. SELECT icustays.icustay_id FROM
icustays

4. [PREV_QUERY] WHERE icustays.hadm_id IN
( [PREV_RESULT] )

5. SELECT d_items.itemid FROM d_items

6. [PREV_QUERY] WHERE d_items.label
= {vital_name} AND d_items.linksto =
’chartevents’

7. SELECT chartevents.valuenum FROM
chartevents

8. [PREV_QUERY] WHERE
chartevents.icustay_id IN (
[PREV_RESULT] )

9. [PREV_QUERY] AND chartevents.itemid IN
( [PREV_RESULT] )

10. [PREV_QUERY] [time_filter_global1]

11. SELECT [agg_function](chartevents.valuenum)
FROM chartevents WHERE
chartevents.icustay_id
IN ( [PREV_RESULT] ) AND
chartevents.itemid IN ( [PREV_RESULT]
) [time_filter_global1]

Is the arterial bp [di-
astolic] of patient
25461 last measured
on the last icu visit
greater than the sec-
ond to last value
measured on the last
icu visit?

Is the {vi-
tal_name} of
patient {patient_id}
[time_filter_exact2]
measured
[time_filter_global2]
[compari-
son] than the
[time_filter_exact1]
value measured
[time_filter_global1]?

SELECT ( SELECT
chartevents.valuenum
from chartevents WHERE
chartevents.icustay_id IN (
SELECT icustays.icustay_id from
icustays WHERE icustays.hadm_id
IN ( SELECT admissions.hadm_id
from admissions WHERE
admissions.subject_id
= {patient_id} )
[time_filter_global1] ) AND
chartevents.itemid IN ( SELECT
d_items.itemid from d_items WHERE
d_items.label = {vital_name} AND
d_items.linksto = ‘chartevents’
) [time_filter_exact1] ) > (
SELECT chartevents.valuenum
from chartevents WHERE
chartevents.icustay_id IN (
SELECT icustays.icustay_id from
icustays WHERE icustays.hadm_id
IN ( SELECT admissions.hadm_id
from admissions WHERE
admissions.subject_id
= {patient_id} )
[time_filter_global2] ) AND
chartevents.itemid IN ( SELECT
d_items.itemid from d_items WHERE
d_items.label = {vital_name} AND
d_items.linksto = ‘chartevents’ )
[time_filter_exact2] )

1. SELECT admissions.hadm_id FROM
admissions

2. [PREV_QUERY] WHERE
admissions.subject_id = {patient_id}

3. SELECT icustays.icustay_id FROM
icustays

4. [PREV_QUERY] WHERE icustays.hadm_id IN
( [PREV_RESULT] )

5. [PREV_QUERY] AND [time_filter_global1]

6. SELECT d_items.itemid FROM d_items

7. [PREV_QUERY] WHERE d_items.label
= {vital_name} AND d_items.linksto =
’chartevents’

8. SELECT chartevents.valuenum FROM
chartevents

9. [PREV_QUERY] WHERE
chartevents.icustay_id IN (
[PREV_RESULT] )

10. [PREV_QUERY] AND chartevents.itemid
IN ( [PREV_RESULT] )

11. [PREV_QUERY] [time_filter_exact1]

12. [PREV_QUERY] [time_filter_exact2]

13. SELECT ( [PREV_RESULT] ) [comparison]
( [PREV_RESULT] )

Table 11: Examples of compositions and components.
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Figure 4: Related interaction goals and their context graph.

our split algorithm, if both the first two compositions are in the training set, the last composition can be820

assigned to the test set.821

C Longer Interaction822

C.1 Generation Process823

As given in Figure 4, we define the concept of related interaction goal by using the context graph. Each824

interaction goal has its own context graph, whose nodes are defined by the specific condition values (e.g.825

conditions for patient, drug, or lab tests) in the original EHRSQL. Two questions are deemed related if826

they have overlapping condition values. Q1 and Q2 are related because they share the same patient 85895.827

However, Q1 and Q3 are not directly related without Q2 as a bridge. While we used three independent828

questions from the EHRSQL to demonstrate this concept in Figure 4, a longer and context-dependent829

interaction used in Section 5.2 is depicted in Figure 5. In this example for longer interaction, five EHRSQL830

questions are connected, each paired with an original SQL query. In contrast, EHR-SeqSQL involves831

context-dependent interaction spanning twelve turns, each paired with a query with our special tokens for832

SQL.833

C.2 IFF Score Calculation834

IFF =

{
n+ 1, if all turns are correct
k, otherwise

835

k denotes the specific turn number in the interaction where the first incorrect response occurs. n836

represents the total number of turns in the interaction. The final IFF score for a test set is calculated837

as the average IFF score across all interactions. Hence, if the model achieves a perfect score for every838

interaction, the IFF score becomes one plus the average number of turns of all interactions.839

Note that the perfect IFF score for QQ and QS setting is different in Table 3. This is because we840

removed the test sample that exceeds the maximum token length of T5 when the interaction history is841

concatenated with the current question for a fair comparison.842

D Fine-tuning Baseline843

D.1 Configuration844

We fine-tuned the T5-Base and T5-3B using the Adam optimizer, with a global batch size of 32. The845

learning rate were set to 1e-4 for T5-Base and 5e-5 for T5-3B, respectively. For the other hypterparameter846

configurations, we followed the settings used in EHRSQL. All experiments were carried out on either a847

single A100 80G GPU or a A6000 48G GPU. The training process typically took around 10 hours for848

T5-Base and around 24 hours for T5-3B.849
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Figure 5: Example of Longer Interaction.
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Figure 6: T5-Base performance on Longer Interactions

Figure 7: ChatGPT performance on Longer Interactions
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Figure 8: Prompt configuration for chatGPT.

E In-context Learning Baseline 850

E.1 Prompt Configuration 851

Figure 8 demonstrates how we configured the prompt of ChatGPT for both the EHRSQL and EHR- 852

SeqSQL. Unlike EHRSQL where the target representation is standard SQL, EHR-SeqSQL include 853

the special tokens, which are first introduced in this work. Thus, we include a simple description for 854

PREV_QUERY and PREV_RESULT tokens in the prompt. In the QS setting during the inference process, 855

for the current turn, the interaction history includes both previous questions and queries generated by 856

ChatGPT. 857

E.2 Few-Shot Learning Approach for EHR-SeqSQL 858

We developed a new method for few-shot learning for the multi-turn, context-dependent setting of EHR- 859

SeqSQL. This method is detailed in Figure ??. To begin, we created two corpora: one for interaction-level 860

training data and another for turn-level training data. For our few-shot learning approach, we retrieved 861

examples, with half based on the interaction history and the other half based on the current question. In 862

our experiments, we used a total of 20 examples for few-shot learning. 863

F Use Cases of the Special Tokens 864

Table 12 illustrates an example of the interactions in EHR-SeqSQL where the special token significantly 865

reduce the length of target representation as well as the execution time. Due to readability and spatial 866

issues, the standard SQL version of each turn has been omitted from the table. You can see the standard 867

SQL would be quite lengthy by looking at the SQL† that the used special token refers to. 868
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Index Question Target Representation (SQL†) Time
(SQL†)

Standard SQL Time
(SQL)

1 Which icu stay ids are
associated with patient
30826 on the current
hospital visit?

SELECT icustays.icustay_id FROM icustays
WHERE icustays.hadm_id IN ( SELECT
admissions.hadm_id FROM admissions
WHERE admissions.subject_id = 30826 AND
admissions.dischtime IS NULL )

0.334 SELECT icustays.icustay_id FROM icustays
WHERE icustays.hadm_id IN ( SELECT
admissions.hadm_id FROM admissions
WHERE admissions.subject_id = 30826 AND
admissions.dischtime IS NULL )

0.334

2 Could you tell me the
item id for weight,
please?

SELECT d_items.itemid FROM d_items
WHERE d_items.label = ‘admit wt’ AND
d_items.linksto = ‘chartevents’

0.334 SELECT d_items.itemid FROM d_items
WHERE d_items.label = ‘admit wt’ AND
d_items.linksto = ‘chartevents’

0.333

3 During result1, what
was the last value of
result2 that was mea-
sured?

SELECT chartevents.valuenum FROM
chartevents WHERE chartevents.icustay_id
IN ( PREV_RESULT1 ) AND
chartevents.itemid IN ( PREV_RESULT2
) ORDER BY chartevents.charttime DESC
LIMIT 1

20.352 SELECT chartevents.valuenum FROM
chartevents WHERE chartevents.icustay_id
IN ( SELECT icustays.icustay_id FROM
icustays WHERE icustays.hadm_id IN
( SELECT admissions.hadm_id FROM
admissions WHERE admissions.subject_id
= 30826 AND admissions.dischtime IS
NULL ) ) AND chartevents.itemid IN (
SELECT d_items.itemid FROM d_items
WHERE d_items.label = ‘admit wt’ AND
d_items.linksto = ‘chartevents’ ) ORDER
BY chartevents.charttime DESC LIMIT 1

31.362

4 What about the first mea-
sured case?

SELECT chartevents.valuenum FROM
chartevents WHERE chartevents.icustay_id
IN ( PREV_RESULT1 ) AND
chartevents.itemid IN ( PREV_RESULT2
) ORDER BY chartevents.charttime ASC
LIMIT 1

19.684 SELECT chartevents.valuenum FROM
chartevents WHERE chartevents.icustay_id
IN ( SELECT icustays.icustay_id FROM
icustays WHERE icustays.hadm_id IN
( SELECT admissions.hadm_id FROM
admissions WHERE admissions.subject_id
= 30826 AND admissions.dischtime IS
NULL ) ) AND chartevents.itemid IN (
SELECT d_items.itemid FROM d_items
WHERE d_items.label = ‘admit wt’ AND
d_items.linksto = ‘chartevents’ ) ORDER
BY chartevents.charttime ASC LIMIT 1

30.695

5 What is the variation
between result3 and re-
sult4?

SELECT ( PREV_RESULT3 ) - ( PREV_RESULT4
)

0.000 SELECT ( SELECT chartevents.valuenum
FROM chartevents WHERE
chartevents.icustay_id IN ( SELECT
icustays.icustay_id FROM icustays
WHERE icustays.hadm_id IN ( SELECT
admissions.hadm_id FROM admissions
WHERE admissions.subject_id = 30826
AND admissions.dischtime IS NULL
) ) AND chartevents.itemid IN (
SELECT d_items.itemid FROM d_items
WHERE d_items.label = ‘admit wt’ AND
d_items.linksto = ‘chartevents’ ) ORDER
BY chartevents.charttime DESC LIMIT 1
) - ( SELECT chartevents.valuenum FROM
chartevents WHERE chartevents.icustay_id
IN ( SELECT icustays.icustay_id FROM
icustays WHERE icustays.hadm_id IN
( SELECT admissions.hadm_id FROM
admissions WHERE admissions.subject_id
= 30826 AND admissions.dischtime IS
NULL ) ) AND chartevents.itemid IN (
SELECT d_items.itemid FROM d_items
WHERE d_items.label = ‘admit wt’ AND
d_items.linksto = ‘chartevents’ ) ORDER
BY chartevents.charttime ASC LIMIT 1 )

60.722

Table 12: Example of an interaction in EHR-SeqSQL where the target representations (SQL†) contain special tokens.
We also report average execution times in milliseconds(10−3), where the queries are executed three times. Their
standard SQL versions are also reported for comparison.
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